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Introduction: Political neuromarketing is an emerging interdisciplinary field

integrating marketing, neuroscience, and psychology to decipher voter behavior

and political leader perception. This interdisciplinary field offers novel techniques

to understand complex phenomena such as voter engagement, political

leadership, and party branding.

Methods: This study aims to understand the neural activation patterns of

voters when they are exposed to political leaders using functional near-infrared

spectroscopy (fNIRS) and machine learning methods. We recruited participants

and recorded their brain activity using fNIRS when they were exposed to images

of different political leaders.

Results: This neuroimaging method (fNIRS) reveals brain regions central to brand

perception, including the dorsolateral prefrontal cortex (dlPFC), the dorsomedial

prefrontal cortex (dmPFC), and the ventromedial prefrontal cortex (vmPFC).

Machine learning methods were used to predict the participants’ perceptions of

leaders based on their brain activity. The study has identified the brain regions

that are involved in processing political stimuli and making judgments about

political leaders. Within this study, the best-performing machine learning model,

LightGBM, achieved a highest accuracy score of 0.78, underscoring its efficacy

in predicting voters’ perceptions of political leaders based on the brain activity of

the former.

Discussion: The findings from this study provide new insights into the neural

basis of political decision-making and the development of effective political

marketing campaigns while bridging neuromarketing, political science, and

machine learning, in turn enabling predictive insights into voter preferences and

behavior.
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1 Introduction

The landscape of political discourse in the 21st century
is undergoing a profound transformation, characterized by
a convergence of methodologies inspired by academic fields
as diverse as marketing, neuroscience, or psychology. This
represents a turning point in the field of political science, by
allowing novel techniques to dissect and understand the intricate
phenomenon of electoral behavior. Central to this evolution is the
imperative to unravel the multifaceted nature of voter engagement,
encompassing not only cognitive but also emotive dimensions with
political leadership and party brands. As this interdisciplinary field,
often termed “political neuromarketing” or “neuropolitics,” has
attracted increasing attention over the last decade, it has also called
for rigorous academic scrutiny. However, the exploration of this
promising field is tempered by a series of ethical considerations,
necessitating finding a delicate balance between potential benefits
and potential risks.

As the evolutionary wheel of political marketing methodologies
turns, it propels itself beyond the transient vortex of passing trends
and embeds itself firmly within the complexities of contemporary
political ecosystems. The convergence of neuromarketing and
neurobranding confronts conventional research paradigms head-
on, tendering insights into the neurobiological mechanics that
orchestrate voter behavior. Yet, ethical considerations stand
sentinel-like, a sentinel safeguarding the sanctity of the political
realm as these methodologies traverse its hallowed precincts.
Irrevocably entwined with this dynamic tapestry of political
marketing stands the burgeoning role of branding within modern
political campaigns. Political parties adroitly wield branding
strategies reminiscent of their consumer-marketing counterparts,
leveraging unique selling propositions, promises of brand fidelity,
and meticulous image curation to sculpt voter perceptions
and exert influence upon electoral choices. The fusion of
political branding and the realm of neuromarketing extends
an unprecedented vista upon the hitherto uncharted terrain of
voter conduct at a neurophysiological level, a vista that beckons
with transformative potential, irrevocably intertwined with ethical
considerations that cannot be ignored (Farah and Gillihan, 2012).

1.1 Branding in marketing and in politics

The seminal contributions of Aaker (1997) laid the foundation
for the concept of brand personality, originally within the context
of marketing. The subsequent adaptation of this concept to
the realm of political leadership, championed by scholars like
Caprara et al. (2002), introduced the innovative notion that
political leaders, as entities separate from their party affiliations,
possess distinctive brand personalities capable of resonating
with voters. Building on this, Needham (2005) extended the
discourse by introducing the concept of “leader-centric” branding,
a paradigm in which the leader’s brand supersedes that of the
political party. The use of advanced neuroscientific methodologies,
including functional Magnetic Resonance Imaging (fMRI) and
Electroencephalography (EEG), in this domain has ushered in a
new era of investigations. These neuroscientific tools provide a solid
foundation for understanding the nuanced and often unconscious

psychological mechanisms that underlie the intricate processes
leading to voters’ decisions (Fisher et al., 2008; Vecchiato et al.,
2011). Nonetheless, as underscored by Westen et al. (2006), the
emotional dimensions intrinsic to political branding should not be
underestimated. In an era where political leaders have morphed
into “emotional brands,” eliciting potent affective responses that
wield considerable sway over voting behavior, ethical complexities
appear with increasing visibility (Murphy et al., 2008; Farah and
Gillihan, 2012). This encroachment on the emotive spheres of
political behavior necessitates a judicious navigation of ethical
considerations to ensure that we, as voters, avoid succumbing to
potentially manipulative tactics just similarly to the debated cases
related to manipulations of the consumers or decision-makers
(Ulman et al., 2015). Moreover, the interplay between political
leadership and party branding defies simplistic cause-and-effect
dynamics, instead manifesting itself within intricate neurocognitive
frameworks that are influenced by cognitive biases, as postulated
by Lau and Redlawsk (2001). The role of political leaders’ extends
beyond that of mere figureheads; they can amplify or temper
the party’s brand perception depending on the resonance of their
individual traits with the electorate’s pre-existing perceptions of
the party’s identity. Recent technological advancements, such as
neuroimaging techniques, have made it possible to quantify these
phenomena, offering the potential for more precisely targeted
political marketing strategies that are both effective and ethically
defensible.

Within liberal Western democracies, political marketing is
undergoing a profound and transformative phase, driven by rapid
advancements in technology and the burgeoning field of applied
neuroscience. This transformative trajectory is intertwined with
the reality of contemporary politics, where the ability to efficiently
adapt to a rapidly evolving voting landscape has become a
critical component of political survival and success. Conventional
research methodologies, such as focus groups and surveys, are now
complemented by a wide array of data analytics, neuroscientific
investigations, machine learning algorithms, and predictive voter
modeling. The intricate interplay between political leadership,
party branding, and voter behavior is more pronounced than ever
(Baines and Egan, 2001; Krieger and Zhang, 2014; Jungherr, 2016).

1.2 From traditional methods to
neuroscientific methods

At the heart of the exploration of leadership perception
stands to exert a discernible influence on voter conduct, the
construction of party brand image, and the ultimate outcomes
of electoral contests. Researchers have started exploring the
roles played by media portrayals, campaign messaging, and the
rapidly evolving digital and social media landscape, in shaping
the public’s perception of political leadership (McCombs and
Shaw, 1972; Parmelee and Bichard, 2011). The traditional research
methodologies used by these scientists, however, have been
criticized for their susceptibility to biases, inherent in self-reported
data, which in turn has paved the way for the emergence of political
neuromarketing, or neuropolitics—a subfield of the domain of
applied neuroscience—that has the potential to deliver more
objective and quantifiable measurements of voter response using
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tools such as functional Magnetic Resonance Imaging (fMRI) and
Electroencephalography (EEG) (Fisher et al., 2010).

The combination of several neuroscientific tools, such as fMRI
and EEG, has opened the door to a better understanding of
the way political messages are processed in the human brain.
They have afforded a deeper understanding of the emotional and
cognitive mechanisms that guide voter decision-making (Falk et al.,
2012). It is within this context that the concept of neurobranding
has emerged, which considers the way branding elements such
as campaign slogans and logos trigger neural responses and
subsequently influence voter behavior (Vecchiato et al., 2011). The
current evolution of political marketing, which is also related to the
methodologies used, is more than a trend; it is a necessity in order
to untangle the intricacies of modern political ecosystems. The
combination of neuromarketing and neurobranding potentially
presents a profound challenge to conventional research paradigms
by offering new insights into the neuroscientific mechanisms that
underlie voter behavior. However, the application of research tools
to the domain of politics necessitates a robust and comprehensive
ethical framework.

The understanding of the critical traits that shape voting
behavior, such as trustworthiness, competence, and empathy,
has been fundamentally transformed through the application of
advanced neuroimaging techniques (Kato et al., 2009). These
techniques not only serve to confirm the effectiveness of messaging
strategies that accentuate such traits, but also enable the creation
of meticulously tailored campaigns that target specific segments
of the electorate. The extension of Jungian archetypes to the
realm of political leadership branding, an endeavor informed by
the principles of neuromarketing, also offers novel insights into
how voters perceive the personas of political leaders (Zaltman,
2003). The relationship between political leadership and party
branding is not superficial but profoundly embedded within the
cognitive and emotional frameworks that guide voter behavior. It
is within this landscape that the field of neuropolitics comes into
play, shedding light on the neurocognitive mechanisms underlying
cognitive biases, partisan loyalty, and phenomena such as the
Halo and Horns Effects (Westen et al., 2006; Kanai et al., 2011).
With the advent of neuroimaging methodologies, the exploration
of the neuro-resonance between leaders and their party’s brand
emerges, serving as a more objective metrics to gauge the alignment
between leadership and party, and the concomitant impact on voter
behavior (Harris et al., 2018).

1.3 Use of neuroscientific methods in
political marketing

Understanding the attitudes of party members toward the
leaders of their respective parties has taken a central place
in contemporary academic literature. Using neuroimaging tools,
this study aims at revealing the neural correlates that underlie
responses to positive and negative trait adjectives. By discerning
the variations in activation patterns in frontal brain regions among
subjects affiliated with distinct political parties when exposed
to images of political leaders alongside positive or negative
adjectives, the study aims to improve our understanding of
the intricate dynamics between leadership perception and party

affiliations. While functional Magnetic Resonance Imaging (fMRI)
has traditionally been the hallmark of such studies, here we chose to
use the functional near-infrared spectroscopy (fNIRS) system due
to its cost-effectiveness and its growing acceptance within scholarly
circles (Botvinick et al., 2004; Kerns et al., 2004; Ridderinkhof et al.,
2004; Van Veen and Carter, 2006).

Political decisions often exhibit a level of uncertainty regarding
the eventual outcomes, a variable recognized to influence reward-
related signals within the ventromedial prefrontal cortex (vmPFC),
as evidenced in economic paradigms (Krastev et al., 2016).
Moreover, a body of evidence stemming from human lesion studies
underscores the role of the ventral frontal lobe, encompassing
both the vmPFC and the orbitofrontal cortex (OFC), in shaping
value-based choices across diverse contexts, including those within
the realm of political decision-making (Krastev et al., 2016). This
substantiates the assertion that the vmPFC is an indispensable
neural substrate for value-driven decisions as illustrated with
various empirical findings (Çakir et al., 2018). Political decision-
making is often guided by the application of heuristics or cognitive
shortcuts, as postulated by established scholarship (Popkin, 1991;
Sniderman et al., 1993; Lupia, 1994). Citizens, in this regard,
frequently draw cues from interveners and agenda-setters, evaluate
the performance of the incumbent government based on economic
indicators, consider a candidate’s party affiliation or ideological
alignment, employ party affiliation as a proxy for issue positions,
or even evaluate candidates based on superficial factors such as
appearance or social background characteristics (Popkin, 1991;
Rahn, 1993; Lau and Redlawsk, 2001). In contrast, political
behavior delves into individuals’ preferences concerning aspects of
societal organization and collective structure which may or may
not directly impact them personally (Krastev et al., 2016). The
ramifications of voting extend potentially to all members of a given
society, and the outcome of the vote and its anticipated advantages
hinge upon the choices made by fellow citizens.

Empirical findings from the literature reveal an increase
in neural activation in response to statements that focus on
individual interests, such as "Everybody should prioritize his or her
own interests over society’s" (Zamboni et al., 2009). Conversely,
statements emphasizing societal interests, like "Citizens should
vote based on collective interest," lead to heightened activation
in the right dorsomedial prefrontal cortex (dmPFC) and left
Temporoparietal Junction (TPJ). The degree of conservatism in
individuals was linearly associated with the activation of the right
dorsolateral prefrontal cortex (dlPFC), particularly in response to
more conservative and stereotypical statements like "Everybody
should oppose teaching evolutionary theory" (Zamboni et al.,
2009). These findings suggest an opposing pattern of neural
activation in the vmPFC and dmPFC, indicating that distinct
regions within the medial prefrontal cortex are engaged in
processing different aspects of social knowledge (Zamboni et al.,
2009). The vmPFC seems primarily involved in self-referential
processing and is also recruited when processing information about
others involves a self-referential evaluation. In contrast, the dmPFC
is linked to more universally applicable social-cognitive processes
that are independent of self-reference (Zamboni et al., 2009). In this
study, statements focusing on individual perspectives engaged the
vmPFC because they likely prompted self-referential processing,
while statements emphasizing societal interests activated the
dmPFC due to their requirement for processing information related
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to others. Furthermore, the activation of the dlPFC in response
to certain statements may reflect its role in deliberative decision-
making during complex social evaluations.

1.4 Leadership-centric branding

The concept of leader-centric branding, an idea proposed by
scholars such as Newman (1994) and subsequently developed by
Caprara et al. (2002), further underscores the way political leaders
embody their party’s identity. Contemporary neuroscientific
methodologies, by offering the tools necessary for an objective
measurement of the influence of leadership traits on voter
decision-making, have underlined the importance of leader-
centric branding (Fisher et al., 2008; Vecchiato et al., 2011).
At the core of this unfolding narrative resides the exploration
of leadership perception, an influential concept that profoundly
shapes voter behavior, the construction of party brand images, and
electoral outcomes. Researchers have plumbed the multifaceted
reverberations emanating from media portrayals, campaign
messaging, and the rapidly evolving socio-digital terrain on
which political interactions unfold. However, the vulnerability of
traditional methodologies to self-report biases has paved the way
for the emergence of political neuromarketing, thereby ushering in
a new epoch replete with objective and quantifiable yardsticks to
gauge voter responses.

Certain cerebral regions exhibit significantly heightened
activation in response to the visage of a political candidate
from an opposing party compared to one from the observer’s
own political affiliation. These neural activations concern the
dlPFC, the insula, and the anterior cingulate cortex (ACC), as
well as the supplementary motor area, the cuneus, and the pre-
central gyrus (Kaplan et al., 2007). Notably, there is a noteworthy
percent signal change for individuals affiliated with different
political parties in three key regions—the dlPFC, the ACC, and
the insula—where greater activation occurs when viewing the
opposing candidate vis-à-vis their own candidate. It was noted
that the brain activity elicited while viewing presidential candidate
visages is influenced by the political attitudes of observers,
and, particularly, the act of viewing the opposing candidate
as opposed to one’s own candidate triggers activation in the
dlPFC and the ACC (Kaplan et al., 2007). Within the ACC,
there exists a subdivision between “emotional” and “cognitive”
sectors, with the observed activation predominantly situated in
the “cognitive” domain. This specific ACC subregion is linked
to attentional control and self-monitoring, and operates in
conjunction with the dlPFC to oversee response conflict and engage
cognitive control when needed. The activity within this network
correlates with individuals’ self-reported emotional reactions to
the candidates, with greater dlPFC activation observed when
individuals harbor more negative sentiments toward the opponent
and more positive sentiments toward their own candidate.
This suggests that the images of candidates trigger cognitive
control mechanisms for emotional self-regulation (Kaplan et al.,
2007).

Neurological activity within brain regions previously associated
with evaluative cognitive processes and research pertaining to
ideological disparities, such as the insula and the ACC, displayed

variations contingent upon the interplay of incongruence,
candidate categorization (ingroup or outgroup), and individuals’
political ideology (Haas et al., 2017). Specifically, individuals
with more liberal political orientations exhibited increased neural
activation when confronted with incongruent as opposed to
congruent stimuli, particularly when observing candidates from
their own political group (Haas et al., 2017). In other words,
liberal-leaning participants were prone to exhibit increased levels
of neural activation in the ACC and insula when encountering
incongruent stimuli compared to congruent ones, especially when
these stimuli featured political candidates affiliated with their
own ideological group (Haas et al., 2017). This highlights that the
medial prefrontal cortex’s involvement can be extended to regions
associated with evaluative cognitive processes and to the detection
of cognitive conflicts more broadly, such as the insula and ACC.
Furthermore, this neural processing is demonstrably influenced by
both an individual’s political ideology and their affiliation with a
particular political group.

1.5 Methodological transformation:
neuroscientific perspective

In Western liberal democracies, the field of political marketing
stands at the precipice of transformative change, catalyzed
by the rapid march of technological advancements and the
burgeoning landscape of data sciences. This paradigm shift is
inexorably intertwined with the exigencies of contemporary
politics, wherein the imperative for real-time responsiveness to
dynamic voter sentiment has assumed paramount significance
for political viability. Traditional research methodologies,
encompassing established tools such as focus groups and surveys,
have burgeoned to assimilate an intricate tapestry of data analytics,
machine learning algorithms, and predictive voter modeling. This
evolutionary trajectory accentuates the profound interplay between
the spheres of political leadership, party branding, and voter
behavior. The symbiotic fusion of neuroscientific instruments,
most notably functional Magnetic Resonance Imaging (fMRI)
and Electroencephalography (EEG), heralds a watershed juncture
in comprehending the neural crucible within which political
messages undergo processing in the human brain. This stride
forward in understanding illuminates the intricate cognitive and
emotional circuitry governing the labyrinthine expanse of voter
decision-making, thereby spotlighting the alignment between these
neural choreographies and the decisions made by individual voters.
Of considerable import, the concept of neurobranding plunges
into the depths of how branding elements trigger neural responses,
in turn influencing voter conduct, thereby underscoring the
transformative power inherent in these innovative methodologies.

Traditional approaches to neuropolitics based on neurometrics,
such as self-reported measures and fMRI, have several limitations,
since self-reported measures are susceptible to social desirability
bias, and fMRI is expensive and time-consuming (Pereira et al.,
2009). The active use of machine learning algorithms offer
several advantages over these traditional approaches. First, machine
learning algorithms can be used to analyze large datasets
of neuroimaging data, which is not feasible with traditional
approaches (Alexandre et al., 2014). This allows researchers to
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identify subtle patterns in the data that might be missed by
traditional methods. Second, machine learning algorithms can
be used to develop models that can predict voter behavior or
political leader perception based on brain activity, as done in
other fields such as student performance and applied neuroscience
(Rice and Dean, 2005; Pereira et al., 2009). This outcome is
generally not possible when traditional approaches are used.
Third, machine learning algorithms can be used to identify the
brain regions that are involved in different aspects of political
decision-making. This can help researchers to better understand
the neural basis of political behavior. Thus, in this study, machine
learning algorithms are initially aimed to analyze fNIRS data
to predict voters’ perception of political leaders. This approach
has several advantages over traditional approaches, since fNIRS
is a relatively inexpensive and portable neuroimaging technique,
making it more accessible to researchers as well as less susceptible
to motion artifacts than fMRI, or in fewer terms, making it
more suitable for studying real-world political stimuli (Cui et al.,
2011).

1.6 New approaches to political
neuromarketing

The combined use of advanced neuroimaging methodologies,
data analysis techniques, and machine learning methods has
profound implications for the future of political neuromarketing
strategy. Empirical findings from this study will shed light on
the neural correlates that underpin political perception and leader
preference, thus providing researchers with insights into the
cognitive and emotional constructs that steer voter conduct.
The capacity to predict political leader perception through
neuroscientific data and machine learning algorithms is a novel
means for gauging voters’ responses, thereby facilitating the
crafting of targeted and efficacious political strategies. Moreover,
the findings of this study underscore the dynamic interplay
characterizing sensory attributes and cultural affiliations in shaping
political preferences, thus accentuating the need for generating
approaches that are capable of addressing diverse voter groups
(Breiter et al., 2015).

The observed prefrontal cortex responses to candidates from
opposing parties align with prior research demonstrating similar
neural activations in response to faces of racial outgroups. However,
in the context of political attitudes, it remains unclear whether
voters are motivated to suppress their negative feelings toward
the opposing party’s candidate. Three potential explanations for
these activations are proposed: dlPFC/ACC activity could reflect
the suppression of unwanted negative emotions, the suppression
of positive feelings toward the opposing candidate, or an up-
regulation of negative feelings about the opposing candidate.
The dlPFC’s role in regulating emotional responses in general
suggests that the activity observed may relate to attempts to
intensify negative emotions toward the opposing candidate.
Notably, medial prefrontal cortex (mPFC) activity does not signify
positive emotion but is activated when making decisions laden with
affective content.

The current study aims at understanding the neural activation
patterns of voters’ leader perception within the prefrontal cortex

and providing a predictive model within this context, as well
as developing an objective method for political neuromarketing
strategies. Synthesizing the latest findings from the domains of
political science, neuromarketing, and decision neuroscience, this
research aims to construct a framework that would delineate the
contours of responsible practice. In particular, by unifying the
evolving trends within political branding and identifying the gaps
in the existing academic literature, this interdisciplinary study lays
the intellectual groundwork for future empirical inquiries in this
rapidly evolving field.

2 Materials and methods

2.1 Participants

Participants were recruited via targeted invitations sent to
members of party district assemblies residing in Istanbul and
representing two distinct political parties. A total of thirty-two
participants volunteered to take part in the study. To minimize
potential gender-related confounding variables, we selected only
male participants. The average age of the participants who were
also actively engaged in professional activities was 34.76 years
(between 25 and 49, SD = 6.21). The difference in age distribution
of participants from both parties was not statistically significant
[t(30) = 1.79, p = 0.08]. This study was conducted in adherence
to the principles outlined in the Declaration of Helsinki (World
Medical Association, 2013). After the participants were instructed
about the experiment and their questions were answered, they
signed informed consent forms before moving on to the data
collection phase. Their right to leave the experiment at any moment
if they experience any form of discomfort for any reason was also
explained. Moreover, the oral and written instructions covered the
fact that the collected datasets would not be shared with any third
parties. The participants were mainly asked to respond to the given
leader–adjective pairings on a three-point Likert scale (Jacoby and
Matell, 1971).

2.2 Optical brain imaging system

The present investigation used a near-infrared spectroscopy
(NIRS) system as primary data collection instrument. The NIRS
system utilized in this study is produced by fNIR Devices, model
11001 and is rooted in the research development units of Drexel
University (Philadelphia, PA, USA) (Ayaz, 2010). The system
consists of three elements: a flexible sensor with 16 optodes (8
light sources and 8 detectors) arranged in a 4 × 4 grid, and
which is securely fixed to the participant’s head; the control box
with electronic components and analog-to-digital converters; and
the system computer, which runs the COBI Studio software and
facilitates real-time data monitoring and recording. The sensor,
equipped with four distinct light sources, detects oxygenation
levels through ten detectors while concurrently recording data
streams across sixteen distinct channels (Ayaz et al., 2011).

1 https://fnirdevices.com/
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Notably, the sensor is designed so that the light source and the
detector are approximately 2.5 centimeters apart, thereby enabling
measurements from depths of approximately 1.25 centimeters.
This fNIRS system uses two wavelengths (760 nm and 830 nm)
to measure the concentration of oxygenated hemoglobin (HbO2)
and deoxygenated hemoglobin (Hb) in the blood. Functionally,
the system boasts a data acquisition frequency of 2 samples per
second (2 Hz) and is capable of measuring neural activity within
the Brodmann areas BA9, BA10, BA44, and BA45 (Ayaz et al.,
2011).

The non-invasive and portable nature of the optical brain
imaging system is instrumental to its effectiveness. Employing
a flexible sensor, the system is positioned on the participant’s
forehead, facilitating the measurement of changes in neural
activation levels within the frontal brain region (Jobsis, 1977).
The optical brain imaging system measures oxygenation levels
and variations in blood volume within the brain, offering insights
into increased functionality (Bunce et al., 2006). Concomitantly,
an augmentation of oxygenation levels is anticipated within
regions correlated with enhanced cognitive activity via this optical
brain imaging system. The system’s cost-effectiveness, security,
portability, and relatively high temporal and spatial resolution
make it increasingly popular in contemporary brain imaging
investigations (Bunce et al., 2006).

2.3 Experimental procedure

Data for the study was acquired in accordance with the
requirements of the Declaration of Helsinki. COBI Studio Software
was used for signal acquisition, and is synchronized with E-Prime
Software (v2.0). The latter was used for stimuli presentation with
the use of markers sent via parallel port, and fNIRSoft was used
for data pre-processing and the first stages of the analyses (Ayaz,
2010). In accordance with the research framework, five positive
and five negative adjectives were selected, based on previous field
studies conducted in the domain of political marketing, and which
were validated by the expert opinions of professionals and scholars
(Girişken, 2010). Positive adjectives included “hardworking,”
“honest,” “religious,” “leader,” and “powerful,” whereas negative
adjectives included “passive,” “lazy,” “weak,” “turncoat,” and
“arrogant.” During the experiment, participants were shown these
adjectives for 6 s each, displayed beneath an image of either Party
A or Party B’s leader. The presentation exposed participants to
each pairing individually, followed by the next fixation screen. This
resulted in a total of twenty combinations for the two leaders,
presented in a randomized sequence. Participants responded using
a three-point Likert scale (disagreement, indecision, agreement) for
each pairing.

An 8-s fixation screen separated each leader–adjective pair.
Throughout the experiment, participants’ prefrontal brain region
activations were continuously monitored using optical brain
imaging (fNIR). This monitoring aimed to capture real-time neural
responses to the presented stimuli, facilitating a direct correlation
between the cognitive processing of the image-adjective pairings
and the neural activity within the prefrontal cortex. Initially, the
fixation screen was presented for 8 s, with the final 4 s serving as
the baseline for the upcoming leader-adjective pair. After displaying

the leader-adjective pair for 6 s, the subsequent fixation screen was
presented, which served as the baseline for the next stimulus.

2.4 Data pre-processing

The data was pre-processed in alignment with the temporal
dynamics between stimulus exposure and tissue oxygenation.
fNIRS data from 16 optodes at two wavelengths was pre-processed
using a 20th-order, 0.1 Hz low-pass filter to attenuate high-
frequency noise from respiration and cardiac pulsation (Ayaz et al.,
2012). Saturated channels, where light intensity at the detector
exceeded the analog-to-digital converter limit, were excluded.
Motion artifacts were detected and removed using a sliding window
motion artifact filter (Ayaz et al., 2011). Rest and task epochs were
extracted from the continuous data using time synchronization
markers. Blood oxygenation changes (1HbO2 and 1HbR) were
calculated for each optode during each block (leader-adjective
pair and decision) using the modified Beer-Lambert Law with
respect to a resting baseline oxygenation at the beginning of each
trial (Ayaz, 2010). Following this pre-processing, each pairing
phase was subtracted from the mean activity observed during the
preceding resting screen, thereby accentuating the effect of the
stimulus. Ultimately, the mean value for each pairing phase was
computed, enabling subsequent comparison. The 6-s trials were
then averaged to form evoked oxygenation signals (1HbO2 minus
1HbR). Finally, these evoked signals were labeled according to the
participants’ decisions, and these labels were utilized as the target
classes for subsequent data analyses.

Our primary dataset encompassed a set of 640 observations
(derived from 32 participants responding to 20 stimuli) across 19
attributes. Central to our study were the columns representing
the “Participant,” “Party Affiliation,” “Response Code,” and the
tissue oxygenation values captured from 16 distinct optodes. The
pivotal “Response Code” served as a reflection of the participants’
sentiments toward certain party leaders, categorizing them into
positive or negative groups. The positive group is formed from
responses where the participant does not agree with the pair, and
the negative group is formed from responses where the participant
agrees with the pair. The “Null” values in responses originated
from instances where the participant responded as indecisive,
chose not to respond or could not respond within the given
duration. These 20 observations with “Null” values were removed
to maintain data integrity. In our pre-processing steps, any row
containing more than 33.3% of missing values was subjected to
a stringent rule: all values within such rows were converted to
Nulls, thereby facilitating their exclusion. Data from 32 participants
were initially collected, but due to excessive artifacts, the data
from one participant was excluded from the dataset during the
pre-processing stage.

Outlier detection within each participant’s data was conducted
utilizing a z-score method, calibrated against the computed mean
and the standard deviation. Values surpassing a z-score of 4
threshold were amended to the closest boundary value, with this
correction applied distinctly for each "Response Code" category. An
KNN Imputer method was then implemented for the imputation
of missing data. KNN imputer algorithm functions by estimating
missing values in a dataset based on the k-nearest neighbors, using
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their value as a reference to infer the missing data (Zhang, 2010).
Variance normalization across measurement columns was achieved
through the application of the standard scaler algorithm, ensuring
a normalized range of data on an individual basis. This algorithm
centers each feature by subtracting the mean and scaling it to unit
variance, thus standardizing each feature to a mean of zero and a
standard deviation of one (Pedregosa et al., 2011).

A stratified holdout method (500 observations for the training
and 120 testing) was used by selecting 6 random participants. The
hold-out method is a widely used validation technique in machine
learning that involves setting aside a subset of the available data
to evaluate the performance of a model without using this subset
during the training phase. By selecting participants, this method
ensures that the participant’s data used for evaluation remains
independent from the data used for training, providing a more
accurate assessment of the model’s generalization ability (Hastie
et al., 2009). During the model development phase, a fivefold cross-
validation was applied to the training dataset (Vabalas et al., 2019;
Baumgartl et al., 2020).

2.5 Model development

The subsequent phase investigated the effects of diverse
machine learning algorithms on the pre-processed dataset. This
exploration included steps such as model selection, hyperparameter
tuning, training, and rigorous evaluation, facilitating a thorough
juxtaposition of algorithmic performance. The algorithms applied
to the dataset included: Logistic Regression (Pampel, 2021),
Random Forest (Breiman, 2001), k-Nearest Neighbors (k-NN)
(Hjaltason and Samet, 1999), Decision Tree (Dietterich, 2000),
AdaBoost (Bühlmann and Hothorn, 2007), XGBoost (Chen and
Guestrin, 2016), Extra Tree Classifier (Geurts et al., 2006),
CatBoost (Dorogush et al., 2018), LightGBM (Lin et al., 2022),
and Stacking Classifier (Džeroski and Ženko, 2004). Each of these
algorithms with distinct characteristics, are frequently utilized
in studies focusing on predictive models, particularly in the
realm of neuroscience. This can be seen in the work of Glaser
et al. (2019), which provides a comprehensive review of machine
learning applications in neuroscience. The methodologies outlined
in Table 1 elucidate the optimization of algorithmic performance
and contribute to the selection of the appropriate models for
distinct analytical tasks. Machine learning algorithms are useful
tools to analyze data obtained when investigating decision-making
processes.

Hyperparameter tuning was conducted to optimize our
machine learning models, focusing on parameters such as learning
rate, number of trees, and maximum tree depth (Hernández-
Lobato et al., 2017). Hyperparameter finetuning is important
because the performance of a machine learning model can be highly
sensitive to the values of its hyperparameters (Hutter et al., 2019).
We employed a grid search approach, systematically evaluating the
model’s performance across various hyperparameter settings on
a fivefold cross validation over the held-out training set (Coelho
and Silva, 2018). This approach helped identify the most effective
hyperparameter values for our final model training.

Selecting the suitable algorithms and configuring their
hyperparameters accordingly has a significant influence on the

effectiveness of the models. In this study, we considered a
large selection of algorithms, each taking a distinct approach
to classification via different parameter values and the best
resulting parameters were shown in Table 2. Through the
rigorous evaluation of their performance, valuable insights have
been obtained as to their effectiveness across a spectrum of
scenarios. The ensuing sections delineate the step-by-step approach
undertaken to assess these machine learning algorithms.

2.6 Evaluation of the machine learning
models

The performance of the machine learning models will
be evaluated on a held-out validation set to assess their
generalizability. The validation set will consist of 20% of the
participants who were not included in the training set. The standard
metrics of accuracy, precision, recall, and F1 score are used to
evaluate the performance of the models; they are presented in
Table 3.

The Area Under the Curve (AUC) is a critical metric
for assessing binary classifiers. It is derived from the Receiver
Operating Characteristic (ROC) curve, which illustrates the model’s
true positive rate (sensitivity) against its false positive rate (1–
specificity) across different thresholds (Witten et al., 2016).
Essentially, the AUC, ranging from 0 to 1, evaluates the model’s
ability to correctly classify positive and negative cases, with 1
indicating perfect accuracy and 0.5 denoting a random chance level
of accuracy. This metric is also valuable in understanding voter
behavior for its robustness against varying class distributions in the
data.

2.7 Explainability of the machine learning
models

The model explainability is generally assessed using a variety of
techniques including feature importance, partial dependence plots,
and counterfactual explanations (Samek et al., 2017). The feature
importance method measures the importance of each feature in the
predictive model. The feature importance will be calculated using
the permutation importance method which involves randomly
permuting each feature in the training set and observing the change
in the model’s performance (Samek et al., 2017). The features that
have the largest impact on the model’s performance are considered
to be the most important ones.

The SHAP (SHapley Additive exPlanations) method is a
model-agnostic approach to explaining the predictions of machine
learning models; it is based on the Shapley values, a concept from
game theory that measures the contribution of each player to a
coalition (Wang et al., 2021). In the context of machine learning,
the SHAP value of a feature is the average difference between the
model’s prediction with and without the feature, and these SHAP
values calculated for all features can be added up to explain the
model’s prediction for a given input (Wang et al., 2021). The SHAP
method has several advantages over other methods for explaining
machine learning models as it is considered to be model-agnostic,
consistent, and locally interpretable (Doshi-Velez and Kim, 2017).
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TABLE 1 The machine learning algorithms used for model development.

Machine
learning
algorithm

Strengths Weaknesses

Logistic regression – Simple, interpretable linear model.
– Fast to train and predict.
– Effective for binary classification problems.
– Outputs well-calibrated predicted probabilities.

– Assumes linear relationship between predictors and target.
– Can be outperformed by complex models on non-linear data.
– Sensitive to irrelevant features and outliers.
– Not suitable for complex relationships without feature engineering.

Random forest – Robust against overfitting due to ensemble approach.
– Handles high-dimensional data well.
– Suitable for both classification and regression tasks.
– Provides feature importance ranking.
– Resistant to noise and outliers.

– May require careful tuning of hyperparameters.
– Can be computationally intensive for large datasets.
– Interpretability of individual trees might be challenging.
– Prone to bias in favor of dominant classes.
– Difficult to visualize complex interactions.

K-nearest neighbors – Intuitive and easy to understand.
– Non-parametric nature accommodates complex decision boundaries.
– Robust to noisy data.
– No assumptions about data distribution.
– Can be adapted for both classification and regression tasks.

– Sensitive to the choice of k (number of neighbors).
– Computational complexity increases with large datasets.
– Can be affected by irrelevant features.
– Poor performance if data has varying densities.
– Doesn’t handle high-dimensional data efficiently.

Decision tree – Easily visualized and interpreted.
– Can handle both numerical and categorical data.
– Does not require data normalization.
– Can model non-linear relationships.

– Prone to overfitting, especially with deep trees.
– Can be unstable with slight data changes.
– Biased with imbalanced datasets.

AdaBoost – Boosting technique improves weak learners.
– Less prone to overfitting.
– Aggregates results for improved accuracy.
– Adapts quickly to changes in the data.

– Sensitive to noisy data and outliers.
– Requires careful tuning of hyperparameters.

XGBoost – Powerful ensemble method with high predictive accuracy.
– Handles missing data effectively.
– Regularization and pruning prevent overfitting.
– Supports various evaluation criteria.
– Handles imbalanced classes through weighted sampling.

– Prone to overfitting if hyperparameters are not properly tuned.
– Requires careful selection of learning rate and tree-specific
parameters.
– Can be computationally intensive.
– Black-box nature makes interpretation challenging.
– Potential for biased predictions if not balanced properly.

Extra tree classifier – Random splits lead to reduced variance.
– Generally faster than Random Forest due to randomness.
– Can be less prone to overfitting.

– Might be less accurate than random forest.
– Random splits can sometimes produce suboptimal trees.

CatBoost – Handles categorical data directly.
– Less prone to overfitting with default parameters.
– Built-in support for missing data.
– Has an efficient implementation.

– Can be slower to train compared to other GBMs.
– Parameter tuning can be complex for novice users.

LightGBM – Fast training and efficient memory usage.
– Supports categorical features.
– Suitable for large datasets with improved accuracy.
– Uses gradient-based one-side sampling.

– More sensitive to overfitting with small datasets.
– Requires careful tuning for optimal performance.
– Might be less intuitive than traditional GBMs.

Stacking classifier – Utilizes multiple layers of learning for enhanced accuracy.
– Leverages diverse model types for improved generalization.
– Can capture complex patterns through hierarchical approach.
– Integrates multiple viewpoints for more robust predictions.
– Potential for discovering nuanced relationships.

– Complex to implement and tune due to multiple layers.
– Prone to overfitting if not carefully validated.
– Requires substantial computational resources for training.
– Risk of information leakage between layers.
Interpretability challenges arise from multi-level architecture.

The model’s predictions are calculated for all possible subsets
of the features and then the average difference between the model’s
prediction with and without a given feature is calculated for each
subset (Wang et al., 2021). The SHAP value for a given feature is
calculated as the average of these differences. The SHAP values can
be used to explain the model’s predictions in a variety of ways. For
example, they can be used to generate waterfall plots, which show
the impact of each feature on the model’s prediction. SHAP values
can also be used to identify the features that are most important for
the model’s predictions.

3 Results

3.1 Model performance outputs

After the intensive period of model development, the
model evaluative metrics were generated and presented as
tables, and each of these has been investigated in more
detail. Below, the best models with respect to the conducted
grid search optimization are presented. Of all these models,
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TABLE 2 Parameters used during model development.

Algorithm Critical parameters used during model
development

Tested range/values

Logistic regression C: This parameter controls the strength of the L2 regularization.
A higher value of C will lead to a more regularized model, which may be
less accurate but more robust to overfitting.

(0.01, 0.02, 0.03, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.5, 1, 2, 3, 5)

Penalty: this parameter is used to specify the norm used in penalization. l2, elasticnet, none, l1

Class_weight: this parameter weights associated with classes. Balanced, none

Solver: this parameter specifies the algorithm to use in the optimization
problem.

lbfgs, liblinear, newton-cg

Random forest n_estimators: this parameter controls the number of trees in the forest.
A higher number of trees will lead to a more accurate model, but it will
also take longer to train.

(100, 200, 300, 4000)

Max_depth: This parameter controls the maximum depth of each tree in
the forest. A deeper tree will be able to learn more complex relationships
between features, but it will also be more prone to overfitting.

(3, 5, 6, 7, 8, 9, 10)

K-nearest neighbors n_neighbors: this parameter controls the number of neighbors to use to
make a prediction. A higher number of neighbors will make the model
more robust to noise, but it may also reduce the accuracy of the model.

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15)

Weights: this parameter controls the weights that are given to the
different neighbors when making a prediction. The default weight is
“uniform,” which means that all neighbors are given equal weight. Other
possible weights include “distance” and “inverse distance.”

Uniform, distance

Algorithm: this parameter controls the algorithm that is used to find the
nearest neighbors. The default algorithm is “auto,” which will
automatically select the best algorithm based on the data.

Auto, ball_tree, kd_tree, brute

Decision tree Max_depth: this parameter controls the maximum depth of the tree.
A deeper tree will be able to learn more complex relationships between
the features, but it will also be more prone to overfitting.

(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15)

Max_features: this parameter defines the number of features to consider
when looking for the best split.

Auto, sqrt, log2

AdaBoost n_estimators: this parameter controls the number of base learners in the
ensemble. A higher number of base learners will lead to a more accurate
model, but it will also take longer to train.

(100, 200, 300, 400)

Learning_rate: this parameter controls the learning rate of the AdaBoost
algorithm. A higher learning rate will make the algorithm learn more
quickly, but it may also make it more prone to overfitting.

(0.01, 0.03, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9,
1, 1.4, 1.5)

XGBoost n_estimators: this parameter controls the number of trees in the forest.
A higher number of trees will lead to a more accurate model, but it will
also take longer to train.

(100, 150, 200, 250)

Max_depth: this parameter controls the maximum depth of each tree in
the forest. A deeper tree will be able to learn more complex relationships
between the features, but it will also be more prone to overfitting.

(3, 4, 5, 6, 7, 8)

Learning_rate: This parameter controls the learning rate of the XGBoost
algorithm. A higher learning rate will make the algorithm learn more
quickly, but it may also make it more prone to overfitting.

(0.01, 0.04, 0.05, 0.06, 0.07, 0.08, 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)

Extra tree classifier n_estimators: this parameter controls the number of trees in the forest.
A higher number of trees will lead to a more accurate model, but it will
also take longer to train.

(100, 200, 300, 400, 450, 500, 550)

Max_depth: this parameter controls the maximum depth of each tree in
the forest. A deeper tree will be able to learn more complex relationships
between the features, but it will also be more prone to overfitting.

(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)

CatBoost Iterations: this parameter controls the number of iterations the
algorithm will run. learning_rate: this parameter controls the learning
rate of the CatBoost

(50, 100, 150, 200)

Depth: this parameter controls the depth of the tree. A deeper tree can
model more complex relationships, but may lead to overfitting.

(2, 3, 4, 5, 6)

(Continued)
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TABLE 2 (Continued)

Algorithm Critical parameters used during model
development

Tested range/values

Early_stopping_rounds: if the model’s performance does not improve
after a specified number of rounds, the training will be halted early to
prevent overfitting.

(1, 2, 3, 4, 5, 6, 7, 8, 9)

Learning_rate: this parameter determines the step size at each iteration
while moving toward a minimum of the loss function. A lower value will
make the optimization more robust, but the convergence will be slower.

(0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1, 1.3)

Light GBM Boosting_type: this parameter defines the type of algorithm to run.
“gbdt” stands for gradient boosting decision tree, “goss” stands for
gradient-based one-side sampling, and “dart” stands for dropouts meet
multiple additive regression trees.

gbdt, goss, dart

Learning_rate: this is the rate at which the model corrects for errors
from the previous iteration. A smaller learning rate can lead to a more
accurate model but will take longer to train.

(0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5)

Num_iterations: specifies the number of boosting iterations, which
corresponds to the number of trees added to the model.

(50,100, 150, 200)

Early_stopping_rounds: if the model’s performance does not improve
after a specified number of rounds, the training will be halted early to
prevent overfitting.

(1, 2, 3, 4)

Max_depth: this parameter controls the maximum depth of each tree in
the forest. A deeper tree will be able to learn more complex relationships
between the features, but i will also be more prone to overfitting.

(2, 3, 4, 5, 7)

The bold values represent the best resulting parameters for each algorithm and parameter set evaluated in our study. These values signify the optimal configurations identified through our
analysis, providing clear indications of the most effective parameter choices within the tested range for each respective algorithm.

TABLE 3 Evaluation metrics for machine learning models.

Term Definition Formulation

Accuracy The proportion of
predictions that are
correct.

(True positives + True
negatives)/Total

Precision The proportion of
positive predictions that
are correct.

True positives/(True
positives + False positives)

Recall The proportion of actual
positive cases that are
correctly predicted.

True positives/(True
positives + False negatives)

F1 Score A harmonic mean of
precision and recall.

2 × (Precision × Recall)/
(Precision + Recall)

LightGBM appears to be the one with the highest performance
(Table 4).

As shown in Table 4, LightGBM outperforms all other models
on all metrics. It demonstrates an accuracy of 0.78, a precision of
0.79, and a recall of 0.78. The F1 score, representing the harmonic
mean of precision and recall, is also 0.78. Furthermore, the model
achieves an AUC of 0.88. These values make LightGBM the best
model for predicting voters’ perceptions of political leaders. We
can also see from Table 4 that all the models perform well on the
data. This suggests that the data is informative and that the task of
predicting voter perceptions of political leaders is feasible. Overall,
the model performance outputs are very positive. These results
suggest that the proposed approach of using machine learning
algorithms to analyze fNIRS data to predict voter perceptions of
political leaders is promising.

3.2 Model explainability

The models formulated on the basis of the fNIRS measurements
provide compelling information about the participants’ adverse
reactions to leader–adjective congruence. It is a crucial fact that
fNIRS signals are not always directly associated with specific
brain regions, and that there can be variability in how signals
are interpreted across different studies. This is due to the fact
that fNIRS measures changes in blood oxygenation levels, which
can be influenced by a variety of factors, including blood flow,
metabolism, and brain activity. Despite these limitations, fNIRS
can be a valuable tool for studying brain activity, particularly
in situations where other methods, such as fMRI, are not feasible.

Notably, the majority of negative responses are associated
with specific neural activations. Optode 13, which corresponds
to the right dorsolateral prefrontal cortex (dlPFC), exhibits
notable oxygenation (Oxy) measurements indicative of negative
responses. Similarly, the right dorsomedial prefrontal cortex
(dmPFC), measured by optode 9, and the left ventromedial
prefrontal cortex (vmPFC), measured by optode 8, exhibit notable
oxygenation (Oxy) measurements indicative of increased Oxy
levels correlated with negative responses. Further noteworthy
patterns, which exhibit notable oxygenation (Oxy) measurements
indicative of positive responses, emerge from the following:
optodes 7, corresponding to the left dmPFC; optode 10,
corresponding to the right vmPFC; optode 11, corresponding
to the right dmPFC; optodes 14 and 15, which correspond to
the right dorsolateral prefrontal cortex (dlPFC); and optode 1,
corresponding to the left dlPFC.

The SHAP output of the XGBoost model (Figure 1) shows the
relative importance of each feature in predicting the participants’
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TABLE 4 Classification report for the predictive models.

Model Accuracy Precision Recall F1 AUC

Logistic regression 0.750 0.750 0.750 0.750 0.812

Random forest 0.725 0.725 0.725 0.725 0.854

KNN 0.758 0.758 0.758 0.758 0.791

Decision tree 0.700 0.701 0.700 0.700 0.765

Ada boost 0.734 0.734 0.734 0.733 0.858

XGBoost 0.767 0.768 0.767 0.767 0.880

Extra tree 0.750 0.750 0.750 0.750 0.849

Cat boost 0.775 0.775 0.775 0.775 0.882

LightGBM 0.784 0.788 0.784 0.783 0.883

Stacking 0.775 0.776 0.775 0.775 0.867

reactions to leader–adjective congruence. The features are ranked
in order of importance, with the most important features at the top.
As shown in Figure 1, the most important features for predicting
negative reactions are acquired from the optodes 13, 9, and 8, which
correspond to the right dlPFC, right dmPFC, and left vmPFC,
respectively. This is consistent with the findings described above,
which suggest that these brain regions are involved in processing
leader–adjective congruence and generating negative responses.
Other important features for predicting negative reactions include
optodes 7, 10, 11, 14, and 15, which correspond to the left
dmPFC, right vmPFC, right dmPFC, right dlPFC, and left dlPFC,
respectively. These findings suggest that these brain regions are
also involved in processing leader—adjective congruence and
generating negative responses.

3.3 Evaluation of model fairness

The fairness of the developed models was evaluated by
comparing the model outcomes for party A and party B voters
separately. The classification reports for these party voters are
presented in Tables 5, 6 below. As shown in Tables 5, 6, the model
performance for party A and party B voters is very similar. The
precision, recall, F1 score, AUC, and ROC curve are all very high
for both groups. This suggests that the model is not biased toward
either party.

The last two rows of Tables 5, 6 refer to macro average and
weighted average. For the macro average the sample sizes of the
classes are not taken into consideration but only their average
values of the classes are calculated whereas for the weighted average,
the averages values are weighted with respect to the class sizes.
Since the support values for these classes are equal to each other, we
expect these values to be the same for macro and weighted average
values (0.78 for Table 5 and 0.72 for Table 6).

The bias auditing also indicates that there is no significant
difference between the two sides. The distribution of the model
performance is highly similar for both groups, which further
supports the conclusion that the model is not biased. The difference
in model performance between party members might be due to
the relatively limited sample size. With a larger sample size, it is
possible that some small differences in model performance between
the two groups would become statistically significant. However, the
current results suggest that the model is generally fair and can be

used to predict voter perceptions of political leaders for both party
A and party B voters.

4 Discussion

This study used neuroscientific tools to collect data and
machine learning algorithms to analyze fNIRS data in order to
predict voter perceptions of political leaders. This approach has
the potential to provide new insights into the neural basis of
political decision-making and to develop more effective political
marketing campaigns. It also has several advantages over traditional
approaches to neuropolitics, including the ability to analyze large
datasets of neuroimaging data, develop predictive models, and
identify the brain regions involved in political decision-making.
The findings from this study indicate that members of two
opposing political parties demonstrate distinctive neural patterns
toward their party leader as opposed to the rival party leader.
These distinctive characteristics in neural patterns have been
validated using machine learning algorithms and used to provide
data-driven predictive models. Overall, the model performance
outputs are generally high. The best model, LightGBM, achieves
an accuracy of 0.78, a precision of 0.79, a recall of 0.78, an F1
score of 0.78, and an AUC of 0.88. These results suggest that
the proposed approach—the use of machine learning algorithms
to analyze fNIRS data to predict voter perceptions of political
leaders—is promising. The model explainability analysis provides
compelling insights into the neural basis of negative reactions to
leader–adjective congruence. The findings suggest that the dlPFC,
dmPFC, and vmPFC are involved in processing leader–adjective
congruence and generating negative responses. These findings
have potential implications for the development of more effective
political marketing campaigns despite the limitations of the current
study, such as the limited sample size, the use of single modality,
and the interpretability of the models.

4.1 Predictive modeling of the party
leader perception

Following a comprehensive assessment of the neural activity
taking place during party leader perception when accompanied
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FIGURE 1

SHapley Additive exPlanations (SHAP) output of the XGBoost model.

TABLE 5 Evaluative metrics for the members of party A.

Precision Recall F1 score

0 (negative) 0.79 0.77 0.78

1 (positive) 0.77 0.80 0.79

Accuracy 0.78

Macro average 0.78 0.78 0.78

Weighted average 0.78 0.78 0.78

TABLE 6 Evaluative metrics for the members of party B.

Precision Recall F1 score

0 (negative) 0.70 0.72 0.71

1 (positive) 0.73 0.71 0.72

Accuracy 0.72

Macro average 0.72 0.72 0.72

Weighted average 0.72 0.72 0.72

by different adjectives, this study investigates predictive modeling
through the application of machine learning algorithms on
neuroscientific data. A diverse array of algorithms, including
Logistic Regression, Random Forest, k-Nearest Neighbors (k-
NN), Decision Tree, AdaBoost, XGBoost, Extra Tree Classifier,
CatBoost, Light GBM, and Stacking Classifier, have undergone a
rigorous evaluation to determine their effectiveness in predictive
brand perception modeling. These algorithms use fNIRS-derived
hemodynamic response data, participant feedback, and communal
perception labels to formulate predictive models. The phase of
predictive modeling reinforces the intricate interactions between

neural activations and brand perceptions. Machine learning
algorithms use the complex neural activations measured by fNIRS,
coupled with a series of relevant attributes, to predict brand
perceptions as positive, negative, or neutral. Model performance
evaluation metrics, including F1 score and weighted accuracy, are
examined, thereby improving the capability of machine learning
to decipher the neural signatures of political leader preference
(Critchley et al., 2000; Crosson et al., 2010; Nebe et al., 2023).

The findings obtained in this study suggest that the dlPFC,
dmPFC, and vmPFC are involved in processing leader–adjective
congruence and generating negative responses. The dlPFC is
associated with higher-order cognitive functions, such as working
memory, attention, and decision-making. The dmPFC is involved
in social cognition, such as understanding and responding to
the emotions of others. The vmPFC is involved in emotional
regulation and decision-making under uncertainty. These findings
are consistent with previous research on the neural basis of
political decision-making. For example, a study by Knutson
et al. (2006) found that the brain regions including vmPFC
and anterior prefrontal cortices are activated during political
attitude inducement. The empirical results of a study by Xia
et al. (2015) indicate that lateral orbitofrontal cortex (OFC) seems
to be responsible for processing information such as candidates’
social competence and attractiveness in political decision-making.
Another study by Leong et al. (2020) found that the dmPFC
is activated when people process political information that is
incongruent with their beliefs. The findings of the present study
also have implications for the development of more effective
political marketing campaigns. By understanding the neural basis
of negative reactions to leaders–adjective congruence, political
campaigners can develop strategies to avoid triggering these
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reactions. For example, they can avoid using incongruent adjectives
to describe their candidates or their opponents.

4.2 Neural activation patterns and party
leader perception

Party leader perception, itself an important part of voting
behavior, results from a dynamic interplay of cognitive and
emotional processes. This study’s findings reveal the central
role assumed by various brain regions, with a particular
emphasis on the prefrontal cortex (PFC), in the construction
of leader perceptions. Notably, the PFC, involved in higher-
order cognitive functions such as decision-making, emotional
regulation, and social cognition, plays a key role in orchestrating
the neural intricacies of brand perception since the party leaders
appear as models for their voters, as if they were brand
ambassadors for their political party. The examination of the fNIRS
measurements obtained from participants’ responses to leader–
adjective compatibility reveals that the hemispheres of the brain are
linked to positive and negative emotions without any distinction
like frontal alpha asymmetry (Metzen et al., 2022). Additionally,
the prefrontal cortex regions exhibit distinct neural activity patterns
for leader perception and verbal output. The dorsolateral prefrontal
cortex (dlPFC) plays a central role in mediating cognitive conflict
during preference formation, underscoring the interplay between
cognitive and affective dimensions during brand evaluation
(Seminowicz and Moayedi, 2017). Further empirical findings from
the relevant literature indicate that the hippocampus and the dlPFC
exhibit increased activation when engaging with familiar brands,
accentuating the interwoven nature of memory associations and
articulated preferences (Deppe et al., 2005). The activity of both the
hippocampus and the dlPFC underlines the role of personal history
in shaping decisions.

In addition to these, certain areas of the brain show notably
increased neural activity when individuals look at the face of
a political candidate from a different party, as opposed to a
candidate from their own party. The dlPFC and the ACC are
more active when voters compare the opposing candidate to their
own candidate. Furthermore, the left frontal activity correlates
with positive ratings (Kaplan et al., 2007). Together with its role
in the manipulation of cognitive representations in the domains
of working memory and reasoning, in particular, the left side
is crucial for processing verbal and spatial information within
working memory, whereas the right side is more dominant for
verbal and spatial reasoning (Barbey et al., 2013). Current findings
suggest that the left dlPFC (optode 1) is correlated with negative
participant responses. On the other hand, increased activity in
the right dlPFC (optodes 14 and 15) is a positive response
indicator, whereas increased activity in the right dlPFC (optode 13)
aligns with negative responses. The right dlPFC is an important
brain region for behavioral adaptation in the presence of conflict,
and stereotypes and conservatism are linearly associated with
increased activation in the right dlPFC (Zamboni et al., 2009).
Its involvement in verbal reasoning suggests it influences positive
responses by deciphering the congruence between political leader
and corresponding adjective; however, another optode at the right
dlPFC is correlated with negative responses, which may be caused

by exhibiting adaptive behavior in a conflict situation. Another
interesting finding with positive responses is the increased activity
of the right dlPFC, which might indicate that the majority of
the participants were conservative. This activation underscores
the potential utilization of the right dlPFC for predictive leader–
adjective compatibility, encouraging us to give it a more prominent
role within the experimental design.

The dorsomedial prefrontal cortex (dmPFC), another
important region for perception, plays a pivotal role in context-
based information generation, emotion regulation, and social
information processing. It engages in high-construal abstraction
during preference evaluations across fields, using task-independent
mechanisms to calculate relative subjective value. The empirical
findings obtained suggest that increased neural activity in the
right dmPFC (optode 9) has potential implications as indicators
of negative responses. Conversely, the dmPFC’s role in conflict
monitoring signifies that the right dmPFC’s activity pattern might
reflect contradictions between party leader and corresponding
adjective (Rushworth et al., 2004). Increased activation of the right
dmPFC has been associated with community-related situations in
voters (Zamboni et al., 2009). On the other hand, increased neural
activity in the right dmPFC (optode 11) and in the left dmPFC
(optode 7) correlated with positive responses. This activity pattern
may be due to the participants’ evaluation of their own party leaders
and the leader of the opposing party, in line with socialization. The
dmPFC regulates the activity of the dlPFC in carrying out strategic
planning within decision-making (Taren et al., 2011). The findings
of the current study are the outcome patterns of the right dmPFC
and dlPFC. The increased activity in the right dlPFC (optode
13) is associated with negative responses, whereas the increased
activity in the right dmPFC (optode 11) is associated with positive
responses. The two leaders used in the experiment represent two
different views in Türkiye, and the participants are equally split in
terms of whose leader they support; thus, the observed pattern may
be due to the emergence of adaptive behavior as a result of internal
conflict and strategic decision-making efforts in these regions.
Still, the activity pattern of the right dmPFC (optodes 9–11) is a
potentially promising indicator for understanding and predicting
scenarios with altruism.

4.3 Value-based decisions prompted by
the vmPFC

Political choices, in a sense, are value-based decisions, for
which the vmPFC is a crucial region (Krastev et al., 2016).
Greater emphasis on individual-related statements is correlated
with increased vmPFC activation; moreover, vmPFC is crucial
in the processing of self-referential information and is also
engaged in the self-referential appraisal of information about others
(Zamboni et al., 2009). Neuroscience research has underscored
the vmPFC’s predictive capabilities in scenarios based exclusively
on sensory cues. The interplay between the vmPFC and the
hippocampus–dlPFC–midbrain pathways influences preferences
through sensory and cultural information (McClure et al., 2004).
The increase in vmPFC activity might indicate the processing of
associative information about politicians by activating stereotyped
information (Knutson et al., 2005, 2007). Evidently, the effect
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of the right vmPFC (optode 10) on positive responses stems
from an evaluation of the consistency of the leader–adjective
pairings, corroborating the present study’s findings. In light of
these considerations, the vmPFC emerges as a pivotal region for
predicting participants’ perceptions of leaders.

4.4 Comparison with earlier studies

Past research on the neural basis of political decision-making
has used a variety of neuroimaging techniques, including functional
Magnetic Resonance Imaging (fMRI) and Electroencephalography
(EEG). However, these techniques have several limitations. fMRI
is expensive and requires participants to remain still in a large
scanner, which can be difficult for some people (Poldrack et al.,
2011). EEG is more portable and affordable than fMRI, but
it is also more susceptible to noise and artifacts (Luck, 2014).
Functional near-infrared spectroscopy (fNIRS) is a relatively new
neuroimaging technique that is less expensive, more portable,
and more motion-tolerant than fMRI and EEG (Obrig et al.,
2000; Sakatani et al., 2007). fNIRS measures changes in blood
oxygenation levels in the brain using near-infrared light. This
makes it a well-suited technique for studying brain activity in
response to political stimuli, which can be dynamic and involve
movement (Cui et al., 2011; Liu et al., 2015). Machine learning
algorithms have also been used in previous research on political
neuromarketing. However, most of this research has focused on
predicting voter behavior based on self-reported measures of
political attitudes and preferences (Kosinski et al., 2017; Kehret-
Ward et al., 2018). Self-reported measures are often biased and
inaccurate, as people are not always aware of their own motivations
and biases (Nisbett and Wilson, 1977). The current study used
machine learning algorithms to predict voter perceptions of
political leaders based on their brain activity.

4.5 Limitations of the study

There are several potential limitations related to this study
including a relatively small sample size, the use of a single
neuroimaging modality, the degree of interpretability of the
obtained data, and the gender bias. First, the study was conducted
with a relatively small sample of participants (n = 31) which limits
the generalizability of the findings to the population as a whole,
despite the fact that neuroimaging studies are usually conducted
with a similar number of participants (Poldrack et al., 2011).
Secondly, although we employed a hold-out method and cross-
validation to mitigate the risk, it is important to acknowledge
that the possibility of overfitting still exists when using machine
learning models. Thirdly, the study used only the fNIRS method
to measure brain activity. Other neuroimaging techniques, such
as EEG and MEG, can provide different types of information
about brain activity patterns. Using multimodal neuroimaging
techniques would have provided a more complete picture of
how voters’ brains respond to political stimuli (Logothetis, 2012).
The fourth issue concerns the interpretability of the results:
since there is no one-to-one direct correlation between brain
activity and brain behavior, the interpretation of the results

is not always straightforward. While the results of this study
are suggestive, it is important to beware of the limitations of
fNIRS in interpreting these results. In order to address this
limitation, some studies have used inverse problem solutions to
map fNIRS signals onto brain regions (Tremblay et al., 2018;
Condy et al., 2021). Inverse problem solutions are mathematical
algorithms that use information about the physics of light
propagation in the brain to estimate the source of fNIRS signals.
However, inverse problem solutions are not without their own
limitations, and they can be sensitive to noise and artifacts in
the fNIRS data (Kirilina et al., 2012; Hussain et al., 2023). The
last limitation is that all the participants were male, because of
practical reasons. Despite these limitations, the study provides
valuable insights into the way voters’ brains respond to political
stimuli. Future research should address the limitations of this
study by conducting larger studies with more diverse samples,
using multimodal neuroimaging techniques, and controlling for
individual differences.

4.6 Potential contributions and future
prospects

The empirical findings acquired from the current study
make a couple of contributions especially related to the use of
machine learning models in the field of applied neuroscience,
such as targeting specific brain regions, evoking specific emotions,
segmenting voters, testing visual messages, and improving
campaign design. Firstly, political neuromarketing research
methods could be used to segment voters based on their brain
activity patterns. This segmentation would allow campaigns to
tailor their messages to different voter segments in a more effective
way. For instance, a political campaign could develop different
messages for voters who are more responsive to emotional appeals
vs. rational appeals (De Bruyckere et al., 2015). Secondly, political
neuromarketing research could be used to test the effectiveness
of different campaign messages. This would allow campaigns
to identify the messages that are most likely to resonate with
voters. For example, a campaign could use neuroimaging to
test the effectiveness of different TV commercials before they
are aired: one such test revealed that political ads that featured
images of candidates smiling and waving were more effective
than ads that featured images of candidates looking serious
(Cho, 2013). Thirdly, political neuromarketing research could be
used to improve the design of political campaigns. For example,
campaigns could use neuroimaging to identify the best way to
design campaign websites, social media posts, and other campaign
materials since it has been empirically shown that people are more
likely to engage with political content that is personalized to their
interests (Kosinski et al., 2017). Beyond the exciting potential
this interdisciplinary field conveys, it is important to note that
political neuromarketing research is still in its early stages, and
more research is needed to understand how best to apply these
findings to political marketing campaigns. However, the findings of
political neuromarketing research have the potential to transform
the way political campaigns are conducted. By understanding how
voters’ brains respond to political stimuli, campaigns can design
more effective messages and strategies.
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Future work on the topic should tackle three main issues:
studies should use larger and more diverse samples, should use
multimodal neuroimaging techniques, and should investigate the
neural correlates of other political attitudes and behaviors. First,
most political neuromarketing studies have been conducted with
relatively small, convenience samples. Future research should
conduct larger studies with more diverse samples in terms of age,
race, ethnicity, gender, and political ideology. This will help to
ensure that the findings of political neuromarketing research are
generalizable to the population as a whole. Second, most political
neuromarketing studies have used fMRI, which is a good technique
for measuring brain activity in specific regions. However, other
neuroimaging techniques, such as EEG and MEG, can provide
different types of information about brain activity. Future research
should use multimodal neuroimaging techniques to get a more
complete picture of the way voters’ brains respond to political
stimuli. Third, political neuromarketing research has primarily
focused on investigating the neural correlates of voter decision-
making. However, many other political attitudes and behaviors that
are of interest, such as political participation, trust in government,
or political ideology. Future research should investigate the neural
correlates of a wider range of political attitudes and behaviors.

4.7 Conclusive remarks

In conclusion, by untangling the neural correlates governing
political perception and preference, this interdisciplinary research
is an important contribution to the burgeoning field of political
neuromarketing. The confluence of cutting-edge neuroimaging
techniques and machine learning algorithms unveils the complex
interplay between cognitive, emotional, and cultural factors
influencing consumer behavior. This study’s findings underscore
the importance of key brain regions, including the dlPFC, vmPFC,
and dmPFC, in encoding sensory and cultural cues in shaping
brand perceptions. Through the use of machine learning algorithms
to predict brand preferences, this study offers insights relevant to
strategic brand management and marketing strategies. As the field
of political neuromarketing continues to evolve, this research can
function as a foundation for future attempts at deciphering the
intricate neural dynamics driving consumer behavior, thus paving
the way for more effective and context-sensitive strategies.

Inextricably linked to the dynamic landscape of political
marketing is the relatively new role of branding within
contemporary political campaigns. Political parties are increasingly
adopting branding strategies analogous to those employed in
consumer marketing, leveraging unique selling propositions,
brand promises, and meticulous image management to shape
voter perceptions and thereby influence electoral choices (Lees-
Marshment, 2001; Smith, 2001). The convergence of political
branding and neuromarketing has opened new opportunities
to understand voter behavior at a neurophysiological level.
At the same time, in light of the transformative power these
methodologies wield, ethical considerations are paramount.
Integral to this discourse is the imperative of comprehending
the attitudinal landscape of party assembly members toward their
leaders. The present study’s quest to unveil the neural substrates
underpinning responses to adjectives both positive and negative in

nature, bearing resonance with leadership traits, unfurls through
the vessel of neuroimaging tools. Discerning the differential
activation patterns across frontal brain regions amid subjects
affiliated with distinct political parties elevates understanding
regarding the intricate ballet of leadership perception and party
affiliations. While not limited to this, the neural activation
patterns in the prefrontal cortex might be unveiling different
tendencies such as altruistic punishment decisions and the belief
in free-will (Çakar et al., 2022, 2023). In essence, the melange of
neuromarketing principles with the expansive domain of political
science bequeaths a complex tapestry that unravels the labyrinthine
intricacies woven around leadership, party branding, and the
sinuous ebb and flow of voter behavior. This fusion, a symphonic
convergence transcending the boundaries of academia, harbors
within it the solemn ethical obligation to navigate the uncharted
realms of the human psyche with an equanimity that combines
scholarly rigor and sensitivity.
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