

Biblioteca Universitaria

Área de Repositorio Institucional

Tfno.: 986 813 821

investigo@uvigo.gal

Citation for published version:

L. Borrajo, A. Seara Vieira, E.L. Iglesias. TCBR-HMM: An HMM-based text classifier with a

CBR system. Applied Soft Computing, Volume 26, 2015, Pages 463-473,

https://doi.org/10.1016/j.asoc.2014.10.019

Accepted Manuscript

Link to published version: https://doi.org/10.1016/j.asoc.2014.10.019

General rights:

© 2014 Elsevier Ltd. This article is distributed under the terms and conditions of the Creative

Commons Attribution-Noncommercial-NoDerivatives (CC BY-NC-ND) licenses.

https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:investigo@uvigo.gal
https://doi.org/10.1016/j.asoc.2014.10.019
https://doi.org/10.1016/j.asoc.2014.10.019
https://creativecommons.org/licenses/by-nc-nd/4.0/

TCBR-HMM: an HMM-Based text classifier with a CBR system

L. Borrajoa, A. Seara Vieiraa, E. L. Iglesiasa,∗

aComputer Science Dept., Univ. of Vigo, Escuela Superior de Ingenieŕıa Informática, Campus Universitario As
Lagoas, 32004 Ourense, Spain. Fax: +34988387001, Tel: +34988387019

Abstract

This paper presents an innovative solution to model distributed adaptive systems in biomedical
environments. We present an original TCBR-HMM (Text Case Based Reasoning-Hidden Markov
Model) for biomedical text classification based on document content. The main goal is to propose
a more effective classifier than current methods in this environment where the model needs to be
adapted to new documents in an iterative learning frame. To demonstrate its achievement, we
include a set of experiments, which have been performed on OSHUMED corpus. Our classifier is
compared with Naive Bayes and SVM techniques, commonly used in text classification tasks. The
results suggest that the TCBR-HMM Model is indeed more suitable for document classification.
The model is empirically and statistically comparable to the SVM classifier and outperforms it in
terms of time efficiency.

Keywords: Hidden Markov Model, Case Based Reasoning System, Text classification

1. Introduction

Currently there is a lot of information related to biomedicine, usually stored in public resources
commonly used by the healthcare community. For example, Medline, the most requested biomedical
bibliographic database, stores references to magazine articles from 1950 to the present, containing
over 20 million citations.

The high volume of items makes it impossible for any expert to handle it manually. Therefore
there is great interest to automate the classification process and produce relevant documents to a
topic. A large number of techniques have been developed for text classification, including Naive
Bayes, k-Nearest Neighbours (kNN), Neural Networks, and Support Vector Machines (SVMs).
Among them, SVM has been recognized as one of the most powerful and promising machine learning
methods [1, 2, 3, 4, 5].

In other studies, Hidden Markov Models (HMM) have been used to describe the statistical prop-
erties of a sequential random process. They are known for their application in language problems
like speech recognition [6]. However, their application has been extended to fields of text processing
such as information extraction [7, 8, 9], information retrieval [10], text categorization [11, 12, 13],
and text classification [14, 15].

∗Corresponding author
Email addresses: lborrajo@uvigo.es (L. Borrajo), adrseara@uvigo.es (A. Seara Vieira), eva@uvigo.es (E. L.

Iglesias)

Preprint submitted to Elsevier October 30, 2014

One of the common tasks that can be addressed by deploying an HMM in text analysis is to infer
the internal structure of the documents. This task is related to the decoding problem for HMMs
(see Section 2.2). For instance, Frasconi et al. [11] use HMM to categorize pages in a multi-page
document, exploiting the internal organization of the document to provide the learner with better
information. The HMM is trained with page sequences to subsequently find the most probable
structure for a new given document.

Barros et al. [7] propose a hybrid machine learning approach to Information Extraction by
combining conventional text classification techniques and Hidden Markov Models. The machine
learning algorithm generates an initial classification of the input fragments that is refined by an
HMM. Experiments performed on two different case studies show that the use of an HMM com-
pensated the low performance of less adequate classifiers and feature sets chosen to implement the
text classifier.

In [16], Zhou and He propose an information extraction system based on the hidden vector state
(HVS) model, for biomedical events extraction, and investigate its capability in extracting complex
events. The results suggest that the HVS model with the hierarchical hidden state structure is
indeed more suitable for complex event extraction, since it could naturally model structural context
embedded in sentences.

Another text processing task that is solved with the use of HMMs is to perform text sequence
classification, in which the HMM is commonly treated as a word generator and receives as input
a sequence of units belonging to a document. This task is related to the evaluation problem for
HMMs (see Section 2.2). For example, Kairong Li et al. [12] research the text categorization process
based on Hidden Markov Model. The main idea of the article lies in setting up an HMM classifier,
combining χ2 and an improved TF-IDF (term frequency-inverse document frequency) method, and
reflecting the semantic relationship in the different categories. The process shows the semantic
character in different documents to make the text categorization process more stable and accurate.

Miller et al. [10] use HMM in an information retrieval model. Given a document set and a query
Q, the system searches a document D relevant to the query Q. It computes the probability that D
is the relevant document in the user’s mind, i.e P (D is R|Q), and ranks the documents based on
this measure. The proposed model generates a user query with a discrete Hidden Markov process,
depending on the document the user has in mind. The HMM is viewed as a generator of the query,
and is used to estimate the probability that each document is produced in the corpus.

Kwan Yi et al. [14] use the previous idea in a similar approach. They describe the text
classification as the process of finding a relevant category c for a given document d. They implement
a Hidden Markov Model to represent each category. Thus, given a document d, the probability that
a document d belongs to category c is computed on the specific HMM model c. In their system, a
document is treated as a wordlist, and the HMM for each category is viewed as a generator of a
word sequence. This last idea, which is also used in our study, also appears in probabilistic topic
models [17].

Probabilistic topic models, like Latent Dirichlet Allocation (LDA) [18], are generative models
that specify a probabilistic process for generating documents. The basic idea is that documents
are represented as random mixtures over latent topics, where each topic is characterised by a
distribution over words. However, the focus of our paper is to categorize a document into a certain
binary class (relevant or non-relevant) rather than infer the topic distribution in the entire corpus.
In this case, topics cannot be assigned to classes in a direct manner and the goal of the used classifier
is to capture the semantic information in a class. This is why an HMM is created for each category.

In general, HMMs cannot be used directly in a text classification process. Previous HMM

2

related techniques provide a way of applying these models to a text processing task; however, they
are specifically suited for information retrieval problems [10] or need to use prior knowledge to
achieve significant results [14].

In order to obtain a simpler and more effective classifier system than existing methods, we
propose a model based on the Hidden Markov Model, called T-HMM. This model aims to classify
documents according to their content. The classifier is focused on distinguishing relevant and non-
relevant documents from a dataset, and deals with the problem, common among search systems,
of whether a document is relevant or not given the type of user query. T-HMM offers a simple
and parametrizable structure, based on word relevance, which allows the model to be adjusted to
future documents. Experimental results show that the application of this model appears to be
promising. Our model outperforms commonly used text classification techniques like Naive Bayes,
and achieves comparable results to the SVM approach, which is recognized as one of the most
effective text classification methods presently used. Moreover, T-HMM is clearly more efficient in
terms of running time than the other two approaches.

In addition, in order to extend the usefulness of the T-HMM model, this article proposes an
improved version called TCBR-HMM, based on a Case Based Reasoning (CBR) system. The
purpose of this hybrid model is to provide a solution to another kind of text classification problem
where a previously created model needs to be adapted to each new document in an iterative learning
frame.

The CBR system [19, 20, 21, 22, 23] solves new problems by recalling and adapting previous
solutions. Consequently, CBR is useful for tasks using predicates that are poorly defined, lead to
inconsistent outcomes, and have incomplete rules to apply [24, 23]. CBR is a knowledge based prob-
lem solving technique based on the assumption that similar problems can possess similar solutions.
As such, it is perfectly suited for solving the problem at hand. The TCBR-HMM is evaluated and
compared with the results obtained by Naive Bayes, SVM and the basic T-HMM approach.

The remainder of this paper is organized as follows: Section 2 presents the CBR and the Hidden
Markov models concepts. Section 3 explains the process of adapting the HMM model to the text
classification process that results in T-HMM; Section 4 details the proposed TCBR-HMM solution;
Section 5 discusses the experiments and results obtained in the case study; Section 6 shows the
conclusions and future directions.

2. Text classification with TCBR-HMM model

2.1. Case Based Reasoning systems

The purpose of case-based reasoning systems is to solve new problems by adapting solutions
that were used to solve similar problems in the past. The fundamental concept when working with
case-based reasoning is the concept of case. A case can be defined as a past experience, and is
composed of two elements: A problem description, and the solution. The case memory holds a
number of problems with their corresponding solutions. Once a new problem arises, the solution
is obtained by retrieving similar cases from the case memory and studying the similarity between
them. A CBR system is a dynamic system in which new problems are added to the case memory,
redundant are eliminated, and others are created by combining existing ones.

The way in which cases are managed is known as the case-based reasoning cycle. A typical CBR
cycle is composed of four sequential phases (Fig. 1) that are recalled every time a problem needs
to be solved [21, 25, 26]:

3

1. Retrieve the most relevant case(s)

2. Reuse the case(s) to attempt to solve the problem

3. Revise the proposed solution if necessary

4. Retain the new solution as a part of a new case

Figure 1: Diagram including a CBR reasoning cycle.

The Retrieve phase starts when a new problem description is received. Similarity algorithms
are applied in order to retrieve from the case memory the cases with a problem description most
similar to the current one. Once the most similar cases have been retrieved, the Reuse phase
begins. In this phase the solutions of the retrieved cases are adapted to obtain the best solution
for the current case. The Revise phase consists of an expert or automatic procedure revision of
the proposed solution. Finally, the Retain phase allows the system to learn from the experiences
obtained in the three previous phases, and then updates the case memory. Each of these steps of
the CBR life cycle requires a model or method in order to perform its mission.

Case-based reasoning can be used by itself, or as part of another conventional or intelligent
system [27]. Although there are many successful applications based on CBR methods alone, CBR
systems can be improved by combining them with other technologies [28, 29, 30]. Their suitability
for integration with other technologies, creating a global hybrid reasoning system, stems from the
fact that CBR systems are very flexible [31]. Therefore, they are capable of absorbing the beneficial
properties of other technologies, such as HMM.

2.2. Basics of Hidden Markov Models

A Hidden Markov Model is a statistical tool used to model generative sequences that can be
characterised by an underlying hidden process [32]. It can be seen as a state diagram that consists of
a set of states and transitions between them, where each state can also emit an output observation

4

with a certain probability. Thus, two processes take place when generating sequences in an HMM.
The first process describes the unobservable state sequence, i.e. the hidden layer represented by
the state transition probability. The second process links each state to observations creating the
observable layer represented by the output observation probability [12].

The formal definition of an HMM is as follows:

λ = {N,V,A,B, π}

1. N is the number of states in the HMM model. The state set is denoted by:
S = {s0, s1, ..., sN}

2. V is the set of possible observations V = {v0, v1, ..., vM}, where M is the number of observa-
tions.

We define Q as a fixed state sequence of length T , and its corresponding observation sequence
as O:

Q = {q0, q1, ..., qT } O = {o0, o1, ..., oT }

3. A is the transition probability matrix of dimension NxN . It stores the probability of state j
following state i in the aij cell:

aij = P (qt = sj |qt−1 = si)

4. B is the observation output probability matrix of dimension NxM . We define bi(k) as the
probability of observation k being produced at state i, which is independent (the probability)
of time instant t.

bi(k) = P (ot = vk|qt = si)

5. π is the initial state probability array.

π = (π0, π1...πN)
πi = P (q0 = si)

There are two important assumptions made by the model [32, 12]. The first is called the Markov
assumption and specifies that each state is dependent only on the previous state, instead of the
history of all previous states. The second assumption asserts that the output observation probability
depends only on the current state of the system, i.e. it is independent of previous observations.

3. T-HMM classifier

Text classification is the task of automatically assigning a document set to a predefined set of
classes or topics [33].

In our context, given a training set T = {(d1, c1), (d2, c2)...(dn, cn)}, which consists of a set of
preclassified documents in categories, we want to build a classifier using HMM to model the implicit
relation between the characteristics of the document and its class, in order to be able to accurately
classify new unknown documents.

5

Each document di has a binary class attribute ci which can have a value of Relevant or Non-
relevant. Our work is therefore focused on building a classifier based on the training set that
can classify new documents as relevant or non-relevant without previously knowing their class
information.

Figure 2: T-HMM classifying process.

Following the idea proposed by Kwan Yi et al. [14], we use HMM as a document generator.
Fig. 2 shows the proposed framework. According to the structure, an HMM is implemented for each
category: Relevant and Non-Relevant. Each model is then trained with documents belonging to
the class that it represents. When a new document needs to be classified, the system evaluates the
probability of this document being generated by each of the Hidden Markov models. As a result,
the class with the maximum probability value is selected and considered as the output class for the
document.

6

3.1. T-HMM classifier definition

The proposed model (T-HMM) aims to classify documents according to their content. To achieve
that, input data need to be expressed in a format that HMM algorithms can handle.

The most common approach in document classification tasks is the bag-of-words approach [34].
In this case, every document is represented by a vector where elements describe the word frequency
(number of ocurrences), as shown in Fig. 3(a). Words with a higher number of occurrences are
more relevant because they are considered the best representation of the document semantic. For
training purposes, words are placed in descending order according to their ranking to represent each
document (see Fig. 3(b)).

The complexity of text classification in terms of time and space depends on the size of these
vectors. In order to reduce their dimension, a text preprocessing step is required, where rare
words and those which do not provide any useful information (such as prepositions, determiners or
conjunctions) are removed. This step is further explained in the Section 5, where some adjustments
such as TF-IDF are also made in the word frequency value. The final selected words to represent
the documents are called feature words.

When building an HMM model, it is important to reflect what “hidden states” signify. In Kwan
Yi et al. [14], states are designed to represent different sources of information (e.g. Title, abstract
or MeSH); other related works use hidden states to represent internal sections of the document
[11, 7]. However, as stated before, T-HMM is focused on classifying documents by their content
rather than their structure. In addition, having multiple sources of information is difficult and
occasionally there is only one part of the document available, e.g. when classifying according only
to the abstract, which is the case of the experiments presented in this paper. Consequently, T-HMM
aims to model a deeper semantic analysis in its states regardless of where the text comes from.

Based on the assumption that words do not have the same importance, hidden states in T-HMM
reflect the difference in relevance (ranking) among words within a document. Each state represents
a relevance level for words appearing in the corpus. That is, the most probable observations for the
first state are the most relevant words in the corpus. The most probable observations for the second
state are the words holding the second level of relevance in the corpus, and so on. The number of
states N is a modifiable parameter that depends on the training corpus and how much flexibility
we want to add to the model.

Considering that each document is ultimately represented by a vector or a wordlist ranked in
decreasing order, and ignoring words with zero value, a Hidden Markov model is used to represent
a predefined category c as follows:

1. The union of words from the training corpus is taken as the set of observation symbols V .
For each word, there is a symbol vk. The set of possible observations is the same for every
HMM, taking into account all words in the corpus, regardless of their category.

2. As mentioned above, states represent ranking positions. Therefore, states are ordered from
the first rank to the last one. The state transitions are ordered sequentially in the same way,
forming a linear HMM [6] without self-state loops, in which the probability of state Si+1

behind state Si is 1. The transition probability matrix A is then defined as:

aij =

{
1 if j = i+ 1
0 otherwise

3. The observation output probability distribution of each state is defined according to the
training corpus and category c. A word/observation vk will have a higher output probability
at a given state si if the word appears frequently with the same ranking position that si

7

represents. In addition, all states, regardless of the rank they represent, will also have a
probability of emitting words appearing in documents with c category that HMM was built for.
The weight (importance) of these two separate probabilities is controlled by a f -parameter.
Given a category c and a dataset Dc of documents that belong to that category, the output
probability matrix B for an HMM that represents category c is defined as shown in Eq. (1):

bi(vk) = f ·

∑
d∈Dc

Rd(vk, i)∑
d∈Dc

Ed(i)
+ (1− f) ·

∑
d∈Dc

Ad(vk)

|V |∑
j=0

(∑
d∈Dc

Ad(vj)

) (1)

where

(i) bi(vk) stands for the probability of the word/observation vk being emitted at state si
(ii) f ∈ [0, 1]

(iii) Rd(vk, i) =

{
1 if word vk appears at ith rank position in document d
0 otherwise

(iv) Ed(i) =

{
1 if there is any word with ith rank position in document d
0 otherwise

This factor is necessary because documents have a different number of feature words. If
the number of states is too high, some documents may not have enough feature words
to complete all position ranks.

(v) Ad(vk) =

{
1 if word vk appears at least one time in document d
0 otherwise

(vi) |V | is the number of feature words.

4. The initial probability distribution π is defined by giving probability 1 to the first state s0.

Fig. 3 shows the training process of an HMM with three states for category R (Relevant docu-
ments). Once the dataset matrix has been obtained, in which every document is represented by a
vector with adjusted word frequency values (a), relevant documents are then selected and formatted
into a list of distinct words ordered according to their ranking (b). The HMM is then created and a
probability distribution matrix is assigned to each state following the previous mentioned equation
(c).

In this example, it is important to note that, as the HMM has only three states, the 4th rank of
words is ignored. Therefore, the number of states n is a cut-off parameter. It should be high enough
to represent multiple relevance levels without overfitting the model to the training data. A good
starting point is to consider n the average number of words with non-zero value in a document.

The first part of the Eq. (1) represents the relevance of the ranking order. The more weight
this part has, the more restrictive the model is when classifying a new document, as it takes into
account the exact order of words in relevance from the document training set. Although it can
increase the precision of the categorization process, this can lead to an overfit if the f -value is too
high.

The second part maintains the same value for all states and provides the model with a better
generalization to classify documents. This is why the number of states and the f variable must be
adapted to the corpus.

8

Figure 3: Example of HMM training process for relevant documents. (a) Document vector matrix. (b) Relevant
document vectors with their words ordered by relevance. (c) Output matrices for states.

Finally, taking all the different possibilities for word ranks into account, if a specific document
has the same relevance for two or more feature words (which is very improbable after applying

9

TFIDF), then these words are considered to appear in every rank they belong to.

3.2. Classifying new documents

Once the two Hidden Markov models are created and trained (one for each category), a new
document d can be classified by, first of all, formatting it into an ordered wordlist Ld in the same
way as in the training process. Then, as words are considered observations in T-HMM, we calculate
the probability (likelihood) of the word sequence Ld being produced by the two HMMs. That is,
P (Ld|λR) and P (Ld|λN) need to be computed, where λR is the model for relevant documents and
λN the model for non-relevant documents. The final output class for document d will be the class
represented by the HMM with the highest calculated probability.

The calculation of the likelihood measures is made by applying the forward-backward algorithm
explained in the Rabiner article [6]. In this case, since there are no loops in the proposed model and
the state transition is fixed, the likelihood P (Ld|λh) for the HMM λh with n states is calculated as
shown in Eq. (2):

P (Ld|λh) =

min(|Ld)|−1,n−1)∏
i=1

bi(Ldi
) (2)

4. TCBR-HMM system proposal

In order to extend the usefulness of the previous T-HMM model, this section presents an im-
proved version called TCBR-HMM, based on a Case Based Reasoning system. When a CBR
system is used in text classification, the basic idea is to integrate a classifier model into the Reuse
phase, where decisions and classifying processes take place. Fig. 4 shows how this general approach
works. The selected model (which can be any classifier compatible with the corpus data) has to
be trained with the similar cases each time a new document is classified. In the Retain phase, the
new document is added to the case memory so that it can be retrieved if a new similar document
arrives.

The TCBR-HMM system proposed in this paper is significantly different from a typical approach
(see Fig. 5). In this case, the T-HMM classifier is considered the knowledge base. The initial case
memory of the CBR is used as an initial corpus to train the T-HMM classifier in order to represent
the cases. Once the classifier is trained, obtaining an HMM for each class (Relevant and non-
relevant) the CBR cycle can begin. When a new document d arrives, the four CBR sequential
phases are recalled:

1. In the Retrieve phase the T-HMM classifier, which represents the entire case memory, is
retrieved to solve the new problem.

2. The Reuse phase uses the T-HMM classifier to classify the new document, giving the output
class of the classifier as the solution proposed by the system. It is important to note that
the classifier does not need to be trained in this phase (unlike the typical approach), which
reduces the execution time.

3. In the Revise phase, a human expert or any automatic procedure revises the solution to obtain
the real category/class c.

10

Figure 4: General CBR text classification and learning processes. A classifier model is trained with similar cases
each time a new document has to be classified.

4. The Retain phase directly modifies the HMM that represents c adapting the T-HMM classifier
to d. Consequently, whenever a new document arrives, d has already been incorporated into
the knowledge base (T-HMM classifier).
In addition, in the Retain phase a decision must be made, depending on the corpus and how
similar the documents are:

• Total learning : Adjust T-HMM classifier with each new document. This will lead to
better results if, in general, documents are very similar or there is a high number of
topics in the corpus, making it necessary to gather multiple documents to represent each

11

Figure 5: TCBR-HMM classification and learning processes. A T-HMM classifier is trained with an initial case
memory. After a new document d is classified, the HMM that represents the real class/category of the document
may be adapted or adjusted to learn from d.

topic.

• Learning with errors : Adjust T-HMM classifier only with the new documents that were
incorrectly classified. This would be preferable if a class could be well represented with
few documents, unlike the previous approach.

In any case, the T-HMM classifier has to be modified and adapted to new documents, and only
the HMM representing the class which truly belongs to that document has to be modified. The
proposed adaptation step is defined below.

Given a trained HMM λc that represents a category c (Relevant or Non-relevant) and a new
document d categorized as c, in order to adapt the trained model to take d into account and give
it a higher probability of being generated by λc, the following process is proposed:

• The learning/memorization process of the new document is controlled by an “adjust weight”
w. This weight depends on the number of documents that the HMM was trained with:

12

w =
L

nc

1. nc corresponds with the number of actual cases in the knowledge base: initial case
memory and learned cases.

2. 0 ≤ L ≤ nc is a parametrizable value that we call “learning factor”. If L = 0, then there
is no learning/adjustment process. If L is increased, the observation probabilities of λc
change to increase the probability of d being generated. More specifically, the probability
of producing words appearing in d is increased, while the probability of producing the
remaining words decreases proportionally.
The higher L is, the higher the adjustment will be. If L is too high, it will overfit the
HMM with that document, as the other probabilities will be considerably diminished.

• The new document d is represented by a wordlist of length t ranked in decreasing order of
word relevance, in the same way as in the classifying process. This t value is equal to the
number of states of the HMM λc, so the adjustment/learning process proposed is similar to
the training step to build the T-HMM classifier.

For each state in λc, the output probability for a word is modified as:

Adjusted bi(vk) =

bi(vk) · (1− w) +

(
f + (1− f) · 1

t

)
· w (1)

bi(vk) · (1− w) +

(
(1− f) · 1

t

)
· w (2)

bi(vk) · (1− w) (3)

(1) if the word vk appears in the document d at the ith position rank

(2) if the word vk appears in the document d but not at the ith position rank

(3) if the word vk does not appear in the document d

– w ∈ [0, 1]

– bi(vk) stands for the probability of the word/observation vk being emitted at the state
si

– f is the “generalization” factor of the T-HMM classifier

It is important to note that at a given state, there is no guarantee that the new word proba-
bility will be higher unless that word has the same rank as the state. In this case, the value
of this increase is determined by f . While some words that appear in the document d may
have their probabilities decreased in this state, they will increase in the state that represents
their rank.

The main idea behind this learning process is to adjust the output probabilities as if the
new document d had been part of the initial training corpus in the first place. This implies
reducing the probabilities of the words that are not in d, as seen in (3), in order to increase
those words appearing in it: (2) and (3).

13

5. Experiments

This section includes the experiments that were conducted to demonstrate that the TCBR-HMM
system improves the results achieved by its baseline approach: T-HMM. Firsty, the document corpus
used to test the models are introduced.

5.1. OHSUMED Corpus

The Ohsumed test collection, initially compiled by Hersh et al. [35], is a subset of the MEDLINE
database, which is a bibliographic database of important medical literature maintained by the
National Library of Medicine. It contains 348,566 references consisting of fields such as titles,
abstracts, and MeSH (Medical Subject Headings) descriptors from 279 medical journals published
between 1987 and 1991.

Joachims [2] used the first 20,000 medical abstracts from the MeSH categories for the year 1991.
The specific task was to categorize the 23 disease categories (See Appendix A).

The complete set of medical abstracts for the year 1991 (consisting of 50,216 instances) is taken
as our initial corpus.

5.2. Data processing

Each document of the initial corpus has one or more associated categories (from the 23 dis-
ease categories). In order to adapt them to our scheme, which consists of distinguishing relevant
documents from non-relevant ones, we select one of these categories as relevant and consider the
others as non-relevant. If a document has been assigned two or more categories and one of them is
considered relevant, then the document itself will also be considered relevant and will be excluded
from the set of non-relevant documents.

Five categories are chosen as relevant: Neoplasms(C04), Digestive (C06), Cardio (C14), Im-
munology (C20) and Pathology (C23), since they are by far the most frequent categories of the
OHSUMED corpus. The other 18 categories are considered as the common bag of non-relevant
documents.

For each one of the five relevant categories, a different corpus is created following the steps
mentioned above. For example, in order to build a corpus for the Cardio category, we select
documents that belong to the C14 category as relevant. Then, from the common bag of 18 non-
relevant categories, all the possible documents categorized as “Cardio” are removed. The resulting
set is taken as the non-relevant set of documents.

Once the documents are organized, we must format them into a vector of feature words in which
elements describe the frequency of occurence of that word. All the different words that appear in
the training corpus are candidates for input features.

In order to reduce the input feature size to train the classifier, the standard text pre-processing
techniques are used. A predefined list of stopwords (common English words) is removed from the
text and a stemmer based on the Lovins stemmer [36] is applied. Then, words occurring in less
than 10 documents of the entire training corpus are also removed.

Finally, there are five matrices representing the five training corpus. Rows correspond to doc-
uments and columns to feature words. The value of an element in a matrix is determined by the
number of ocurrences of that feature word (column) in the document (row). This value is adjusted
using the TF-IDF statistic in order to measure the word relevance. The application of TF-IDF
decreases the weight of terms that occur very frequently in the collection and increases the weight
of terms that occur rarely.

14

Once the preprocess step is finished, we end up with a corpus where each matrix has between
9,459 and 10,700 instances (documents) and an average of 6,488 feature words. The proportion of
relevant/non-relevant documents is around 20%/80%.

Finally, in order to evaluate the TCBR-HMM system proposed, each corpus is randomly divided
into three different corpus, as is shown in Fig. 6:

• Train Corpus (50% of the original corpus), used as the initial case memory in TCBR-HMM
and as the training set in the remaining classifiers.

• Development Corpus (10% of the original corpus). The TCBR-HMM system is adjusted
with this subset to evaluate its learning capabilities. The learning process is applied for each
document.

• Test Corpus (40% of the original corpus), used as the test corpus in all approaches.

Figure 6: Each corpus is split into Train dataset, Test dataset and Development dataset.

5.3. TCBR-HMM learning evaluation

In this section, tests are performed to demonstrate that the TCBR-HMM system actually learns
from documents after adjusting its parameters to them. These tests use the Neoplasms corpus,
taking its “Train” split as the initial train corpus and its “Development” split as both the learning
and test corpus. Fig. 7 shows how the results are improved and underscores the significance of the
previously mentioned learning factor L. Even with a very low learning factor, results are much
better than the T-HMM classifier by itself.

Tests are performed to make a decision between the following options: learn from all documents
from Development corpus or learn only from incorrectly classified ones. Fig. 8 shows the results for
these options after modifying the learning factor L. These tests use the Neoplasms corpus, as shown
in Fig. 6. Firstly, the ”Train” corpus is used as the initial training set. Secondly, the Development

15

Figure 7: Demonstration of TCBR-HMM learning capabilities.

corpus is used to learn by applying variations to the mentioned options; and finally, the Test corpus
is used to perform the final tests.

In this case, the best results are achieved by learning from all documents. The original OHSUMED
dataset had 23 topics for documents, so a complete memorization of new documents may help to
reach the number of documents needed to represent each topic.

Figure 8: Results for tests with each learning option.

5.4. Comparison between methods

Finally, tests are performed, as previously shown in Fig. 6. The main goal is to compare the
TCBR-HMM system with the baseline T-HMM approach. In addition, Naive Bayes and SVM
classifiers are tested in order to compare average results with T-HMM. The configuration for each
classifier is as follows:

• T-HMM is defined according to the description in Section 3.1. The parameters used are the

16

number of states n = 30, and a factor f = 0.25, which are those that experimentally achieved
the best results with this corpus.

• Naive Bayes and SVM (Support Vector Machines). The configuration for Naive Bayes and
SVM models are those utilized by default in a WEKA environment [37], applying a RBF
kernel for SVM. Naive Bayes performs best without using any extra features. A RBF kernel
is selected for SVM as it is used in related studies with the OHSUMED corpus [2].

For the TCBR-HMM system, the learning factor is set to L = 2, since it is the value that achieved
the best results in the previous tests (Fig. 8). In addition, the learning process completely memorizes
all the documents from the development corpus (not only from those incorrectly classified).

To evaluate the effectiveness of the models, F -measure and Kappa Statistic, evaluation measures
commonly utilized in text classification and information retrieval, are used. F -measure is the
weighted harmonic mean of recall and precision, and Kappa is a single metric that takes the output
confusion matrix of an evaluation and reduces it into one value [38]. Kappa Statistic is interesting
because it compares the accuracy of the system to the accuracy of a random system. Possible values
of kappa range between 0 (random classification) and 1 (perfect classification).

As the division of each corpus in train, development and test splits is random, more than one
execution of the whole process (division and classification) is needed to test the behaviour of the
proposed techniques. In this case, ten executions are made for each corpus and method.

Table 1 shows the results achieved. The values in each column correspond to the average value
achieved in that measure for the total of 10 executions. As can be seen, TCBR-HMM achieves a
logical improvement compared to a simple T-HMM classifier, and T-HMM outperforms the Naive
Bayes approach in all the selected evaluation measures.

On the other hand, F -measure values in the Non-relevant category of SVM are superior to the
other classifiers. Overall, SVM offers a slightly better weighted average accuracy than T-HMM.
However, the differences between SVM and T-HMM in accuracy are very low (in the order of
hundredths) and the real advantages of the T-HMM lie in the execution time efficiency, offering a
much simpler classifier as is shown in Section 5.6.

In addition, the incorporation of the T-HMM to the proposed CBR system improves the general
performance. Using an additional set of documents in the learning phase increases the model
accuracy and provides the benefits of an iterative learning frame. The next section shows the
statistical tests that were performed to prove this increase in performance.

Table 1: Results achieved by each classifier model and TCBR-HMM system, following the testing process described
in Fig. 6. The weighted average uses weights proportional to frequencies in the data in each category

17

Non-relevant Relevant Avg. weighted
Corpus Model F-measure F-measure F-measure Kappa

Neoplasms(C04) T-HMM 0.923 0.787 0.889 0.711
Bayes 0.882 0.702 0.836 0.585
SVM 0.932 0.753 0.886 0.688

TCBR-HMM 0.926 0.793 0.892 0.720

Digestive (C06) T-HMM 0.955 0.721 0.926 0.677
Bayes 0.914 0.569 0.871 0.489
SVM 0.961 0.639 0.920 0.605

TCBR-HMM 0.960 0.744 0.934 0.705

Cardio (C14) T-HMM 0.933 0.797 0.901 0.731
Bayes 0.878 0.694 0.833 0.576
SVM 0.942 0.778 0.902 0.724

TCBR-HMM 0.937 0.803 0.908 0.740

Inmunology (C20) T-HMM 0.926 0.625 0.887 0.556
Bayes 0.887 0.528 0.842 0.432
SVM 0.954 0.563 0.903 0.525

TCBR-HMM 0.935 0.649 0.899 0.587

Pathology (C23) T-HMM 0.748 0.591 0.690 0.340
Bayes 0.731 0.547 0.663 0.278
SVM 0.815 0.485 0.692 0.338

TCBR-HMM 0.757 0.595 0.697 0.352

5.5. Statistical tests

In order to demonstrate that the results are not just a chance effect in the estimation process,
we use a statistical test that gives confidence bounds to predict the true performance from a given
test set.

In order to use a paired t-test, the normality of our sample data is checked, as shown in Fig. 9.
The sample data used for the plot are the 10 Kappa statistic values calculated for each classifier in
Neoplasms corpus. Both these values and those achieved with the other four corpus are expected
to follow a normal distribution.

A Student’s t-test is performed on the collection of Kappa measures achieved by T-HMM and
TCBR-HMM methods in order to test their differences. The results previously noted show that
TCBR-HMM has a higher mean of Kappa values than T-HMM (see Table 2). One test is performed
for the collection results achieved in each corpus. The null-hypothesis (the difference is due to
chance) is rejected when its probability (pnull) is too small, generally less than 0.05. In this case, it
is rejected in three of the five corpus, proving that the CBR model provides a better performance
than the T-HMM technique. This improvement comes from the use of an additional set of documents
in the learning process, proving that TCBR-HMM gets a real benefit from the adaptive frame.

Table 2: Results for Student’s t-tests performed on the collections of Kappa values acquired on the ten executions
of T-HMM and TCBR-HMM methods. One test is performed for each corpus.

18

(a) (b)

Figure 9: Quantile-Quantile plots evaluating the fit of sample data (used in paired t-test) to the normal distribution
(straight line). Kappa statistics achieved with Neoplasms corpus with each classifier are used as sample data. (a)
Plot with result data from T-HMM classifier. (b) Plot with result data from TCBR-HMM classifier.

T-HMM TCBR-HMM

Corpus Mean Sdev. Mean Sdev. t-value pnull

Neoplasms(C04) 0.711 8.232 · 10−3 0.720 1.245 · 10−2 −1.90 0.073
Digestive (C06) 0.677 1.780 · 10−2 0.705 1.993 · 10−2 −3.30 0.004
Cardio (C14) 0.731 1.276 · 10−2 0.740 1.112 · 10−2 −1.63 0.120
Immunology (C20) 0.556 1.878 · 10−2 0.587 2.094 · 10−2 −3.47 0.003
Pathology (C23) 0.340 9.611 · 10−3 0.352 1.167 · 10−2 −2.47 0.024

null-hypothesis : there is no difference between models;
pnull : probability of assuming the null-hypothesis.

5.6. Time execution comparative

The execution times for the experiments were also saved. This includes all the training and
testing steps for each classifier model, and the additional learning step for TCBR-HMM system.

Table 3 shows the results achieved. T-HMM and TCBR-HMM are clearly more efficient in terms
of execution time than the other approaches.

The learning process allows the TCBR-HMM system do not have to train the entire model again
every time a new document has to be classified or learned.

Table 3: Results for user CPU time in seconds, representing the average execution time for training and testing
every corpus. The learning step is added for the TCBR-HMM system (average time to learn the entire Development
corpus).

19

CPU Time TCBR-HMM T-HMM Naive Bayes SVM

Train 7.942 s 7.242 s 41.375 s 38.509 s

Test 4.713 s 4.135 s 20.636 s 22.984 s

Learn 17.857s - - -

6. Conclusions and future directions

This study presents a hybrid neural intelligent system to text classification. It applies a reasoning
system based on word relevance, specifically designed to offer a parametrizable structure, with an
HMM model, in order to provide an innovative CBR method that allows the model to be adjusted
for future classifiable data. The system was made to distinguish relevant documents from a set of
unlabeled data, but it can be extended to work with more than two categories by simply adding
HMMs to represent them.

Experimental results of this study show that the application of the proposed T-HMM and
TCBR-HMM classifiers appears to be promising. In automatic classification of OHSUMED corpus,
T-HMM outperforms commonly used text classification techniques like Naive Bayes and achieves
comparable results to those reached by SVM approach, which is recognized as one of the most
effective text classification methods. It is important to note that, although the results achieved
by T-HMM and SVM are close, the T-HMM is a simpler text-oriented classifier that is more time
efficient as shown in the experiments. In addition, the TCBR-HMM approach improves the results
of the basic T-HMM, and offers an iterative learning frame that adapts the classifier to new data.

Future research should focus on improving the Retrieve process with techniques such as clus-
tering to recover the most suitable documents in order to help HMM make decisions, increasing
its efficiency. Another goal could be to automate the Revise phase or add alternative sources of
information to increase the accuracy of the system.

Additionally, it is important to note that the T-HMM classifier is based on a simple version of an
HMM. As future work, possible extensions should focus on using the full potential of the HMM. For
example, taking into account more state transitions can provide information about the difference
in terms of relevance between word rankings. Moreover, the proposed model can be considered the
initial state for the further application of HMM-related algorithms.

Acknowledgements

This work has been partially funded by the Spanish Ministry of Science and Innovation, the Plan
E from the Spanish Government and the European Union from the ERDF (TIN2009-14057-C03-02).

References

[1] S. Dumais, J. Platt, M. Sahami, and D. Heckerman. Inductive learning algorithms and rep-
resentations for text categorization. In CIKM ’98: Proceedings of the Seventh International
Conference on Information and Knowledge Management, pages 148–155, New York, NY, USA,
1998. ACM Press.

20

[2] T. Joachims. Text categorization with support vector machines: learning with many relevant
features. In Claire Nédellec and Céline Rouveirol, editors, Proceedings of ECML-98, 10th
European Conference on Machine Learning, pages 137–142, Heidelberg et al., 1998. Springer.

[3] T. Joachims. Learning to Classify Text Using Support Vector Machines: Methods, Theory and
Algorithms. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[4] V. Mitra, C. Wang, and S. Banerjee. Text classification: a least square support vector machine
approach. Appl. Soft Comput., 7(3):908–914, 2007.

[5] Y. Yang and X. Liu. A re-examination of text categorization methods. In Proceedings of the
22nd Annual International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’99, pages 42–49, New York, NY, USA, 1999. ACM Press.

[6] L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proc. IEEE, 77(2):257–286, 1989.

[7] F. A. Barros, E.F.A. Silva, R.B. Cavalcante Prudêncio, V. M. Filho, and A.C.A. Nascimento.
Combining text classifiers and hidden Markov models for information extraction. Int. J. Artif.
Intell. Tools, 18(2):311–329, 2009.

[8] D. Freitag and A. K. Mccallum. Information extraction with HMMS and shrinkage. In In
Proceedings of the AAAI-99 Workshop on Machine Learning for Information Extraction, pages
31–36, 1999.

[9] T. R. Leek. Information extraction using hidden Markov models. Master’s thesis, UC San
Diego, 1997.

[10] D. R. H. Miller, T. Leek, and R. M. Schwartz. A hidden Markov model information retrieval
system. In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’99, pages 214–221, New York, NY, USA,
1999. ACM Press.

[11] P. Frasconi, G. Soda, and A. Vullo. Hidden Markov models for text categorization in multi-page
documents. J. Intell. Inform. Syst., 18:195–217, 2002.

[12] K. Li, G. Chen, and J. Cheng. Research on hidden Markov model-based text categorization
process. Int. J. Digital Content Technol. Appl. , 5(6):244–251, 2011.

[13] S. Manne and S. Sameen Fatima. An extensive empirical study of feature terms selection for
text summarization and categorization. In Proceedings of the Second International Conference
on Computational Science, Engineering and Information Technology, CCSEIT ’12, pages 606–
613, New York, NY, USA, 2012. ACM Press.

[14] K. Yi and J. Beheshti. A hidden Markov model-based text classification of medical documents.
J. Inform. Sci., 35(1):67–81, 2009.

[15] D. Chen and Z. Liu. A new text categorization method based on HMM and SVM. volume 7,
pages V7383–V7386, 2010.

[16] D. Zhou and Y. He. Biomedical events extraction using the hidden vector state model. Artif.
Intell. Med., 53(3):205–213, 2011.

21

[17] D.M. Blei. Probabilistic Topic models. Commun. ACM, 55(4):77–84, 2012.

[18] D.M. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. JMLR, 3:993–1022, 2003.

[19] J. Changduk, H. Ingoo, and S. Bomil. Risk analysis for electronic commerce using case-based
reasoning. Int. Syst. Account. Finance Manage., 8(1):61–73, 1999.

[20] S. Craw, N. Wiratunga, and R. C. Rowe. Learning adaptation knowledge to improve case-based
reasoning. Artif. Intell., 170(16-17):1175–1192, 2006.

[21] J. Kolodner. Case-based Reasoning. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1993.

[22] R. Ros, J.L. Arcos, R. Lopez de Mantaras, and M. Veloso. A case-based approach for coordi-
nated action selection in robot soccer. Artif. Intell., 173(9-10):1014–1039, 2009.

[23] N. Xiong. Fuzzy rule-based similarity model enables learning from small case bases. Appl. Soft
Comput., 13(4):2057–2064, 2013.

[24] A. M. Salem. Case based reasoning technology for medical diagnosis. In Proceedings of World
Academy of Science, volume 25 of CESSE, pages 9–13, 2007.

[25] A. Aamodt and E. Plaza. Case-based reasoning; foundational issues, methodological variations,
and system approaches. AI Commun., 7(1):39–59, 1994.

[26] I. Watson and F. Marir. Case-based reasoning: a review. Knowl. Eng. Rev., 9(4):355–381,
1994.

[27] L.R. Medsker. Hybrid Intelligent Systems. Kluwer Academic Publishers, Boston, 1995.

[28] M.L. Borrajo, B. Baruque, E. Corchado, J. Bajo, and J.M. Corchado. Hybrid neural intelligent
system to predict business failure in small-to-medium-size enterprises. Int. J. Neural Syst.,
21(4):277–296, 2011.

[29] J.F. de Paz, J. Bajo, A. González, S. Rodŕıguez, and J.M. Corchado. Combining case-based
reasoning systems and support vector regression to evaluate the atmosphere-ocean interaction.
Knowl. Inform. Syst., 30(1):155–177, 2012.

[30] J. Hunt and R. Miles. Hybrid case-based reasoning. Knowl. Eng. Rev., 9(4):383–397, 1994.

[31] K.T. Atanassov. Intuitionistic Fuzzy Sets, volume 35 of Studies in Fuzziness and Soft Com-
puting. Physica Verlag, Heidelberg, 1999.

[32] P. Blunsom. Hidden Markov models. 2004.

[33] F. Sebastiani. Text categorization. In Text Mining and its Applications to Intelligence, CRM
and Knowledge Management, pages 109–129. WIT Press, 2005.

[34] T. Nikolaos and T. George. Document classification system based on HMM word map. In Pro-
ceedings of the 5th International Conference on Soft Computing as Transdisciplinary Science
and Technology, CSTST ’08, pages 7–12, New York, NY, USA, 2008. ACM Press.

22

[35] W.R. Hersh, C. Buckley, T.J. Leone, and D.H. Hickam. Ohsumed: an interactive retrieval
evaluation and new large test collection for research. In SIGIR, pages 192–201, 1994.

[36] J.B. Lovins. Development of a stemming algorithm. Mech. Transl. Comput. Linguist., 11:22–31,
1968.

[37] B. Sierra Araujo. Aprendizaje automtico: conceptos bsicos y avanzados: aspectos prcticos
utilizando el software Weka. Pearson Prentice Hall, Madrid, 2006.

[38] A. J. Viera and J. M. Garrett. Understanding interobserver agreement: the kappa statistic.
Family Med., 37(5):360–363, 2005.

Appendix A. The 23 disease categories for OHSUMED corpus

C01 Bacterial Infections and Mycoses

C02 Virus Diseases

C03 Parasitic Diseases

C04 Neoplasms

C05 Muscoloskeletal Diseases

C06 Digestive System Diseases

C07 Stomatognathic Diseases

C08 Respiratory Tract Diseases

C09 Otorhinolaryngologic Diseases

C10 Nervous System Diseases

C11 Eye Diseases

C12 Urologic and Male Genital Diseases

C13 Female Genital Diseases and Pregnancy Complications

C14 Cardiovascular Diseases

C15 Hemic and Lymphatic Diseases

C16 Neonatal Diseases and Abnormalities

C17 Skin and Connective Tissue Disieases

C18 Nutritional and Metabolic Diseases

C19 Endocrine Diseases

C20 Immunologic Diseases

C21 Disorders of Environmental Origin

23

C22 Animal Diseases

C23 Pathological Conditions, Signs and Symptoms

Vitae

L. Borrajo received a Ph.D. in Computer Science from the University of Vigo (Spain) in
2003. She has an open-term contract as professor for the Department of Computer Science of
the University of Vigo from 2000 collaborating as investigator with the SING (Computer Systems
of New Generation) research group belonging to this University. She has participated in several
investigation projects related with the field of case based reasoning and hybrid systems. The
investigation work carried out in the environment of these projects has given place to an important
number of international publications.

A. Seara Vieira, degree in Computer and Master in Intelligent and Adaptable Software Sys-
tems, is currently predoctoral student in the Computer Science Department at the University of
Vigo, Spain. His research work is focused on the Machine Learning field, especially in text classifica-
tion algorithms, and hybrid methods of Artificial Intelligence such as CBR (Case Based Reasoning)
and its application to real problems. He collaborates with the SING (Computer Systems of New
Generation) research group belonging to the University of Vigo.

E. L. Iglesias received a Ph.D. in Computer Science from the University of Coruña (Spain)
in 2003. She has an open-term contract as professor for the Department of Computer Science of
the University of Vigo from 1998 collaborating as investigator with the SING (Computer Systems
of New Generation) research group belonging to this University. She has participated in several
investigation projects related with the field of information systems and automatic generation of
interfaces for the access to documental databases via Web. She has also directed numerous I+D
projects with public and private organizations for the development of cataloguing systems and
resource control systems. The investigation work carried out in the environment of these projects
has given place to an important number of national and international publications.

24

	ELSEVIER.pdf
	Accepted_version_TCBR-HMM An HMM-based text classifier with a CBR system.pdf
	Introduction
	Text classification with TCBR-HMM model
	Case Based Reasoning systems
	Basics of Hidden Markov Models

	T-HMM classifier
	T-HMM classifier definition
	Classifying new documents

	TCBR-HMM system proposal
	Experiments
	OHSUMED Corpus
	Data processing
	TCBR-HMM learning evaluation
	Comparison between methods
	Statistical tests
	Time execution comparative

	Conclusions and future directions

