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ABSTRACT Object detection is an essential technology for surveillance systems, particularly in areas with
a high risk of accidents such as railway level crossings. To prevent future collisions, the system must detect
and track any object that passes through the monitored area with high accuracy, and this process must
be performed fulfilling real-time specifications. In this work, an edge IoT HW platform implementation
capable of detecting and tracking objects in a railway level crossing scenario is proposed. The response
of the system has to be calculated and sent from the proposed IoT platform to the train, so as to trigger
a warning action to avoid a possible collision. The system uses a low-resolution 3D 16-channel LIDAR
as a sensor that provides an accurate point cloud map with a large amount of data. The element used to
process the information is a custom embedded edge platform with low computing resources and low-power
consumption. This processing element is located as close as possible to the sensor, where data is generated to
improve latency, privacy, and avoid bandwidth limitations, compared to performing processing in the cloud.
Additionally, lightweight object detection and tracking algorithm is proposed in this work to process a large
amount of information provided by the LIDAR, allowing to reach real-time specifications. The proposed
method is validated quantitatively by carrying out implementation on a car road, emulating a railway level
crossing.

INDEX TERMS Edge computing, embedded software, energy efficiency, Internet of Things, LIDAR, object
detection, object tracking, railway level crossing, sensor systems and applications.

I. INTRODUCTION
The current situation regarding the high number of accidents
at railway level crossings in Europe is one of themainmotiva-
tions for this work. According to the annual report "Railway
Safety in the EuropeanUnion" [1] performed by the European
Union Agency for Railways, 28.13% of the total fatalities
recorded in Europe between 2010-2016 took place at level
crossings. However, the improvements in reducing accidents
at level crossings are limited at this time [2], [3]. As a way
to address this fact and based on the growing advances in
sensor and embedded processing technology, the robust and
accurate data captured at level crossings could be used to
feed a detection and tracking algorithm to avoid accidents or
reduce the damage caused.
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In this regard, sensors are evolving to complex sensing
systems, increasing the quality and the amount of information
provided about the scenario to be analyzed. In recent liter-
ature, some sensors have shown to be useful in identifying
usual targets as pedestrians in railway level crossing [4].
These sensors include conventional Red Green Blue (RGB)
cameras, RGB-Depth cameras, radar, as well as ultrasonic
and Light Detection And Ranging (LIDAR) sensors. Focus-
ing on one of the most challenging areas in tracking and
object detection, the autonomous vehicle research field, there
is a growing tendency to fuse the information provided by
different sensors, as the ones introduced before. The goal
is to improve the detection capacity, although this approach
includes additional complexity to the system [5], [6].

The type of detection to be performed in autonomous
vehicles and level crossing scenarios share some aspects.
First, due to the criticality of the system, it is required to
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detect the targets with the highest accuracy, reliability, and
robustness to reduce the risk of an accident. It will involve
using complex sensors, combined or alone, which should
be able to work under any weather condition and day or
night [7]. The second aspect is a consequence of the former,
the use of complex sensors usually generates a large amount
of data, which should be processed within a time constraint,
besides applying computational demanding artificial intelli-
gence algorithms. The third aspect is related to hardware con-
straints. Thus, in autonomous vehicles, the hardware should
be embedded, whereas, in level crossing scenarios, the hard-
ware could be deployed at any place unattended and with
any weather condition. That implies that the hardware to be
used should be embedded, implying hard restrictions in both
computing capacity and energy cost, increasing the challenge
of the system [8].

This embedded hardware approach fits with the edge com-
puting concept in the Internet of Things (IoT), whose aim
is to process the information as close to the sensing sys-
tem as possible. This edge computing conception results
in increasing reliability, privacy, and scalability, whereas
latency and communications are reduced and simplified,
respectively [9]–[11].

In this work, an embedded implementation for real-time
object detection and tracking algorithm to be used within
level crossing scenarios is proposed. The goal of this proposal
is to reduce the number of accidents in this type of high-risk
areas by monitoring the railway level crossing to inform
the train driver about the existence of possible obstacles,
warrantying a fast response to avoid potential accidents.

According to the previous discussion, the system pro-
posed to be deployed at level crossing locations should be
autonomous, both in terms of energy and decision making.
This is because there may be no power supply at level
crossing and the decision about a possible obstacle in the
railway should be taken without further communication to
avoid problems, such as latency, disconnection, security, and
privacy. The limitation in energy and computing capacity
implies that it could be interesting to reduce the number
of sensors considered, due to further processing for data
fusion.

In this regard, this work opts for considering a single
sensor, which stands out for its high reliability and robust-
ness, outperforming image-based systems. This sensor is a
three-dimensional LIDAR (3D-LIDAR), which is character-
ized by providing a 3D point cloud with distance measure-
ment in the surrounding. This sensor works in the absence
of light and most weather conditions. However, the point
cloud provided is known to be dense, meaning a large
amount of data. This fact could imply an important limitation
when managing the data in constrained embedded hardware.
Based on this limitation, this work provides the following
contributions:
• An embedded implementation of the data management
for the 3D-LIDAR sensor is proposed, meeting real-time
specifications for the application.

• The LIDAR data management feeds a lightweight object
detection and tracking algorithm, avoiding data classifi-
cation to keep low the computational load.

• The performance of the system is experimentally evalu-
ated in a real-world deployment for a custom IoT node.
The railway level crossing is emulated by a car road
along with a pedestrian sidewalk.

The rest of this article is structured as follows. In Section II,
related works within object detection and tracking appli-
cations are exposed. In Section III, the technical back-
ground about the LIDAR sensor, the embedded platforms,
and the algorithms for object detection and tracking are dis-
cussed. In Section IV, a detailed description of the embed-
ded implementation is presented. In Section V, a detailed
description of the object detection and tracking algorithm
considered is provided. The experimental setup used to
perform the experimentation is presented in Section VI.
Experimental results are discussed in Section VII. Finally,
conclusions and future lines of work are provided in
Section VIII.

II. RELATED WORK
In the recent literature about object detection and track-
ing systems applied to railway scenarios, it is common to
find image-based approaches, such as in [12]–[14], getting
accurate results for proper light conditions. However, this
type of image-based solution is not robust in the absence
of light, getting poor results. Thermal cameras were also
considered in the field, getting acceptable results working in
the absence of light [15]. However, distances were estimated
using homography-based methods, which is not as accurate
as the ones provided by laser-based systems.

Other sensing technologies were also considered. For
instance, the work in [16] compares the usage of optical
beams, ultrasounds, 3D-LIDARs, and RGB cameras (sin-
gle and stereo ones) to detect obstacles at level crossings.
This study resulted in that optical beams are easy to install
and cheap, but weather-dependent. For ultrasonic detectors,
the technology works for stationary and moving vehicles,
but it has an extreme sensitivity to environmental conditions.
Single RGB cameras perform well in adverse weather con-
ditions, but it is limited in low illumination. Stereo RGB
cameras performed better than single ones, but the system
is extremely sensitive to adverse weather conditions. For
3D-LIDAR, the performance is robust in most weather con-
ditions, but there are disadvantages related to operating con-
ditions (e.g., vibration due to wind). However, these dis-
advantages can be solved with a higher investment in the
LIDAR sensor. The main disadvantage of this technology
is the cost. Nevertheless, the price of LIDAR sensors has
decreased in recent years, and a further reduction is expected
shortly.

Other works also stated that the LIDAR performance
could be reduced in foggy environments [17]. Although,
the robustness of the information provided can be
increased significantly by using specifics lasers wavelengths.
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Moreover, LIDARs performance is not considerably affected
when working in rainy environments, as was demonstrated
in [18]. Thus, LIDAR seems to be an adequate technology for
the detection and tracking problem in crossing lines if suffi-
cient investment is provided. In this regard, the LIDAR-based
surveillance system in [19] stands out accurately detecting
both large and small objects (with a volume of less than
10 dm3) on the crossing lines.

LIDAR technology has been successfully applied in other
critical use cases, such as autonomous vehicles, where
LIDAR usually appears in combination with other sensors.
The need for a combination of sensors relies on the high
reliability and robustness in this field. For instance, the work
in [20] combines ultrasound sensors, RGB cameras, and
LIDAR sensors. The authors in [21] combined an RGB cam-
era with a high-resolution 3D-LIDAR to feed a deep neural
network, achieving state-of-the-art performance in the KITTI
autonomous driving benchmark. The authors in [22] merged
data fromfive low-resolution LIDARs, threemillimeter-wave
radars, an RGB camera, an inertial measurement unit, and a
GPS.

In recent years, there is a growing tendency in working
directly with the LIDAR point cloud, instead of applying
a preprocessing stage for getting features of interest. Note
that processing the point cloud is costly due to a large
amount of data. In this regard, the authors may cite the works
in [23]–[25], where deep neural networks are feed by the
raw point cloud, also resulting in high computational effort.
On the other hand, the work in [26] focuses on reducing the
computation effort considering only a reduced set of points
in the cloud to feed the deep neural network.

As stated before, this work focuses on building a robust
surveillance system to be deployed in railway crossing
lines. To this end, the authors propose a single sensor
low-resolution 3D-LIDAR-based object detection and track-
ing system adapted to be embedded in a custom IoT edge
node. The main novelty in this work relies on the embedded
implementation of the data management of the 3D-LIDAR,
which feeds the object detection and tracking algorithm,
meeting real-time specifications. To this end, the data man-
agement of the point cloud is stated following the trend for
directly considering the rawLIDARdata. However, instead of
feeding a deep neural network with the raw cloud, the authors
project the 3D-points on a 2D-plane, next applying vision
computing methods to maintain computational load low. The
authors should note that the results presented are from a real
implementation for the system and then, they are not from
simulations, which is valuable. As far as the authors know,
there are no relatedworks for 3D-LIDAR-based detection and
tracking surveillance systems implemented to be executed in
the IoT edge layer.

III. TECHNICAL BACKGROUND
In this section, an overview of the LIDAR sensor technology
considered and the object detection and tracking image-based
algorithms are provided.

A. LIDAR SENSOR TECHNOLOGY
LIDAR is a technology similar to radar, employing laser
instead of radio waves and providing a point cloud with
distance measurements in the surrounding. The operation of
a LIDAR starts with the emission of a laser pulse, followed
by the capture of the reflected laser by measuring the time
the laser takes. The distance dist to a given object from the
LIDAR is given by

dist =
c ∗ t
2
, (1)

where c is the speed of light and t is the time taking the laser
from its emission to its reception.

For the specific case of a 3D-LIDAR, it has several lasers
placed in a column configuration. The column rotates to
generate a 360◦ point cloudmap, with the reflectivity value of
each point. 3D-LIDARs can be found with a different number
of lasers from 1 to 128 in a single vertical column. The
more the lasers in a column, the more the points generated
in the point cloud (and also the price). The column rotates
up to 1200 rpm producing a 3D point cloud map with up to
2.4 million points per second (using 128 lasers per column).
The range reached by the lasers is usually up to 100 m.
However, some versions extend this distance to 300 m [20].

B. OBJECT DETECTION AND TRACKING IMAGE-BASED
TECHNOLOGIES
Object detection technology consists of identifying the pres-
ence and location of multiple classes of objects in digital
images or videos. There are two significant trends in this
field [27]. The first one employs machine learning and deep
learning algorithms to perform the task, getting accurate
results but usually requiring a medium-high computational
effort. The second one consists of applying traditional image
processing algorithms from the computer vision field, usually
getting accurate results with a low computational effort, but
without obtaining classification information.

As stated before, the surveillance system in this use case
should identify the presence of obstacles in the railway, but it
is not focused on knowing the class of the object. Moreover,
the computing platform is a constrained IoT edge node, and
then computation effort should also be constrained. Thus,
the authors focus on considering traditional image processing
algorithms.

The object detection algorithm proposed in this work is
composed of three steps: background subtraction, data seg-
mentation, and output generation. Background subtraction
is an essential stage in this task. It allows removing the
background from the image in a fixed setup camera, only
keeping themoving zones. An overview of different strategies
for background subtraction is in [28]. Once moving zones in
the image are identified, the next step consists of segmenting
or splitting the different moving zones into regions, where
candidate obstacles could be. To this end, morphological
operations and contour calculations are usually applied. Next,
the algorithm calculates the coordinates for as many boxes
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FIGURE 1. Flowchart for the edge surveillance system.

as regions were detected. Finally, a tracking algorithm fol-
lows the trajectory of each of the boxes. An overview of
lightweight tracking strategies is in [29].

IV. EDGE HARDWARE ARCHITECTURE
In this section, the hardware architecture for the surveil-
lance system in this work is described. It includes two main
parts: the 3D-LIDAR, providing the point cloud with distance
measurements about the environment through an Ethernet
connection, and the IoT edge node, processing the data based
on the object detection and tracking algorithm in Section V.
Fig. 1 shows the flowchart for this architecture, including
the hardware and software components. Note that the outputs
(location, speed, and volume for each detected object) are sent
via the Internet.

A. LIDAR VELODYNE VLP-16
The LIDAR used in this work is the Velodyne VLP-16 [1],
which is composed of an array of 16 Infra-Red (IR) lasers
paired with IR detectors to measure distance objects. The
16 lasers are organized in a single, vertical column and
are oriented from −15◦ to 15◦. The azimuth resolution is
related to the rotation speed. Thus, the azimuth resolution is
0.1◦ with the minimum rotation speed (300 rpm) and 0.4◦

with the maximum rotation speed (1200 rpm). Moreover,
the sensor has an IP67 category, supporting protection against
dust and water immersion at 1 meter for 30 minutes with-
out any filtration. The rest of the specifications are shown
in Table 1.
The output data provided by this LIDAR is up to 0.3million

points per second using a 100Mbps Ethernet connection. The
output data are UDP packages providing information about
the reflectivity and the spherical coordinates of each point,
being the coordinate origin at the center of the LIDAR. It also
provides the synchronized timestamps with µs resolution to
merge data with other sensors.

B. PROCESSING ELEMENT: THE IoT COOKIE NODE
The embedded computing device used in this work to
process the data coming from the LIDAR and provide a
response about the scenario is a modular IoT platform called

TABLE 1. Velodyne VLP-16 LIDAR Specifications.

Cookie [30], [31]. This platform was designed at Centro de
Electrónica Idunstrial (CEI) of Universidad Politécnica de
Madrid and is composed of four layers. Each one fulfills a
specific purpose: communication, processing, power supply,
and sensing/actuation. This structure allows including differ-
ent layers according to the application. To this end, layers are
bonded through vertical connectors, which are common to all
the layers. Fig. 2 shows a Cookie connected to the LIDAR
considered in this work.

Three Cookie layers are required in this work to process the
information from the LIDAR and provide a response about
the scenario, i.e., power-supply, processing, and communi-
cation layers. The power-supply layer needs 5 V to power
the other layers. The processing layer is selected according to
power consumption and computing resources specifications.
The processing layer designed to perform edge computing
includes a SAMA5D3 processor with an external RAMmem-
ory of 256 MB and an SD card reader. The SAMA5D3 pro-
cessor is a 32-bit medium-performance, low-power ARM
hard-float Cortex-A5 core with 2 × 32 kB cache memory
working with a clock speed of 536 MHz and consuming
less than 150 mW. The communication layer is composed
of two USB connectors. One of those is connected with a
USB-RJ-45 adapter to receive the information coming from
the LIDAR Ethernet cable, whereas the other one is used
to communicate the edge node to the Internet by using a
USB-WiFi adapter.

An embedded Linux-based Operating System (OS) located
in the flash SD card is run in the processing layer. The OS is
a Debian 9 Stretch selected because of its compatibility with
the known Open Source Computer Vision Library (OpenCV)
in its version 3.4.8. [32], which is required for the application.

V. EDGE SOFTWARE ARCHITECTURE
This section describes the software implemented in the edge
device for LIDAR data management and object detection
and tracking. The process starts by creating a point cloud
projection according to the point cloud provided by the
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FIGURE 2. LIDAR connected to a Cookie.

LIDAR. Next, the background is subtracted, so that the
objects are detected and tracked. Finally, the methodology
to obtain the output parameters from the object detection
algorithm is reported.

A. POINT CLOUD MAP PROJECTION
The algorithm in the processing layer starts by opening a
communication socket to receive the raw data coming from
the LIDAR via Ethernet in the form of UDP packets. Once
a complete 360◦ point cloud map frame is received from the
LIDAR, such as the one shown in Fig. 3a, a lightweight com-
putation is required to convert the spherical data to Cartesian
coordinates. Let r , α, and ω be the radius, the elevation, and
the azimuth for a cloud point, respectively, then its Cartesian
coordinates (x, y, z) are given by

x = r ∗ cosω ∗ sinα,

y = r ∗ cosω ∗ cosα,

z = r ∗ sinω, (2)

where the Z-axis is perpendicular to the ground, passing
through the center of the LIDAR.

Once the Cartesian coordinate point cloud is generated,
the next step is to remove those points which are outside
the Critical Region (CR) to be monitored to avoid waste
computational resources in detecting objects in zones not
required. Fig. 3b shows a photography of the real scenario
used during the experimentation. In this figure, the CR is
marked with a box, which includes a car road (emulating the
railway) and a pedestrian sidewalk (the closest transit area to
the railway). The identification of the CR should be manually
performed the first time the algorithm is run, as a calibration
process in the real deployment. This calibration could be
automatized. However, as this process it is only required the
first time, the authors opted for following a manual approach
to ensure the best definition for the CR as possible.

After removing the points outside the CR, the next step is
to generate an XZ plane projection of the LIDAR coordinates

FIGURE 3. Point cloud and image of the CR to be analyzed. (a) Complete
point cloud map frame received by the LIDAR, and (b) point cloud and
image of the CR to be analyzed.

as a plot (JPEG image). The XY plane projection was not
considered because of the reduced number of points provided
due to overlapping. The idea of using JPEG images is that
in further steps, the detection and tracking algorithms to be
applied are within the computing vision field, instead of using
the raw point cloud to reduce the computational requirements.
Each point received by the LIDAR is represented with a fixed
size of 5 pixels, the first one is located in the center, and
the remaining four pixels are placed at the top, bottom, left,
and right sides of the center pixel, in the form of a squared
cross. A greyscale value between 0 and 255 is assigned to
these 5 pixels, shown as white and black, respectively. If two
or more points are overlapped in the same pixel, their values
will be added, producing a darker pixel. As an example of the
process, Fig. 4a shows an XZ projection plot with 14474 data
points from the map frame in Fig. 3a. After removing the
points outside the CR, the XZ projection results in 508 points,
as Fig. 4b shows.

B. OBJECT DETECTION ALGORITHM
Starting from the image plane projections within the CR,
the next step is to remove the point cloud background from
subsequent frames to identify moving objects. To this end,
it is necessary to first model the background of the scene by
capturing a point cloud within the CR. In this initial capture,
no object must be present within the CR, meaning that the
point cloud captured can be considered as the ground truth
background (also called golden background). This golden
background point cloud could be updated periodically to
accurately represent the fixed scene, e.g., to cover changes
in the scene due to vegetation grown in the surrounding.

Thus, for each point cloud captured and projected during
the regular operation, the background subtraction is per-
formed as follows. A Gaussian smoothing of 11 × 11 pixels
operation is applied to both images, i.e., the background and
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FIGURE 4. Removal of points outside the CR. (a) XZ projection point cloud frame with 14474 points, and (b) XZ projection point cloud frame
within of the CR with 508 points.

the recently captured point cloud. The background smooth is
performed only once and saved as a golden background point
cloud avoiding waste of computer resources. Next, a simple
subtraction is performed, where the absolute value of their
corresponding pixel differences in the smoothed images is
taken, resulting in the removal of the background. Note that
the smooth operation acts as a low-pass filter reducing the
high-frequency noise. In the point cloud provided by the
LIDAR, there is a small scattering of the points between two
consecutive frames. The smooth operation helps to reduce
this scattering effect.

As a result of the background subtraction process discussed
before, a frame is generated, as shown in Fig. 5a. In this
figure, the background appears in black, whereas areas with
movement appear with some illumination on the grayscale.
Next, a threshold operation is applied to reveal frame regions
with significant variations in pixel values. To this end, each
pixel is compared with a threshold generating a binary fig-
ure as the one shown in Fig. 5b. The threshold value requires
to be fixed during the deployment stage, depending on the
environmental luminosity. This value will vary from 0 (black)
to 255 (white).

Once the binary image is generated, a dilatation operation
is applied to identify more accurately the contour area of
the detected moving areas (see Fig. 5c). The dilation process
performs a convolution that uses a filter of a 3 × 3 pixels
size. This process is repeated a number of times equal to the
iteration parameter provoking that white regions areas grow
in size. The detection of single objects may fail when several
objects are very close due to this dilatation operator. However,
this situation is not of concern because the capability to detect
any object passing through the CR remains, which is the main
goal of this system. Then, the contour of each dilated group
of points is calculated and evaluated with a minimum contour
box limit parameter. If this contour is higher than the limit,
it is classified as an object, as shown in Fig. 5d. The units of
the contour box limit are pixels2.
Next, the information provided by the contours is consid-

ered to calculate the height, weight, and length in meters
of the objects detected (see Fig. 5d). To this end, the

Cartesian point with the highest Z value (Zhigh) located inside
the contour rectangle is used along with the point with the
lowest Z value (Zlow) to calculate the object height value as
height = Zhigh − Zlow. For the length, it is calculated as
length = Yhigh − Ylow, where Yhigh and Ylow are the highest
and lowest Y values within the contour, respectively. For
the width, it is calculated as width = Xhigh − Xlow, where
Xhigh and Xlow are the highest and lowest X values within the
contour, respectively.

The height and width metrics obtained are expected to be
accurate due to the high resolution provided by the LIDAR.
However, it is not possible to accurately calculate the length
value of the object because there are points hidden by the
object itself. The speed of the object is also calculated by
measuring the distance traveled by the centroid point of the
contour divided by the time it takes to travel through it. The
speed valuewill be positivewhen the object moves to the right
and negative when moving to the left.

C. OBJECT TRACKING ALGORITHM
Once one or more objects are detected in the scene, it is
necessary to track them to estimate the location and speed
of each of them. These parameters are required to decide
whether the train must be stopped for safety reasons. The
tracking process starts by using the contour boxes provided
by the object detection algorithm and assigning to them a
unique IDentification number (ID) in frame ft at time t . Next,
the centroid for each contour box is calculated taking the
high h and width w box values along with the origin box
coordinates (Xo,Yo), which are located in the top left corner
of the box, values provided by the contour boxes. Thus,
the centroid (Xc,Yc) is calculated as given by

(Xc,Yc) = (
Xo − h

2
,
Yo − w

2
). (3)

In the next frame ft+1, the centroid computation is per-
formed in the same way for each detected object. The object
IDs in frame ft+1 must be associated with those in frame ft .
To this end, the Euclidean distance between every pair of
centroids corresponding to existing objects in both frames ft
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FIGURE 5. Object detection procedure: (a) Image with background subtracted, (b) binary image after applying the threshold operation,
(c) binary image dilated, and (d) contour detection for the moving object.

and ft+1 is calculated. The tracking algorithm associates the
IDs byminimizing the Euclidean distance. The tracking algo-
rithm also considers the appearance of previously undetected
objects, as well as the possibility of losing objects (IDs),
mainly due to overlapping.

Tracking and detecting objects in overlapping situations
are challenging when considering LIDAR sensors. Thus,
if two objects are overlapped, the one which is furthest away
from the LIDAR will not be detected nor tracked. This fact
is a limitation for LIDAR-based systems, which could be
addressed by deploying sensors based on other working prin-
ciples. However, for the specific railway use case in this work,
this limitation is not of relevance because it is required to
generate an alert when at least one object within the CR is
detected. Thus, the functionality is still guaranteed under this
limitation.

VI. EXPERIMENTAL METHODOLOGY
In this section, the performance metrics to evaluate the pro-
posal quantitatively are described. Next, the testing setup to
perform the experimentation is discussed.

A. OBJECT DETECTION PERFORMANCE METRICS
In this subsection, the usual performance metrics considered
to evaluate the proposal [33] is presented. The first group of
metrics is as follows:

• True Positive (TP): Number of frames in which all the
targets were correctly detected, fitting in with reality.

• True Negative (TN): Number of frames in which no
target was detected, fitting in with reality.

• False Positive (FP): Number of frames in which at least
a non-existent target was detected.

• False Negative (FN): Number of frames in which at least
a target was not detected, but the target exists in reality.

The second group of metrics, based on the first one,
includes sensitivity, specificity, precision, and F1 metrics.
Sensitivity is the true positive rate and measures the propor-
tion of positive cases correctly identified, calculated as

Sensitivity =
TP

TP+ FN
, (4)

Specificity is the true negative rate and measures the propor-
tion of negative cases correctly identified, calculated as

Specificity =
TN

TN + FN
, (5)

Precision is the measure of the correctly identified positive
cases from all the predicted positive cases, calculated as

Precision =
TP

TP+ FP
, (6)

F1 rate is calculated as the harmonic mean between sensi-
tivity and precision. F1 is an overall measure of the model
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accuracy that combines the precision and sensitivity ratios
in a balanced way, where an F1 rate reaches its best value
at 1 and worst at 0. The F1 rate is used when the detection of
false negatives and false positives cases requires priority. It is
calculated as

F1 = 2 ∗
Pr ∗ Sen
Pr + Sen

. (7)

Among these metrics, the FN rate is especially relevant
for the application, meaning that real risk was not detected.
A first way to reduce the FN rate is to adequately config-
ure the threshold value used in the background subtraction
stage. A low value of the threshold will reduce the FN rate
by increasing the probability of detecting a moving element
in the background. However, the FP rate will increase if the
threshold value is too low, which is also an inadmissible
situation. The second way to reduce the FN rate is to pay
special attention to the LIDAR positioning and its environ-
ment. Thus, the LIDAR should be deployed in an area with
the minimum number of obstacles between the LIDAR and
the CR because if an object is hidden behind an obstacle,
it can become undetectable.

The golden background frame must contain as few points
as possible to reduce the FP rate. To this end, the CR must be
positioned where the least number of background points fall
within the CR. The CR is fixed, as it is calculated according
to the location of the railway level crossing. However, it can
be slightly tuned, e.g., the CR can be elevated until the points
located in the ground are no longer inside the CR. This fact
implies an accurate background subtraction stage, which can
reduce the FP ratio.

B. TESTING SETUP
The testing methodology consists of a real deployment of
the LIDAR-IoT solution presented in this work. The scenario
selected was a section of the street in the main entrance of one
of the University buildings, where the CEI research center is
located, in Madrid. The CR in the scenario is composed of
a car road and a pedestrian sidewalk. As discussed before
for Fig. 3b, this scenario is similar to a railway cross-level.
The size of the CR is 25 m (length) × 11 m (weight) × 4 m
(height).

The LIDAR data captured in this real deployment were
acquired in the afternoon on a sunny autumn day with few
clouds and no rain nor fog. As a result, a total of 23417 frames
were collected in 1.3 hours. During the experiment, it can be
found from none to several pedestrians and vehicles crossing
the CR at the same time. These experimental data will be con-
sidered to validate the proposal and the parameter selection
performed during the design stage.

VII. EXPERIMENTAL RESULTS
In this section, the results obtained with the proposed object
detection and tracking algorithm running on the Cookie edge
IoT platform are presented. The first subsection discusses the
parameter selection for the algorithm proposed. To this end,
the performance metrics are provided for the different config-
urations evaluated. The second subsection presents results in

TABLE 2. Fine Exploration Parameters Limits.

terms of processing times and power consumption provided
by the implemented system. Finally, the results obtained are
compared to the state-of-the-art.

A. PARAMETER SELECTION AND PERFORMANCE
METRICS
This subsection describes the exploration performed to
select the parameters of the proposed implementation.
This procedure was performed by evaluating a dataset
of 1800 frames because of the large amount of processing
time needed to employ the complete dataset, which is com-
posed of 23417 frames. The processing time to perform the
exploration with the whole dataset on an Intel i7-8700 proces-
sor is about 392 hours. However, the exploration was carried
out in 51 hours by using the reduced dataset. The dataset
used to calculate the performance metrics was generated by
capturing point cloud data with the Velodyne VLP-16 LIDAR
in the CR understudy shown in Fig. 3b. A total amount
of 23417 frames were captured and then manually labeled
with each object crossing the CR. The labeled objects cor-
respond to cars, vans, motorbikes, cyclists, and pedestrians.
The performancemetrics rates were then calculated using this
labeled data.

The parameter selection stage may be divided into two
parts. The first one is a coarse exploration with the limitation
of the image size, set to 200 × 200 pixels due to the larger
size affects the final performance of the system. The coarse
exploration starts by varying one parameter with large inter-
vals and fixing the remains. The limits which maximize the
F1, sensitivity, and specificity values for each parameter are
selected and presented in Table 2. The second stage consists
of a fine exploration using the limits calculated in the first
stage with the intervals shown in Table 2. It begins with the
definition of the golden background frame. Then, three pairs
of related parameters are evaluated. These are related to each
other, such as threshold with dilate iterations, box limit with
point color, and horizontal size with the vertical size of the
image.

The fine exploration starts by calculating the golden back-
ground point cloud employing the cases with the highest
results in terms of the F1 value obtained during the coarse
exploration stage. In Table 3 the F1 value of each case
by using the first 23 frames of the database as the golden
background frame is presented. Best results in terms of the
mean value of F1 were obtained by using frames 4 and 5,
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TABLE 3. F1 Values of The Golden Background Frame Fine Exploration.

TABLE 4. Fine Exploration to Select Threshold and Point Dilate Iterations Parameters.

as shown in Table 3. For this reason, they were selected for
the following explorations.

Then, the exploration to define the threshold together
with dilate iterations parameters employing the previously
selected golden background frames was performed. Table 4
shows the results in terms of F1 and sensitivity (Sen field)
obtained by the exploration. The selection of the optimal
parameters is the same in the next three explorations. It starts
by selecting the results of the F1 performance metric which
are greater than 98 (98.5 for the last exploration), as F1 rep-
resents a good relationship between FP and FN. Among
the selected values, the one with the highest sensitivity is
selected, aiming to minimize the FN value whereas keep-
ing a high value of F1. The parameters values used in the
following explorations, which are the best according to the
terms described above, are a threshold value of 9 with a dilate
iterations value of 13 and employed as a golden background
frame the number 5, as shown in Table 4.
Then, the pixel color parameter, along with the mini-

mum contour box limit selection, is performed using the
limits shown in Table 2. The exploration shown in Table 5
demonstrates that the optimal solution employed as a golden
background frame number 5 containing a pixel color value
of 34 with a contour box limit of 1100 pixels2, values
used in the following explorations. Finally, the last explo-
ration to select the size of the image with the intervals pre-
sented in Table 2 is performed. The image optimal size is
160 × 160 pixels employed as a golden background frame
the number 5, as shown in Table 6. The fine exploration ends
with the performance metrics presented in Table 7. With the
parameters selected above, the proposed methodology was
evaluated over 23417 frames, as shown in Table 7, under the
complete evaluation column. In the results presented, it can be
seen that the sensitivity value of 99.16% is the highest, which

implies the minimum number of FN as it is the most critical
rate in the proposed use case. A reduced rate of FN must be
matched by a high value of F1, since it correlates the TP, FP,
and FN performance metrics. F1 value shown in Table 7 is
98.93%. Finally, the value of the specificity, which is 98.85%
has to be considered because it relates the TN with FP rates.

Note that the above parameters should be recalculated for
each deployment of the LIDAR-based solution proposed. Part
of the coarse exploration and the complete fine exploration
stage must be recalculated to obtain the optimal results in
terms of performance metrics. The limits provided by the
coarse exploration shown in Table 2 are fixed, except for
the dilate iterations and the minimum box limit parameters,
which have to be recalculated manually according to the dis-
tance from the LIDAR to the CR. However, fine exploration is
a fully automated process. The system calibration stage with
the calculation of the parameters is a critical step due to the
severe consequences produced if an object passing through a
train level crossing is not detected.

B. PROCESSING TIME AND POWER CONSUMPTION
The LIDAR configuration parameters such as rotation speed
and field of view are related to the algorithm processing
time, as shown in Fig. 6. Additionally, the rotation speed
is related to the point cloud density. With a rotation speed
of 600 rpm, half of the points are obtained than at 300 rpm
for the same frame. Applying the lowest rotation speed,
the highest point cloud density provided by the LIDAR is
obtained. The higher the point density of the frame, the better
the detection results in terms of performance metrics. Fine
exploration and complete evaluation were performed with
a rotation speed of 300 rpm, which is the lowest rotation
speed of the LIDAR, and a field of view of 180◦, due to it
is enough to cover the entire CR according to the location
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TABLE 5. Fine Exploration to Select Point Color and Minimum Box Limit Parameters.

TABLE 6. Fine Exploration to Select Horizontal and Vertical Image Size Parameters.

TABLE 7. Performance Metrics.

of the LIDAR. All configurations shown in Fig. 6, meet
the real-time specifications, which are to process a complete
frame in less than 0.5 s.

The power consumption of the Cookie edge IoT platform
executing the object detection and tracking algorithm at max-
imum performance and sending the information through the
USB-WiFi adapter via the Internet is 1.33 W. The power
consumption of the LIDAR is 8 W. However, the system
goes into standby mode when there are no trains in the level
crossing proximity. In standby mode, the LIDAR remains
disconnected, and the power consumption of the Cookie edge
IoT platform is 0.29 W.

C. COMPARISON TO THE STATE-OF-THE-ART
In recent literature, there is no common to find object detec-
tion works using LIDARs to compare it with, as the current
trend is to perform detection alongwith classification. To pro-
vide a system with classification capabilities, the use of neu-
ral networks is widespread [21], [23]–[25], [34]. However,
providing a system with classification capabilities requires a
processing platform with high computing resources, gen-
erally using GPUs [21], [35], which are highly power-
consuming. The proposed system has to work with reduced
power consumption, and GPUs are not acceptable.

Nowadays, databases with high-definition 3D-LIDARs,
which usually have 64 channels are widely used

FIGURE 6. LIDAR configurations and processing time.

[21], [23], [26]. However, the LIDARused in this work is low-
resolution containing 16 channels. Low-resolution LIDARs
are not commonly used in object detection applications
because it is more challenging to detect objects, this implies
that there are not many works to compare with.

The authors in [36], use their database generated with
64-channels LIDAR to perform object detection and classi-
fication between 5 classes (pedestrian, vehicle, street clutter,
facade, and ground). The best results for detecting and clas-
sifying vehicle class were obtained, providing values of both
F1 and sensitivity of 99%. In this work, similar values using
a low-resolution LIDAR are obtained.

In the state-of-the-art, there is, on the one side, a trend
that uses lightweight object detection and tracking algorithms
with 2D sensors such as RGB cameras [29], [35]. On the other
hand, some works use high-resolution 3D sensors to feed
DL algorithms, which demand a great amount of computing
resources [21], [24], [25]. However, there are not works
that use high-resolution 3D sensors to execute lightweight
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object detection and tracking algorithms in low-power con-
sumption edge IoT node to compare with. The performance
metrics values provided in this work will be used in future
comparisons.

VIII. CONCLUSION AND FUTURE WORK
In this work, real-time and accurate object detection and
tracking implementation using raw 3D point cloud data pro-
vided by a low-resolution LIDAR is presented. High accuracy
in the detected object spatial location is achieved by using this
complex sensor. Besides, other improvements are obtained
compared to object detection methods based on RGB cam-
eras, since LIDARs work fine in the absence of light and are
more robust in adverse weather conditions.

The parameters selection used in the algorithm was carried
out with design space explorations selecting the parameters
that maximize F1 and sensitivity values. Applying the param-
eters provided by the exploration, the proposed implemen-
tation achieves a sensitivity value of 99.16%, which means
that the system is robust against FN prediction. FN is an
essential rate in object detection tasks, particularly in railway
level crossing applications. The F1 and specificity values
provided are 98.93% and 98.85%, respectively, which implies
a reduced value of FN and FP together with a high value of
TP and TN.

The lightweight object detection and tracking algorithm is
implemented in a low computing resources and low-power
consumption edge IoT node meeting the real-time specifica-
tions. When running the object detection algorithm, the edge
IoT node power consumption is 1.33 W, along with the 8 W
power consumption of the LIDAR. However, most of the
time, the edge IoT node remains in standby mode with the
LIDAR disconnected consuming 0.29 W. The processing
time depends on the LIDAR rotation speed, together with
the field of view. The explorations were carried out with a
field of view of 180◦, as this is enough to cover the entire
CR according to the location of the LIDAR. The rotation
speed was 300 rpm, to obtain the maximum points density.
With this LIDAR configuration, the algorithm processes a
full-frame in 0.23 s. The results shown in this work prove that
by employing this implementation, it is possible to achieve an
increase in the railway level crossing security with a reduction
in accidents and damages taking advantage of the massive
amount of information provided by this type of complex
sensors.

Extracting as much spatial information as possible from
the LIDAR by performing 3D object detection, and using
this information to feed an object classification algorithm
whereas keeping power consumption low and meeting
real-time specifications is one of the future line of work.
Improve the accuracy of both object detection and classifi-
cation tasks with information coming from several sensors
of different types is another future lines of work. There is a
current trend to perform sensor fusion using LIDAR, radar,
and RGB cameras, as the weak features of each one are
covered by the others.
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