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Nuclear matter from the ladder resummation in terms of the experimental nucleon-nucleon
scattering amplitudes
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Infinite nuclear matter is studied by resuming the series of ladder diagrams based on the results developed by
us [Ann. Phys. (NY) 437, 168741 (2022)]. The master formula for the energy density is explicitly solved for
the case of contact interactions, within a pionless description of the nucleon-nucleon interactions. Renormalized
results are obtained which are directly expressed in terms of the nucleon-nucleon phase shifts and mixing angles
in partial-wave amplitudes up to and including G waves, with convergence reached under the inclusion of higher
partial waves. The energy per particle, density, and sound velocity resulting from the ladder series are given for
symmetric and neutron matter. This resummation of the ladder diagrams provides a rigorous result that may be
used as low-density reference for other parametrizations of Ē for higher densities.
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I. INTRODUCTION

The rise of precision physics has brought a need for
more rigorous calculations in the low energy sector of QCD.
In order to interpret such experiments’ outcome correctly
and claim a possible discovery, theoretical calculations with
controlled systematic errors are crucial. The properties of
baryonic matter have been studied for such kind of programs.
In that case, there is additional complication besides dealing
with low energy QCD, since the interactions occur in a bary-
onic environment, and vacuum approaches are not applicable.

In this paper we apply many-body field theory to the calcu-
lation of the energy per particle Ē for nuclear matter, and other
magnitudes that can be deduced thereof. We define nuclear
matter as an infinite uniform system of nucleons interacting
by the strong force without electromagnetic interactions. This
system is supposed to approximate the interior of a heavy nu-
cleus. The proportion of protons and neutrons in the system is
controlled by the fraction of protons xp, so that for xp = 0 one
has pure neutron matter (PNM) and xp = 1/2 corresponds to
symmetric nuclear matter (SNM), both being extremes of spe-
cial interest in our research here. Indeed, the equation of state
of nuclear matter is nowadays one of the most active fields
where these types of calculations are necessary, especially
in the study of neutron stars and gravitational waves. The
former offers a unique possibility of studying nuclear matter
under extreme conditions and testing our current theoretical
approaches for baryonic matter.

*jmanuel.alarcon@uah.es
†oller@um.es

The many-body calculations within perturbation theory [1]
have long been well known [2–8]. However, for larger scat-
tering lengths the perturbative expansion in powers of a0kF

fails, with a0 the S-wave scattering length. Of course, this is
the case if one is interested in the unitary limit |a0kF | → ∞
[9–11], which is closely related to neutron matter due to
the large and negative neutron-neutron (nn) scattering length
ann = −18.95 ± 0.40 fm [12]. Note that |ann| � m−1

π , with
mπ the pion mass and whose inverse typically controls the
longest range of strong interactions.

A time-honored possibility to end with a meaningful re-
sult for large scattering lengths is to resum the two-body
interactions in the medium [1]. In the Brueckner theory
[13–17] the infinite series of interacting particle-particle in-
termediate states is resummed, where the two particles always
have momenta above their Fermi momenta.1 This theory was
generalized by Thouless [18] considering also two-fermion
intermediate states with momenta below the Fermi momenta
(or intermediate hole-hole states). The notation of ladder
diagrams was also introduced by him to denote the associ-
ated Feynman graphs. As a result, both particle-particle and
hole-hole intermediate states interact between two consec-
utive rungs of the ladder series, and their infinite iteration
is resummed. The ladder resummation at zero temperature
is studied Refs. [19–22], taking into account Pauli blocking
without including self-energy effects. Resumming the ladder
diagrams in such circumstances is typically considered a good
starting point for calculating Ē [19,23,24], also supported by
the power counting arguments of Ref. [20,25,26].

1The Fermi momenta are globally denoted by kF or ξ .
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When the interaction between two spin-1/2 fermions is
reduced to its scattering length, an algebraic renormalized
formula for the ladder resummation was accomplished by
Kaiser in Ref. [21]. Within only dimensional regularization,
the extension of the previous result for taking also into ac-
count the contributions from the effective range in S wave
was obtained by the same author in Ref. [22] where, due to
off-shell effects, the resulting formula was conjectured and
checked up to some order. The case of an interaction given by
the P-wave scattering volume a1 was separately discussed in
the same reference, and the resummation within dimensional
regularization was accomplished. The connection between
the ladder resummation and the density-functional theory in
many-body calculations was studied in [27,28]. Furthermore,
it is conjectured [29,30] that, for nuclear and atomic systems
with two-body interactions near the unitary limit, the binding
energy of the three-body system defines the relevant scale for
low-energy observables, such as particle energy.

We recently resummed the ladder diagrams for arbitrary
spin-1/2 fermion-fermion interactions in vacuum in Ref. [31].
The resummation can take into account higher orders in the
effective range expansion (ERE) of a partial-wave amplitude
(PWA) and/or any number of PWAs. The case of contact
interactions is fully resolved and renormalized results for Ē
are obtained, so that they are directly expressed in terms
of vacuum scattering parameters of the ERE. In the present
work we proceed further, and derive the needed equations for
different Fermi momenta ξ1 (protons) and ξ2 (neutrons). In
addition, we give the expression for Ē when infinitely many
orders are included in the ERE for (un)coupled PWAs, such
that the resulting Ē is directly expressed in terms of phase
shifts and mixing angles. In this way, the results from the
ladder resummation are completely independent of cutoff and
have no free parameters. We have then explored the cases
of SNM and PNM, discussing Ē for both cases, and its first
and second order derivatives, namely, the pressure (or the
equation of state) and the sound velocity. For the case of PNM
our results at low densities have been extrapolated towards
larger densities by using a quadratic expression in xp. Results
compatible with present-day constraints and determinations
are obtained for the symmetry energy S0 and its logarithmic
slope in density L at nuclear matter saturation.

The contents of the paper are organized as follows. After
this Introduction, the resummation of the ladder diagrams and
its partial-wave decomposition are discussed in Sec. II. An
important needed element is the in-medium nucleon-nucleon
scattering amplitude which is discussed in Sec. III, and solved
in Sec. IV for the case of contact interactions. The results for
SNM and PNM are given in Sec. V. The last section contains
a summary and concluding remarks.

II. RESUMMATION OF LADDER DIAGRAMS
FOR THE ENERGY DENSITY E

The resummation of the ladder diagrams for evaluating E in
terms of an arbitrary fermion-fermion vacuum T matrix was
accomplished by us in Ref. [31]. This derivation was based
on the many-body formalism of Ref. [32], which we refer
to as the in-medium many-body quantum field theory. Since
the resummation of ladder diagrams was derived in detail in
Ref. [31], here we only provide a brief summary signaling the
main steps in the derivation. We also briefly recap the power
counting of Ref. [25] for in-medium calculations.

A. Summary of the in-medium many-body formalism
of Ref. [32]

Reference [32] determines the in-medium Lagrangian after
integrating out the fermions in the nuclear medium. This is
accomplished by calculating the generating functional Z[J]
of in-medium Green functions with external sources J .

The vacuum Lagrangian contains a pure bosonic part, Lφ ,
and another bilinear in the fermion fields, that is globally
called Lψ̄ψ = ψ̄Dψ . The operator D, which we write as
D = D0 − A, comprises the free fermion Lagrangian D0 =
iγ μ∂μ − m, with m the nucleon mass in the isospin limit, and
the interacting part A, which incorporates the boson-fermion
interactions and external sources. The bosons can be either
light, e.g., pions, or heavy ones which, when integrated out,
give rise to contact multifermion interactions. In this way, we
do not need to additionally incorporate monomials with extra
fermion fields in the Lagrangian density, like quartic ones
Lψ̄ψ̄ψψ and so on. The result for eiZ[J] calculated in Ref. [32]
can be written as

eiZ[J] =
∫

[dU ] exp

[
i
∫

dx Lφ − i
∫

dp
(2π )3

∫
Tr

(
A
[
I − D−1

0 A
]−1∣∣

(x,y)n(p)
)
dx dy eip(x−y)

− 1

2
(−i)2

∫
dp

(2π )3

∫
dq

(2π )3

∫
Tr

(
A
[
I − D−1

0 A
]−1∣∣

(x,x′ )n(q)A
[
I − D−1

0 A
]−1∣∣

(y′,y)n(p)
)

× eip(x−y)e−iq(x′−y′ )dx dx′ dy dy′ + · · ·
]
, (2.1)

such that the exponent in the integrand is i times the total in-medium Lagrangian. In this equation each trace is taken over the
spin and other internal indices of the fermions, like the isospin ones, and D−1

0 is the free vacuum fermion propagator. In isospin
matrix notation

n(p) =
(

θ (ξ1 − |p|) 0
0 θ (ξ2 − |p|)

)
, (2.2)
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where θ (x) is the Heaviside or step function, and it restricts the
momentum p below the Fermi momentum ξα for each nucleon
species α, with α = 1 (2) referring to a proton (neutron).2

Each term in the sum in Eq. (2.1) involving at least one n(p)
is denoted as an in-medium generalized vertex (IGV), after
Ref. [32], and its total number is called Vρ . The IGVs are made
by sewing nonlocal vacuum vertices �,

� ≡ −iA
[
I − D−1

0 A
]−1 = −iA

∞∑
n=0

(
D−1

0 A
)n

, (2.3)

with Fermi seas, with each of them involving a factor n(p). In
addition, there is a numerical factor (−1)n+1/n from the series
of ln(1 + ε).

Equation (2.1) gives rise to Feynman rules and graphs.
The associated propagators for the fermion lines are either
in-medium insertions of on-shell Fermi seas, connecting �

vertices, or fermion vacuum propagators joining vacuum ver-
tices A. In the following, a pure vacuum fermion propagator
iD−1

0 (p) is depicted as a solid line, and a Fermi-sea insertion
n(p)(2π )δ(p0 − p2/2m) is drawn by a double line. In both
cases one has to sum over spin and isospin indices, and in-
tegrate over the intermediate four-momentum

∫
d4 p/(2π )4.

Each vertex −iA is plotted as a filled circle, while the non-
local � vertices are plotted as empty circles. Additionally,
one should keep in mind that bosonic and source lines can
stem from the A vertices. Of course, we refer to the original
Ref. [32] for the derivation and more extensive discussion
of this many-body framework. A good illustration is the
pure perturbative calculations done in Ref. [26] (see also
Refs. [33,34]), and nonperturbative ones were undertaken in
Refs. [20,25,35,36]. For a recent review see Ref. [37].

B. Fock and Hartree diagram contributions to E
Reference [31] performs the resummation of the ladder

diagrams to calculate the energy density E of a system of
fermions of spin 1/2 with an arbitrary vacuum fermion-
fermion T matrix, which we call t . Here, we first give the
formula obtained in Ref. [31], and then introduce the different
operators that appear in it.

The resulting expression for the interacting part of E in the
ladder approximation, EL, is [31]

EL = i Tr

( ∞∑
n=1

(tmLd )n

2n

)
= − i

2
Tr ln (I − tmLd ), (2.4)

FIG. 1. In panel (a) we show Ld (p, a) and in panel (b) Lm(p, a),
which comprises two Feynman diagrams. The double lines corre-
spond to Fermi seas insertions. Here, a spring schematically indicates
any expanded interaction with momentum flow ±k along it.

with the series fixing the branch of ln z, with argz ∈ (−π, π ).
In this equation the in-medium fermion-fermion T matrix is
denoted by tm, while Ld is a unitary loop function made up of
two Fermi-sea insertions, which is shown in the panel (a) of
Fig. 1.

In addition to the interacting part, one also has to sum the
densities of kinetic energies, EK , of protons and neutrons:

EK = ξ 5
1

10mπ2
+ ξ 5

2

10mπ2
= ρ1

3ξ 2
1

10m
+ ρ2

3ξ 2
2

10m
. (2.5)

Given the four-momenta k1 and k2 of the two fermions, we
introduce the four-vectors

a = 1
2 (k1 + k2),

(2.6)
k = 1

2 (k1 − k2),

so that

k1 = a + k, k2 = a − k. (2.7)

For the on-shell case we use p instead of k to denote the rela-
tive momentum, with p ≡ |p|, so that k0

i = E (pi ) = p2
i /2m. It

is important to keep in mind that the total four-momentum a
is conserved during the in-medium scattering process of two
fermions because of translational symmetry.

There are two important in-medium unitary functions. One
is Ld (p, a), already mentioned, and the other is Lm(p, a),
which consists of two mixed intermediate states com-
posed of a Fermi sea insertion and a vacuum propagator.
The loop function Lm(p, a) is depicted in panel (b) of
Fig. 1. These loop-function operators are given by the
expressions

Ld (p, a) = i
mp

16π2

∑
σ,α

∫
dk̂ θ (ξα1 − |a + pk̂|)θ (ξα2 + |a − pk̂|) |pk̂σ1σ2α1α2〉A A〈pk̂σ1σ2α1α2|, (2.8)

Lm(p, a) = −m

2

∑
σ,α

∫
d3k

(2π )3

θ (ξα1 − |a + k|) + θ (ξα2 − |a − k|)
k2 − p2 − iε

|kσ1σ2α1α2〉A A〈kσ1σ2α1α2|. (2.9)

2The Fermi momentum could also depend on the nucleon but we
do not consider further this case because our interest here rests in
unpolarized Fermi systems.

Here, we have denoted by |pkσ1σ2α1α2〉A the antisymmetric
two-fermion intermediate state with momenta k1 = a + k,
k2 = a − k, third components of spin σ1, σ2, and third com-
ponents of isospin α1, α2. The sum over the spin and isospin
indices σi and αi is denoted by

∑
σ,α . A symmetry factor 1/2
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is included in Eqs. (2.8) and (2.9) because the two-fermion
state is antisymmetric. In these equations we have also taken
into account that, as the in-medium states summed over in the
trace of Eq. (2.4) are on shell,

2ma0 − a2 = m[E (a + p) + E (a − p)] − a2 = p2. (2.10)

In terms of the vacuum T -matrix t and Lm, the operational
equation that defines tm(a) is [31]

tm(a) = t + tLm(p, a)tm(a). (2.11)

In this way, the in-medium T matrix tm(a) results by iter-
ating t with mixed intermediate states making up Lm. From
this equation and Eq. (2.9), the matrix elements of tm(a) be-
tween the initial and final two-fermion antisymmetric states,
|pσ1σ2α1α2〉 and |p′σ ′

1σ
′
2α

′
1α

′
2〉, respectively, fulfill the integral

equation (IE)

〈p′σ ′
1σ

′
2α

′
1α

′
2|tm(a)|pσ1σ2α1α2〉

= 〈p′σ ′
1σ

′
2α

′
1α

′
2|t (a)|pσ1σ2α1α2〉

− m

2

∑
σ̃ ,α̃

∫
d3k

(2π )3
〈p′σ ′

1σ
′
2α

′
1α

′
2|t (a)|kσ̃1σ̃2α̃1α̃2〉

× θ (ξ1 − |a + k|) + θ (ξ2 − |a − k|)
k2 − p2 − iε

× 〈kσ̃1σ̃2α̃1α̃2|tm(a)|pσ1σ2α1α2〉. (2.12)

Reference [31] demonstrates in Sec. 2.3.2 that, despite the
complex nature of the operators tm and Ld and the explicit
presence of the imaginary unity in Eq. (2.4), EL is real for
the case of equal Fermi momenta. The demonstration is rather
technical and we omit it here for brevity and to avoid repeating
ourselves with Ref. [31]. The basic point is that the argument
of the ln in Eq. (2.4) can be diagonalized and its eigenvalues
are phase factors of unite modulus. This is why the arctan se-
ries found in Refs. [21,22] always appear in these calculations.

C. Power counting

Reference [25] develops a low-energy power counting for
nuclear matter, with the fermion-fermion interactions counted
as O(1). Low-energy nucleon-nucleon interactions fall into
this category because of their nonperturbative nature [26,37].
In this counting a fermion energy p2/2m is counted as O(k2

F ),
and then a fermion propagator as O(k−2

F ), which also applies
to a Fermi-sea insertion within an IGV. We denote by νi the
number of bosons (heavy and light) attached to the ith bilinear
vertex, of which ωi are heavy fields, and by di its number of
derivatives. Concerning the purely bosonic vertices from Lφ

we denote by ni the number of light fields in the ith vertex,
and by δi the number of derivatives there. Finally, the total
numbers of vertices from Lψ̄ψ and Lφ are called V and Vπ ,
respectively, and the total number of external light bosonic
lines is called Eπ .

With this preamble one can calculate straightforwardly the
chiral dimension ν of an in-medium diagram, i.e., the power
to which the typical size of the momentum involved in the
diagram is raised. The original derivation can be found in
Ref. [25], and is reviewed and simplified in Ref. [37]. The

FIG. 2. The energy per nucleon for SNM as a function of kF <

150 MeV from the ladder resummation is given by the black solid
line, and the gray area represents the estimated uncertainty. In ad-
dition, we also show the results from the variational calculation of
Ref. [52] (blue filled circles) and the density functional SeaLL1 [53]
(red dashed line).

resulting expression for the power counting is

ν = 3 − Eπ +
Vπ∑
i=1

(δi + ni − 4)

+
N∑

i=1

(di + νi + ωi − 2) + Vρ. (2.13)

For the calculation of the interacting part of E at least
two fermions are involved in the interaction, so that Vρ � 2,
and there are no external light fields. Its leading-order (LO)
contribution has Vρ = 2 and chiral order ν = 5. Higher order
contributions arise by increasing Vρ or any of the coefficients
inside parentheses concerning the number of bosonic lines or
derivatives, so that the combinations in parenthesis become
positive, instead of being zero as for the LO contributions.

Let us also notice that for small values of kF , such that
it is much smaller than the light-field masses, we can also
consider the latter as heavy fields and run into the limit of only
contact interactions. This is a limit of special significance for
the applications developed below, and also for nuclear physics
in general. Then, the power counting in Eq. (2.13) simplifies
to

ν = 3 +
N∑

i=1

(di + 2ωi − 2) + Vρ. (2.14)

Notice that the parenthesis is � 0 as long as di � 0 because
ωi � 1. The LO contributions to E are those with Vρ = 2 and
vanishing combinations inside the parenthesis. In the applica-
tions discussed in Secs. V A and V B we actually go beyond
the LO contributions because the vacuum nucleon-nucleon in-
teractions are given in terms of their phenomenological phase
shifts and mixing angles, despite in-medium corrections being
implemented at LO by resumming the ladder diagrams.

A posteriori, by attending to the contribution of off-shell
momenta above the pion mass to Ē for SNM (cf. Fig. 2), we
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deduce a value for the expansion scale � around 350 MeV.
This number stems from having an uncertainty of 1.5 MeV
for a value of Ē around −3.5 MeV at kF = 150 MeV. Then,
according to Eq. (2.14), the next-to-leading order (NLO) in-
medium correction with Vρ = 3 is suppressed by an extra
power of kF /�, from where � ≈ 350 MeV results. An analo-
gous procedure for PNM drives to a larger �; cf. Fig. 5.

D. Partial-wave expansion

This subsection corresponds basically to Sec. 3 of
Ref. [31], to which we refer for more details. The only
addition here, which indeed is rather straightforward to im-
plement, consists of taking into account the isospin degrees of
freedom. Within the notation developed so far we can rewrite
Eq. (2.4) as

EH = −i
∫

p d p

mπ

∫
d3a

π3
Tr{ln [I − tm(a)Ld (p, a)]} (2.15)

= − i

2

∑
σ1,2,α1,2

∫
p d p

mπ

∫
d3a

π3

∫
dp̂
4π

A〈p, σ1σ2α1α2| ln [I − tm(a)Ld (p, a)]|p, σ1σ2α1α2〉A. (2.16)

An extra factor of 1/2 is introduced in the last equation due to the antisymmetrized nature of the two-fermion states, indicated
by the subscript A in the bra and kets.

Another simplification in the expression for EL comes from rotational symmetry, so that one can take always a along the ẑ
axis. Next, we make a PWA expansion in the relative-motion variables p in terms of the partial-wave vector states |Jμ�SIi3, p, 〉,
where J is the total angular momentum, μ is its third component, � is the orbital angular momentum, S is the total spin, I is the
total isospin, and i3 is its third component. One has to take into account the value for the scalar product between a partial-wave
vector |Jμ�SIi3 p〉 and the plane-wave ones |p, σ1σ2α1α2〉A. The relation between both bases is

|p, σ1σ2α1α2〉A =
√

4π
∑
Jμ�S

(σ1σ2σ3|s1s2S)(mσ3μ|�SJ )(α1α2i3|τ1τ2I )Y m
� (p̂)∗χ (S�I )|Jμ�SIi3 p〉,

A〈p′, σ1σ2α1α2|Jμ�SIi3 p〉 = χ (S�)
4π

5
2 δ(p′ − p)

p2
(σ1σ2s3|s1s2s)(ms3μ|�SJ )(α1α2i3|τ1τ2I )Y m

� (p̂),

χ (S�I ) = 1 − (−1)�+S+I

√
2

. (2.17)

The factor χ (S�I ) is nonzero for odd � + S + I , as required by Fermi statistics for a two-fermion state. After taking into account
the standard orthogonality properties for the Clebsch-Gordan coefficients and spherical harmonics [38], one has

EL = − 2i

mπ3

∑
J, μ, �

S, I, i3

χ (S�I )2
∫ ∞

0
p d p

∫ ∞

0
a2da〈Jμ�SIi3 p| ln[I − tm(aẑ)Ld (p, aẑ)]|Jμ�SIi3 p〉. (2.18)

Let us remark that the presence of Ld (p, aẑ) limits the possible values of a and p since it requires that ξ 2
1 + ξ 2

2 � 2(a2 + p2) � 0.

III. INTEGRAL EQUATIONS FOR tm(aẑ)

The vacuum T matrix t satisfies the Lippmann-Schwinger equation

t = V − V G(p)t, (3.1)

where V is the potential and G(p) is the vacuum unitarity loop function with intermediate states involving two fermions,

G(p) = −m

2

∫
d3k

(2π )3

|k〉A A〈k|
k2 − p2 − iε

. (3.2)

Then, the operational equation Eq. (2.11) for tm(a) can also be expressed as [31]

tm(a) = V − V [G(p) − Lm(p, a)]tm(a) (3.3)

for a given E = p2/m. This operational relation straightforwardly drives to the following IE for the matrix elements of tm(a):

A〈p′σ ′
1σ

′
2α

′
1α

′
2|tm(a)|pσ1σ2α1α2〉A = A〈p′σ ′

1σ
′
2α

′
1α

′
2|V |pσ1σ2α1α2〉A + m

2

∑
σ̃ ,α̃

∫
d3k

(2π )3 A〈p′σ ′
1σ

′
2α

′
1α

′
2|V |kσ̃1σ̃2α̃1α̃2〉A

× 1 − θ (ξα̃1 − |k + a|) − θ (ξα̃2 − |k − a|)
k2 − p2 − iε

A〈kσ̃1σ̃2α̃1α̃2|tm(a)|pσ1σ2α1α2〉A. (3.4)

The matrix elements of the kernel G(p) − Lm(p, a), used to deduce the previous equation, are worked out in Appendix A.
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A. Integral equation for tm(aẑ) in partial waves: General values for ξ1, ξ2

Now, we give the integral equation for tm(aẑ) for general values of ξ1 and ξ2, so that ξ1 and ξ2 are not assumed to be equal, as
was the case in Ref. [31]. This generalization is only relevant for i3 = 0, since for i3 = ±1 then α̃1 = α̃2 = ±1/2, respectively,
and for these cases one can take directly the result from Sec. 4 of Ref. [31].

The resulting IE in partial waves is

〈J ′μ�′SI ′i3 p′|tm(aẑ)|Jμ�SIi3 p〉 = 〈J ′μ�′SI ′i3 p′|V |Jμ�SIi3 p〉 + m
∑

J1�1m3
s3�2I1

∫
d3k

(2π )2

χ (S�2I ′)χ (S�1I1)

k2 − p2 − iε

× (m3s3μ|�2SJ ′)(m3s3μ|�1SJ1)Y m3
�2

(k̂)∗Y m3
�1

(k̂)〈J ′μ�′SI ′i3 p′|V |J ′μ�2SI ′i3k〉
× 〈J1μ�1SI1i3k|tm(aẑ)|Jμ�SIi3 p〉{1 − θ (ξ1 − |k + aẑ|) − θ (ξ2 − |k − aẑ|)}. (3.5)

The necessary steps to end with this IE for PWAs from Eq. (3.4) for plane waves are derived in detail in Appendix A.
We can write the IE in Eq. (A14) in a more compact matrix form as

[tm(aẑ)](p′, p) = [V ](p′, p) + m

(2π )2

∫ ∞

0

k2dk

k2 − p2 − iε
[V ](p′, k)A [tm(aẑ)](k, p), (3.6)

with the matrices

[V ](p′, k)J ′�′I ′,J2�2I2 = δJ ′J2δI ′I2〈J ′μ�′SI ′i3 p′|V |J2μ�2SI2i3k〉, (3.7)

[tm(aẑ)](k, p)J1�1I1,J�I = 〈J1μ�1SI1i3k|tm(aẑ)|Jμ�SIi3 p〉, (3.8)

AJ2μ�2I2,J1μ�1I1 = χ (S�2I2)χ (S�1I1)
∑
m3s3

(m3s3μ|�2SJ2)(m3s3μ|�1SJ1)
∫

dk̂Y m3
�2

(k̂)∗Y m3
�1

(k̂)

×{1 − θ (ξ1 − |k + aẑ|) − θ (ξ2 − |k − aẑ|)}. (3.9)

We also notice that our final expressions for the IE obeyed by tm(aẑ), Eqs. (3.5) and (3.9), are also applicable when i3 = ±1
by just replacing

θ (ξ1 − |k + aẑ|) + θ (ξ2 − |k − aẑ|) → 2θ (ξ i3
2

− |k − aẑ|), (3.10)

which is the case studied in Ref. [31].
There are symmetry properties of the PWA matrix elements such that they are symmetric under the exchange of the initial and

final states, and also there is a definite relation between the PWA matrix elements with opposite values of μ. These symmetry
relations are stated and demonstrated in Appendix B.

IV. GENERAL SOLUTION OF THE PWAs FOR CONTACT
INTERACTIONS

We consider the two-fermion scattering by a zero-range
potential. We also adjust the normalization of the PWAs
such that it is the same as in the ERE, that is, Im t (p, p) =
−p|t (p, p)|2. This choice is convenient since it simplifies the
matching procedure with the ERE heavily used in the fol-
lowing. This implies multiplying by a factor 4π/m the PWAs
from the previous sections.

A. The uncoupled case

We start with the LS equation in partial waves,

t (q, r) = v(q, r) − v(q, q′)Gt (q′, r), (4.1)

where, to shorten the notation, we do not show the integra-
tion symbol over q′, nor the full integrand, all this being
understood when this continuous variable is repeated. For
instance, after including all the factors and symbols Eq. (4.1)

becomes

t (q, r) = v(q, r) + 2

π

∫ ∞

0

q′2dq′

q′2 − p2 − iε
v(q, q′)t (q′, r).

(4.2)

We now explicitly build in the momentum factors required
by the centrifugal barrier potential, which factorize in PWAs
for contact interactions without left-hand cut (LC). Thus, we
write

t (q, q′) = q�q′�τ�(q2, q′2),
(4.3)

v(q, q′) = q�q′�w(q2, q′2),

where w(q2, q′2) is a polynomial in its arguments.3 As a result
the LS equation becomes

τ�(q2, r2) = w(q2, r2) − w(q2, q′2)q′2�Gτ�(q′2, r2). (4.4)

3The reduced potential function w(q2, q′2) only depends on the
square of the momenta because the full potential q�q′�′

w(q2, q′2) un-
der the exchange q → −q and q′ → −q′ scales as (−1)� and (−1)�

′
,

respectively [39]. This is accounted for by the prefactor q�q′�′
.
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In order to calculate the on-shell T matrix in the medium
we also need the off-shell T matrix in vacuum. An important
remark to note in the IE for tm(q, p), Eq. (2.12), is that the off-
shell momenta are bounded because the intermediate states
are of an in-medium mixed type, contributing to the loop inte-
gral Lm of one baryon line inside the Fermi sea; cf. Eq. (2.9).
Furthermore, once the on-shell tm(p, p, a) is calculated the
momenta involved in Eq. (2.18) for evaluating E are bounded
by the Fermi momenta because of Ld . Therefore, q/� and
p/� vanish for � → ∞, in both the off- and on-shell cases,
respectively. Let us notice that this is not the case in vacuum,
because when working out the off-shell T matrix from a LS
equation one must consider off-shell momenta as large as the
cutoff.

We first consider half-off-shell scattering, and afterwards
we generalize our analysis to the off-shell case. Due to
half-off-shell unitarity in partial waves (see, e.g., Sec. 2 of
Ref. [39]), we can write the PWA as

τ�(q2, p2) = D−1(p2)N (q2, p2), (4.5)

Since there is no LC for a zero-range potential then N (q2, q′2)
is a rational function in its arguments, being real for real
momenta [40]. Here, D(p2) is an analytic function in the cut
complex p2 plane with only a right-hand cut (RHC) for real
and positive values of p2.

For on-shell scattering q2 = q′2 = p2 and we can reabsorb
N (p2, p2) in a redefinition of D(p2), such that [40]

N (p2, p2) = 1. (4.6)

To achieve this just divide the original numerator and denomi-
nator functions in τ�(p2, q′2) by N (p2, p2). The possible zeros
of N (p2, p2) would give rise to poles in the function D(p2):
the Castillejo-Dalitz-Dyson poles [40,41].

Adopting in the following the convenient redefinition in
Eq. (4.6), the imaginary part of D(p2) along the RHC becomes

Im D(p2) = −p2�
√

p2, p2 > 0. (4.7)

Implementing Eq. (4.5) into Eq. (4.4), one deduces from the
latter the following IE for N (q2, p2):

N (q2, p2) = D(p2)w(q2, p2) − w(q2, q′2)q′2�GN (q′2, p2),

(4.8)

The imaginary part of this equation is zero because of
Eq. (4.7), taking into account that Im G = −p. This is indeed
a consistency check of the general result that N (q2, p2) has
no RHC. Denoting the real part of D(p2) by Dr (p2), Eq. (4.8)
becomes

N (q2, p2) = Dr (p2)w(q2, p2) − w(q2, q′2)q′2�G N (q′2, p2)

= Dr (p2)w(q2, p2) + Q(q2, p2), (4.9)

with

Q(q2, p2) = −w(q2, q′2)q′2�G N (q′2, p2), (4.10)

which is a polynomial in the q2 argument. Notice that q′2�G
is meant to represent the Cauchy principal part of the q′
integral involved.

To shorten the notation when considering on-shell scat-
tering, the different functions τ�, Q, and w are written with
only one argument, namely, as τ�(p2), Q(p2), and w(p2),
respectively. For on-shell scattering, in which N (p2) = 1, we
can isolate Dr (p2) from Eq. (4.9), which then reads

Dr (p2) = 1 − Q(p2)

w(p2)
. (4.11)

This function is the one that is matched with the ERE,

Dr (p2) = −1

a
+ 1

2
r p2 +

∞∑
m=2

νm p2m = p2�+1 cot δ�. (4.12)

Let us stress that this result is a consequence of unitarity and
analyticity, with the latter exploiting the fact that no LC is
present in the PWAs when considering only contact interac-
tions. It is entirely expressed in terms of the experimental
phase shifts.

To calculate N (q2, p2) we substitute the expression for
Dr (p2), Eq. (4.11), into Eq. (4.9), which then reads

N (q2, p2) = w(q2, p2)

w(p2)
+ Q(q2, r2) − Q(p2)

w(q2, p2)

w(p2)
.

(4.13)

By solving explicit examples of off-shell scattering with
cutoff regularization for contact interactions with the potential
w(q′2, q2) = ∑

α,β=0 ωαβq′2αq2β up to and including sixth
degree in the arguments, we have checked that, after renor-
malization by matching with the ERE,4 the coefficients ωαβ

scale with the cutoff � as

ωαβ −−−→
�→∞

O(�−2(α+β ) ). (4.14)

This rule follows the dimension of ωαβ corresponding to
length2(α+β )+1, and we take it for granted in the following
discussions. The previous equation also holds for a separable
potential.5

Importantly, Eq. (4.14) allows one to conclude that

N (q2, p2) −−−→
�→∞

1. (4.15)

The reasoning is the following: (i) The ratio
w(q2, p2)/w(p2) → ω00/ω00 = 1 for � → ∞, and then
Eq. (4.13) simplifies as

N (q2, p2) = 1 + Q(q2, p2) − Q(p2). (4.16)

(ii) The monomial ωαβ (q2, q′2) gives rise to extra cutoff
powers of highest power �2β when implemented in the IE

4The divergent part of the integrals involved can be expressed in
terms of the basic functions

In = 2

π
−
∫ �

0

q2dq

q2 − p2
q2n =

∫ �

0
dq q2n + p2In−1,

Ln = 2

π

∫ �

0
dq q2n = θn�

2n+1.

The coefficients θn specify the cutoff regularization scheme.
5An explicit account of our analyses with contact-interaction po-

tentials can be provided to the interested reader on demand.
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Eq. (4.4), as compared with those stemming from ω00. How-
ever, the latter, because of its dimension ruling the scaling
with the cutoff, is less suppressed precisely by O(�−2(α+β ) )
as compared with wαβ . Therefore, even taking into account
the extra cutoff powers resulting by integrating the off-shell
arguments in the IE of τ�, it comes out that the contributions
to this IE from wαβ are suppressed by O(�−2α ) for α > 0, as
compared to those from ω00. Therefore, the contribution with
α > 0 vanishes in Q(q2, p2) for � → ∞.

However, for α = 0 there is no such suppression of the
contributions arising from the integration of w0β (q2, q′2) to
the left of the symbol G in Eq. (4.10). In the same manner,
when the potential w(q′2, p2) acts to the right in Eq. (4.10)
(think of an iterative solution of this IE), the only surviving
contributions in the limit � → ∞ correspond to ωβ0. Impor-
tantly, all these contributions involving ω0α to the left or ωβ0

to the right of G in Eq. (4.10) are independent of q, because
the integration in the q′ variable is then only a function of p2.
Thus, they cancel in the difference Q(q2, p2) − Q(p2) present
in Eq. (4.16), and Eq. (4.15) follows.

For the off-shell case ones writes τ�(q2, r2) =
D−1(p2)N (q2, r2), with r another momentum, substitutes
it in Eq. (4.4) and, by taking into account the scaling rule of
Eq. (4.14), one has that

N (q2, r2) = D(p2)ω00 − w(q2, q′2)q′2�GN (q′2, r2). (4.17)

This equation has no imaginary part because of Eqs. (4.7)
and (4.15) [due to time-reversal invariance N (p2, q2) =
N (q2, p2)], and then N (q2, r2) has no RHC. Therefore,
N (q2, r2) satisfies an equation analogous to Eq. (4.16),

N (q2, r2) = 1 + Q(q2, r2) − Q(p2). (4.18)

Following then the same reasoning as used below Eq. (4.16),
one concludes that

N (q2, q′2) −−−→
�→∞

1. (4.19)

As a consequence of Eqs. (4.5), (4.12), and (4.19), the vacuum
off-shell PWAs can be expressed directly in terms of the
experimental phase shifts for q, q′ � 2max(ξ1, ξ2) as

t (q, q′) = (qq′)�

p2�+1 cot δ� − ip2�+1
. (4.20)

B. The coupled case

This section is a generalization to coupled PWAs of the
results in Sec. IV A, and we follow similar steps as in the
uncoupled case. We use matrix notation which makes more
straightforward this generalization process. For M coupled
PWAs the LS equation in matrix notation is written as

t (q, r) = v(q, r) − v(q, q′)Gt (q′, r), (4.21)

so that now t and v are M × M matrices and G is a diagonal
matrix of the same order. We also introduce the matrix (q)�

which is a diagonal matrix whose ith entry is q�i , being �i the
orbital angular momentum of the ith PWA. The right threshold
behaviors of t (q, q′) and v(q, q′) are explicitly taken into

account analogously to Eq. (4.3) by writing, respectively,

t (q, q′) = (q)�τ�(q2, q′2)(q′)�,
(4.22)

v(q, q′) = (q)�w(q2, q′2)(q′)�.

Multiplying Eq. (4.21) by (q)−� and (q′)−� to the left and
right, respectively, we have

τ�(q2, r2) = w(q2, r2) − w(q2, q′2)(q′)2�Gτ�(q′2, r2).

(4.23)

Invoking the N/D method in coupled channels [42], we write

τ�(q2, q′2) = N (q2, q′2)D−1(p2),
(4.24)

Im D(p2) = −(p)2�+1N (p2),

where D(p2) and N (q2, q2) are M × M matrices. The former
has only RHC and the latter has none in the case of contact
interactions. Both matrices of functions can be chosen such
that for on-shell scattering [40]

N (p2) = I. (4.25)

The equation for N (q2, r2) that results from Eq. (4.23) is

N (q2, r2) = w(q2, r2)D(p2) − w(q2, q′2)(q′)2�GN (q′2, r2).

(4.26)

Particularizing this equation to on-shell scattering we have
that

Dr (p2) = w(p2)−1[I − Q(p2)], (4.27)

where Dr (p2) = D(p2) and

Q(q2, r2) = −w(q2, q′2)(q′)2�GN (q′2, r2). (4.28)

Equation (4.27) is matched with the ERE in coupled chan-
nels to all orders, so that

Dr (p2) = w(p2)−1(I − Q(p2))

= −(a)−1 + 1

2
(r)p2 +

∞∑
m=2

(νm)p2m. (4.29)

Here all the shape parameters are actually matrices [43], a fact
indicated by placing them between brackets.

Explicitly, if S(p2) is the S-matrix projected in partial
waves, the corresponding coupled PWAs can be written as

t (p2) = (p)�D−1(p2)(p)� = 1

2ip
[S(p2) − I]. (4.30)

For vacuum NN scattering, the S matrix for coupled PWAs
can be expressed as

S =
(

cos 2ε e2δ1 i sin 2ε ei(δ1+δ2 )

i sin 2ε ei(δ1+δ2 ) cos 2ε e2iδ2

)
, (4.31)

where ε is the mixing angle and δ11, δ22 are the phase shifts
for waves 1 and 2, respectively.

A completely analogous analysis as for the single-channel
case implies that N (q2, q′2) → I for � → ∞ (we recall that
we are interested in off-shell momenta bounded by twice the
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largest Fermi momentum). Therefore, when the cutoff is sent
to infinity, the expression for the off-shell coupled PWAs is

t (q, q′) =
(

q

p

)� 1

2ip
(S(p2) − I)

(
q′

p

)�

. (4.32)

In the previous expression the matrix (q/p)� is (q)�(p)−� =
(p)−�(q)�. As in the uncoupled case, Eq. (4.32) has been
checked for polynomial potentials in coupled channels up to
sixth degree in its arguments.

C. The in-medium T matrix

For the in-medium T matrix the results for the vacuum T
matrix expressed in Eqs. (4.20) and (4.32) allow us to derive
an algebraic equation to determine tm(q, p). We explicitly take
care of the threshold behavior for interactions without LC, and
write

tm(q, q′) = (q)�τm(p2)(q′)�, (4.33)

Of course, for coupled PWAs a matrix notation analogous to
that developed in Sec. IV B should be understood.

Next, by taking into account the IE satisfied by tm,
Eq. (2.11), it follows that τm obeys the algebraic matrix equa-
tion,

τm(p2) = τ�(p2) + τm(p2)q′�Lmq′�′
τ�(p2), (4.34)

with the matrix elements of q′�Lmq′� given by

[q′�Lm;J2μ2�2,J1μ1�1 q′�′
]J2�2,J1�1

= δμ2μ1

m

(2π )2

∫ ∞

0

k2dk

k2 − p2 − iε
k�1+�2BJ2μ1�2I2,J1μ1�1I1 .

(4.35)

The matrix [B] is given by the matrix [A], defined in Eq. (3.9),
but removing the one in the factor between square brackets.
Namely,

BJ2μ�2I2,J1μ�1I1 = −χ (S�2I2)χ (S�1I1)
∑
m3s3

(m3s3μ|�2SJ2)

× (m3s3μ|�1SJ1)
∫

dk̂ Y m3
�2

(k̂)∗Y m3
�1

(k̂)

× [θ (ξ1 − |k + aẑ|) + θ (ξ2 − |k − aẑ|)].
(4.36)

Finally, the solution of Eq. (4.34) is

τm(p2) = [τ�(p2)−1 − q′�Lmq′�]−1

=
[

(p)�
(

2π (S� − I)

imp

)−1

(p)� − q′�Lmq′�
]−1

.

(4.37)

D. Uniqueness of the on-shell in-medium T matrix

We discuss here that the on-shell in-medium PWA tm(p, aẑ)
shown in Eqs. (4.33) and (4.37) is independent of the regula-
tor, as well as unique. The point is to consider the scattering
amplitude of two on-shell fermions in the medium, whose

imaginary part is not only due to G but also to Lm. The
former comprises the contributions from intermediate states
of two fermions in vacuum, and the latter from the mixed
intermediate states with one Fermi-sea insertion. As a result,
τm(p2)−1 − i(p)�Im [G(p) − Lm](p)� is amenable to a power
expansion in p2 around threshold because the branch-point
singularity at p = 0 has been removed. This is then the in-
medium equivalent of the ERE in vacuum; cf. Eq. (4.29).

From this point of view, this in-medium ERE can be seen
as a dressing or flow of the ERE parameters in vacuum
because of the finite density of fermions, so that one has
a(ξ1, ξ2), r(ξ1, ξ2), and νm(ξ1, ξ2) for m � 2. In the limit ξi →
0, of course, one has the boundary conditions a(0, 0) = a,
r(0, 0) = r and, in general, νm(0, 0) = νm, m � 2, where the
vacuum values have been denoted with the usual symbols.

By using cutoff regularization we have been able to work
out the dressing of the ERE parameters as a function of the
Fermi momenta ξi. This is accomplished because tm(p, aẑ) has
been calculated to all orders in the ERE, being expressed di-
rectly in terms of the vacuum phase shifts and mixing angles.
Since any other regularization method respecting analyticity
and unitarity in the limit of contact interactions should agree
on the on-shell tm(p, aẑ) when taking into account all higher
orders in the ERE, then it follows our claim.

Making use of these results, one can then resolve the
regulator dependence [23] already observed of in-medium
nonperturbative calculations of Ē by performing them either
with cutoff or dimensional regularization. The point here is
not to perform partial calculations up to some order in the
expansion of the contact interactions but to include all orders,
so that the physical results are directly expressed in terms of
the phase shifts and mixing angles as determined in vacuum
scattering experiments.

V. RESULTS

We have resummed the ladder diagrams for calculating Ē ,
Eqs. (2.4) and (2.18). We have also been able to solve tm in the
nuclear medium for contact interactions; cf. Eqs. (4.33) and
(4.37). As a consequence, our results are renormalized and
expressed directly in terms of the experimental phase shifts
and mixing angles of NN scattering [43].

The calculations are based on assuming contact interac-
tions between the two interacting nucleons, whose range of
validity is limited by the onset of the left-hand cut in PWAs
due to pion exchanges, which occurs for p2 < −m2

π/4 (this
limit is determined by one-pion exchange). Nonetheless, the
on-shell PWAs in vacuum have been directly expressed in
terms of the phase shifts, which is valid for all momenta.
But the off-shell vacuum PWAs ti j (q, r), needed for in-
medium calculations, are proportional to q�i r� j in the off-shell
momenta, a functional form stemming from the contact-
interaction nature assumed for the potential. Indeed, one
would expect this functional form to be valid only for small
momentum compared with mπ . As said, −m2

π/4 settles the
start of the LC in the momentum-squared complex plane, so
that the off-shell factor q�i r� j would set in only as the limiting
behavior for |q|, |r| � mπ . Therefore, we would expect that
the strong off-shell dependence proportional to k�1+�2 in the

044319-9



J. M. ALARCÓN AND J. A. OLLER PHYSICAL REVIEW C 107, 044319 (2023)

FIG. 3. The pressure (left panel) and sound velocity squared (right panel) for SNM calculated from the ladder resummation are plotted as
functions of kF < 150 MeV by the solid lines, with the estimated uncertainty given by the gray bands.

calculation of Lm in Eq. (4.35) would be tamed for momenta
of O(mπ ). For instance, this is the case if one calculates the
NN PWAs at tree level from one-pion exchange, as given in
Appendix A of [37].

Then, we display our results for low densities up to Fermi
momenta kF = 150 MeV ∼ mπ , which corresponds to sym-
metric nuclear matter (SNM) and pure neutron matter (PNM)
densities of 3 × 10−2 and 1.5 × 10−2 fm−3, respectively. We
notice that the onset of the sensitivity to the pion LC is smooth
and gradual, as shown by the validity of the ERE with a few
terms in reproducing the NN phase shifts for momenta clearly
above mπ/2 [39,44–46]. Furthermore, here the use of the
vacuum off-shell PWAs is always in integral expressions, so
that there is an averaging process, and results are not directly
sensitive to specific values of momenta. Then, we consider it
reasonable to extrapolate in kF and show the results for Fermi
momenta up to around mπ . Indeed, it is not uncommon for
pionless EFT to show results for momenta up to around mπ

[47–49].
To estimate the uncertainty in this extrapolation, we also

multiply the off-shell dependence on k for k > mπ/2 in
the calculation of Lm, Eq. (4.35), by the Gaussian regulator
exp[−(k − mπ/2)2/Q2]. The scale Q > mπ , and in this way
higher values of k compared with mπ/2 are suppressed in the
calculation of Lm (the onset of LC in the complex k plane
occurs at ±imπ/2). Notice that this procedure is implemented
only for estimating uncertainties, and our benchmark values
correspond to Q → ∞. The extent of the uncertainty is deter-
mined by taking the lowest value Q = mπ .

We also consider the impact in our results of taking an
effective nucleon mass m(ρ) in the nuclear medium. At the
level of the kinetic energy density EK we have to replace
m by m(ρ) in Eq. (2.5). For the interacting energy den-
sity, EL, the substitution m → m(ρ) has to be made in Lm

and Ld , but not in the calculation of the vacuum scattering
PWA and, therefore, not in (p)�( 2π (S�−I)

imp )−1(p)� for τm(p2),
Eq. (4.37). The replacement m → m(ρ) is also needed in
the prefactor −2i/(mπ3) in Eq. (2.18), since this is linked
to the calculation of Ld . At nuclear matter saturation den-
sity ρ0 Ref. [50] gives m∗ ≡ m(ρ0) ≈ 0.7 m, while for pure
neutron matter Ref. [51] obtains m∗ ≈ 0.9 m. We take these
values and use for each case an extrapolation in density of the

form m(ρ) = m
1+ ρ

ρ0
( m

m∗ −1) which becomes linear in ρ for low

densities. This behavior is in agreement with Refs. [50,51],
and it is also the expected leading one by having into account
the self-energy corrections from NN interactions [20,25,26].
Nonetheless, this source of estimated uncertainty is typically
much smaller than the one stemming from the variation of
the Gaussian cutoff Q, and it is not really relevant in the
presentation of our results.

A. Symmetric nuclear matter

We show in Fig. 2 the resulting Ē from the ladder resum-
mation as a function of kF by the solid black line, and the
estimated uncertainty corresponds to the gray area. In the
same figure we also show other low-density determinations
by the blue filled circles, corresponding to the variational
calculation of Ref. [52], and the red dashed line is the result
from the density functional SeaLL1 [53].

It is notorious that Ē > 0 up to kF � 70 MeV, or ρ �
3 × 10−3 fm−3. This clearly indicates that SNM is not stable
at such low values of the density, where the resummation of
the ladder diagrams provides robust results. Of course, this
phenomenon should not come as a surprise since it is well
known [54–56] that at low densities the stable phase is not
longer homogeneous, as α particles [55,56] and heavy nuclei
[54,55] form.

We can further study this region of instability of SNM, also
called spinodial region [57], by considering the resulting pres-
sure, P, and the sound velocity squared, c2

s , which respectively
obey the expressions

P(ρ) = ρ2 ∂ Ē
∂ρ

, (5.1)

c2
s (ρ) = 1

m

∂P

∂ρ
= 2ρ

m

∂ Ē
∂ρ

+ ρ2

m

∂2Ē
∂ρ2

. (5.2)

P(ρ) and c2
s (ρ) are shown in the left panel and right panels

of Fig. 3, respectively. The pressure is positive up to kF =
59 MeV, corresponding to a system which tends to split apart.
c2

s becomes positive in the region of negative P(ρ) only above
a critical value of kF , which we denote as ξc, and for which the
resummation of ladder diagrams yields ξc = 139 MeV, with
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FIG. 4. The partial-wave contributions to Ē for SNM with dif-
ferent orbital angular momenta are added separately. Contributions
with the S, P, D, and F waves consecutively added correspond to
the blue dashed, red dashed-dotted, magenta dotted, and green solid
lines, respectively. The full result is the black solid line. See the text
for further details.

around a +20 MeV of uncertainty. Let us recall the relation
between the compressibility coefficient K and c2

s ,

K = c2
s

mρ
, (5.3)

so that when c2
s < 0 then K < 0. The Fermi momentum ξc is

the critical density above which the system leaves the instabil-
ity region, and SNM becomes a homogeneous stable phase.
Reference [54], employing a relativistic mean field theory,
obtained a value for the critical density around 1014 g/cm3,
corresponding to ξc = 190 MeV. The boson-exchange
model for nuclear interactions used to apply the Dirac-
Bruckner approach to calculate Ē in Ref. [57] gives ξc ≈
200 MeV.

We separately show in Fig. 4 the contributions from PWAs
involving different orbital angular momenta, and their sum up
to the final result given by the black solid line. We organize
the different contributions according to the mixing of PWAs
in vacuum. In this way, the blue dashed line corresponds
to the S waves but, because of the mixing between the 3S1

and 3D1 PWAs, we are actually keeping the 1S0 and 3S1-3D1

PWAs. Let us recall that we directly take the experimental
phase shifts and mixing angles, so that the mixed PWAs in
vacuum must be kept together. Similarly, using the notation
of P waves (red dash-dotted line) we are adding the PWAs
1P1, 3P0, 3P1, 3P2-3F 2. For the D waves (magenta dotted
line) we have in addition 1D2, 3D2, 3D3-3G3, and for the F
waves (green solid line) we have added the contributions from
the 1F 3, 3F 3, and 3F 4-3H4 PWAs. As expected, we see from
Fig. 4 that the main contributions arise from the S waves, but
the P waves give a noticeable repulsion, which is compensated
to large extend by the D-wave contributions. The convergence
is already achieved with the F -wave contributions, and is
almost indistinguishable from the final curve including the
G waves.

FIG. 5. Ē for PNM is plotted as a function of kF < 150 MeV. Our
results are given by the black solid line, together with the gray band
giving the uncertainty estimated. The resulting curve in the unitary
limit a0 = ∞ is the blue dotted line. We also provide the results
calculated with the 1S0 scattering length only, brown dashed line,
plus the effective range, green dash-dotted line [31]. For comparison
we show results for NLEFT [58] (green downwards triangles), HEFT
2N [59] (yellowish green diamonds), the two quantum Monte Carlo
calculations of Gezerlis and Carlson [60] (red squares) and Gezerlis
[61] (gray left-pointing triangles), as well as the variational one of
Ref. [52] (blue circles).

B. Pure neutron matter

The results for Ē of PNM by resumming the ladder dia-
grams are shown in Fig. 5 by the solid line, with an estimated
uncertainty given by the gray band. By considering only the
S-wave contributions, namely the PWA 1S0, we plot Ē in the
unitary limit (infinite scattering length) by the blue dotted
line. When taking the actual value for the scattering length
of the PWA 1S0, a0 = −18.95 fm, the brown dashed line
results and, after the effective-range contributions are added
with r0 = 2.75 fm, we have the green dot-dashed line. The
last two cases were already calculated by us in Ref. [31]. In
addition we also compare with other calculations. The green
downwards triangles give the low-density results from nuclear
lattice EFT of Ref. [58], and the blue filled circles correspond
to the variational calculation of Ref. [52]. We also show the
quantum Monte Carlo results of Refs. [60] (red squares) and
[61] (gray left-pointing triangles) and the auxiliary-field quan-
tum Monte Carlo calculation of [59] (light green diamonds).
We see that Ē for PNM obtained from the resummation of
the ladder diagrams is more repulsive than any of the other
calculations shown for kF � 120 MeV.

We also plot the pressure P and the sound velocity squared
c2

s for PNM that result from the resummation of the ladder di-
agrams in the left and right panels of Fig. 6, respectively, with
the gray bands giving the estimated uncertainty as discussed
above.

Separated partial-wave contributions to Ē for PNM are
shown in Fig. 7, similarly to Fig. 4 for the case of SNM. Then,
by S waves (blue dashed line) we mean the contributions from
the 1S0 PWA; P waves (red dotted line) comprise in addition
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FIG. 6. The pressure P(ρ ) (left panel) and sound velocity squared c2
s (ρ ) (right panel) that result from the ladder resummation for PNM are

plotted by the solid lines.

those from 3P0, 3P1, and 3P2-3F 2; D waves (magenta dash-
dotted) include 1D2; and F waves (green solid line) comprise
the contributions from the 3F 3 and 3F 4-3H4 PWAs. In the in-
terval of values of kF shown it is clear that the full result (black
solid line) is overwhelmingly dominated by the 1S0 PWA, with
a small repulsive P-wave contribution, which is compensated
by the D and higher partial waves. The convergence with the
full result is reached with almost indistinguishable F -wave
contributions.

By assuming a quadratic dependence of Ē on the proton
fraction xp ≡ ρp/ρ (width ρp the density of protons), we
can calculate from our results the symmetry energy S(ρ)
as [28]

S(ρ) = Ē (ρ, 0) − Ē(
ρ, 1

2

)
. (5.4)

Here, we follow the notation Ē (ρ, xp) for Ē as a function of
density and proton fraction, so that Ē (ρ, 1

2 ) corresponds to
SNM and Ē (ρ, 0) corresponds to PNM. Note that, in order
to apply Eq. (5.4), one is taking the difference of energies per
nucleon at a fixed value of density ρ. Then, kF for SNM is a

FIG. 7. The partial-wave contributions to Ē for PNM with differ-
ent orbital angular momenta are added separately. The notation is the
same as that employed in Fig. 4 for SNM.

factor 1/21/3 smaller than kF for PNM when calculating the
difference S(ρ) = Ē (ρ, 0) − Ē (ρ, 0). From our results shown
in Figs. 5 and 2 for PNM and SNM, respectively, we calculate
S(ρ), which is plotted in Fig. 8 by the solid line, with the gray
area giving the uncertainty estimated.

Going on with the quadratic dependence on the proton
fraction for Ē (ρ, xp), Ref. [62] wrote also the parametrization

Ē (ρ, xp) = Ē
(

ρ,
1

2

)
+ Cs

(
ρ

ρ0

)γs

(1 − 2xp)2. (5.5)

In using this formula we take ρ0 = 0.16 fm−3, the standard
value for nuclear matter saturation.

By fitting S(ρ), shown in Fig. 8, with Eq. (5.5) within the
density range ρ ∈ [0.7, 3.1] × 10−2 fm−3, the free parameters
Cs and γ are then determined. In the chosen density range
S(ρ) has a smooth behavior, once the region around the maxi-
mum of Ē for SNM in Fig. 4 is clearly left behind. The values

FIG. 8. The solid line and its uncertainty band correspond to
the symmetry energy S(ρ ) obtained from the resummation of the
ladder diagrams as a function of density ρ. The red dashed line is
the parametrization of Eq. (5.5) using the fitted central values of Cs

and γ in Eq. (5.6).
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FIG. 9. L vs S0 at ρ0. We show our results their 2σ uncertainty
by the black circle and area, respectively. We also give the outcome
of Ref. [50] at different orders in the perturbative chiral expansion:
NLO (Holt et al. [50]), N2LO (Holt et al. [50]), and N3LO (Holt
et al. [50]). The 2σ uncertainty area of the last is shown in blue.
Three empirical bands, obtained in Ref. [63] by analyzing the static
dipole polarizability in the nuclei 208Pb, 68Ni, and 120Sn, are plotted.
The inferred values from the same reference are also reported by the
orange square (Roca-Maza et al., 2015 [63]). The result of Ref. [64]
is given by the cyan point (Drischler et al., 2020 [64]), and the inter-
val of values from the recent experiment PREX-II [65] corresponds
to the red square (PREX-II [65]).

obtained from the fit are

Cs = 34.77 ± 0.15 MeV,

γ = 0.667 ± 0.003. (5.6)

By employing the central values and the parametrization of
Eq. (5.5) we obtain the red dashed line plotted in Fig. 8, which
shows that the fit closely reproduce the results from the ladder
resummation for ρ ∈ [0.7, 3.1] × 10−2 fm−3.

The parametrization in Eq. (5.5) fixed at low densities
allows us to extend the results to larger values of ρ and, in
particular, consider the values for the symmetry energy at
saturation S0 ≡ S(ρ0),

S0 = Ē (ρ0, 0) − Ē(
ρ0,

1
2

)
, (5.7)

and its slope

L = 3ρ0
dS(ρ)

dρ

∣∣∣∣
ρ0

= 3Csγs. (5.8)

These are magnitudes of phenomenological interest, with
special attention devoted to the investigation of existing cor-
relations between these quantities (defined and computed in
infinite nuclear matter) and measured observables. Among
the latter we have those in finite nuclei, such as the neutron
skin thickness in neutron-rich nuclei and the electric dipole
polarizability, and others in astrophysics, e.g., concerning
neutron stars and heavy-ion collisions with radioactive beams
[28,63,66,67].

We show our central values for S0 and L in Fig. 9 by
the black circle corresponding to S0 = 33.77 MeV and L =
67.59 MeV. The 2σ uncertainty area is also given by the
black narrow area, extending over the values 31.10 � S0 �
36.57 MeV and 57.82 � L � 78.29 MeV. The figure also
gives the phenomenological bands obtained in Ref. [63] by

analyzing the data on the electric dipole polarizabilities of
68Ni, 120Sn, and 208Pb, employing several density functionals.
The same reference infers the intervals of values 30 � S0 �
35 MeV and 20 � L � 66 MeV, represented by the orange
square in Fig. 9. We also show the outcome of Ref. [50]
obtained by employing chiral perturbation theory at different
orders, as indicated in the figure. The 2σ correlation area at
N3LO of Ref. [50] is given by the blue area, and lies quite
close to our outcome. The result from the recent Bayesian sta-
tistical analysis of [64] is shown by the cyan dot, and that from
the recent experiment PREX-II [65], S0 = 38.29 ± 4.66 MeV
and L = 109.56 ± 36.41 MeV, corresponds to the red square,
which is compatible with our extrapolation.

VI. CONCLUSIONS

We have studied infinite nuclear matter by resumming the
series of ladder diagrams following the results of Ref. [31].
The master formula there given allows one to consider ar-
bitrary nucleon-nucleon (NN) interactions in vacuum. This
formalism can be explicitly solved for the case of NN
interactions driven by contact-interaction potentials. The
partial-wave amplitudes up to and including G waves are
considered for symmetric and pure neutron matter for Fermi
momentum up to 150 MeV, so that the results are conver-
gent under the inclusion of higher partial-wave amplitudes.
The energy per particle Ē obtained from the ladder series
is renormalized, without any dependence on arbitrary scales,
such as cutoffs or regulators, and it is directly expressed in
terms of the experimental NN phase shifts and mixing angles,
reducing the systematic errors in the calculation of dilute
nuclear matter. The knowledge of Ē as a function of density ρ

allows also studying other interesting observables such as the
pressure P(ρ) (equation of state) and the sound velocity cs(ρ).

We notice that our results are specially suitable in the low
density region where a pionless description of NN interac-
tions can make sense. They comprise the full vacuum NN
interactions and the leading order nonperturbative in-medium
contributions, according to the power counting of Ref. [25].
An interesting application of these results given by the re-
summation of the ladder diagrams would be to use them to
constrain the many-body techniques employed in deriving the
equations of state for higher densities that are used to calculate
neutron star properties. We also plan to extend our present
results by taking into account finite-range NN interactions
and, in this way, being able to reach higher densities ρ � ρ0.
Work along these lines is in progress.

ACKNOWLEDGMENTS

We would like to thank interesting discussions with
Felipe J. Llanes-Estrada and Eva Lope-Oter. This
work has been supported in part by the MICINN AEI
(Spain) Grants No. PID2019-106080GB-C21/AEI/
10.13039/501100011033 and No. PID2019-106080GB-C22/

AEI/10.13039/501100011033, and by the EU Horizon 2020
research and innovation program, STRONG-2020 project,
under Grant Agreement No. 824093.

044319-13



J. M. ALARCÓN AND J. A. OLLER PHYSICAL REVIEW C 107, 044319 (2023)

APPENDIX A: TECHNICAL STEPS FOR DERIVING THE IEs FOR tm(aẑ)

In order to arrive to the IE for tm(a) in Eq. (3.4), let us first analyze the matrix elements of the kernel G(p) − Lm(p, a)
between antisymmetrized plane-wave states. We take the expressions in Eqs. (3.2) and (2.9) for the operators G(p) and Lm(p, a),
respectively. From the operator G(p) we then have from Eq. (3.2) that

A〈k′σ̃ ′
1σ̃

′
2α̃

′
1α̃

′
2|G(p)|kσ̃1σ̃2α̃1α̃2〉A = − m(2π )3

k2 − p2 − iε

[
δ(k′ − k)δσ̃ ′

1σ̃1δσ̃ ′
2σ̃2δα̃′

1α̃1δα̃′
2α̃2 − δ(k′ + k)δσ̃ ′

1σ̃2δσ̃ ′
2σ̃1δα̃′

1α̃2δα̃′
2α̃1

]
. (A1)

For the case of the operator Lm(p, a), Eq. (2.9), more care is needed because the dependence of the Fermi momenta on the
isospin indices of the intermediate states, α̃1 and α̃2. Namely,

A〈k′σ̃ ′
1σ̃

′
2α̃

′
1α̃

′
2|Lm(p, a)|kσ̃1σ̃2α̃1α̃2〉A = − (2π )3m

k2 − p2 − iε

[
δ(k′ − k)δσ̃ ′

1σ̃1δσ̃ ′
2σ̃2δα̃′

1α̃1δα̃′
2α̃2 − δ(k′ + k)δσ̃ ′

1σ̃2δσ̃ ′
2σ̃1δα̃′

1α̃2δα̃′
2α̃1

]
× [

θ
(
ξα̃1 − |k + a|) + θ (ξα̃2 − |k − a|)]. (A2)

The sum over the two Heaviside functions factorizes because the sum over the intermediate states is symmetric under the
simultaneous exchange of the subscripts 1 ↔ 2 and q → −q.

Putting together these results, we end with the following expression for the operator −V [G(p) − Lm(p, a)]tm(a),

− V [G(p) − Lm(p, a)]tm(a)

= − 1

22

∑
σ̃ ,σ̃ ′,α̃,α̃′

∫
d3k′

(2π )3

d3k

(2π )3
V |k′σ̃ ′

1σ̃
′
2α̃

′
1α̃

′
2〉AA〈k′σ̃ ′

1σ̃
′
2α̃

′
1α̃

′
2|G(p) − Lm(p, a)|k, σ̃1σ̃2α̃1α̃2〉AA〈kσ̃1σ̃2α̃1α̃2|tm(a)

= m

2

∑
σ̃ ,α̃

∫
d3k

(2π )3
V |kσ̃1σ̃2α̃1α̃2〉A

1 − θ (ξα̃1 − |k + a|) − θ (ξα̃2 − |k − a|)
k2 − p2 − iε

A〈kσ̃1σ̃2α̃1α̃2|tm(a). (A3)

Then, taking the previous result in Eq. (3.3), the IE Eq. (3.4) for the two-body scattering operator in momentum space follows.
From the decomposition of the antisymmetrized plane-wave states in the partial-wave basis, Eq. (2.17), Eq. (A3) for

−V [G(p) − Lm(p, a)]tm(a) in the partial-wave basis is

− V [G(p) − Lm(p, a)]tm(a)

= m
∑
σ̃ ,α̃

∑
Jμ�m3
Ss3Ii3

∑
J ′μ′�′m′

3
S′s′

3I ′i′3

∫
d3k

(2π )2
V |J ′μ′�′S′I ′i′3k〉1 − θ (ξα̃1 − |k + a|) − θ (ξα̃2 − |k − a|)

k2 − p2 − iε
〈Jμ�SIi3k|tm(a)χ (S�I )χ (S′�′I ′)

× (σ̃1σ̃2s′
3|ssS′)(σ̃1σ̃2s3|ssS)(α̃1α̃2i′3|ττ I ′)(α̃1α̃2i3|ττ I )(m′

3s′
3μ

′|�′S′J ′)(m3s3μ|�SJ )Y m′
3

�′ (k̂)∗Y m3
� (k̂), (A4)

where s = τ = 1/2 is the spin and isospin of the each nucleon, respectively. It is also clear from this equation that i3 = i′3 =
α̃1 + α̃2. The sum over σ̃1 and σ̃2 can be readily done because of the orthogonality properties of the Clebsch-Gordan coefficients:∑

σ̃1,σ̃2

(σ̃1σ̃2s′
3|ssS′)(σ̃1σ̃2s3|ssS) = δs′

3s3δS′S. (A5)

In the following we choose a along the z axis because this is enough to calculate EL [cf. Eq. (2.18)], and it also induces extra
simplifications in the final IE for tm(aẑ). Because of this choice it is clear that there is no dependence on the azimuthal angle of
k in the integral of Eq. (A3), because |k ± aẑ| only depends on its polar angle. Thus,∫ 2π

0
dϕY

m′
3

�′ (θ, ϕ)∗Y m3
� (θ, ϕ) ∝ δm′

3m3 . (A6)

As a result μ′ = μ because μ′ = s′
3 + m′

3 = s3 + m3 = μ. Then, we can get rid of the sums over σ̃1, σ̃2, S′, s′
3, m′

3, μ′, and i′3 in
Eq. (A4), which then becomes

− V [G(p) − Lm(p, a)]tm(az)

= m
∑
α̃1,α̃2

∑
Jμ�m3
Ss3J ′�′

∑
I ′Ii3

∫
d3k

(2π )2
V |J ′μ�′SI ′i3k〉1 − θ (ξα̃1 − |k + aẑ|) − θ (ξα̃2 − |k − aẑ|)

k2 − p2 − iε
〈Jμ�SIi3k|tm(aẑ)χ (S�I )χ (S�′I ′)

× (α̃1α̃2i3|ττ I ′)(α̃1α̃2i3|ττ I )(m3s3μ|�′SJ ′)(m3s3μ|�SJ )Y m3
�′ (k̂)∗Y m3

� (k̂). (A7)
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We then continue with the case i3 = 0 and deduce the corresponding IE for the tm(aẑ), and take first Eq. (A7) with I ′ �= I ,
i3 = 0. For τ = 1/2 we then have the following substructure within the integrand:

1 − (−1)I ′−I

2

∑
α̃1,α̃2

(α̃1α̃2i3|ττ I ′)(α̃1α̃2i3|ττ I )[1 − θ (ξα̃1 − |k + aẑ|) − θ (ξα̃2 − |k − aẑ|)]

= 1 − (−1)I ′−I

4
[−θ (ξ1 − |k + aẑ|) − θ (ξ2 − |k − aẑ|) + θ (ξ2 − |k + aẑ|) + θ (ξ1 − |k − aẑ|)], (A8)

where in order to simplify the notation the Fermi momenta ξα̃i are denoted as

ξ1 ≡ ξ+ 1
2
,

ξ2 ≡ ξ− 1
2
. (A9)

Next, we notice that (−1)�
′ = −(−1)� because I ′ �= I , the total spin S is the same and there is contribution only when the

Fermi statistics factors χ (S�I ), χ (S�′I ′) �= 0. Then, by exchanging k → −k in the last two step functions in Eq. (A8), taking into
account the parity rule for the spherical harmonics, Y m

� (−k) = (−1)�Y m
� (k), the contributions in Eq. (A7) with I ′ �= I become

− m
∑

Jμ�m3
Ss3Ii3

∑
J ′�′I ′

1 − (−1)I ′−I

2

∫
d3k

(2π )2

V |J ′μ�′SI ′i3k〉〈Jμ�SIi3k|tm(aẑ)

k2 − p2 − iε
Y m3

�′ (k̂)∗Y m3
� (k̂)χ (S�I )χ (S�′I ′)

× (m3s3μ|�′SJ ′)(m3s3μ|�SJ )[θ (ξ1 − |k + aẑ|) + θ (ξ2 − |k − aẑ|)]. (A10)

On the other hand, for those with I ′ = I we have that (α̃1α̃2i3|ττ I )2 = 1/2 in all cases, and the sum over the isospin indices α̃1

and α̃2 gives

1 + (−1)I−I ′

4
χ (S�I )χ (S�′I ′)[2 − θ (ξ1 − |k + aẑ|) − θ (ξ2 − |k − aẑ|) − θ (ξ2 − |k + aẑ|) − θ (ξ1 − |k − aẑ|)]Y m3

�′ (k)∗Y m3
� (k).

(A11)

Since now (−1)� = (−1)�
′
because S is conserved, I ′ = I , and there is contribution only for χ (S�I ), χ (S�′I ′) �= 0, the exchange

k → −k implies that the contributions in Eq. (A7) with I ′ = I read

m
∑

Jμ�m3
Ss3Ii3

∑
J ′�′I ′

1 + (−1)I ′−I

2

∫
d3k

(2π )2
χ (S�I )χ (S�′I ′)(m3s3μ|�′SJ ′)(m3s3μ|�SJ )Y m3

�′ (k̂)∗Y m3
� (k̂)

× V |J ′μ�′SI ′i3k〉1 − θ (ξ1 − |k + aẑ|) − θ (ξ2 − |k − aẑ|)
k2 − p2 − iε

〈Jμ�SIi3k|tm(aẑ). (A12)

Putting together Eqs. (A10) and (A12), the resulting IE reads

〈J ′μ�′SI ′i3 p′|tm(aẑ)|Jμ�SIi3 p〉 = 〈J ′μ�′SI ′i3 p′|V |Jμ�SIi3 p〉 + m
∑

J1�1m3
s3�2I1

∫
d3k

(2π )2

χ (S�2I ′)χ (S�1I1)

k2 − p2 − iε
(m3s3μ|�2SJ ′)

× (m3s3μ|�1SJ1)Y m3
�2

(k̂)∗Y m3
�1

(k̂)〈J ′μ�′SI ′i3 p′|V |J ′μ�2SI ′i3k〉〈J1μ�1SI1i3k|tm(aẑ)|Jμ�SIi3 p〉

×
{

1 + (−1)I ′−I1

2
− θ (ξ1 − |k + aẑ|) − θ (ξ2 − |k − aẑ|)

}
, (A13)

where we have taken into account that the potential V conserves isospin. Now, since the combination 1 + (−1)I ′−I1 conserves
isospin, this implies that∫

dk Y m3
�2

(k̂)∗Y m3
�1

(k̂)χ (S�2I ′)χ (S�1I1)
1 + (−1)I ′−I1

2
=

∫
dk Y m3

�2
(k̂)∗Y m3

�1
(k̂)χ (S�2I ′)χ (S�1I1), (A14)

by simply exchanging k̂ → −k̂ in the original integral, and taking into account that Fermi statistics requires then that (−1)�2 =
(−1)�1 for I ′ = I1, and (−1)�2 = −(−1)�1 for I ′ �= I1. Taking this result into Eq. (A13), one ends with the simpler expression of
Eq. (3.5).
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APPENDIX B: SOME SYMMETRY PROPERTIES OF PWAs: GENERAL VALUES FOR ξ1, ξ2

Let us show that we do not really need to calculate the PWAs of tm(aẑ) with negative μ since they obey the rule

〈J ′ − μ�′SIi3 p′|tm(aẑ)|J − μ�SIi3 p〉 = (−1)�
′+�+J ′+J〈J ′μ�′SI ′i3 p′|tm(aẑ)|Jμ�SIi3 p〉. (B1)

To prove it we start by considering the IE of Eq. (3.5) for the PWAs with −μ. Because of rotational symmetry the matrix elements
of V are independent of μ. We also employ the symmetry property of the Clebsch-Gordan coefficients under the change of sign
of the third components of spin [68]; then

(m3σ3 − μ|�2SJ ′)(m3σ3 − μ|�1SJ1) = (−1)�2+�1+J ′+J1 (−m3 − σ3μ|�2SJ ′)(−m3 − σ3μ|�1SJ1). (B2)

Next, we take into account that the product of the two spherical harmonics is real and we can write

Y m3
�2

(k̂)∗Y m3
�1

(k) = Y m3
�2

(k̂)Y m3
�1

(k)∗ = Y −m3
�2

(k̂)∗Y −m3
�1

(k), (B3)

where we have also exchanged the sign of the third components of the angular momenta by making use of the well-known
property Y m

� (k̂)∗ = (−1)mY −m
� (k̂).

Implementing this procedure, the IE for (−1)�
′+�+J ′+J〈J ′ − μ�′SIi3 p′|tm(aẑ)|J − μ�SIi3 p〉 from Eq. (3.5) becomes

(−1)�
′+�+J ′+J〈J ′ − μ�′SI ′i3 p′|tm(aẑ)|J − μ�SIi3 p〉

= (−1)�
′+�+J ′+J︸ ︷︷ ︸
+1

〈J ′μ�′SI ′i3 p′|V |Jμ�SIi3 p〉︸ ︷︷ ︸
∝δJ′Jδ�′ ,�+mod(2)

+m
∑

J1�1m3
s3�2I1

∫
d3k

(2π )2

χ (S�2I ′)χ (S�1I1)

k2 − p2 − iε

× (−m3 − s3μ|�2SJ ′)(−m3 − s3μ|�1SJ1)Y −m3
�2

(k̂)∗Y −m3
�1

(k̂) (−1)J ′+�′+J ′+�2︸ ︷︷ ︸
+1

〈J ′μ�′SI ′i3 p′|V |J ′μ�2SI ′i3k〉︸ ︷︷ ︸
∝δ�′ ,�2+mod(2)

× (−1)J1+�1+J+�〈J1μ�1SI1i3k|tm(aẑ)|Jμ�SIi3 p〉[1 − θ (ξ1 − |k + aẑ|) − θ (ξ2 − |k − aẑ|)]. (B4)

This IE, after relabeling the dummy indices −m3 → m3 and −s3 → s3 (which also has a symmetric sum interval around zero),
is actually the same IE as the one satisfied by 〈J ′μ�′SI ′i3 p′|tm(aẑ)|Jμ�SIi3 p〉, and Eq. (B1) follows.

As a corollary of Eq. (B1) we notice that for μ1 = 0 it is necessary that

(−1)J ′+J = (−1)�
′+�, (B5)

otherwise the PWA is zero.
The PWAs of tm(aẑ) are symmetric under the exchange of the initial and final quantum numbers, namely,

〈J ′μ�′SI ′i3 p|tm(aẑ)|Jμ�SIi3 p′〉 = 〈Jμ�SIi3 p′|tm(aẑ)|J ′μ�′SI ′i3 p〉 (B6)

with the scattering energy fixed by p, so that E = p2/m. This relation is particularly useful for the on-shell case with p′ = p,
which is the one needed in the evaluation of EH. It implies then that the in-medium on-shell T matrix is symmetric under the
exchange of the discrete labels.

For the demonstration we use that the matrix elements of V because of time reversal are invariant under the exchange of the
initial and final states between them. Therefore, the IE for 〈Jμ�SIi3 p|tm(aẑ)|J ′μ�′SI ′i3 p′〉 from Eq. (3.5) reads

〈Jμ�SIi3 p|tm(aẑ)|J ′μ�′SI ′i3 p′〉 = 〈J ′μ�′SI ′i3 p′|V |Jμ�SIi3 p〉+ m
∑

J1�1m3
s3�2I1

∫
d3k

(2π )2

χ (S�2I ′)χ (S�1I1)

k2 − p2 − iε
(m3s3μ|�2SJ )(m3s3μ|�1SJ1)

× Y m3
�2

(k̂)Y m3
�1

(k̂)∗︸ ︷︷ ︸
It is real. The complex conjugate is taken

〈J1μ�1SI1i3k|tm(aẑ)|J ′μ�′SI ′i3 p′〉

× 〈Jμ�2SIi3k|V |Jμ�SIi3 p〉[1 − θ (ξ1 − |k + aẑ|) − θ (ξ2 − |k − aẑ|)]. (B7)

This is the same IE as the one satisfied by 〈J ′μ�′SI ′i3 p′|tm(aẑ)|Jμ�SIi3 p〉 as we wanted to show. In order to arrive to this
conclusion we have used the fact that the operational equation for tm(a) of Eq. (3.3) can also be rewritten as

tm(a) = V − tm(a)[G − Lm(p, a)]V. (B8)
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