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Abstract
Purpose This paper reviews the most recent literature related to the use of remote sensing (RS) data in wildland fire 
management. Recent Findings Studies dealing with pre-fire assessment, active fire detection, and fire effect monitoring are 
reviewed in this paper. The analysis follows the different fire management categories: fire prevention, detection, and 
post-fire assessment. Extracting the main trends from each of these temporal sections, recent RS literature shows growing 
support of the combined use of different sensors, particularly optical and radar data and lidar and optical passive images. 
Dedicated fire sensors have been developed in the last years, but still, most fire products are derived from sensors that were 
designed for other purposes. Therefore, the needs of fire managers are not always met, both in terms of spatial and temporal 
scales, favouring global over local scales because of the spatial resolution of existing sensors. Lidar use on fuel types and 
post-fire regeneration is more local, and mostly not operational, but future satellite lidar systems may help to obtain 
operational products. Regional and global scales are also combined in the last years, emphasizing the needs of using 
upscaling and merging methods to reduce uncertainties of global products. Validation is indicated as a critical phase of any 
new RS-based product. It should be based on the independent reference information acquired from statistically derived 
samples.
Summary The main challenges of using RS for fire management rely on the need to improve the integration of sensors 
and methods to meet user requirements, uncertainty characterization of products, and greater efforts on statistical 
validation approaches.
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Introduction: Why Using RS Methods in Fire
Management?

Remote sensing sensors offer global information, at different
spatial resolutions and different spectral regions. They observe
systematically the Earth surface, therefore providing ideal
conditions for multitemporal analysis. In addition, they derive
information without destructive sampling. All these properties
explain the wide use of RS data in fire-related research and
management since the early 1970s. The first applications were
based on visual analysis of aerial photography. After the
launch of the Landsat satellite in 1972, satellite data have been
used for the different phases of fire management: before the
fire, to estimate fire danger conditions; during the fire, to de-
tect active fires and estimate fire behaviour, and after the fire,
to analyse fire effects and vegetation recovery [1].

Nowadays, contributions of remote sensing methods to
wildland fire science comprise a wide range of sensors, in-
cluding ground spectroradiometers, cameras mounted on he-
licopters, airplanes and unmanned aerial vehicles, and satellite
missions, some of which are specifically designed to target
fire activity or include specific bands for this objective. The
range of interpretation methods has also greatly expanded in
the last decades, including machine learning algorithms [2•,
3]; synergy between optical and thermal data [4], between
optical and radar [5], or between optical passive and lidar
[6]; the extended use of radiative transfer models [7]; and
more elaborate change detection analysis [8].

We review in this paper the main research trends on the use
of satellite RS methods for fire science and management, par-
ticularly those published in the last 5 years (> 2014). Our
analysis was based on a Web of Science quest conducted in
September 2019. We searched for papers including “fire” and
“remote sensing” or “fire” and “satellite” in the title or ab-
stract. This search contained all sources referenced in the
Science Citation Index (SCI), Social Sciences Citation Index
(SSCI), and Arts & Humanities Citation Index (A&HCI). The
total number of references found was 4808, starting in 1972
and ending in August 2019, with a clear increasing trend
(Fig. 1). Most of these references were journal papers (96%),
with very minor representation of proceedings. These manu-
scripts were classified in the environmental sciences (30%),
including meteorology and atmosphere (27%), ecology
(11%), forestry (10%), physical geography (6%), biodiversity
(3%), and water resources (2.5%) (Please note that these cat-
egories may overlap). Remote Sensing was also a very impor-
tant class, assigned to 23% of all citations. The most active
journals for the whole time series were the Journal of
Geophysical Research Atmospheres, Remote Sensing of
Environment, Atmospheric Chemistry and Physics,
International Journal of Remote Sensing, International
Journal of Wildland Fire, Remote Sensing, Atmospheric
Environment, Geophysical Research Letters and Forest

Ecology and Management, which accounted for 40% of all
references.

We have selected for this review the 1924 papers published
in the last quinquennial. The sources are similar to the com-
plete list of journals, although over the last years, the most
active was Remote Sensing, followed by Atmospheric
Chemistry and Physics, Remote Sensing of Environment,
and the International Journal of Wildland Fire. As the select-
ed references included many similar studies, either in terms of
methods or study regions, we have only quoted those that,
according to the authors’ judgement, provide more novelty
to the field. We have organized the review around the three
main temporal phases of fire management, including fire dan-
ger assessment (mainly focused on determining fuel condi-
tions), fire detection (location and monitoring of active fires),
and fire effects assessment (including post-fire changes and
vegetation recovery after a fire).

RS in Fire Danger Assessment

Fire danger is a combination of a wide variety of topics, from
which weather, fuel, and human factors are the most relevant.
In this topic, RS has contributed mostly to the characterization
of fuel state and conditions, including moisture content
(FMC), biomass, canopy cover, and horizontal-vertical
continuity.

Better estimation of spatial and temporal variations of fire
danger conditions is critical for fire prevention. In this respect,
the contributions of RS to fire management are particularly
relevant. For instance, quantifying when and where vegetation
is dry enough to facilitate fire ignition or propagation is vitally
important for strategic planning. Additionally, this informa-
tion is useful to locate containment lines (e.g. fuel moisture
content variations can be used as soft containment lines) and
help with the firefighting strategies (e.g. lidar-derived fuel
load maps to locate sites free of trees to winch specialist fire-
fighters in or to try to pick the easiest line to construct walking
tracks to the fire). This information can equally be used as part
of preseason planning when fire agencies and land manage-
ment departments formulate their seasonal outlook for fire and
map at-risk areas as well as for planning and undertaking
prescribed burns. Fire managers need to know the moisture
content of the planned burn area to knowwhether it is going to
be successful because if it is too wet, it will not burn, but if it is
too dry, it can be over-burned or escape.

Fuel Moisture Content

Fuel moisture content (FMC) is the ratio of the mass of water
contained in a plant to its total dry mass. Research has shown
that there are clear thresholds of FMC (in both dead and live
fuels) associated with the occurrence of wildfires [9–11], and



therefore quantifying when and where forests are approaching
critical dryness levels is vitally important for assessing wild-
fire risk and for planning management burns. Since this tem-
poral dimension is critical for operational use of FMC estima-
tions, most satellite products have relied on high-temporal
resolution (though low spatial resolution) sensors, such as
MODIS, AVHRR and, VEGETATION. Recent developments
based on medium spatial resolution images (Landsat or
Sentinel-1&2) are still very scarce.

FMC can be retrieved using optical remote sensing data
given the effect that water has on the spectra reflectance
through absorption of radiation within the near infrared
(NIR) and short-wave infrared (SWIR) spectral regions [7].
Most prior work that has used remote sensing data to estimate
FMC has been carried out in Mediterranean ecosystems in
Europe and western North America [7]. These studies dem-
onstrate that radiative transfer modelling approaches, which
are based on relationships between leaf chemical and optical
properties, are more robust than traditional empirical ap-
proaches and more easily to generalize as they are not site
dependent. Recently, Yebra et al. [12•] showed that a radiative
transfer modelling approach developed in Europe had similar
accuracy to statistical models when applied to Australian eco-
systems using the same sensor (Moderate Resolution Imaging
Spectroradiometer, MODIS). However, the reported accuracy
in some forests, such as the eucalypt forest, was still not high
enough for fire management operations, given that these spe-
cies have different radiative transfer properties to European
species [12•].

Microwave data has also been found to be sensitive to
FMC, given that changes in dielectric constant associated with
moisture impact the radar backscatter measurements [13]. The
use of microwave images for retrieval of FMC is more com-
plex than with optical sensors and presents different factors of
potential confusion, such as vegetation biomass, height, topo-
graphic position, or roughness, and, therefore, it has not been
explored as much as optical data. Recently, Wang et al. [14]

demonstrated the capability of C-band Sentinel-1A data for
forest FMC retrieval by coupling the bare soil backscatter
linear model with the vegetation backscatter water cloud mod-
el. Jia et al. [15] presented a new multivariant regression mod-
el to estimate FMC in the Mediterranean ecosystem of
Southern California, using the Soil Moisture Active Passive
(SMAP) L-band radiometer estimations of soil moisture
conditions.

Despite advances in near-real-time modelling of FMC
using satellite data, there are risk assessment operational needs
that current methods cannot fill in. For example, remote sens-
ing approaches cannot provide the stand-level detail required
for operational fire management, such as differences in FMC
between shrubs and trees, or the forecasting of moisture
values. Drought indices can be used to forecast FMC but do
not provide reliable predictions [16]. The development of a
physiologically based FMC model may improve those fore-
casts, which are critically important for operational planning
[17]. However, there has been little research on the ecophys-
iological drivers of FMC. Recently, Nolan et al. [18] investi-
gated the relationships between FMC and plant physiological
traits (including leaf water potential, stomatal conductance,
and cellular osmotic and elastic adjustments) in
Mediterranean tree and shrub species and demonstrated that
incorporating plant physiological traits can significantly im-
prove process-based predictions of FMC. They found that
midday moisture, which generally represents minimum daily
values, could be reliably modelled from predawn leaf water
potential (Ψleaf) and that such a model outperformed com-
monly applied drought indices. Consequently, a way forward
to forecast FMC should combine recent advances in the re-
mote sensing and physiological understanding of FMC into
one integrated approach.

Regardless of the method used to retrieve FMC, validation
of FMC estimations is quite challenging, as it requires contin-
uous field measurements. To help the generation of global
FMC products, Yebra et al. [19] recently compiled an
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extensive global database of live fuel moisture content
(LFMC) measurements. The database contains 161,717 indi-
vidual records based on in situ destructive samples that have
been generated from different projects worldwide. These mea-
surements have been typically used to calibrate and validate
remote sensing FMC estimation algorithms.

Fuel Types

Fuel types represent vegetation classes that have similar fire
behaviour [20]. In order to introduce fuel characteristics into
fire behaviour and fire effect simulation models, fuel types are
parameterized using fuel models [21], which organize fuels
into groups according to the main fire propagation media.
Different classification schemes have been proposed for dif-
ferent regions [22, 23]. The most recent trends related to fuel
type mapping from RS methods take advantage of different
hybrid approaches, which mostly merge lidar and passive op-
tical data. Critical properties of fuels such as amount, size, or
arrangement can be accurately estimated from lidar, while
information on the main fire carrier, i.e. vegetation type, can
be obtained from multispectral data.

Explicit information on fuel properties and their spatial
distribution is critical for improving our understanding of fire
behaviour and effects. Because these properties represent
structural rather than functional characteristics of the forest
fuels, most fuel type studies nowadays use lidar data. This
technique is based on estimating heights from very accurate
measurements of time intervals between sending and receiv-
ing a laser pulse. Ground and airborne lidar systems are the
most common nowadays, although the ICESat-1 mission pro-
vided accurate estimations of fuel properties [24]. Over the
next few years, satellite lidar observations will greatly increase
with the recent launch of ICESat-2 and the Global Ecosystem
Dynamics Investigation (GEDI) missions. The canopy vari-
ables estimated from lidar have included fuel load (CFL),
canopy height (CH) [25], canopy base height (CBH), canopy
bulk density (CBD), and fractional cover (CC), which are
particularly important for crown fire propagation. The statis-
tical modelling approach generally used is multivariate linear
regression given its simplicity and good performance. More
recently, a few studies have used machine learning techniques
for modelling canopy fuel properties from lidar data, such as
random forest [26] or support vector machines [27]. CH and
CC are well estimated by lidar measurements. However, CBH
and CBD, which require a description of the vertical distribu-
tion of canopy fuels, showed lower accuracies. Factors affect-
ing the accuracy of the estimation of these canopy variables
include the point density of the lidar datasets and the structural
characteristics, for instance, canopy permeability of the
analysed stand [26, 28]. Romero Ramirez et al., [29] did not
find significant differences between estimates of CFL derived
using 2 points/m2 or lower, suggesting that improving the

accuracy of the estimates requires higher point densities sim-
ilar to those provided by terrestrial lidar [30].

The 3D information provided by lidar sensors allows for a
complete vertical characterization of the fuel distribution in-
cluding surface fuel properties [31]; nevertheless, the accura-
cies of the estimated variables are lower than those of the
upper canopy. This is due to the attenuation of the signal that
results in the undersampling of the lower vegetation layers
[32]. Bright et al. [26] estimated surface fuel properties includ-
ing litter and duff, 1 to 100-h, 1000-h, and total surface fuels
with R2 values ranging between 16 and 30% and RMSE
values varying between 39 and 99%.

The simplest approach to integrating passive and active
sensors relies on merging both into a single dataset that is
subsequently used to run a classification algorithm. Given
the high dimensionality of the resulting dataset, principal com-
ponent analysis (PCA) or minimum noise fraction (MNF)
techniques have been applied to extract the most significant
variables [33]. Other approaches to data integration have used
a two-step method. In the first phase, the main vegetation
types are mapped using optical passive sensors, while in the
second one, fuel types are discriminated using decision rules
applied to lidar-based information. This approach, originally
applied by García et al. [34•], was extended by Marino et al.,
[35] to two different fuel classification systems. The good
results obtained for both showed the robustness of the ap-
proach. Stavros et al. [36] used a similar methodology: a dom-
inant vegetation type and structural information were derived
from AVIRIS and lidar data, respectively. Likewise, Sanchez
et al. [37] mapped vegetation types from Sentinel-2 data and
characterized vegetation structure from low-density airborne
lidar data. The integration of the fuel type maps, with climatic
and topographic data, allowed the authors to compute ignition
probability.

Contrary to mapping fuel types, the fusion of lidar and
optical data to estimate the above-mentioned properties of
surface and canopy fuels did not result in a significant im-
provement due to the much-limited sensitivity of passive op-
tical data to structure as compared with lidar. However, the
integration of lidar and satellite data offers possibilities to
overcome the restrictions of the limited spatial and temporal
coverage of airborne lidar data. Thus, methods have been
developed to extrapolate lidar-based fuel properties. For in-
stance, Garcia et al. [27] developed a two-step approach to
extend accurate local lidar estimates to larger regions based
on Landsat data using a machine learning approach, obtaining
R2 values of 0.8, 0.79, and 0.64 and RMSE of 3.76 Mg ha−1,
0.09, and 0.02 kg m−3 for CFL, CC, and CBD, respectively.
Likewise, optical and SAR data were integrated in order to
extrapolate lidar CH regionally over different biomes [38].

The main limitation of lidar data is the cost of flight cam-
paigns and restriction to local scales, although some countries
(Spain, Slovenia, Stonia, Denmark) have already undertaken



wall-to-wall lidar inventories that help the generalized use of
these data to update and parameterize existing fuel type maps.
Temporal coverage is another constraint of airborne lidar cam-
paigns. Because of current limitations of lidar data for opera-
tional fuel type mapping, many studies still rely only on pas-
sive optical data. For instance, Stefanidou et al. [39] compared
the operational capabilities of Landsat OLI data and Disaster
Monitoring Constellation (DMC) data applying an object-
based classification methodology to classify fuel types.
Bajocco et al. [40] proposed a different concept of fuel types
defining phenological fuel classes. This concept attempts to
characterize fuels based on functional properties such as pro-
ductivity and seasonality, related to fuel accumulation and
flammability respectively, rather than the structural ones.

Another trend in fuel mapping is the use of an OBIA
(object-based image analysis) approach. This approach pro-
vides a more homogeneous representation of fuel types than
pixel-based methods, allowing for the identification of com-
plex objects, which are common for fuel type characterization
[33].

Detection of Active Fires

Active fires (AF) have been detected by middle- and thermal-
infrared observations since the 1980s using mostly polar-
orbiting meteorological satellites [41]. The physical basis of
AF detection relies on the high thermal contrast between
hotspots and the background in the middle-infrared region
(3–5 μm). This channel was included in the first meteorolog-
ical missions (such as the NOAA-AVHRR sensor) for cloud
detection. Even though these sensors have low thermal sensi-
tivity, they provided the first global analysis of fire activity
[42]. Later on, the development of dedicated AF sensors great-
ly improved the quality of these products, particularly after the
launch of MODIS, on board the Terra and Aqua satellites.
Over the last few years, the use of active fire (AF) datasets
for research and operational applications has expanded to geo-
stationary (Meteosat, GOES, Himawari) and medium-
resolution satellites (such as Landsat-8 or Sentinel-2) and even
to unmanned aerial vehicles for specific areas. Satellite detec-
tions of active fires are particularly relevant during a fire crisis,
to obtain a first assessment of anomalous conditions in the
case of extreme fire seasons. Recent exceptional fires within
South America (2019: [43]) and Australia (2020), for instance,
have been extensively shown in the media through satellite
active fire products, most commonly obtained from MODIS
or VIIRS detections. During these crises, AF products derived
from different satellite systems have been extensively used to
support fire management systems, introduced as input in nu-
merous air quality [44, 45] and carbon emission estimation
methodologies [46–48]. They have also been used for fire

behaviour models [49], to estimate fire spread rate [50] and
to detect gas flares [51] and volcanic activity [52].

The new generation of geostationary satellites provides ob-
servations every 10 to 15 min at an improved spatial resolu-
tion (2–3 km) making it possible to detect short-lived fires not
detectable by polar-orbiting satellites and to track in detail the
evolution of the fire line and fire radiative power [53]. In
addition, they have enhanced sensors that provide information
on 12–16 spectral bands with improved radiometry of 10–14
bits (Table 1). They introduce a substantial improvement in
spatial, temporal, spectral, and radiometric resolution over
their predecessors, which correspondingly relates to an en-
hanced capability for fire detection [54].

Several authors developed new algorithms aiming to im-
prove the active fire detection products available [55]. MSG-
SEVIRI and GOES-ABI sensors offer operational AF prod-
ucts, which are built on the heritage of the algorithms devel-
oped for previous sensors [53]. As Himawari-AHI is not pro-
ducing an operational AF product yet, several algorithms have
been developed for active fire detection using these data [54,
56]. Recent papers try to apply the same geostationary AF
detection algorithms to different satellites, for instance,
Himawari-8 and MSG-SEVIRI, with the objective of produc-
ing a harmonized product of AF detections from geostationary
sensors [55]. However, other authors pointed out the impor-
tance of adapting the algorithms to the sensor characteristics,
as it was shown that better estimations were obtained from
MSG-SEVIRI than for GOES-ABI AF detections, even when
the former has lower spatial resolution [54].

While an advantage of geostationary sensors is their tem-
poral resolution, the polar-orbiting sensors have finer spatial
resolution, which ensures higher accuracy at locating and
mapping thermal anomalies. AF detections are produced
using different polar-orbiting sensors, such as MODIS [57•],
the Visible Infrared Imaging Radiometer Suite (VIIRS) [58,
59], FengYun-3C VIRR [60], Landsat-8 OLI [61], TET-1
[62], and FireBird [63].

Currently, the best compromise between spatial and tem-
poral resolution is provided by the operational active fire prod-
uct derived from the 375 m VIIRS bands on board the
National Polar-Orbiting Partnership (NPP) satellite since
2013 and on board the NOAA-20 since 2017 [64]. Its im-
proved resolution, frequent acquisitions, and higher sensitivity
to burning pixels allow the direct estimation of the burned area
by aggregation of consecutive fire detections [58] and the
estimation of fire-driven deforestation [65].With two satellites
in operation, the 375 m AF product time lapse between acqui-
sitions is reduced to a few hours ensuring a higher frequency
of observations providing fire behaviour to fire managers and
atmospheric modellers with higher resolution active fire data.
Besides, VIIRSDay/Night band has also been used to develop
an AF detection algorithm that exploits visible-light and infra-
red spectral response of AF at night [66]. This night-time



algorithm improves the number of detected AF pixels in large
fires (up to 90%) in comparison with the VIIRS 750 m AF
product [59].

Most of the algorithms developed in the last few years are
mainly based on the use of contextual tests to detect thermal
anomalies that rely on the determination of the background
temperature and the analysis of the strong contrast in bright-
ness temperature between the potential fire pixel and the low
background temperature [53, 57•, 64]. The pixel is classified
as a potential fire pixel when the contrast is higher than a
specified threshold [57•]. The dependence on the background
temperature is the main reason why these algorithms produce
high omission of small fires, since an error of 1 K in the
background brightness temperature may result in the masking
of small fires because the contrast is not high enough to clas-
sify them as potential fire pixels. The algorithms developed on
a global scale are designed in a conservative way to avoid
false alarms, which may produce a high percentage of AF
omission in areas where fires have a lower brightness temper-
ature. In order to improve the AF detection, several authors
developed regional algorithms focused on detecting the low-
intensity thermal anomalies occurring in those regions, such
as Alaska [67] or China [68]. On the other hand, novel AF
algorithms include also the temporal dimension in their clas-
sification process [60, 61]. The temporal dimension of these
algorithms allows separation between permanent heat sources
and new fire events, facilitating earlier detection of the fires
and the removal of false alarms derived from bright surfaces.

Common bands used in AF detection algorithms are the
medium-infrared bands, located around 3–4 μm, and the ther-
mal infrared bands, centred at 10–11 μm [53, 57•]. The dif-
ferent spectral behaviour of active fire pixels in both bands is
the main characteristic leading the algorithm procedure.
Recent algorithms, aiming to detect AF from Landsat obser-
vations, are based on spectral changes in the NIR and SWIR
spectral regions [61, 69].

The role of the smouldering phase of the fire is increasingly
taking more attention from researchers, especially in peatland
fires where most of the emissions released to the atmosphere
are produced by smouldering combustion [70•, 71].
Consequently, several papers have studied the identification
of different phases of fire combustion to improve the estima-
tion of gases emitted in the burning process [72, 73] or just to
improve the detection of peat fires [63].

RS of Fire Effects

One of the most obvious applications of satellite observations
to wildland fire science and management is the estimation of
fire impacts, most commonly by assessing burned area (BA).
There are still only a few countries that have reliable wildfire
statistics. Therefore, global fire occurrence based on national
estimations is likely to be very inaccurate. Satellite earth ob-
servation is the most practical way of estimating BA at global
scales. Since active fires are only a temporal sample of actual
burning activity (at the satellite overpass), the most adequate
method to estimate BA is the analysis of reflectance or thermal
changes caused by the fire. Existing products include several
spatial scales, ranging from local to national and global
datasets. Obviously, the latter will be produced at lower spatial
resolution and from coarse resolution sensors. More detailed
products are routinely generated only for some regions, based
on Landsat or Sentinel-2 data, but still much effort is required
to use them operationally for generating fire statistics.

Several global BA products have been released in the last
years, mainly derived from sensors providing frequent tempo-
ral coverage (daily), such as MODIS, MERIS, or
VEGETATION, but poor spatial detail (> 300 m). A recent
review by Chuvieco et al. [74••] shows the strengths and lim-
itations of existing global products. The most reliable ones
estimate total worldwide BA in the range of 3.5 to

Table 1 Main sensors currently used for active fire detection

Sensor MSG-11
SEVIRI

Advanced Himawari
Imager-8

GOES-16
ABI

GOES-17
ABI

Terra & Aqua
MODIS

NPP & NOOA-20-
VIIRS

Spatial resolution 3 km 2 km 2 km 2 km 250–500–1000 m 375–750 m

Spectral bands 12 16 16 16 2–5–29 5–16

Temporal resolution* 5–15 min 10 min 5–15 min 5–15 min 12 h 12 h

Radiometric resolution (bits) 10 14 14 14 10 10

Launched on 2015 2014 2016 2018 2002 2012

Operational full disk Feb-2018 July 2015 Dec-2018 Feb-2019

Satellite type Geostationary Geostationary Geostationary Geostationary Polar-orbiting Polar-orbiting

Centred at 0° 140.7° 75.2° 137.2°

Operational fire product (spatial
resolution)

Yes
(3 km)

No Yes
(2 km)

No Yes
(1000 m)

Yes
(375 m)

The number of bands in the Polar-orbiting sensors matches the range of spatial resolution of each sensor. *Temporal resolution of geostationary sensors
refers to the nominal resolution of a full disk image acquisition



4.5 Mkm2 [74••], but this estimation is likely to be conserva-
tive since comparison of global and regional products shows
an important underestimation from the former [75•, 76]. Now
the most used global BA product is the MCD64A1, produced
by NASA based on MODIS 500-m reflectance bands guided
by active fires. The last version is collection 6 [77•], which has
superseded other NASA BA products. The ESA’s Climate
Change Initiative Fire Disturbance project (FireCCI) has re-
cently developed an alternative global BA product, based on
MODIS 250 m reflectance bands, which provides similar ac-
curacy to the NASA product but seemsmore sensitive to small
burn patches [78, 79•]. A prototype for generating BA prod-
ucts from long-term series of AVHRR data has also been
recently published [80].

These global BA products have been extensively used for
the analysis of fire activity, determining characteristics of fire
regimes, such as average BA and temporal persistency [81],
and spatial variations of BA trends [82•]. These trends are then
related to the main drivers of fire, including climate changes
and human activity [83]. Particular interest has been devoted
to the recently observed decline in BA in tropical regions,
mainly in Northern Hemisphere Africa, which has been most-
ly attributed to the expansion of croplands [82•]. However,
other authors have found that cropland expansion in Africa
only accounts for 30% of BA reduction, with the rest attribut-
ed to increasing net primary productivity [84, 85]. The analy-
sis of agricultural fires is particularly challenging since they
tend to be small and low intensity and are therefore difficult to
map using standard RS approaches [86]. However, consider-
ing these cropland fires are important to better account for
atmospheric emissions, particularly in some regions where
they have a relevant impact on air pollution [87, 88].

A growing recent trend in RS of fire effects is the use of BA
products for parameterization of Dynamic Global Vegetation
Models (DGVM). Most DGVM include a fire component,
which tries to estimate the impact of fire over vegetation and
soils [89]. These fire modules generally use stochastic pro-
cesses to estimate fire ignition and standard fire propagation
models to estimate BA [90•]. Several studies have found a
tendency towards underestimation of actual BA by these
models [91]. For this reason, recent studies tried to improve
them by better understanding the spatial variation of fire char-
acteristics. The most analysed in the last few years are fire
size, shape, and orientation [92]. As a first step, those studies
require the conversion of BA products to single fire events.
Several methods have been proposed with this aim, including
flooding algorithms [83] and fire propagation simulations
[93]. Other authors have used neighbourhood algorithms to
create fire clusters from thermal anomalies [94]. Once fire
events have been individualized, several analyses can be con-
ducted, such as fire-size distribution [83, 95], or relations be-
tween fire size and fire radiative power [96]. In addition, the
use of BA products in DGVM requires a bet ter

characterization of product uncertainty, which is a novel field
of research that requires further efforts [97].

The relations between fire occurrence and atmospheric
emissions have been widely analysed, both using bottom-up
approaches, considering BA, biomass loss, and emission fac-
tors [98•, 99] and using top-down approaches, based on atmo-
spheric sensors measuring several gases associated with fire
emissions, such as CO, CO2, CH4, or NH3 [71]. Regional
studies linking fire occurrence and atmospheric emissions
have been carried out in several continents: Europe [100],
China [101], and Mexico [47].

Analysis of global BA products has also found interesting
connections between fire activity and other biophysical vari-
ables. For instance, Boreal fire activity has been linked to
albedo and snow changes in Western US [102], Greenland
[48], and the Arctic [103]. Global impacts of fire on surface
temperature vary along the latitudes, with net cooling in the
Boreal regions and net warming in the Tropics [104]. The
latest studies have also analysed the relations of BA and albe-
do trends [105] and BA and mass movements [106].

In addition to generating and analysing global BA prod-
ucts, many recent studies continue developing regional or lo-
cal BA products, generally from medium-resolution sensors.
Particular interest has been devoted to areas sensitive to peri-
odic droughts, such as the Amazon basin [107] or the South
African region [108]. Proposals of new or adapted BA algo-
rithms have been done, mostly in refining change detection
techniques (Brazil [109], Canada [110], and Northwestern
USA [111]) and incorporating different machine learning ap-
proaches, such as random forest [112], genetic programming
[113], support vector machines [114], or neural networks
[115]. OBIA analysis has also been widely used for BA clas-
sification [114, 116]. Machine learning approaches have been
used as well for the selection of input variables for BA dis-
crimination [3]. In spite of the growing interest in these auto-
matic approaches, physical-based BA algorithms are still
widely used. The most commonly used is a two-phase ap-
proach, which aims first to detect the most clearly burned
pixels and then apply spatial analysis to improve the determi-
nation of the fire patch [79•, 117, 118].

These regional or local studies have frequently used new
sensors, such as Sentinel-2 [75•, 119, 120], AWIFS data on
board Indian satellites [121], high-resolution satellites, such as
Worldview images [122] or the Chinese HJ satellites [123],
and unmanned aerial vehicles [124]. Medium-resolution sen-
sors, such as those on board the Sentinel-2 or Landsat satel-
lites, provide a much more detailed assessment of small fires
than standard global BA products. A recent comparison be-
tween S-2 and MODIS products over Africa revealed that
80% of total BA in the continent was missed by the MODIS
product, mainly due to omissions of fires < 100 ha [75•].
Improvements in computation power may provide in the near
future global BA products based on medium-resolution



sensors. A prototype global BA product based on Landsat-8
images has been recently published [125].

The growing availability of radar images as a result of the
Sentinel-1 satellites has extended the development of SAR-
based BA algorithms [2•, 126, 127]. They have shown partic-
ular interest in cloudy areas of the Tropics. Since the physical
basis of radar acquisition is quite complex, the development of
conceptual models based on physical approaches facilitates
the generalization of those models [128]. In addition to C-
band algorithms (such as those adapted to Sentinel-1 or ERS
data), other authors have worked in other microwave bands,
such as the X [129] and L bands [130, 131], which provide
complementary information on forest canopy and understory,
respectively.

Several authors have noted the relevance of integrating
different medium-resolution sensors to improve temporal cov-
erage. Combined use of these medium-resolution sensors im-
proves the detection of low persistence burn signals [132,
133]. Several studies comparing optical and radar BA detec-
tion have also been recently published [5, 134].

Both global and regional BA products are useful when they
are accurate, both in terms of BA detection and temporal
reporting. Validation of global BA products is particularly
challenging, as it requires a large effort to provide statistically
significant estimations. Following standard validation proto-
cols, the FireCCI project initiated different validation exer-
cises, first using a single year [135, 136] and later using a
temporal series [78]. In both cases, samples were derived from
stratified random sampling, using as strata global biomes and
spatial and seasonal occurrence. Average omission and com-
mission errors of the most accurate global BA products were
estimated as 62 and 35%, respectively. Errors were mostly
associated with missing small fires. Different studies have
compared MODIS and Landsat BA products for specific re-
gions: Brazil [137], China [138], and the USA [139]. They
confirmed high omission rates for global products, particular-
ly for fires smaller than 40 ha. In Florida, with 92% of all BA
in prescribed burnings, the omissions of BA products were
found particularly relevant [140].

The validation of medium-resolution BA products impli-
cates additional challenges, as it requires generating reference
datasets from high-resolution images, which are expensive
and difficult to access. As an alternative, some of these vali-
dation studies were derived from independently interpreted
medium-resolution data. For instance, in the USA Conus area,
comparison of a Landsat-based BA product with visually con-
trolled Landsat reference sites offered omission and commis-
sion errors of 42 and 33% [141]. The same authors developed
another validation exercise using high-resolution images
(Quickbird, Geoeye), finding omission, and commission er-
rors of 22 and 48% [142]. As it is the case of global BA
products, these Landsat-derived BA maps found higher errors
for agricultural regions, as tilled areas were sometimes

confused with BA pixels. A few intercomparison studies have
also been published in the last years, linking spatial and tem-
poral trends of BA products [143]. Regional comparisons
have also been developed in Africa [144].

Fire is not a binary process, and therefore, the analysis of
fire impacts requires better discrimination of variations of
burn severity. RS methods provide a comprehensive view of
post-fire variations, but they are not necessarily related to fire
impacts on plants and soils. This topic has been extensively
covered in the last two decades, particularly after the develop-
ment of the Monitoring Trends in Burn Severity (MTBS) pro-
gram in the US (https://www.mtbs.gov/), which provides burn
severity information for all fires larger than a certain threshold
based on Landsat multitemporal analysis. The basic indices
developed for this program have been extended with
additional proposals, in different ecosystems: Eastern Siberia
[145], California [146, 147], or Western US [148]. Some
papers have tried to provide a more ecological sound
interpretation of satellite-retrieved burn severity, using a
Random Forest model [149•]; others have combined passive
optical with lidar data to detect the relevance of post-fire leg-
acies in vegetation height and biomass [150, 151] or in the
distribution of snags of different sizes [152]. Fuel consump-
tion has been estimated from active fire and fire radiative
power [153] or from vegetation optical depth obtained from
microwave data [154]. Even though the use of radiative trans-
fer models for estimating burn severity provided sound results
in different ecosystems [155], it has not been greatly covered
in the last few years.

Monitoring Post-Fire Recovery

Forest fires are one of the most common disturbance types
around the world. For this reason, characterizing fire dis-
turbance and monitoring post-fire regeneration are rele-
vant topics both for ecological and management purposes.
Chu et al. [156••] and Bartels et al. [157] provided a
review of concepts, methods, and sensors related to this
subject.

Post-fire recovery analysis should be connected to a clear
comprehension of ecological drivers that influence the recov-
ery processes [158]. In this sense, post-fire regeneration de-
pends on biotic and abiotic factors, but little is still known
about how these factors interact in natural recovery processes
after fire disturbance. Several studies have used geographical
variables (topography, soil characteristics, or climate) as
drivers of post-fire vegetation recovery [159–161], while
some others have emphasized the relevance of burn severity
to characterize regeneration patterns [162–164]. The legacy
effects have also been analysed [150, 157], as well as forest
composition before the fire [165]. Spatial properties of the
landscape, such as nearest distance to unburned area, a proxy
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of edge effect, or tree species characteristics have also been
identified as key drivers of recovery [166, 167]. The relative
importance of these variables and their interaction in the wild-
fire regeneration process remains still largely unknown.

One recent trend in monitoring fire recovery is based on
using long time series of RS data, especially since 2008 when
the US Geological Survey (USGS) opened access to the
Landsat archive. This fact has accelerated the analysis of his-
torical trends, and it has incremented the numbers of methods
and applications to characterize the ecosystem response to
forest fires. One of the pioneers of these temporal analyses,
Kennedy [158] has spoken about “a new paradigm in remote
sensing of landscape change”. Following these ideas, a range
of algorithms have been developed and applied to Landsat
time series (LTS). The most extended are [168] as follows:
the Vegetation Change Tracker (VCT), designed to monitor
forest disturbance history with LTS, which was used by Zhao
et al. [169] to detect wildfire in North America; the
Continuous Change Detection and Classification (CCDC),
developed by Zhu et al. [170] to identify land cover changes;
and the Composite2Change (C2C), a trajectory pixel algo-
rithm, developed by Hermosilla et al. [171] to detect forest
disturbance in Canada, by analysing changes in the different
disturbances of the country for past 25 years [172•]. However,
still the most extended algorithm for time series analysis of
Landsat data is the Landsat-based Detection of Trends in
Disturbance and Recovery (LandTrendr) [173], [159, 174].
LandTrendr was specifically designed to be used with
Landsat data, but it might be adapted to Sentinel-2 to extend
the baseline data. In addition, this algorithm has been recently
adapted to Google Earth Engine (GEE), thus facilitating the
characterization of large areas over long periods of time [175].
All these algorithms are pixel based, while recently a novel
patch-based approach, Vegetation Regeneration and
Disturbance Estimates through Time (VeRDET), have been
developed to detect periods of vegetation disturbance, stabil-
ity, and growth from the historical Landsat image records
[176].

In terms of input data for running these time change algo-
rithms, the most common have been the spectral vegetation
indexes (SVI) such as NDVI (normalized ratio of red and near
infrared reflectance), NBR (ratio of near infrared and SWIR
reflectance) and its derivatives dNBR, RdNBR, and the com-
ponents of the Tasselled Cap Transformation [159, 177].
There is not a clear consensus on what indexes are more ad-
equate to analyse vegetation recovery after fire. Morresi et al.
[178] recommended using NDVI, which mostly captures
chlorophyll concentration and canopy greenness, for tracking
early stages of the secondary succession in the Central
Appennines (Italy). Storey et al. [179] also used NDVI to
estimate forest recovery up to 12 years in chamise chaparral
(California), which was related to grassland or shrubland cov-
er during the early recovery process. The NBR, which mainly

responds to moisture variations in leaves, has been success-
fully used to detect and classify disturbance in Canada [172•,
180]. Massetti et al. [181] developed a new index VSPI
(Vegetation Structure Perpendicular Index) for vegetation re-
covery that outperformed the NDVI and NBR. This index is
based on the divergence from a linear regression between two
SWIR bands, and it has showed a minor inter-annual variabil-
ity and stronger post-fire monitoring of disturbance over a
longer period in Australian eucalypts forest. However, several
studies recommend to combine several SVI, applying each
one to different stages of the forest recovery process
[182–184]. Furthermore, it would be convenient to understand
better the advantages and limitations of these indices when
interpreting RS data, in the context of post-fire regeneration
[174, 182].

Lidar data have also been use to estimate post-fire changes
in forest structure. Matasci et al. [185] combined lidar and
Landsat data using a nearest neighbour imputation approach
with a Random Forest-based distance metric to estimate
height, basal area, volume, and biomass changes in the
Canadian forest, for the period 1984–2016. These estimations
were used to derive annual forest structure dynamics detecting
both undisturbed and regenerating stands after disturbances.
Radar can also be useful to assess post-fire regeneration since
backscattered microwave energy has proven to be sensitive for
detecting changes in vegetation structure. Radar sensors have
the advantage over lidar of having different satellite systems in
place, particularly Sentinel-1, which provides systematic
global coverage. However, only a few studies have been con-
ducted with radar data for assessing post-fire forest dynamics.
Chen et al. [186] compared different restoration treatments
including natural regeneration using ALOS/PALSAR back-
scattering coefficients and two radar indices with good results.
On the other hand, Polychronaki et al. [187•] combined NDVI
index and ERS backscatter coefficients to study the effect of
forest fires in aMediterranean area. They found that radar data
could provide information related to changes in dense regen-
eration coniferous forest, whereas the NDVI was sensitive to
the understory vegetation recovery.

Conclusions

This review has identified the main research trends of the last
few years for using RS methods to retrieve critical fire infor-
mation. Fuel moisture content, fuel typemapping, detection of
active fires, burned area, and vegetation recovery have been
the most common variables generated from RS imagery. To
meet the user requirements from sensors that have not been
specifically designed for fire applications, many studies com-
bine different sensors and systems, from optical-lidar and ra-
dar to thermal-optical. Different spatial and temporal scales
have also been linked in the last few years, moving towards



a more comprehensive assessment of fire danger and fire ef-
fect assessment. In addition, a growing use of RS products by
carbon and atmospheric modellers implies a clear interest
about complementing models and observations.
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