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Abstract—In this paper, a methodology based on machine
learning for fault detection in continuous processes is presented.
It aims to monitor fully distributed scenarios, such as the
Tennessee Eastman Process, selected as the use case of this work,
where sensors are distributed throughout an industrial plant. A
hybrid feature selection approach based on filters and wrappers,
called Hybrid Fisher Wrapper method, is proposed to select the
most representative sensors to get the highest detection quality
for fault identification. The proposed methodology provides a
complete design space of solutions differing in the sensing effort,
the processing complexity, and the obtained detection quality.
It constitutes an alternative to the typical scheme in Industry
4.0, where multiple distributed sensor systems collect and send
data to a centralised cloud. Differently, the proposed technique
follows a distributed approach, in which processing can be done
eventually close to the sensors where data is generated, i.e., at
the edge of the Internet of Things. This approach overcomes
the bandwidth, privacy, and latency limitations that centralised
approaches may suffer. The experimental results show that
the proposed methodology provides Tennessee Eastman Process
fault detection solutions with state-of-the-art detection quality
figures. In terms of latency, solutions obtained outperform in
37.5 times the implementation with the highest detection quality,
using 1.99 times fewer features, on average. Also, the scalability
of the framework provides a design space where the optimal
implementation can be chosen according to the application needs.

Index Terms—Industry 4.0; Fault Detection; Feature Selec-
tion; Edge Computing; Machine Learning; Tennessee Eastman
Process.

I. INTRODUCTION

THE uptake of the Internet of Things (IoT) and Artificial
Intelligence (AI) technologies in the industry is enabling

a new industrial revolution, known as Industry 4.0 [1], [2].
This transformation aims at raising the productivity, autonomy,
and efficiency of manufacturing systems. To this end, it
is necessary to count on with fully autonomous real-time
decision-making systems, distributed throughout the factory
[1] and capable of making intelligent decisions without human
intervention. Data is the fuel that powers this revolution since
smart manufacturing systems use measurements gathered from
the plant to monitor autonomously, control, and optimise
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industrial processes. IoT constitutes the appropriate techno-
logy to collect these data from networked embedded systems
distributed throughout the factory, while autonomy is achieved
by integrating AI techniques to drive decision-making.

One of the essential needs in industrial automation is
process monitoring [3], [4]. Traditionally, process monitoring
involved all the methods to track quantities directly measured
from simple sensors in the plant, such as temperature or pres-
sure [5]. However, AI techniques make it possible to extend
the properties to be detected and tracked in real-time, including
those depending on data provided by multiple sensors, or by
a single but advanced sensor. The properties to be monitored
may, therefore, depend on data analysis techniques applied
to multidimensional data, either in the spatial, temporal, or
frequency domains. Machine Learning (ML), considered as
one of the ways to achieve genuine AI, plays a significant
role when dealing with high-dimensional data.

Considering the substantial impact that faults have on the ef-
ficiency and productivity of industrial systems, fault diagnosis
is one of the specific targets of process monitoring [6], [7],
mainly in Industry 4.0. The detection quality of fault diagnosis
systems may be improved by applying classifiers based on
ML algorithms. They can be trained to know whether there
is a fault or even to determine the type of fault affecting the
plant, using the data provided by a set of distributed sensors
[8]. Note that ML techniques are usually composed of two
stages, training and inference [9], [10], being training the one
demanding more intensive computing [11].

As described in [12], six design principles should be taken
into account when implementing solutions for Industry 4.0:
virtualisation, interoperability, decentralisation, real-time, ser-
vice orientation, and modularity. ML techniques usually re-
quire high intensive computations and time. Thus, traditionally
they have been executed in the cloud [13]. From an Industry
4.0 perspective, allocating all the computation in the cloud
domain might not be compliant with the requirements related
to the decentralisation and real-time principles. Therefore, it is
necessary to explore alternatives to distribute them throughout
the lower layers in industrial IoT infrastructures. A well-
known approach is to place the training stage in the cloud and
to move the inference stage to the network edge [14]. Near-
sensor decision-making offers essential benefits, such as the
reduction in communication cost and response time, together
with an increase in system security and privacy [15], [16]. All
these features that represent the paradigm of edge computing
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are convenient for the industrial domain. In particular, reducing
the response time to detect abnormal events might avoid
hazardous situations, otherwise ineluctable.

Edge computing capabilities have increased significantly
in the last years with the emergence of specific devices for
local AI, such as Google Coral [17] or Intel Movidius [18]
specialised in Deep Learning. For this reason, the integration
of ML directly in the IoT infrastructure emerges now as a real
possibility [19]. In the IoT scenario, the edge nodes might
be defined as a networked embedded system which incor-
porates sensing and processing elements, and also integrates
communication capabilities, primarily wireless and through the
Internet [16]. Processing in the edge allows distributing the
decision-making capabilities throughout the factory, in such a
way that groups of neighbouring sensors can be gathered to
infer a property locally using a trained ML model. Distribution
would also reduce the in-factory communication costs and
their associated latency when local but centralised solutions
are implemented.

In this regard, an original framework, called Hybrid Fisher
Wrapper (HFW) feature selection method, is proposed in
this paper to distribute fault diagnosis systems in Industry
4.0, based on deploying multiple machine learning models
throughout the plant, one for each node. For the detection
of each particular type of fault, the proposal combines dif-
ferent feature selection techniques for deciding which sensors
(features) are more relevant from the whole set of sensors.
The relevance of a feature is given by its correlation with
the predicted property compared to the entire collection of
features. The purpose of feature selection techniques is to
reduce the dimensionality of the measured data needed for the
application while maintaining a high level of detection quality
[20]. Particular emphasis is put on studying the scalability of
the distributed machine learning-based systems problem as a
trade-off: the more sensors are used to detect a given fault,
the higher is the detection quality but also the complexity
and resource utilisation of the solution. Besides the number of
sensors, near-sensor applications demand low complexity ML
techniques because of the constrained computing capacities in
the sensing nodes, as occurs in an embedded system. Thus,
the implementation of lightweight ML algorithms permits to
reduce both the response time and the energy consumption of
the prediction [21], [22]. Specifically, K-Nearest Neighbors
(KNN) and Support Vector Machines (SVM) with linear
kernel, also called Linear SVM (LSVM), algorithms, are used
to perform the fault classification, from the features (sensors)
selected for each fault.

The proposed distributed agnostic ML model-based frame-
work is applied to the Tennessee Eastman Process (TEP),
which is widely used in the literature for benchmarking fault
detection algorithms on chemical industrial environments [23].
Note that this method could be applied to other industrial
applications without loss of generality because it does not
make any assumption about the industrial process underneath.

Experimental results show that this framework provides
reduced-feature ML solutions based on lightweight ML mod-
els, achieving a detection quality that meets the best solu-
tions in the state-of-the-art. This framework can create a

scalable fault-detection infrastructure where distributed sets
of sensors are specialised in detecting different faults. The
decentralisation and the use of a reduced set of sensors
alleviate the hardware requirements for the processing nodes
in the edge layer. As a result, implementations, given by this
framework, stand out in terms of latency, needing only one
sample to provide a prediction. Compared to the state-of-the-
art, solutions provided in this paper also reduce in-factory
communications since they need a lower number of sensors
to predict a fault, but maintaining their prediction perform-
ance. The main contributions of this work are summarised as
follows:

‚ A novel approach for fault-detection in distributed and
scalable Industry 4.0 scenarios based on ML techniques.

‚ An agnostic ML model-based framework for selecting
features (i.e., sensors) according to the application needs
targeting resource-constrained IoT edge nodes.

‚ The implementation of the achieved solutions, comprising
the trained ML models for the chosen sensors, in an IoT
edge platform.

The rest of this paper is structured as follows. In Section II,
state-of-the-art in fault detection in Industry 4.0 is reviewed. In
Section III, a technical background about the ML techniques
considered is provided. In turn, the specific method for feature
selection and fault classification originally proposed in this
work are detailed in Section IV. The TEP dataset and the
performance metrics used for the evaluation of the proposed
scheme are described in Section V. Experimental results
applying the proposed method to TEP are provided in Section
VI. Finally, concluding remarks are provided in Section VII.

II. STATE-OF-THE-ART

TEP provides a real-world scenario where traditional
sensors (e.g., temperature or pressure) and actuators control an
industrial process. Moreover, it does not only have simulations
that can model the process, but these simulations can generate
a pre-defined set of system faults [24]. Therefore, TEP is
extensively used as a fault detection benchmark [25].

Researchers have studied different techniques for fault de-
tection. Data-driven techniques, including statistics and ML,
are the solutions that achieve better performance [26]–[28].
In the statistical approaches, the application of time series
provides a high detection quality. This type of statistical
solutions requires a centralised analysis of the evolution of
sensor data over time so that they might produce high com-
munication loads or high system time response in comparison
to other strategies, such as ML approaches. Moreover, it is
also required a significant number of previous samples to
produce a prediction. These facts make unfeasible applying
them under real-time constraints when there is a considerable
delay between samples, as happens in TEP [24]. Differently,
ML techniques do not require a high volume of data from
each sensor during inference, meaning that the current sensor
values could be enough to identify the faults without waiting
for future data, so improving the time response of the system
[29].

In ML-based fault detection methods, the main goal is to
infer whether there is a fault inside the system. However, in
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many industrial applications, it is necessary to detect more
than one fault. A common strategy is to use a single multi-
class classifier to identify the whole set of faults. There are
two main types of multi-class classifiers: model-based, such as
SVM ( [30], [31]), and neural network-based [32]. Comparing
both approaches, authors in [32] reported similar performance
using neural networks than [31], achieving a detection quality
above 90%. This multi-class conception has an important
shortcoming, which makes it not suitable to be accomplished
in Industry 4.0. This shortcoming is related to the fact that
all the sensors in the plant power a unique classifier. This
fact creates a centralised scheme where data is gathered to the
same point in the network, conflicting with the decentralisation
requirement [33].

One possibility to decentralise the system is to consider
single-class classifiers for identifying a particular fault, instead
of having a global multi-class classifier. Moreover, fault-
specific classifiers usually provide a higher detection quality
compared to the multi-class ones, as reported in [34], [35].
Nevertheless, most of the fault-specific models considered in
the literature adopted a centralised strategy powered by all the
sensors in the system, conflicting again with the decentralisa-
tion requirement [36], [37]. As a response, different strategies
for selecting which are the most suitable sensors for a specific
fault-detection model were proposed in the literature. For
instance, the authors in [38]–[40] integrated SVM techniques
to select the sensors in the TEP use case, resulting in a high
detection quality. However, some SVM approaches, as in [39],
[40], were not able to provide any solution for three particular
faults from the whole set of faults, which were also reported
in the literature as the most complicated TEP faults to identify.
Moreover, the selected SVM techniques also demand high
computational capabilities because of using non-linear kernels,
such as gradient radian basis kernel [39]. On the other hand,
the authors in [41] selected the sensors using an ML technique
based on Neural Networks (NNs) called Extreme Learning
Machine (ELM), requiring even more computational resources
than SVM.

On this basis, the challenge in this paper is to create a
decentralised fault diagnosis system for the TEP use case
based on single-fault lightweight classifiers and selecting a
reduced set of sensors. To this end, a distributed agnostic
ML model-based framework is created. The method proposed
should be able to determine which set of sensors in the TEP
use case fulfils the decentralisation requirement, also attend-
ing to requirements in detection quality and computational
capacity. A comparative analysis of state-of-the-art solutions
is performed. As a result, the solutions found by the proposal
outperforms in 37.5 times the best solution in detection quality
within the state-of-the-art, using 1.99 times fewer sensors, on
average. Furthermore, the scalability of the framework gives
a space of solutions attending the number of sensors and
detection quality as a trade-off. Thus, a designer, the network
architecture developer, could choose the most suitable solution
according to the application needs.

III. TECHNICAL BACKGROUND

ML is a scientific discipline that proposes the use of
algorithms and mathematical models to make computers cap-
able of performing specific tasks without being explicitly
programmed for it. Programming is substituted by the con-
struction of mathematical models that, after a data-driven
learning stage, can infer patterns from input data [42]. Data-
driven permitted ML to be widely applied in multiple domains,
such as medicine, biology, economy or engineering [43].

A generic ML system consists of two stages: training
and inference. Training tunes the parameters of the ML
model through a data-driven optimisation algorithm. Inference
performs a prediction from an input sample based on the
previously trained model. From the data point of view, there
are two main strategies for learning: supervised learning and
unsupervised learning. In supervised learning, the data used
for training the model include the value of the property (or
label) to be estimated for each input sample. In unsupervised
learning, the value of the properties is unknown. Unsupervised
learning offers some practical advantages, such as it does not
require a human operator to label input samples and allows
the model to evolve when the properties of the inputs vary
with time. However, unsupervised learning cannot distinguish
between specific classes for a property required in an applica-
tion. Therefore, the authors of the present paper only focus on
supervised methods because of the requirement of detecting
particular faults.

Supervised learning can be divided into classification and
regression methods. In classification, the inferred property is a
categorical unordered variable (from a discrete and finite set)
to which input data belong, for instance, a fault. If a fault is
detected, it must be classified from a list of potential failure
situations, fitting with the usage of classification methods in
supervised learning.

Usually occurs that input samples are multidimensional,
being each independent component a feature. Then, a critical
step when designing the classifier is to determine which
features from the input sample are significant to discriminate
between classes. Relevant features must be extracted from
process observations guaranteeing they are directly correlated
with classification categories. The relevance of a feature can
be qualified as weak or strong, depending on how it correlates
with other features and the impact it has on the classifier
performance. Irrelevant or redundant features, which do not
contribute to distinguishing between classes, must be removed
since they introduce noise in the prediction [44], [45]. This
preprocessing stage results in a useful dimensionality reduc-
tion of the feature space.

There are two main approaches for feature preprocessing:
feature extraction and feature selection [46], [47]. In feature
extraction, input features are combined and projected into a
reduced feature space, as in Principal Component Analysis
(PCA), which is a widely used technique in the literature
[31], [48], [49]. As combining all the features implies a
high response time, energy consumption, or communication
overheads, it prevents its implementation in the edge [50]. On
the contrary, feature selection consists in selecting a subset
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of features from the initial feature space to feed the ML
model. This fact results in a lower computational complexity
when compared with feature extraction, also having other
significant benefits, such as scalability, generalization, and
understandability. These properties are essential to generate
cost-effective ML models for the edge layer [45], [51]. The
rest of this section discusses some technical background about
both feature selection and classification techniques.

A. Feature Selection Techniques

Feature selection requires assigning an identifier of rel-
evance to every feature subset under evaluation, within the
selection process. Depending on the strategies followed for the
assessment, different feature selection techniques are defined.
Techniques of relevance for this work are summarised next.

Filter methods consider ML-independent statistical tests to
measure the correlation of the features with the properties to
predict. Wrapper methods evaluate the performance achieved
by the ML technique for all the possible subsets of features
drawn from the initial list [52], [53]. In this paper, a hybrid
approach is proposed mixing filter and wrapper strategies,
trying to keep the lower computation requirements of the
filter strategies and the higher performance of the wrapper
algorithms. Traditionally, the hybrid approaches based on filter
and wrapper methods, first, remove the irrelevant features from
the filter point of view, and then a wrapper looks for the subset
of features which produces the best performance metrics [45].
A sequential forward selection wrapper method, used in this
paper, usually starts with an empty dataset and adds a feature
in each iteration. Traditionally, its stop criterion consists in
comparing the performance metrics of the current iteration
to the best combination of the previous iteration. So, this
general approach focuses on the performance metrics rather
than the number of features selected. Differently, the proposal
in this paper involves taking the number of features into
consideration besides the performance metrics. Hence, instead
of applying a stop criterion based on the performance metrics,
the stop criterion is based on the maximum number of features
(sensors) the system should have, previously defined by a
designer in charge of the industrial network. Thus, the proposal
might obtain the combination of features which provides the
best performance metrics for a particular number of features.
Furthermore, to enhance the design process, this proposal also
provides the exploration of solutions (where a solution consists
in a subset of features which has the best performance metrics
for a particular number of features) improving the decision-
making during the system design process.

In particular, the Fisher-Score (FS) and the Sequential
Forward Selection (SFS), with a modification of the stop cri-
terion, have been selected as the filter and wrapper algorithms,
respectively. Both methods are described below.

1) Fisher-Score: It evaluates the relevance of each feature
analysing (i) the similarity of the sample values for a particular
property, and (ii) the divergence for the other property values
[44].

This method evaluates each feature individually based on its
mean and its variance values according to different rules, for

instance, the variance of a feature for a particular class value
or the variance for the whole set of classes. As a result, the
FS filter method creates the vector FSV , which expresses the
relevance value for each feature as given by

FSV “ rFS1, FS2, . . . , FSns
T , (1)

where FSj P FSV is the fisher-score value of the j-th feature,
with j P 1, . . . , n, being n the number of features in the
dataset. The higher the FS value of a feature is, the higher the
relevance of that feature. It is worth noting that the position in
the FSV corresponds to the ID of each feature. Then, features
can subsequently be sorted attending to their significance.

2) Sequential-Forward Selection: It is a search-based
method, which selects and includes features in the ML model
from a pool of candidate features over iterations. The proced-
ure starts with an empty set of selected features and a pool
full of candidates. Then, the algorithm trains and evaluates
an ML model for each of the features in the pool, selecting
and adding to the set of features chosen the one that meets
a given criterion, e.g., providing the highest detection quality
in the ML model trained. All the already selected features are
used when training the model in subsequent iterations. This
iterative method ends when a stopping condition is met, e.g.,
a detection quality level or a number of features selected [45].

B. Classification Techniques
As introduced before, this paper focus on applying two

lightweight supervised classifiers: KNN and LSVM. Both
algorithms are used as binary classifiers instead of multi-class
to keep complexity low while meeting the decentralisation
and scalability requirements. Moreover, the binary approaches
improve detection quality compared to multi-class ones, as
will be discussed in Section VI-D. KNN is a classification
technique which is widely used in the IoT domain due to its
complexity and computational efficiency [54]. The trade-off
between low execution times and detection quality makes it
suitable for our use case. SVM usually has a higher detection
quality, but its computational cost is also higher. In this use
case with energy-constrained edge nodes, it is recommendable
to implement its linear kernel approach (LSVM) for maintain-
ing high detection quality and high computational efficiency
[55]. Further details on the two classification algorithms are
provided below.

1) Support Vector Machine: SVM identifies decision
boundaries in the data space, which are hyper-planes that
represent the relationship between features and properties
[56]. Different mathematical models (kernels) can be used
for generating decision boundaries, such as linear, quadratic,
cubic, or Gaussian.

Once the kernel is chosen, the training phase is executed,
typically offline, to obtain the hyperparameters of the model.
The inference stage involves the calculus of the position of
a new sample in the hyper-plane given by the trained kernel
equation. As a result, the situation regarding the hyper-plane
will indicate the class value of the sample. As discussed
before, the authors consider LSVM with a binary classification
approach. Thus, there is only one hyper-plane which identifies
whether a sample is within a particular fault or not.
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2) K-Nearest Neighbors: KNN relies on a learning ap-
proach, known as lazy learning, where there is no real training
stage. Instead, KNN searches in a ground truth dataset the
k nearest neighbours to a given sample based on a distance
metric, such as Euclidean, Minkowski, chi-square, Mahalan-
obis, or cosine. Following the lightweight approach in this
paper, the authors consider the Euclidean distance to reduce
the computational load.

The inference stage takes a new sample and calculates
the Euclidean distance between the sample and each of the
samples in the ground-truth dataset. The resulting distances
are sorted in ascending distance value, selecting the first k
samples. This set of k samples is passed to a voting algorithm,
which infers the class for the new sample based on the
classes to which the k samples belong from the ground truth
dataset. As discussed before, the authors consider a binary
classification approach. Thus, the voting algorithm establishes
whether a sample is within a specific fault or not.

IV. SCALABLE AND DISTRIBUTED FAULT DETECTION

The proposed methodology for implementing scalable and
distributed fault detection systems relies on two foundations.
The first one is to consider binary classifiers trained individu-
ally to detect the presence of each type of fault, instead of a
single multi-class detector for all potential faults in the plant.
This strategy usually results in that each binary classifier does
not require the measurements provided by all the sensors. In
this way, a reduced number of sensor signals are selected
to feed each fault-specific classifier. This strategy allows
distributing the fault detectors throughout the plant, near to the
sensors associated with each fault. This approach reduces the
latency, increases the robustness of the system, and reduces the
communication overhead. The second foundation is the use of
the originally proposed Hybrid Fisher Wrapper (HFW) feature
selection method to identify the set of sensors needed to detect
each type of fault efficiently. Thus, the information provided
by each sensor is considered as a feature from an ML-based
classification perspective. Then, HFW identifies the subset of
sensors required for each specific classification problem.

The remainder of this section describes the methodology, the
HFW selection method proposed and discusses some critical
aspects related to the parameterisation in HFW.

A. Methodology Overview

As introduced before, ML requires two stages: training and
inference, which are performed offline and online, respect-
ively. In this specific use case for fault detection, training is
conducted in a regular workstation and consists in obtaining
the different individual fault detectors by applying the HFW
method. Thus, training is considered as an offline designing
stage, providing the fault detection systems to be deployed in
the plant. On the other hand, the inference is performed online
in a constrained IoT edge device. It consists in running the
online fault detection systems, which were previously designed
during the training stage. That means that the computation in
the edge node is significantly lighter than the one done in the
workstation, running HFW.

Before starting the training stage, it is required to select or
create a labelled dataset with information about all sensors
in the system and possible faults. Each sample in the dataset
contains the single information provided by all the sensors
and information about existing faults at this time. Next, the
parameters of HFW should be fixed, as will be discussed in
Section IV-C. These parameters include the ML models to be
considered or the maximum number of features to be explored.
Then, HFW is executed, generating an exploration of different
subsets of features regarding the parameters selected in the
previous parameterisation. As a result, HFW provides a space
of solutions, where a solution consists in a trained machine
learning model to be executed with a subset of features.

The resulting space of solutions obtained during the training
can be plotted as a trade-off. For instance, showing the number
of features versus fault detection quality for each solution
found. A designer will consider this trade-off to decide on
the selection that fits better to the needs of the application.
Once one solution is selected, the inference part of the trained
ML model should be implemented in one of the IoT nodes.
Also, this node will collect data from the sensors selected and
infer the occurrence of a specific fault.

B. Hybrid Fisher Wrapper Description

The HFW selection method is a hybrid approach combining
both FS and SFS techniques. The algorithm requires a dataset
in the form of a matrix X P Rmˆn with m samples for the n
sensors in the plant and a vector L P t0, 1um with the binary
labels defined for each of the samples. As Algorithm 1 shows,
HFW is composed of two stages.

Based on the FS metric, the first stage computes the
relevance of each sensor (a feature from an ML point of view),
as given by Equation (1). It consists in sorting X in descending
order of relevance, resulting in R P Rnˆ1 (lines 1´ 2), which
represents the ranked set of features by their IDs. The second
stage explores the search space following an SFS approach
(lines 3´ 16). To this end, it considers the previously defined
ranked R, as well as two parameters p and h. Let p be defined
as the maximum number of sensors to be included in the final
model. Let h be defined as the maximum number of features to
be explored in the ranking defined before. Further discussion
about assigning values to p and h is included in Section IV-C.

In the second stage, the algorithm looks for the best com-
bination of z sensors over iterations, with z varying from 1
to p. Let Mz Ď X P Rzˆm be the dataset generated based
on R for the z sensors selected during the z-th iteration.
In the z-th iteration, there are available n ´ z ´ 1 sensors
for choosing one of them. Traditional wrapper methods will
explore the whole set of sensors to obtain the proper one.
However, the proposed algorithm, enhanced by the ranked R
from FS method, studies the detection quality of the system
(see Section V-B) while adding a sensor to be selected among
the first h sensors in R, using j to index the sensors in R, with
j P 1 . . .minph, sizepR, 1qq. Note that sizepR, 1q P 1 . . . n
refers to the size of the first dimension of R, which varies
during the execution of the algorithm. Thus, when z “ 1, the
algorithm selects the best sensor among the first h sensors
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Algorithm 1 Hybrid Fisher Wrapper.
Require: X,L, p, h
Ensure: Mz @z P 1 . . . p

1: FSV Ð fisherScorepX,Lq
2: RÐ SortF isherpFSV, descendingq
3: M0 Ð Ø
4: for z “ 1; z ď p; z `` do
5: qth Ð 0
6: for j “ 1; j ď minph, sizepRqq ; j `` do
7: Xwf ÐMz´1 Y tRju

8: qmetric Ð evaluateModelpXwf , Lq
9: if qmetric ą qth then

10: qth Ð qmetric

11: mark Ð Rj

12: end if
13: end for
14: Mz ÐMz´1 Ymark
15: RÐ R´Rmark

16: end for

based on an evaluation process. When, z “ 2, the algorithm
considers the sensor selected before, in z “ 1, and searches
another sensor among the h sensors to be combined with.

For a specific value of z and j, the evaluation process is
as follows (lines 6 ´ 13). The algorithm generates a dataset
(Xwf ) combining the data from the previous selection process
(Mz´1) with the data Rj P R1ˆm for the j-th sensor in R
(line 7). That means that to select the z-th feature (sensor) of
the model, the model is trained and tested minph, sizepR, 1qq
times. Thus, in each iteration of j, the dataset Xwf is con-
sidered to train and test a model by 10-fold cross-validation,
obtaining a detection quality metric qmetric (line 8). To
choose which feature fits better to the application, a detection
quality threshold (qth) is updated during the execution of the
algorithm, starting by zero for each exploration of z. Thus,
if the detection quality of the system increases in the j-th
iteration, then the qth is updated, and Rj is marked as a
candidate sensor to be selected in this iteration (lines 9´ 12).
After the minph, sizepR, 1qq iterations, HFW adds the selected
feature to Mz and remove it from R (lines 14 ´ 15). Next,
HFW starts the search for the next value of z, if it is lower or
equal than p. Otherwise, HFW ends and the resulting space
of solutions are in Mz,@z P 1, . . . , p.

C. Hybrid Fisher Wrapper Parameterisation
As discussed before, there are some design parameters (p, h,

and the type of ML classification algorithm) to be configured
when applying the HFW algorithm. These parameters affect
the detection quality of the final system, as well as the training
and inference computing costs. Note that Table I shows the
parameters which shape the HFW method.

In terms of feature selection, the p value indicates the max-
imum number of features explored for obtaining an ML model.
This value also affects the maximum number of features
(sensors) that will feed the final ML model. This parameter
impacts on the HFW computing time and the detection quality
of the system. In high-dimensional applications, this parameter
might define whether the feature selection algorithm, partic-
ularly HFW, can provide a final solution due to the training

time of the models explored. So, the system designer should
select this parameter according to the application needs. It also
has practical effects on the distribution of the measuring nodes
throughout the factory.

The type of ML classification method considered is also
relevant, although it was not directly included in the paramet-
ers of Algorithm 1. The type of classification model should
be the same that it will be considered in the final system
to avoid biasing the conclusions obtained during the search.
Thus, it is crucial first to identify the classification models
which perform better for the application, while considering
computing cost limitations. As discussed before, the authors
opted for lightweight binary classification algorithms because
they are ready for near-sensor implementation.

The value for h determines how the search process is done
over the ranked set of sensors (R), affecting both the training
computing time and the detection quality of the system. Thus,
if h equals 1, then the best sensor, according to the Fisher
ranking, is always selected for each iteration of z. That means
that HFW is running a pure Fisher algorithm, which does not
ensure a high-quality solution to the problem. On the contrary,
if h equals n, then HFW evaluates all the available sensors for
each iteration of z. That means that HFW is running a classic
SFS algorithm, which provides better quality solutions that the
Fisher algorithm, but it is highly time-consuming. Thus, it is
essential to find a trade-off for this value. To this end, the
authors propose a general methodology as follows.

This general methodology consists in running HFW con-
figured as a Fisher algorithm for all the available sensors,
i.e., h “ 1, p “ n. As a result, the algorithm will provide
n solutions generated during the n iterations of z, i.e.,
Mz,@z P 1 . . . n. Next, it should be plotted the detection
quality for the n solutions obtained. The position (regarding
the number of sensors needed) of the local maximum detection
quality in the trend will provide an indicative value for h,
which later the designer could redefine based on experience.
This methodology will be considered during the experimental
analysis in Section VI.

The result of this parameterisation affects directly to the
performance of the HFW algorithm. This performance has
been studied in terms of computational complexity. The HFW
complexity is bounded by Oppˆminph, sizepRqqˆtq, where t
refers to the computational effort required to train and evaluate
the ML model. Thus, the t effort will have a hard dependence
on the ML model considered and the data used to perform the
training task. In the literature, the t effort for LSVM and KNN
were defined as OpN3

sv `N2
sv `Nsv ˆ sˆ fq and Opsˆ fq,

respectively, where f is the number of features, s is the number
of instances, and Nsv is the number of support vectors [57],
[58].

V. EXPERIMENTAL SETUP

This section describes the TEP benchmark and the ML
performance metrics for assessing the proposed methodology.

A. The Tennessee Eastman Process
TEP is a well-established simulation benchmark of a real

industrial chemical process designed by the Eastman Chemical
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Table I: HFW Parameters summary.

Parameters Description

p Number of features chosen
h Number of features evaluated during the j-th iteration

model ML model used
X Dataset input data
L Dataset labels
R ID vector of the ranked set of features
Mz Dataset generated after the z-th iteration
Xwf Dataset created to test the features provided by h
n Number of features of the dataset
m Number of instances of the dataset

Figure 1: Tennessee Eastman Process flowchart [62].

Company [59]. To adapt this chemical process to the ML
scenario, authors in [60] developed a dataset1 which is used in
this work. The challenge behind TEP is to identify the faults
that occur in the system. Due to its complexity, its goal is
to promote research in fault detection and process monitoring
techniques [31], [61].

The chemical process emulated in TEP is fed by several
gaseous reactants (A, C, D, E) and an inert component B.
The outcomes of the process are three products (F, G, H)
presented in the liquid state (see Fig. 1). Forty-one sensors
and twelve actuators control this chemical process. Unlike the
state-of-the-art, our work only considers data from the sensors,
discarding the information about the state of the actuators. It
must be noted that in real industrial scenarios, the actuators
do not produce measurements. Instead, they receive signals
from the control system, which is usually centralised and
not accessible from the distributed processing nodes, where
the fault-detection algorithm is executed. Table II shows an
IDentification (ID) and a description for each sensor in TEP.

The TEP database in [59] was generated through simulation
in two different experiments, one for 24 hours and the other for
48 hours, where different types of faults were introduced. The
detailed description of each fault was extracted from [24] and
is shown in Table III. The failure types or process disturbances
are, on the one side, variations on the temperature, pressure,
and composition of the different reactant elements (e.g., faults

1https://github.com/camaramm/tennessee-eastman-profBraatz

Table II: Sensors considered in TEP [63].

ID Description

F1 Feed flow component A (stream 1) in kscmh
F2 Feed flow component D (stream 2) in kg/h
F3 Feed flow component E (stream 3) in kg/h
F4 Feed flow component A/B/C (stream 4) in kscmh
F5 Recycle flow to reactor from separator (stream 8) in kscmh
F6 Reactor feed rate (stream 6) in kscmh
P7 Reactor pressure in kPa gauge
L8 Reactor level
T9 Reactor temperature in ˝C
F10 Purge flow rate (stream 9) in kscmh
T11 Separator temperature in ˝C
L12 Separator level
P13 Separator pressure in kPa gauge
F14 Separator underflow in liquid phase (stream 10) in m3/h
L15 Stripper level
P16 Stripper pressure in kPa gauge
F17 Stripper underflow (stream 11) in m3/h
T18 Stripper temperature in ˝C
F19 Stripper steam flow in kg/h
J20 Compressor work in kW
T21 Reactor cooling water outlet temperature in ˝C
T22 Condenser cooling water outlet temperature in ˝C
XA Concentration of A in reactor feed (stream 6) in mol %
XB Concentration of B in reactor feed (stream 6) in mol %
XC Concentration of C in reactor feed (stream 6) in mol %
XD Concentration of D in reactor feed (stream 6) in mol %
XE Concentration of E in reactor feed (stream 6) in mol %
XF Concentration of F in reactor feed (stream 6) in mol %
YA Concentration of A in purge (stream 9) in mol %
YB Concentration of B in purge (stream 9) in mol %
YC Concentration of C in purge (stream 9) in mol %
YD Concentration of D in purge (stream 9) in mol %
YE Concentration of E in purge (stream 9) in mol %
YF Concentration of F in purge (stream 9) in mol %
YG Concentration of G in purge (stream 9) in mol %
YH Concentration of H in purge (stream 9) in mol %
ZD Concentration of D in stripper underflow (stream 11) in mol %
ZE Concentration of E in stripper underflow (stream 11) in mol %
ZF Concentration of F in stripper underflow (stream 11) in mol %
ZG Concentration of G in stripper underflow (stream 11) in mol %
ZH Concentration of H in stripper underflow (stream 11) in mol %

1-3, 6-10). On the other side, there are failures produced
in the reactors and condensers caused by variations in the
temperature of the cooling water or failures, which affect
water valves that feed them (faults 4,5,11-15). Moreover, five
unknown source failures can be found (faults 16-20). During
the simulation, each sensor in the system acquires a sample
every 3 minutes, resulting in 480 and 980 samples for each
sensor in the 24 and 48-hour experiments, respectively. The
strategies followed in each experiment are different. In the 24-
hour version, a fault is introduced after each hour of operation.
In the 48-hour version, a fault is introduced after every eight
hours of operation.

The original TEP database, reporting 21 faults for multi-
class classification, has been first converted into 21 inde-
pendent binary databases, each of them only considering the
existence or not of a specific fault.

B. Machine Learning Performance Metrics

Performance metrics are required to evaluate the detection
quality of the ML models for a classification problem, which
corresponds in this case with the fault detection problem. To
this end, the authors focus on three usual metrics within the
field, sensitivity (svt), specificity (spc), and geometric mean
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Table III: Faults considered in TEP [63].

Fault N˝ Description Fault type

1 A/C feed ratio Step
2 B composition Step
3 D feed temperature Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss Step
7 C header pressure loss Step
8 A,B,C feed composition Random variation
9 D feed temperature Random variation

10 C feed temperature Random variation
11 Reactor cooling water inlet temperature Random variation
12 Condenser cooling water inlet temperature Random variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown N/A
17 Unknown N/A
18 Unknown N/A
19 Unknown N/A
20 Unknown N/A
21 The valve for Stream 4 Constant position

(gmean), which are expressed as

svt “
tp

tp` fn
, (2)

spc “
tn

fp` tn
, (3)

gmean “
?
svt ˚ spc, (4)

where tp denotes the number of true positives, tn the number
of true negatives, fp the number of false positives, and fn the
number of false negatives.

According to these expressions, sensitivity quantifies the
proportion of positive detections which are correctly identified
regarding the total. A high sensitivity value indicates that the
system has a low ratio of false negatives. In turn, specificity
quantifies the proportion of negative detections which are
correctly identified regarding the total. A high specificity
value shows that the system has a low proportion of false
positives. The geometric mean provides a trade-off metric
between sensitivity and specificity, being a pertinent metric
to evaluate the quality of the ML system [64], that is, the
detection quality.

These performance metrics are usually calculated during
the testing stage, after performing the training, to quantify
the quality of the model. The authors of this paper consider
the accepted k-fold cross-validation strategy [42], [65], [66]
to perform the testing stage. This cross-validation strategy
consists in splitting the dataset into training and testing subsets
in a systematic way. That is, the dataset is randomly split
into into k subsets Q “ tq1, . . . , qku of similar size, being
k defined by the designer. In the i-th iteration, the training
stage is computed using all the subsets in Q, but qi, with
i P 1, . . . , k. The testing stage is performed by inferring over
qi and calculating the performance metrics, on average. In this
proposal, the authors opted for using an accepted value in the
literature for k equalling 10.

VI. EXPERIMENTAL RESULTS

The fault detection methodology proposed in this paper was
applied to TEP, using the previously described setup. Exper-
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Figure 2: h parameter exploration for the single-class KNN
and fault 3.

imental results are provided and analysed in the following
subsections. First, a discussion on the HFW parameterisation
is provided. Then, the proposed methodology is applied to
the TEP use case. The same experiments are repeated using
a multi-class classifier, instead of a binary one. The best
solutions obtained are implemented in an IoT edge platform,
measuring their execution performance. Finally, the results
obtained with both approaches are compared among them and
with the state-of-the-art.

A. HFW Parameterisation in TEP

This subsection reports an example of the selection of the
p and h parameters in HFW for the TEP use case.

The network architecture designer defines the parameter
p according to the application needs. In this use case, the
maximum number of features corresponds to the number of
sensors used for identifying the faults. Aiming at minimising
the model complexity for the inference, a maximum number of
sensors of 10 (p “ 10) is assumed. The criterion was keeping
p below the 25% from the total number of sensors in the
dataset, which is 41. The h parameter is set following the
procedure described in Section IV-C. For instance, suppose
the h parameter should be obtained for the KNN model and
fault 3 of TEP. Then, an exploration is performed by HFW
for h “ 1, p “ n “ 41, and model “ KNN (and K “ 3).
This exploration results in Fig. 2, which shows the quality of
the prediction (according to gmean) for the different numbers
of sensors. Analysing this figure, the maximum quality is
obtained for ten sensors. Therefore, h is fixed to ten for the
single-class KNN and fault of type 3.

B. Single-class HFW in TEP

This subsection describes the exploration performed by the
single-class HFW approach proposed. Thus, the authors of
this paper create a model per fault, being each model able to
identify whether there is a particular fault in the TEP use case
or not. In this regard, the TEP database is transformed into 21
different databases, as explained in Section V-A. As reported
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Table IV: h parameter for each single-class ML model and
fault.

h value of each fault

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

LSVM 11 20 8 18 15 10 15 12 15 14 14 16 9 22 17 17 18 17 23 8 20
KNN 15 21 10 17 10 18 11 13 14 13 10 9 10 22 20 14 9 16 16 13 17

0 1 2 3 4 5 6 7 8 9 1 0
0 . 9 0
0 . 9 1
0 . 9 2
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Figure 3: Feature space exploration for fault of type 3, with
p “ 10, model “ KNN , and h “ 10.

before in Section VI-A, the p parameter was set to 10, the
ML models were KNN and LSVM, and the h parameter was
established individually for each fault and ML model (resulting
in 42 different explorations), as Table IV shows.

Once the parameterisation was done, the next step is to
execute the single-class HFW for each ML model and fault
in TEP. Thus, for instance, Fig. 3 shows the feature space
exploration during the selection of a range of sensors (from 1
to h) to detect the fault of type 3 with KNN. Note that as was
established in Section IV-B, HFW considers an accumulative
strategy, where past decisions will affect future ones. That
means that if the sensor selected during the first iteration was
ZF , then the set of sensors selected during the second iteration
of the algorithm will always include the sensor previously
selected, i.e., ZF in this example.

As the algorithm will report h sets of sensors to detect
a given fault using an ML model, it is required to define
a strategy to select the best configuration among the others.
Thus, the authors propose to use a threshold based on de-
tection quality (in terms of gmean ) with a value of 99%.
This threshold should be adjusted by the industrial network
designers to meet other application-specific requirements, for
instance, 90%. In the example in Fig. 3, the best performance
was obtained using two and three sensors. The authors also
include a criterion based on penalising more the false negatives
rather than the false positives. This fact is because the ML
system might accomplish to detect, as much as it can, the
faults occurred in TEP. This second criterion results in that
the solution with the highest sensitivity will be selected, i.e.,
the solution with three sensors in Fig 3.

Table V summarises the implementations selected, based

Table V: Selected implementations for the single-class KNN
model.

Fault h Sensors Sensors ID Gmean(%) Svt(%) Spc(%) Time(s)

1 15 4 F1, P16, F19, YC 99.65 99.36 99.93 8.07
2 21 4 ZF, F10, T18, F19 99.35 99.04 99.66 10.93
3 10 3 ZF, ZH, ZG 99.80 99.60 100.00 3.83
4 17 2 ZF, ZG 99.80 99.60 100.00 4.12
5 10 2 ZD, ZF 99.96 99.92 100.00 2.39
6 18 1 ZE 99.92 99.60 100.00 2.32
7 11 2 ZF, ZH 99.82 99.92 99.73 2.66
8 13 3 ZD, ZF, ZH 99.82 99.92 99.73 4.81
9 14 5 ZH, T18, J20, F19, ZF 93.35 92.52 94.19 8.81
10 13 1 ZF 98.03 96.10 100.00 1.50
11 10 2 ZF, ZG 99.60 99.92 100.00 2.54
12 9 4 ZG, P7, F19, ZD 98.81 97.69 99.93 4.59
13 10 2 ZG, ZH 99.96 99.20 100.00 2.40
14 22 2 ZF,ZD 99.96 99.92 100.00 5.31
15 20 2 ZF, ZG 99.66 99.60 99.73 4.79
16 14 3 ZF, ZG, ZH 99.55 99.92 99.18 5.15
17 9 2 ZD, ZH 99.82 99.92 99.73 2.14
18 16 4 ZE, J20, F19, P7 96.97 96.34 97.61 7.99
19 16 3 ZF, ZH, ZG 99.82 99.92 99.73 5.68
20 13 5 ZH, J20, T18, F19, ZF 97.71 96.26 99.18 7.99
21 17 8 L8, F19, P16,J20, T11, ZH, T18, ZD 92.17 91.32 93.03 18.05

on the previously discussed strategy, for each fault using
the binary KNN classifier. This table shows the performance
metrics (gmean, svt, and spc), the number of sensors used,
as well as their corresponding names according to the TEP
nomenclature stated before in Table II. Analysing this table, it
is obtained that the binary KNN classifier has a high-detection
quality, surpassing the 90% in the three metrics. The lowest
detection quality, with a 92.17% of gmean, was in fault 21,
which also has the highest number of sensors (8). The rest
of the faults usually needs less than 4-sensors to be detected.
Furthermore, it should be noticed that ZF and ZH sensors
are especially relevant because they appear in most solutions.

In turn, Table VI summarises the implementations selected
using the binary LSVM classifier, showing a similar type
of information as before. Results are significantly different
from the ones obtained by KNN, even leading to have no
solution for some faults. This latter fact is due to a lack of
convergence during the training of LSVM. Thus, there are only
three solutions whose results are higher than 90% (faults 1, 2,
and 6). These solutions have a difference in their quality value
and sensitivity of less than 1% compared to the same binary
KNN solutions. Since the LSVM classifier is lighter than the
KNN classifier in terms of computation, it is preferred for a
similar quality of detection.

Tables V and VI also show the times required for the
execution of the HFW algorithm. Experimental results indicate
that there is a strong dependence on the ML model selected.
The LSVM model needs more time than the KNN model
even for lower p and h values (see faults 1 and 2, as an
example). Besides, h and p also impact the training time, as
the complexity analysis introduced in Section IV-C indicates.
In Table V, for p “ 2, it is shown that a higher h value implies
an increment of the HFW time. This situation occurs for the p
parameter as well (e.g., in Table VI, for any fault with p “ 5).
Note that these values are obtained using an Intel i7 processor
with 8 GB of RAM, running in Matlab over Windows 10 OS.

According to the result obtained for KNN and LSVM,
the final fault detection system for TEP will use the LSVM
solutions for faults 1, 2, and 6, and the KNN for the others.
Thus, this methodology provides a framework to observe how
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Table VI: Selected implementations for the single-class LSVM
model.

Fault h Sensors Sensors ID Gmean(%) Svt(%) Spc(%) Time(s)

1 11 3 F1, P16, YF 99.11 99.89 99.32 25.39
2 20 3 F10, YB, XB 98.90 98.57 99.32 46.57
3 8 3 T21, ZG, F19 58.53 39.09 75.20 35.73
4 18 - - - - - -
5 15 5 XA, YD, F6, L15, F4 53.82 0.00 100.00 109.59
6 10 1 F1 99.42 99.32 99.52 6.79
7 15 3 F19, P16, L8 59.59 12.50 100.00 60.92
8 12 3 XA, XB, ZD 71.10 37.42 100.00 50.92
9 15 - - - - - -
10 14 3 YG, XB, YE 54.78 18.79 85.65 55.96
11 14 - - - - - -
12 16 2 F19, YA 72.17 40.84 99.04 42.85
13 9 6 F19, F2, YD, P13, ZH, T11 78.89 58.35 96.51 75.68
14 22 - - - - - -
15 17 - - - - - -
16 17 - - - - - -
17 18 5 T21, T11, F3, YC, YD 95.14 91.56 98.22 94.90
18 17 2 F6, F4 85.88 70.22 99.31 38.39
19 23 - - - - - -
20 8 5 J20, T22, T11, P13, YC 80.73 64.01 95.08 47.10
21 20 5 P7, F19, XB, YD, T11 71.03 44.26 93.99 137.19

Table VII: Selected multi-class implementations.

Model h Sensors Sensors ID Gmean (%) Svt (%) Spc (%) Time (min)

KNN 8 6 F1, XF, F19, T18, ZF, T21 76.67 59.64 98.58 0.03
SVM - - - - - - timeout

the detection quality scales according to the number and
type of features (i.e. sensors) and the ML model selected.
In this particular case, the maximum geometric mean and
sensitivity values are used as the conditions to select the ap-
proaches. However, different conditions, such as the specificity
threshold, can be applied to this framework to meet the needs
of other application. Therefore, this scalable detection quality
framework might be applied to different domains.

C. Multi-class HFW in TEP

This subsection describes the exploration performed using
a multi-class HFW approach, instead of the single-class one.
This multi-class approach means that a single model will
identify all the faults in TEP, instead of creating an individual
model for each potential fault. In this experiment, the p
parameter was also set to 10, the ML models were KNN and
LSVM, and the h parameter is defined as proposed in Section
IV-C. Given the complexity of the global search, a timeout
of 2 days (2880 minutes) was set during the procedure. As a
result, the process could only finish for the KNN model. Note
that this timeout was not required in the single-class HFW,
due to its lower computational complexity.

Fig. 4 shows the analysis performed for selecting the h
parameter in the multi-class KNN model. In this figure, the
first local maximum appears with eight sensors, providing a
detection quality of 74.31%. The global peak corresponds to
using 38 sensors, for which a detection quality of 76.62%
is achieved. Therefore, adding 30 extra sensors (from 8 to
38) would only increase the detection quality a 2.3%, which
is below the threshold fixed in a 5%. For this reason, the h
parameter has been defined as 8.

After setting all the parameters, the next step is to execute
the multi-class HFW, in this case, only using the KNN ML
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Figure 4: h parameter exploration for the multi-class KNN.
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Figure 5: Feature space exploration for the multi-class ap-
proach with model “ KNN , p “ 10, and h “ 8.

model because of the timeout issue described before. The
results obtained can be observed in Fig. 5, where the geometric
mean ranges from 46.63% to 81.01% when using from 1
to 10 sensors, respectively. The maximum detection quality
is the 81.01% reached by the 10-sensor solution. To reduce
the network complexity, it is chosen the minimum number of
sensors that differ less than 5% from the maximum detection
quality value. Thus, the optimal amount of sensors to be used
during inference is therefore set to 6. In this regard, Table VII
summarises the solution selected according to this multi-class
HFW. It should be noticed that this solution has a substantial
impact on the false-negative rating, implying an important
limitation for real-world process monitoring applications. Note
that although the solution with the highest sensitivity was
selected in Fig. 5, this metric is below the 66.39%.

D. Comparing Single-class to Multi-class HFW in TEP

As stated before, the multi-class LSVM classifier did not
converge to a solution. In turn, the 6-sensor multi-class KNN
solution obtained has a lower detection quality than the single-
class classifiers (see Tables V, VI, and VII), achieving an abso-
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Table VIII: Comparison of TEP fault detection approaches within the state-of-the-art.

[31] [67] [34] [41] [39] [38] Single-class HFW

Fault Features Gmean Latency Features Gmean Latency Features Gmean Latency Features Gmean Latency Features Gmean Latency Features Gmean Latency Features Gmean Latency

1 52(12) 91.87* - 52(12) 98.77 24 33(12) 99.75 500 30 99.86 - 2(1) 99.90 37.5* 3(1) 99.44 - 4 99.65 1
2 52(12) 91.87* - 52(12) 99.01 24 33(12) 99.56 500 21 98.75 - 5(1) 99.10 37.5* 3 97.81 - 4 99.35 1
3 52(12) 91.87* - 52(12) 69.83 24 33(12) 99.27 500 12 60.23 - - - - 26(1) 49.01 - 3 99.80 1
4 52(12) 91.87* - 52(12) 69.02 24 33(12) 100.00 500 1(1) 99.97 - 1(1) 100.00 37.5* 1(1) 100.00 - 2 99.80 1
5 - - - 52(12) 100.00 24 33(12) 99.87 500 6(1) 99.89 - 3(1) 100.00 37.5* 25(6) 96.56 - 2 99.96 1
6 - - - 52(12) 98.73 24 33(12) 99.56 500 1(1) 99.87 - 2(1) 100.00 37.5* 1(1) 99.63 - 1 99.92 1
7 - - - 52(12) 98.22 24 33(12) 99.76 500 3(1) 100.00 - 3(1) 100.00 37.5* 2(1) 100.00 - 2 99.82 1
8 - - - 52(12) 95.94 24 33(12) 99.88 500 12(2) 82.18 - 4(1) 100.00 37.5* 5 97.46 - 3 99.82 1
9 - - - 52(12) 45.48 24 33(12) 99.53 500 6(1) 71.81 - - - - 25(2) 47.45 - 5 93.35 1
10 - - - 52(12) 74.86 24 33(12) 99.69 500 7(1) 79.10 - 14(1) 99.40 37.5* 13(2) 71.64 - 1 98.03 1
11 - - - 52(12) 90.72 24 33(12) 99.88 500 2(1) 88.84 - 2(1) 100.00 37.5* 9(4) 84.80 - 2 99.60 1
12 - - - 52(12) 99.75 24 33(12) 99.48 500 10(1) 92.70 - 5 100.00 37.5* 10(2) 98.89 - 4 98.81 1
13 - - - 52(12) 99.75 24 33(12) 99.50 500 11(1) 83.66 - 7 100.00 37.5* 4(1) 90.16 - 2 99.96 1
14 - - - 52(12) 56.64 24 33(12) 98.59 500 3 99.94 - 2(1) 100.00 37.5* 2 100.00 - 2 99.96 1
15 - - - 52(12) 98.26 24 33(12) 99.20 500 6(1) 67.53 - - - - 23(2) 55.94 - 2 99.66 1
16 - - - 52(12) 95.84 24 33(12) 99.76 500 6(1) 82.98 - 2(1) 100.00 37.5* 14(3) 73.28 - 3 99.55 1
17 - - - 52(12) 97.71 24 33(12) 91.59 500 2 95.57 - 27(1) 98.20 37.5* 8(1) 95.09 - 2 99.82 1
18 - - - 52(12) 93.91 24 33(12) 99.42 500 3 93.59 - 2 95.30 37.5* 3 85.66 - 3 96.97 1
19 - - - 52(12) 88.99 24 33(12) 91.43 500 5(1) 91.95 - 3(1) 100.00 37.5* 12(3) 85.68 - 2 99.82 1
20 - - - 52(12) 84.93 24 33(12) 99.37 500 4(1) 88.75 - 13 100.00 37.5* 20(4) 76.29 - 4 97.71 1
21 - - - 52(12) 87.74 24 - - 500 2(1) 91.33 - 1(1) 100.00 37.5* 1(1) 99.24 - 3 92.17 1

lute difference higher than 15%. The multi-class solution also
has a low sensitivity, much less than 90%, provoking a high
rate of non-identified faults. Even with the best combination
reached in the multi-class KNN exploration (i.e., using ten
sensors instead of six), the detection quality and the sensitivity
are still much lower than the single-class classifiers.

Moreover, the solutions provided by the single-class classi-
fiers require a low number of sensors, being less than four
sensors in most of the cases. This characteristic allows a
distributed deployment of the system throughout the factory,
using a processing platform near to the set of sensors required
to detect each fault.

Apart from the detection quality, the single-class provides
more robustness than the multi-class solution. Multi-class
uses only one classifier to identify the whole set of faults.
Therefore, when a single sensor stops producing data, the
diagnosis of all the faults is interrupted. Differently, in the
distributed single-class scheme, only the classifiers associated
with the damaged sensor will be affected. Thus, the authors
state that the single-class HFW approach proposed here clearly
outperforms the multi-class version.

E. Evaluating Single-class HFW solutions at the Edge

Once shown that the single-class HFW outperforms the
multi-class one, it should be checked that the solutions pro-
posed for each fault by the single-class HFW are implement-
able at the edge. To this end, the optimal KNN and LSVM
solutions shown in Tables V and VI have been implemented
in a resource-constrained IoT edge node. In particular, the
cookie platform has been selected for this evaluation. This is a
modular platform developed at the Universidad Politécnica de
Madrid [68]. It is comprised of four hardware layers: power
supply, sensing/actuation, processing, and communications.
The four layers are connected by a standard vertical connector,
which creates a bridge for all the layers. The processing
layer consists of a SAMA5D3 processor featured with 256
MB external RAM. This processor is an ultra-low-power, 32-
bit medium performance ARM hard-float Cortex-A5, which
consumes less than 150 mW in active mode.

Table IX shows the inference execution time in the cookie
platform for each single-class HFW solution, trained ML

Table IX: The inference execution time of the single-class
HFW solutions in the embedded IoT cookie platform.

KNN LSVM

Fault Sensors(uds) Time(ms) Sensors(uds) Time(ms)

1 4 1.86 3 0.01
2 4 1.86 3 0.02
3 3 1.50 3 0.70
4 2 1.25 - -
5 2 1.25 5 1.19
6 1 0.91 1 0.01
7 2 1.25 3 0.71
8 3 1.50 3 0.69
9 5 2.00 - -
10 1 0.91 3 0.01
11 2 1.25 - -
12 4 1.86 2 0.48
13 2 1.25 6 0.97
14 2 1.25 - -
15 2 1.25 - -
16 3 1.50 - -
17 2 1.25 5 0.18
18 4 1.86 2 0.01
19 3 1.50 - -
20 5 2.00 5 0.69
21 8 2.88 5 0.01

model for a particular number of sensors. Focusing on KNN,
the execution time ranges from 0.91 ms to 2.88 ms. Focusing
on LSVM, the inference times range from 0.01 ms to 1.18 ms.
Despite that, the KNN inference time might have a value up
to 90 times higher than LSVM, either type of ML solutions
can be implemented in the resource-aware IoT edge node.
Note that in the TEP use case, the measured inference times
are lower than the data acquisition time, established in three
minutes.

From this analysis, it can be said that the best solutions
found for the TEP use case are implementable at the edge.
21 different ML models will be distributed along the factory,
running two types of ML techniques (KNN and LSVM),
getting up to 2.88 ms for inference, and with an average quality
detection of 98.74%.

F. Comparing Single-class HFW to the State-of-the-art

Table VIII compares the single-class HFW methodology
compared in this paper to the most significant works in the
literature. This table shows detection quality, latency and num-
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ber of features (i.e., sensors) used. The number in parenthesis
in the features column indicates the actuators required if any.

In the implementations in [31], [67], all the sensors and
actuators were considered. This fact prevents the distribution
of the fault-detection system. Hence, it can be only imple-
mented in a centralised system. In [31], PCA was used to
extract compressed features from which the most relevant ones
are next selected. Therefore, they did not reduce the number
of required sensors and actuators. Moreover, in [31], the
authors studied only four faults, which limits the comparative
analysis, also they applied a multi-class strategy. Besides, the
detection quality reported for these four faults (91.87%) were
surpassed by the methodology proposed in this paper. The
implementation in [67] also provides average performance
metrics below the results achieved with the proposed method.
Besides, it requires a latency of 24 samples to produce the
alarm, which means 72 minutes for the TEP use case. This is
not adequate for a real-time fault detection system.

The method presented in [34] provided higher performance
when compared to [31], [67], but also requiring 33 features
and a latency of 500 samples, thus, 1500 minutes in the TEP
model. The approach in [41] considered a feature selection
method in conjunction with a classifier based on neural net-
works. When compared to the method proposed in this paper,
it provides still a lower quality of detection, requiring more
features. In [38], the authors offered multiple implementations
whose performance values are near to [41], but using more
data from the actuators and also more features per fault.

Only a few implementations achieve the same quality met-
rics as our proposed method. This is the case of non-linear
SVM implementations reported in [38], [39]. Particularly, au-
thors in [39] achieved the highest performance metric values,
but it only increases an average of 0.81% the geometric mean
compared to our solutions. Furthermore, it also requires 37.5
times more samples on average for each fault when compared
to our implementation. Moreover, this method did not provide
solutions for faults 3, 9, and 15, reported in the literature as
the most difficult to detect. These implementations included a
feature selection algorithm, but the method proposed in this
paper still requires 1.99 times fewer features. Moreover, all the
solutions provided in [39] required the data from the actuators.

The single-class HFW proposed method is the only that
considers data from the sensors, discarding the actuators. The
number of features is limited to a maximum of ten, providing
still a high accuracy, that only differs on a 0.81% compared
to the best results in the literature. Regarding latency, the
solution proposed in this paper is the only that guarantees
fault detection with a single sample. This results from the fact
that the system does not require time-dependent features, only
the sensor values at the given time instant. From a qualitative
perspective, it must be noticed that the methodology proposed
in this paper is fully scalable. That means that the quality of
detection can be traded-off with the number of features finally
used to detect each fault.

VII. CONCLUSION

In this paper, a novel scalable and distributed methodology
to diagnose faults in the Industry 4.0 environment is proposed.

It is based on the use of a hybrid feature selection procedure
and lightweight binary classifiers. The HFW feature selec-
tion allows determining which sensors are more significant
to detect each type of fault. By changing a parameter in
the algorithm, the maximum number of sensors used in the
exploration is changed, trading-off accuracy with computing
complexity. In turn, the use of lightweight classifiers allows
distributing computation near to the sensors throughout the
plant. TEP is used as the industrial use case to validate the
proposed algorithms. Obtained results are comparable with
the best references in the state-of-the-art, which are neither
distributed nor scalable while using data only coming from
sensors. Selected solutions were implemented in an edge
platform, verifying that the algorithm can be implemented and
executed inside a resource-constraint edge embedded system,
but also that it achieves the time execution required for the
TEP use case. In the future, it is planned to implement the
proposed algorithm in different computing platforms, ranging
from specific AI devices to low-cost microprocessors and
flash-based FPGAs, in order to extend the design space
exploration from algorithms to the platform. Moreover, other
use cases, such as smart grids, will be used to evaluate the
effectiveness of the proposal.
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Politécnica de Madrid. His current research area is in
the field of machine learning applied to embedded
systems, also known as expert embedded comput-
ing.

He is participating in a national research project,
PLATINO, related to the enhace the acquisition systems, combining machine
learning techniques in embedded systems, in order to develop expert sensors
for the agro-food industry. He has also participated in an industrial project,
REMO, with Indra and Repsol companies, so as to create a framework for
chemical detection.

Cristian Wisultschew received the M.Sc. de-
gree in Industrial electronics from the Universidad
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Politécnica de Madrid. He carries out his research
activity within the Centro de Electrónica Indus-
trial, belonging to the UPM. His research interests
are focused on Embedded Machine Learning, Deep
Learning HW accelerators, Internet of Things and
Digital Embedded Systems.

He is participating in a H2020 project, SCOTT,
related with the object detection and tracking system used in railway level
crossing surveillance systems. He is also participating in a national research
project, PLATINO, related to machine learning techniques in embedded
systems using specific DL HW accelerators applied to the agro-food industry.

Andrés Otero received his M.Sc. degree in Tele-
communication Engineering from the University of
Vigo, where he graduated with honors in 2007. He
received his Master of Research and Ph.D. degrees in
Industrial Electronics from Universidad Politécnica
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Politécnica de Madrid (UPM), Madrid, Spain, in
2010.

He is currently an Assistant Professor Tenured at
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