
      

 

 

 

 

BIBLIOTECA 

 

 

This work is licensed under a  

Creative Commons Attribution-NonCommercial-NoDerivatives  

4.0 International License. 

       

 

 
 

 

Document downloaded from the institutional repository of the University of 
Alcala: http://ebuah.uah.es/dspace/ 

 

This is a postprint version of the following published document: 

 

Regadío Carretero, A., Esteban, L. & Sánchez Prieto, S. 2021, “Unfolding 

using deep learning and its application on pulse height analysis and pile-up 

management”, Nuclear Instruments and Methods in Physics Research 

Section A: Accelerators, Spectrometers, Detectors and Associated 

Equipment, vol. 1005, art. no. 165403. 

 

 

Available at https://doi.org/10.1016/j.nima.2021.165403 

 

© 2021 Elsevier 

 

 

 

(Article begins on next page) 

http://ebuah.uah.es/dspace/
https://doi.org/10.1016/j.nima.2021.165403


Unfolding using deep learning and its application on pulse height analysis1

and pile-up management2

Alberto Regad́ıoa,∗, Luis Estebanb, Sebastián Sánchez-Prietoc3

aDepartment of Space Programs, Instituto Nacional de Técnica Aeroespacial, 28850 Torrejón de Ardoz, Spain4
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Abstract7

Traditionally, electronics for pulse processing can be modeled as linear transfer functions. In contrast,8

due to the fact that artificial Neural Networks (NNs) are generally non-linear systems, their behaviour9

against noise is significantly different as in linear systems. We take advantage of this non-linearity to10

achieve acceptable Signal-to-Noise Ratios (SNR) with a extremely short shaping time. This article shows11

an approach to a concrete NN named U-net as pulse shaper. It filters the pulses and return them unfolded12

solving the pile-up problem, and even estimates the height of the pulses when there has been saturation in13

the detector. In this article, the NN architecture and results using simulated pulses and real pulses from14

scintillators are shown. The results clearly show the effectiveness of the approach.15
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1. Introduction17

When particles interact with detectors, pulses of current or charge are generated. In order to be analyzed,18

these pulses are converted to voltage at the output of a preamplifying stage and shaped afterwards. The19

ideal shape for a detector depends on the shape of the pulse coming from the preamplifier and the noise20

type of the entire system. Thus, specific techniques are used to synthesize various shapes to maximize their21

Signal-to-Noise Ratio (SNR) [1, 2].22

One of the most common type of noise in spectroscopy systems is white noise, whose spectrum is the23

same in all frequencies. According to [3–6] the impact of this type of noise in measurements is inversely24

proportional to the shaping time. Thus, a common practice to mitigate it, is making it longer with the25

consequent risk of pile-up. As it is known, the pile-up problem is twofold. On the one hand, the pulse26

processing complexity must be increased to get the information (e.g. the height) of the incident particles27
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contained in the pulses. On the other hand, the shaping stage can become saturated, thus invalidating the28

height measurements.29

When pile-up occurs in detectors, many algorithms detect and discard the piled-up pulses with the30

consequent loss of information. However, there are algorithms that try to analyze the signals even when31

they are piled-up (e.g. [7, 8]). Apart from these algorithms, a common technique to deal with pile-up is32

unfolding.33

The unfolding (or deconvolution) technique allows the transformation of the input digitized signal x[n]

into a unit impulse δ[n] of length equal to one in the discrete-time domain (see [9] and the references therein),

according to the following equation:

x[n] ∗ h[n] = δ[n− d], d ∈ {0, 1, 2, . . .} , (1)

where h[n] is the transfer function of the shaper that acts as unfolder and d is the delay of the unit impulse34

in cycles.35

Despite the fact that using unfolders is the optimal shaping to manage the pile-up where the height of36

the pulse is obtained directly, unfolding is not always used because its short shaping time increases the effect37

of the white noise [4]. To avoid this problem, one option is to replace the shaper whose transfer function is38

h[n] by a non-linear shaper, which would be able to unfold pulses while keeping white noise low.39

However, the design of a non-linear filter can be tedious. Neural Networks (NNs) usually have non-linear40

response and are automatically configured from input and output patterns. For these reasons, this article41

proposes the use of NNs to overcome the problems of designing a non-linear filter. In addition, the use of42

these nets, as they have a non-linear response, could allow to improve the S/N ratio beyond what a linear43

system allows. Figure 1 shows a diagram of the behaviour of each type of shaping against noise and pile-up.44

Figure 1: Diagram of the behaviour of each type of shaping against noise and pile-up. Without processing, the pile-up

probability depends on the pulse length.

Noise filtering using NNs has already been applied in fields such as electrocardiograms [10] or automatic45

speech recognition [11]. The use of NNs and deep learning on particle detectors and spectroscopy is not46

new, they have been used for alpha/gamma [12] and gamma/neutron [13–15] discrimination, the three last47
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using convolutional NNs. These nets have also been used for nuclide identification from radiactive facilities48

[16], accelerators [17] and cosmic rays [18, 19]. The cited articles have in common that the presented NNs49

allow the identification of particles. However, the shaping of pulses from particle detectors using deep NNs50

has not yet been used to our knowledge.51

This article shows the topology and training of a neural network that is used to perform unfolding,52

eliminating the pile-up problem without losing sight of the SNR. The presented NN, apart from unfolding53

while increasing the SNR, has a series of characteristics that make the training process more laborious. One54

of them is that the network should learn how to approximate the height of the pulse chopped when the55

preamplifier is saturated. Another is the lack of homogeneity both in the arrival time and in the height of56

pulses.57

The rest of the paper is structured as follows: Section 2 explains both the NN architecture and training.58

The results of using these NNs with simulated and real pulses are exposed in Section 3. Finally, Section 459

summarizes the conclusions of this work.60

2. Pulse shaper architecture61

When dealing with a problem involving deep NNs and signal processing, two options are typically chosen:62

(a) generate a spectrogram of the pulse and process it as if the signal were a two-dimensional image; (b)63

process the signal as a temporal series (one dimension). For simplicity and because the results have not64

been significantly improved using a spectrogram, this last option has been chosen in this work.65

The first option considered was to implement the filter using Fully Connected (FC) layers, such as a66

multilayer perceptron. However, we have used Convolutional Neural Networks (CNN) layers because in the67

latter, neurons in one layer do not connect to all the neurons in the next layer, saving resources and training68

time. In CNNs, each set of neurons focuses on one part of the signal and analyzes a specific feature.69

Once all the features of the input signal are detected, the next step is to get the desired signal based70

on them in the same way as in Deep Convolutional Inverse Networks [20]. After trying with simple NN71

topologies without success, U-Net [21] was chosen because it is already used in signal filtering as Wave-U-Net72

[22]. Specifically, this first architecture has been taken as a model. However, since we are working with a73

time dimension, the central core of our NN is a Long Short-Term Memory (LSTM) layer, that works better74

in time-processing. After this layer, a dense linear layer as in [23] is placed. A complete topology of the75

NN is shown in Figure 2. The concatenation of the decoder part with blocks from the left (grey horizontal76

arrows) significantly improves the obtained results.77

This NN was trained with a sequence of samples that contains pulses at random time intervals and that78

can be piled-up. This sequence of samples was mixed with white noise. The target output was the unfolded79

pulses (i.e. Dirac delta pulses). Once trained, it was tested with sequences of samples different from the80
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Figure 2: U-net architecture (example for L = 2048 samples). Each blue box corresponds to a layer. The number of channels

is denoted on top of the box. The window of the signal is provided at the lower left edge of the box. White boxes represent

copied features using concatenation. The arrows denote the different operations.

training set.81

The implementation of the NN was programmed in Python using Tensorflow [24] and Keras [25] pack-82

ages1. The pulse processing has been performed off-line. However, the size of this NN (3,274,305 units)83

implies that it can also be inserted in an embedded computer with enough memory and carry out the pro-84

cessing on-line. For comparison, an alternative linear pulse shaping was performed using the scipy.signal85

package [26]. Concretely, pulses were also unfolded using the deconvolve function. The pulse height to86

create histograms was measured using the find peaks function in all cases.87

3. Results88

3.1. Results with simulated pulses89

In this section, we used as source step or Heaviside pulses whose pulse height is a random uniform90

distribution between 0 and 1. A complete configuration of the simulation is shown in Figure 3.91

1The code of this U-net is accessible online via: https://github.com/arc140181/unet2pulseprocessing. It has been tested in

the Spyder (www.spyder-ide.org) environment.
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Figure 3: Generation of the input pulses and configuration of the simulation.

As decided in Section 2, pulses were generated at random time intervals and some of them are piled-up.92

These pulses were mixed with white noise that, as explained in Section 1, affects unfolders the most. The93

white noise was created with a random number generator whose amplitude was set to 0.05. So, the SNR94

is equal to 20 in both training and testing data. Afterwards, the noisy pulses were shaped to CR–RC ones95

whose parameters are τ1 = 1 μs, τ2 = 0.1 μs [1, p. 630], mean count rate that varies from 104to 2 · 105 s−1
96

and sampling frequency equal to 50 MHz (20 ns). A sample of this specific train of pulses is shown in the97

top panel of Figure 5. During the training process, these noisy CR–RC pulses were used as input of the98

U-net whereas unfolded pulses without noise were used at the output.99

The loss function to train the network chosen was the mean squared error, concretely:

J = (x− x∗)2 (2)

where x is the output signal and x∗ the desired output signal. A total of 20 training epochs have been used100

with Adam optimizer. Figure 4 shows the loss function along the training process. Analyzing this Figure,101

we conclude that it converges and there is no overfitting. During each of these epochs, a set 320 sequences102

of 1024 samples each was used. The pulse length is 128 samples. When the number of samples approaches103

to the pulse length, the loss function is lowered only up to a point. In contrast, when the length of the104

training samples is in the order of 16000, the training process is dramatically increased. For the validation105

process, another set of 80 sequences also of length equal to 1024 was used. In each of the sequences, pulses106

with an uniformly distribution amplitude between 0 and 1 were randomly generated. In the same way that107

training sequences, these pulses can give rise to overlaps that saturate the signal when it is greater than 1.108

The training process took 690 seconds on Google Colab with Graphics processing unit (GPU) enabled.109

As the sequences have been generated by simulation, we can obtain as many as we want to improve the110

training of the NN at the cost of increasing the training time. However, an additional application of this111

filter may be to regenerate the shaper when the features of the detector have changed as a consequence of112

radiation, as for example in [27] as it can be the case with silicon detectors installed on payloads. Therefore113

for these experiments a tradeoff between training time and performance was chosen.114

In order to evaluate the performance of the proposed NN, a set of preliminary simulations in time-domain115
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Figure 4: Training process of the U-net whose output are depicted in the bottom panel of Figure 5. The results obtained with

the training pulses (solid line) and validation pulses (dotted line) were evaluated with the loss function of Eq. (2). We can

observe that both functions decrease at the same time.

were carried out. An example of such results is shown in Figure 5. Note that the pulse height is detected116

even when the signals are piled-up. It even approximates the height of the pulse when, due to pile-up, the117

input signal is saturated. The threshold of the pulses was set to 0.03.118

As mentioned in Section 1, this NN is a non-linear system, so the noise equations to calculate the noise119

impact or the Equivalent Noise Charge (ENC) [4–6] cannot be applied. Apart from comparing individual120

pulse heights as in Figure 5, an alternative method to evaluate the NN is to compare the Full Width at Half121

Maximum (FWHM). In this article, the FWHM has been calculated applying the function peak widths122

from the scipy.signal package [26] on the histograms with the parameter rel height=0.5. In Figure 6,123

histograms generated with the proposed NN, with a FIR filter whose transfer function is h[n] = 1
5 (1, 1, 1, 1, 1),124

with linear unfolding (using deconvolve) and without filtering are shown. In this test, a low pulse arrival125

rate was used to avoid pile-up and thus the effects on FWHM due to white noise filtering were observed.126

It can be seen that the FWHM is lowered when the proposed NN is used with respect to the CR–RC127

shaper and the CR–RC + FIR shaper. This has also been confirmed for other types of noise such as 1/f ,128

but has not been included here for brevity. For 1/fα noise type, where α > 1, the proposed NN begins to129

lose efficiency, the FWHM increases and the training process does not converge as quickly. It must be taken130

into account that for a NN to be protected against a type of noise, it should be trained with that type of131

noise as was performed in [28].132

In order to test the NN dealing with pile-up, we increased the pulse arrival frequency ×10 to get a pulse133

rate similar to that shown in Figure 5. The resulting histograms are depicted in Figure 7. We can observe134

that using the proposed NN we obtain the lowest FWHM.135

To measure the performance of the NN compared to the others filters, we generated a set of pulses136
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Figure 5: Top panel: Input CR–RC pulses from a test sample with random heights and arrival time; the saturation value was

normalized to 1. Bottom panel: Height of the top panel pulses before adding noise (red) and pulse height obtained with the

U-net of Figure 2 (blue). In both panels the sequence was sampled at 1 μs/sample.

of equal height. These pulses can be piled-up depending of the pulse rate arrival. We also used the four137

methods to detect and measure the pulses included in this Section. The results of the number of pulses138

detected with each method is presented in the first half of Table 1. We observe that the linear unfolder139

without noise and the NN in any case are the shapers that allow to detect the most pulses. The FWHM140

of the histogram in number of channels is presented in the second half of Table 1, we see that the FHWM141

of CR–RC and CR–RC + FIR remains lower than unfolders, but this is because the formers do not take142

many pulses into account due to the high pulse rate and the preamplifier’s saturation. We also observe that143

the FWHM of the linear unfolder explodes as the noise is increased. Therefore, we can conclude that the144

NN take into account all the pulses and keeps the noise effect low to calculate the pulse height accurately.145

Similar results are obtained with trapezoidal, cusp-like and triangular instead CR–RC shapers.146

3.2. Results with pulses from a scintillator147

Finally, a group of tests to check the proposed NN with real pulses were performed. The main objective148

of these tests is to check that the NN works and try to improve the results obtained with a linear shaper.149

7



Figure 6: Histograms for a low pulse arrival. Top left panel: without filtering (CR–RC pulses); top right panel: with a FIR

filter whose transfer function is h[n] = 1
5
(1, 1, 1, 1, 1); bottom left panel: with linear unfolding (using deconvolve); bottom

right panel: with the NN unfolder.

The pulses were collected in the Radiation Physics Laboratory located in Santiago de Compostela Uni-150

versity (Spain) using a scintillator. A diagram of the detection chain used in the experimental test is shown151

in Figure 8. The scintillator model of NaI is 1M1/1.5 and worked at +475 V, with an integrated preampli-152

fier PA-12. The amplifier N968 (with a shaping of 2 μs and gain ×14 was connected to a Digital Phosphor153

Oscilloscope Tektronix TDS 3014B. An amount of 500 points were taken for each pulse at a frequency of 1154

GS/s.155

This oscilloscope performs the function of data acquisition system, receiving the raw data from the156

amplifier and storing it in a laptop. The resolution of the signal amplitude is 8 bits (256 levels) for a range157

between −5 and 5 V. The scintillator received radiation from a source of 22Na whose activity is 105 kBq and158

produces a peak at 511 keV and from a source of 137Cs whose activity is 8.71 kBq and produces a peak at159

661.6 keV. The raw data was stored in text files, this allows data reusing without recapturing new samples160

and ensures that changes in the results obtained during the test are exclusively due to the pulse processing.161

To train the NN, a set 400 different pulses distributed throughout a sequence of 204800 samples were162

filtered. These samples have been divided into 200 sequences of length 1028 each. This has been done so163

that each sample is long enough to accurately fit the weights of the LSTM layer, but not long enough to164

cause the count time to increase excessively as explained in Section 3.1. However, tests have been carried165

out in a range of lengths between 2048 and 8192 and no significant variations have been observed, neither in166

8



Figure 7: Histograms for a high pulse arrival. Top left panel: without filtering (CR–RC pulses); top right panel: with a FIR

filter whose transfer function is h[n] = 1
5
(1, 1, 1, 1, 1); bottom left panel: with linear unfolding (using deconvolve); bottom

right panel: with the NN unfolder.

Figure 8: Diagram of the detection chain used for the experimental test.

the computation time, nor in the result. The number of epochs was 200 and the optimizer used was Adam.167

One of the drawbacks when training the NN with these samples was that since the NN is non-linear,168

there must be pulses of the entire spectrum of amplitudes. With a uniform range of amplitudes, the pulses169

used in Section 3.1 were generated. However, the height of pulse from particle detectors are not uniform,170

so a sufficient number of pulses from each height is needed for the network to be trained correctly. This set171

the minimum number of sequences. Fortunately, the regions of interest are usually determined by peaks, so172

that in these regions the number of samples is assured.173

Once trained, a different sequence with 10500 pulses was filtered. For comparison purposes, the same174

histograms that in Section 3.1 were generated. They are depicted in Figures 9 and 10. As it can be observed,175

the non-linearity of the NN hardly distorts the histogram. Besides, the achieved FWHM is in the order FIR176

filters but with the advantage that the NNs solve the pile-up problem much better than the FIR because177

the former generate unfolded pulses.178
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Noise amplitude

0 0.05 0.10

Pulse rate (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

1 · 104 s−1 1.000 0.988 1.000 1.000 0.976 0.968 1.000 1.000 0.995 0.991 1.000 1.000

2 · 104 s−1 0.979 0.967 0.997 0.999 0.979 1.000 1.000 1.000 0.889 0.877 0.983 0.984

3 · 104 s−1 0.959 0.931 0.997 1.000 0.835 0.812 0.998 0.999 0.829 0.814 0.977 0.980

4 · 104 s−1 0.936 0.896 0.993 1.000 0.741 0.702 0.994 0.999 0.716 0.677 0.970 0.975

1 · 104 s−1 6 7 6 7 25 19 47 21 33 26 90 38

2 · 104 s−1 6 11 6 7 21 22 51 25 31 32 99 41

3 · 104 s−1 — — 6 7 — — 51 26 — — 92 51

4 · 104 s−1 — — 6 7 — — 44 25 — — 91 46

Table 1: Top values: Fraction of number of pulses detected for each method: (1) without filtering (CR–RC pulses); (2) with

a FIR filter whose transfer function is h[n] = 1
5
(1, 1, 1, 1, 1); (3) with linear unfolding (using deconvolve); (4) bottom right

entries (in bold): with the NN unfolder. Bottom values: FWHMs ×0.001 of the histogram generated. Simulation carried out

along 240960 time steps (4.8192 ms)

Figure 9: Histograms and result of GA for 137Cs. Left panel: with a FIR filter whose transfer function is h[n] = 1
5
(1, 1, 1, 1, 1).

Right panel: with the NN unfolder.

4. Conclusions179

We have created a specific type of U-net that filters the pulses from particle detectors (using non-linear180

filtering), returns their height, corrects the pile-up and even estimates the height of the pulses when there has181

been saturation in the detector. According to results, when there is no noise, the number of pulses detected182

is the same as that of the optimal pile-up processing: the linear unfolder. When this noise is increased up183

to a SNR equal to 10, the NN detects 97.5% of the pulses, a value similar to that of the unfolder. This184

pulse detection occurs without a considerable lowering of its resolution (expressed in this article as FWHM)185
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Figure 10: Histograms and result of GA for 22Na. Left panel: with a FIR filter whose transfer function is h[n] = 1
5
(1, 1, 1, 1, 1).

Right panel: with the NN unfolder. In each of them the peak function was used to calculate the pulse height.

with respect to other methods such as FIR shaping or linear unfolding. Thus, when there is no pile-up,186

the U-net has a resolution similar to a FIR filter. However, when pile-up occurs, the resolution of the FIR187

filtering drops dramatically and the resolution of the U-net is similar to that obtained with the unfolder.188

When the noise is increased up to an SNR equal to 10, the resolution of the latter becomes up to 50% that189

obtained with the U-net. This has been possible due to the non-linearity presented by filters based on NNs.190

The architecture presented here is more flexible than a simple linear shaper. On the whole, this network191

provides a superior performance compared to more traditional shaping methods. The NN presented in this192

article can be trained in a time of the order of minutes. It has been tested using simulated pulses and real193

pulses from scintillators. Therefore, this approach can be used for analysis of pulses coming from particle194

detectors.195
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