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ABSTRACT 
Salt stress can impact wheat production significantly and is difficult to be managed when the condition is critical. Hence, 

detecting such stress whet it is at an early stage is important. This paper proposed a deep learning method called Dilated 
Convolution and Spectral Attention Module (DC-SAM), which exploits the difference in spectral responses of healthy and 
stressed wheat. The proposed DC-SAM method consists of two key modules: (i) a dilated convolution module to capture 
spectral features with large receptive field; (ii) a spectral attention module to adaptively fuse the spectral features based on 
their interrelationship. As the dilated convolution module has long receptive fields, it can capture short- and long dependency 
patterns that exist in hyperspectral data. Our experimental results with four datasets show that DC-SAM outperforms existing 
state-of-the-art methods. Also, the output of the proposed attention module reveals the most discriminative spectral bands for 
a given wheat stress classification task. 
  
Keywords: dilated convolution, explainable AI (XAI), hyperspectral information, spectral attention, wheat salt stress. 
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ABSTRAK 

Gangguan pada tanaman gandum karena kebanyakan kandungan garam dapat secara signifikan mengurangi hasil panen. 
Jika gangguan tersebut sudah parah, akan sangat sulit untuk diselesaikan. Oleh karena itu, pendeteksian keberadaan  
gangguan tersebut secara dini sangat penting. Paper ini mengusulkan sebuah deep learning model yang disebut dengan 
Dilated Convolution and Spectral Attention Module (DC-SAM), yang mengekploitasi perbedaan informasi spectral yang 
berasal dari tanaman gandum yang sehat dan tanaman gandum yang mengalami gangguan. Metode DC-SAM yang diusulkan 
memiliki dua modul utama: (i) modul konvolusi dengan dilasi untuk menangkap fitur spektral dengan bidang reseptif yang 
besar; (ii) modul spectral attention untuk memadukan fitur spektral secara adaptif berdasarkan keterkaitannya. Karena modul 
konvolusi dilatasi memiliki bidang reseptif yang panjang, modul ini dapat menangkap pola ketergantungan pendek dan 
panjang yang ada dalam data hiperspektral. Hasil eksperimen kami dengan empat dataset menunjukkan bahwa DC-SAM 
mengungguli metode-metode sebelumnya. Selain itu, keluaran spectral attention modul yang diusulkan mampu 
mengungkapkan pita spektral paling diskriminatif untuk tugas klasifikasi gangguan pada gandum. 

  
Kata Kunci: konvolusi dengan dilasi, penjelasan pada AI, informasi hiperspectral, attensi pada informasi spectral, gangguang 
kelebihan garam pada gandum. 

 

I. INTRODUCTION 
ALT stress in wheat crops affects their growth and productivity [1] [2]. Traditionally, it is identified by 
observing visual symptoms of the crop [3]. However, by the time visual symptoms appear, the crop 
condition is critical hence it is too late to cure the stress. In other side, in the early stress, plants give 

responses through tissue degradation and changes in chlorophyll content as well as cellular metabolism [4]. These 
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changes can be captured by hyperspectral sensors and are reflected into spectral information. 
Several techniques have been used to extract features from hyperspectral data. These methods include Recurrent 

Neural Networks (RNNs) [5] [6], Long Short-Term Memory (LSTM) [7] [8] [9], and  convolutional neural network 
(CNN) [10]. However, features from the spectral information that consists of hundreds of narrow bands, where 
adjacent bands tend to be highly correlated, cannot be captured effectively by those methods because they cannot 
capture long-range pattern dependencies. 

To overcome the problem, we propose a novel deep learning network, dubbed DC-SAM (Dilated Convolution 
and Spectral Attention Module), that is constructed by using stacked dilated convolutional layers. In the first layer, 
the dilated convolution layer has a dilation rate of 1, which corresponds to a standard convolution, allowing it to 
extract the local features. The receptive field for the convolution layer gradually becomes larger by increasing the 
dilation rate, making it able to extract various levels of global features. The receptive field of our network can cover 
the data from the first band up to the last band, despite its shallow nature. 

Although deep learning models can help solve problems related to feature extraction, their complexity makes 
them exhibit low explain ability [11]. As a result, it is very difficult to identify the factors determining the model's 
predictions, making it difficult to trust the model before deploying it ‘in the wild’ [12]. Furthermore, if we know 
which features affect the model's prediction, then we can determine which spectral bands weight most on the 
decision made for a given hyperspectral classification problem. The important bands could also be useful in 
developing a custom multispectral camera [13] for the targeted application. 

There have been previous studies done to determine which bands are important for detecting stress in crops. In 
the study in [13], several machine learning methods were investigated (i.e., RelifF, SVM-RFE, and Random Forest) 
to identify important bands for detecting salt stress in wheat crops. The results of these three different methods are 
mostly similar. However, their detection performance needs to be improved. In contrast, the studies in [14] [15] 
examined the bands which respond to salinity stress (i.e., NaCl), in soybeans plants using several methods, 
including student t-criterion and discriminant analysis. They compute the statistical significance between the 
average values of each spectral index between plants treated with NaCl and without. Only 40 samples were used 
in their study, the wavelength range was divided into five ranges, and the significance was calculated based on the 
range area. In addition, this method only focused on finding the significant wavelength, not on detecting stress. 

In the case of classification, several studies have been conducted to improve the interpretability of complex 
models, including deep learning networks. Ribeiro et al. [12] introduced the Local Interpretable Model-agnostic 
Explanation (LIME) framework. LIME attempts to understand the model by tweaking the input features and 
observing their effect on changes in the model's predictions. Another approach, SHAP (Shapley Additive 
exPlanations) [16] was presented to explain model predictions by calculating the contribution of each feature to the 
model output. Both methods treat the model as a black box, so they do not know exactly how the model works. 

To focus on the informative features, several deep learning networks have leveraged attention modules [17]. For 
example, the Convolutional Block Attention Module (CBAM) model was used to detect objects in RGB images 
that have spatial and channel information [17]. CBAM shows that adding an attention module enhances in turn 
network interpretability. As in CBAM, our network also integrates an attention module to increase network explain 
ability. Since our data has only spectral information, we design a spectral attention module to exploit the spectral 
relationship. We plug the spectral attention module at the end of the dilated convolution layer. After that, we 
visualize the attention module weights to identify which wavelengths or bands are important to our network's 
decision. We also explain the important band for our model's decision with LIME and SHAP. 

In summary, this paper contributions are three-fold: (1) We leverage dilated convolutional layers to capture the 
features from the spectral information with a long sequence. In contrast to standard convolution, which only 
captures the local features, our causal dilated convolutional layers can capture both local and global features. (2) 
We achieve state-of-the-art performance: our experiments show, for example, that our proposed method improves 
the accuracy to classify wheat salt stress by more than 5% on the CS dataset. The findings demonstrate that the 
proposed DC-SAM network can detect the stress in wheat even before the visual symptoms arise. (3) We design a 
spectral attention module in our network to improve the interpretability of our network and identify which 
wavelengths or bands are essential for our network's decision. The rest of structure of this paper is organized as 
follows. Section II provides an overview of the related works, including dilated convolution, attention module, 
LIME, and SHAP. Section III explains the proposed DC-SAM method. Experimental results, performance 
evaluation, and model explanation are discussed in Section IV. The research findings are concluded in Section V. 
 

II. RELATED WORKS 

A. Attention Mechanism 
An attention mechanism makes a network pay more attention on informative features of an input [18] [19]. Self-
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attention is an attention mechanism where an input in the input sequence interacts with other inputs in the sequence 
and learn which inputs the module should pay more attention to. Self-attention is popular in many fields, such as 
natural language processing and computer vision [20] [21] [22] [23]. 

In computer vision, a spatial attention module was used to make the network attends most on informative spatial 
area to make decision [19]. Another work proposed a Convolutional Block Attention Module (CBAM), which uses 
both spatial attention and channel attention [17]. They argued that spatial attention focuses on ‘where’ the 
informative part is, while the channel attention focuses on ‘what’ is essential given an input image.  

In HSI, attention mechanisms have been used by several studies [24] [25] [26] to improve the network 
performance. However, they could not figure out the importance of a specific band. A spectral attention module is 
applied in this paper to hyperspectral data that has only spectral information. The spectral attention module is 
described in Section III.B.  
 

B. LIME and SHAP 
It is important to understand the difference between features and interpretable representation before explaining 

how LIME and SHAP work. LIME uses an interpretable representation that can be interpreted by humans in place 
of the actual features (original representation) used by a classifier [12]. Text classification, for example, uses 
features that are complex, such as word embeddings. However, an interpretable representation can be found using 
a binary vector representing each word's contribution to the class decision (e.g., 1 indicates ‘has contribution’, 0 
indicates ‘does not have contribution’). 

Suppose we want to explain an instance x, where x ∈ R! is the original representation of the instance, and d is 
the number of features. The interpretable representation of the instance is then generated, x" ∈ {0,1}!!. Given x', 
by drawing nonzero elements of x' uniformly at random, N sample instances (perturbed instances) around x' are 
produced. The perturbed instances are symbolized by Z, and each instance is denoted by z' where z" ∈ {0,1}!!. 
Once z' is known, its original representation (z) can be recovered.  

The LIME process begins with computing the distance between an instance x and a perturbed instance z. 
Distances, D(x, z), can be computed using a variety of functions, for instance, cosine distance for text or L2 distance 
for images or hyperspectral data. Equation (1) is then used to compute the similarity between x and z, (π#(z)), 
where σ is the standard deviation.  

The original classifier f that is usually used for classification is complex, e.g., deep networks. Because the original 
classifier is difficult to explain, LIME uses simpler explainable models (surrogate models) [27]. A surrogate model 
is defined as g	 ∈ G, where G is a class of potentially interpretable models such as decision tree and linear 
regression. Consider f(z) to be the label of a perturbed sample z with the original classifier, and g(z') to be the label 
of an interpretable version of z with the explanation model; the measure of how unfaithful g is in representing f is 
defined by the expression L(f, g, π#) that is computed by Equation (2).  

The best representation of instance x using explanation models in G is ξ(x) (Equation (3)), where Ω(g) represents 
the complexity of g. For example, in a decision tree, Ω(g) is its depth, and in a linear regression, Ω(g) is its non-
zero weight [12]. 

 
 

𝜋$(𝑧) = exp ;−
𝐷(𝑥, 𝑧)%

𝜎%
@																																																																																																																																																		(1) 

𝐿(𝑓, 𝑔, 𝜋$) = D 𝜋$(𝑧)(𝑓(𝑧) − 𝑔(𝑧"))%
&,&"()

																																																																																																																						(2) 

	𝜉(𝑥) = argmin
*(+

𝐿(𝑓, 𝑔, 𝜋$) + Ω(𝑥)																																																																																																																																					(3)    

                                                                                  
 
Like LIME, SHAP uses an interpretable model to explain the prediction of the original model. SHAP utilizes the 

idea of the Shapley values to model the importance of a feature [16]. The Shapley values use all possible 
combinations of inputs to measure all possible predictions of an instance. Therefore, its exact computation is 
challenging, but it does guarantee the accuracy and consistency of the importance of the features. The LIME1 and 
SHAP2 modules are available online.  
 

 
1 https://github.com/marcotcr/lime 
2 https://github.com/slundberg/shap 
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III. PROPOSED METHODOLOGY 
A flowchart of our proposed work, DC-SAM, is shown in Error! Reference source not found.. The input of 

the training, testing, and explaining phases are a spectral vector, sized B	 × 1, where B is the number of bands. We 
consider these inputs as a sequence of spectral channels.  

In the training phase, the training inputs are exploited to train the DC-SAM network. First, each input is 
convolved by using 1D convolution with 24 output channels and kernels of size 3, producing an intermediate feature 
with size S	 × 1	 × 24, i.e., F,×.×%/, where S is the spectral feature size. The kernels example representation used 
in the first convolution layer is shown in Error! Reference source not found..  

The intermediate feature is used as an input to the spectral dilated convolution module (illustrated in Error! 
Reference source not found.), which produces a refined feature. Then, a spectral attention module (see Error! 
Reference source not found.) is applied to the refined feature to produce a spectral attention map. A pixel-wise 
multiplication is then operated between the refined feature and the spectral attention map. The result is then 
processed by a pooling operation and a classifier consisting of a dense layer with ReLU and a softmax layer. The 
classifier output is a label prediction, which is then compared with the true label to produce training loss. The 
training loss is further utilized to update the DC-SAM training parameters. These processes are repeated with a 
certain iteration size to build a trained DC-SAM model.  

During testing, the trained DC-SAM model is used to classify the test inputs, and the output is a prediction label. 
To obtain the performance measurements, the prediction and the true labels are computed. We can then draw a 
heat-map of the spectral attention module output by using the test input and the trained DC-SAM model to identify 
the bands that the model focuses on to produce an explanation. Examples of model explanations produced by LIME 
and SHAP based on a test input and the trained DC-SAM model are shown in Figure 7 and Figure 8. 

 

  

Figure 2 The sample of kernels for processing spectral input. 
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Figure 1  The architecture of the spectral dilated convolution module, which consists of n dilated residual layers. Each dilated residual 
layer contains a dilated convolutional layer and two activation functions, ‘tanh’ and ‘\sigma’ (sigmoid) 
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A. Spectral Dilated Convolution 
Error! Reference source not found. illustrates the architecture of the spectral dilated convolution module. The 

input of this module is an intermediate feature with size S × 1 × 24, and the output is a refined feature with the 
same size. Our spectral dilated convolution module consists of n dilated residual layers. Each dilated residual layer 
contains one dilated convolutional layer and two activation functions, ‘tanh’ and ‘σ’ (sigmoid). 

As in WaveNet [28], our dilated convolutional layers use a dilation factor of 201., where i is the dilated residual 
layer number. The dilation factor that increases exponentially with depth results in the exponential growth of the 
receptive field, and thus stacking the dilated residual layers will increase the model capacity.  

In contrast to WaveNet, which uses causal dilated convolution, we use acausal dilated convolution. WaveNet 
uses causal dilated convolution since it assumes that an input at a timestep t is only conditioned by the inputs at all 
previous timesteps. However, in our case, we consider that the information at a particular band is correlated to the 
adjacent bands (the previous and the next bands), since [9] pointed out that their network that utilized both previous 
and latter information to explore the spectral information performs better than the network that only utilized 
previous information. As a result, we used acausal dilated convolution.  We used tanh and σ for activation function, 
like in the gated PixelCNN [28] [29]. These works have shown that tanh and σ improve the network's performance 
[28] [29].   

B. Spectral Attention Module 
The output of the spectral dilated convolution module, F ∈ R,×.×2, consists of M channels (in our architecture 

M=24) and S spectral features. The spectral attention module then computes the global average pooling along the 
channel axis to generate an efficient feature descriptor producing F345 ∈ R,×.. We further implement a 
convolutional layer, which can extract the inter-spectral relationships between features, to generate a spectral 
attention map, M67 ∈ R,×.. The spectral attention map encodes which feature to emphasize or suppress. Equation 
(4) shows the formula to compute the spectral attention map, where f8(. ) represents a 1D convolution with filter 
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Spectral 
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Figure 3 The overall architecture of the proposed network, which consists of two main modules, i.e., a spectral dilated convolutional 
module to capture the long-range dependencies between spectral bands and a spectral attention module to give weight to each spec 
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size 3. The final feature map, F9 ∈ R,×.×2 is computed by using Equation (5). 
𝑀:;(𝐹) = 𝜎 W𝑓8X𝐹<=*YZ																																																																																																																																																										(4) 
𝐹> = 𝐹⨀𝑀:;(𝐹)                                                                                                                                                 (5) 
 

IV. EXPERIMENTS AND ANALYSIS  

A. Experimental Setting 
Datasets: We evaluated DC-SAM on four datasets for wheat salt stress classification: Chinese Spring (CS), 

Aegilops columnaris (co(CS)), Ae.speltoides auchery (sp(CS)), and Kharchia dataset [30]. These datasets can be 
accessed freely3. The dataset also has a file that contains the details of the corresponding wavelengths associated 
with each band [30]. We then used the wavelength information as the name of features instead of the band's number 
in the model explanation (see Section IV E).  

Evaluation Protocols and Performance Measurements: For the experiments, alike [13], we used 70% data as 
training samples and 30% data as testing samples. In each experiment, we applied 10-fold cross-validation. As 
preprocessing, we utilized a standardization technique to rescale data to have a mean of 0 and a standard deviation 

of 1. For training, we used Adam optimizer with a learning rate of 0.0003, the batch size was 256, and the number 

 
3 https://conservancy.umn.edu/handle/11299/195720 
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Figure 5  Spectral Attention Module 

Figure 4 Performance comparison of our proposed method for different numbers of dilated convolutional layers. OA-mean is the 
average of OA from 10-fold experiments. 
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of iterations was 200. For evaluation, we computed the F1 measure of control (C0) and salt (C1) classes, Overal 
Accuracy (OA), and Average Accuracy (AA) to evaluate the proposed method's performance. 

 

B. Ablation Analysis: Impact of dilation on performance 
Error! Reference source not found. shows the impact of dilation on performance. Using the depth of 7, we 

evaluated the model in two scenarios: with dilation and without dilation. Their architectures were the same, but for 
the model without dilation, a constant dilation rate of 1 was used instead of 201. where i is the depth of the layer.  
The figure shows that the model with dilation achieved better performance than the respective model without 
dilation.  The dilated convolution improves OA by more than 2% on CS, co(CS), and sp(CS) datasets. On Kharchia 
dataset, the OA of with dilation model is around 1% higher compared with a standard convolution.  

The results indicate that the dilated convolution is more suitable for hyperspectral data than the standard 
convolution. The dilated convolutions enable the network to have a larger receptive field than the standard 
convolution, and therefore it can capture global features and longer dependencies between bands.  

 

C. Ablation Analysis: Impact of spectral attention module on performance 
The proposed architecture uses a convolutional-based spectral attention module to weigh the high-level spectral 

features. In this experiment, we investigate the impact of the attention module on the classification performance. 
Error! Reference source not found. shows that the model's performance with attention is better than its 
performance without attention only in some cases. The spectral attention module does not adversely impact the 
classification performance. Most importantly, the attention module still meets its main purpose, which is to weigh 
the spectral features. As a result, the network can reveal the relative importance of bands (see Section IV E). 
 

Table 1 Performance comparison with and without spectral attention module 

Dataset Performance With spectral attention Without spectral attentions 
CS OA 83.85+-0.60 83.72+-0.49 

AA 83.71+-0.60 83.58+-0.48 
F1C0 82.31+-0.81 82.37+-0.58 
F1C1 85.14+-0.50 84.87+-0.49 

co(CS) OA 85.46+-0.97 85.70+-1.02 
AA 84.19+-1.10 84.64+-1.29 
F1C0 88.61+-0.78 88.87+-0.88 
F1C1 79.88+-1.31 79.97+-1.43 

sp(CS) OA 81.15+-0.49 81.18+-0.74 
AA 81.16+-0.45 81.20+-0.76 
F1C0 81.99+-0.57 82.07+-0.84 
F1C1 80.21+-0.66 80.19+-0.76 

Kharchia OA 81.21+-0.48 81.13+-0.52 
AA 80.47+-0.60 80.34+-0.60 
F1C0 74.59+-0.86 74.55+-0.40 
F1C1 85.08+-0.46 85.00+-0.47 

 
 

D. Comparison with existing methods 
This experiment compared our proposed architecture with existing state-of-the-art architectures for the early 

detection of plant stress. We focused on models that use only spectral information because we focus to learn 
vegetation interaction with spectral reflectance. For CS, co(CS), sp(CS), and Kharchia datasets, we compared our 
model with a model that treats spectral information as a vector and uses the standard 1D convolution to extract the 
features [10]. In contrast to the standard 1D convolution used in Section IVB}, the 1D convolution in [10] used a 
very long filter size (number of bands/4). We also compared the proposed method with the spectral-residual 
network (sRN) [31], LSTM [32] and spectralFormer [33]. The result is shown in Table 2, which proves that the 
proposed method produces the highest performance. Moreover, our proposed method outperforms SFS Forward 
by a large margin of 6% in terms of F1-mean on the CS dataset.  
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DC-SAM is superior to the other existing methods because it is able to capture both local and global features and 
it has longer receptive field making its capacity higher. Additionally, because our method has fewer parameters, it 
is suitable for problems with a small number of training samples, as opposed to spectralFormer, a type of 
Transformer that needs a lot of training samples. Considering that the datasets for salt stress detection are taken 
before visual symptoms appear, the good results indicate the potential for detecting stress early with hyperspectral 
information is promising. An early crop management solution can then be implemented to minimize crop 
production loss.  

However, if the train and test samples are from different environments or growth stages, the performance may 
be compromised. As an example, the model is trained with data from hydroponically grown crops and then tested 
against data from real-life fields, or the model is trained with data from early-stage crops and tested against late-
stage crops. The reason is that some growth factors (e.g., soil type, lighting, irrigation) and the growth stage 
influence crop spectral behavior. As a result, domain shifts may occur between the train and test samples. Future 
studies are required to solve the domain shift problem. 

 
Table 2 Performance comparison between our proposed method and other methods. 

Method 𝐅𝟏𝐂𝟎 𝐅𝟏𝐂𝟏 𝐅𝟏 −𝐦𝐞𝐚𝐧 OA AA 
CS 

1D CNN [10]  79.50±0.86 83.02±0.74 81.26±0.77 81.43±0.77 81.27±0.78 
Group LSTM [32] 76.94±0.81 80.86±0.61 78.90±0.66 79.09±0.65 78.91±0.65 
sRN [31] 79.66±0.60 81.87±0.95 80.77±0.68 80.84±0.70 80.81±0.62 
spectralFormer [33] 77.18±1.70 80.17±1.24 78.68±1.25 78.81±1.20 78.77±1.12 
SFS_forward [13] 78.87 76.55 77.71 - - 
Proposed Method  82.31±0.81 85.14±0.50 83.72±0.63 83.85±0.60 83.71±0.60 

co(CS) 
1D CNN [10]  86.08±0.66 74.60±1.00 80.34±0.80 82.01±0.77 80.58±0.90 
Group LSTM [32] 84.22±0.44 70.94±0.81 77.58±0.56 79.55±0.51 77.89±0.59 
sRN [31] 84.67±0.85 70.52±2.05 77.59±1.23 79.85±0.99 78.54±1.13 
spectralFormer [33] 86.23±0.79 74.50±2.68 80.36±1.70 82.13±1.28 80.80±1.16 
Proposed Method  88.61±0.78 79.88±1.31 84.25±1.03 85.46±0.97 84.19±1.10 

sp(CS) 
1D CNN [10]  78.92±0.61 76.16±0.71 77.54±0.63 77.62±0.62 77.65±0.63 
Group LSTM [32] 76.33±0.93 73.25±0.93 74.79±0.78 74.89±0.78 74.92±0.83 
sRN [31] 77.99±0.82 74.83±1.25 76.41±0.96 76.52±0.94 76.58±0.93 
spectralFormer [33] 77.52±1.35 75.22±1.21 76.37±1.10 76.44±1.12 76.49±1.19 
Proposed Method  81.99±0.57 80.21±0.66 81.10±0.50 81.15±0.49 81.16±0.45 

Kharchia 
1D CNN [10]  70.49±0.74 82.55±0.51 76.52±0.61 78.07±0.60 76.99±0.67 
Group LSTM [32] 66.84±0.98 79.86±0.72 73.35±0.81 74.94±0.80 73.56±0.86 
sRN [31] 69.38±1.11 82.58±0.54 75.98±0.67 77.80±0.58 76.91±0.71 
spectralFormer [33] 67.26±1.79 81.04±1.08 74.15±1.31 76.00±1.23 74.83±1.36 
Proposed Method  74.59±0.86 85.08±0.46 79.83±0.53 81.21±0.48 80.47±0.60 
 

E. Model Explanation 
We have shown that our proposed model achieves good performance on all of the datasets. As deep learning 

models have low explain ability, we used a spectral attention module to form an output heatmap displaying which 
features influence most the model's decision.  For validation, we used LIME and SHAP to explain the model's 
decision [16] [27].  

For example, given a spectral sequence as input (Figure 6), Figure 7 shows its LIME explanation. The feature 
value shown in Figure 7 is the feature value of the input after the standardization process. From the bar chart, we 
can see that if w_579.35 ≥ 0.63, then the wavelength will contribute to class ‘1’. The feature value of wl_579.35 
is 2.18. Hence, the wavelength contributes to class ‘1’ with a weight of 0.16. Here, value 0.63 is the threshold value 
of wl_579.35. The further the feature value from the threshold, the higher the weight. The figure shows that the 
prediction output of a given LIME input is ‘1’, shown in orange colour, with a prediction probability of 1.00. The 
wavelengths that support the decision to class ‘1’ are also highlighted in orange. We can see from the figure that 
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wavelengths 579.35, 599.88, 784.63, and 597.83 contribute to class ‘1’ with a weight of 0.16, 0.13, 0.1 and 0.1, 
respectively. The rest wavelengths with orange colour contribute to class ‘1’ with a small weight (less than 0.09). 
Hence, we only consider wavelengths that contribute on supporting the decision are 579.35, 599.88, 784.63, and 
597.83. 

 
Figure 6 An example of spectral input, which has spectral information from wavelength 404.86 to 874.96. The label of this input is 1 (i.e., 
salt treatment). 

 
 

 
Figure 7 Our model predicts that the spectral input belongs to class `1', and LIME highlights the wavelength in the spectral input that led to 
the prediction. The bar chart represents the most relevant wavelengths. The colour indicates which class the wavelength. 

 
Figure 8 Our model predicts that the spectral input belongs to class ‘1’. The SHAP values encode the wavelength's support to the model 

prediction. Wavelength 579.35,597.83, 599.88, and 601.93 support most to the prediction of class ‘1’. 

http://dx.doi.org/10.12962/j24068535.v21i2.a1219
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Figure 9 The attention wavelengths range produce by spectral attention module in the DC-SAM, where we selected the most important 

bands by setting a high threshold, 0.97, to the attention values. 

 
Figure 8 shows the feature importance by SHAP technique from the same spectral input, with the features that 

improve predictions are represented in pink, while features that degrade the prediction are shown in blue. 
Furthermore, the visual size shows the magnitude of the feature's effect. Figure 8 shows that the most significant 
wavelengths that support prediction are 570.35, 597.83, 599.88, and 601.93. 

We also generated the spectral attention map to see which bands the model gave more attention. Figure 9 displays 
an example of spectral attention map visualization. Specifically, we selected the most important bands by setting a 
high threshold, 0.97, to the attention values. The figure shows that DC-SAM pays more attention to the wavelength 
range of 555-610, around 630-640, and 680-700. 

A cursory look at Figure 7, Figure 8, and Figure 9 may indicate that the results of a few specific feature bands 
look different. In order to have a deeper insight, we represent the specific feature bands produced by each method 
e.g., in Figure 10, where the important wavelengths considered by each technique are presented in colours. The 
wavelengths where LIME, SHAP, and DC-SAM intersect colour with green, the wavelengths where SHAP and 
DC-SAM intersect colour with blue, the wavelengths where LIME and DC-SAM intersect colour with red, and the 
wavelengths that do not intersect colour with yellow. The figure shows that all important wavelengths considered 
by SHAP intersect with DC-SAM. For LIME, three out of four wavelengths that are considered as important 
intersect with DC-SAM. DC-SAM explanation result is still consistent with LIME and SHAP because most of 
important wavelengths produced by LIME and SHAP are in the range 555-610 (see Figure 10). But none of the 
specific bands produced by LIME and SHAP lay in the range of 630-640, and 680-700. We then draw explanation 
from more samples to clearly understand the explanation.  

 

 
Figure 10 The wavelengths that are considered as important by LIME, SHAP, DC-SAM. Green represents wavelengths where LIME, 

SHAP, and DC-SAM intersect. Blue = wavelengths where SHAP and DC-SAM intersect; Red= the wavelengths where LIME and DC-
SAM intersect, and Yellow = the wavelength where none intersects. 
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V. CONCLUSION 
The paper focuses on the spectral information and uses the spectral response of the crops to detect stress before 

visible symptoms appear. It proposes a deep learning architecture with dilated convolutional layers to extract the 
spectral features for salt stress classification. The main idea is using dilated 1D convolution on the spectral data to 
capture the short- and long-dependencies between bands. Our experiments on CS, co(CS), sp(CS), and Kharchia 
datasets show that the dilated convolution produces higher performance than the standard convolution.  

The paper also proposes a spectral attention module to explain DC-SAM's prediction by showing which bands 
the model gives more attention to. From experiments, we demonstrate that 1) Some explanations by LIME, SHAP 
exactly lay in the range where DC-SAM pays attention to. 2) Several more samples produce a similar explanation, 
where the bands considered as giving high support to the prediction by LIME, SHAP, and DC-SAM have 
intersections. 3) Some samples with low confidentiality in their classification result have different explanations 
with DC-SAM, LIME, and SHAP. The possible reason is DC-SAM, LIME, and SHAP face difficulties explaining 
the prediction result when the data is also difficult to classify. 
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