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SHORT ABSTRACT:  25 
A protocol to evaluate solutions based on commercial-off-the-shelf (COTS) wrist wearables to 26 
estimate stress in students is proposed. The protocol is carried out in two phases, an initial 27 
laboratory-based stress induction test, and a monitoring stage taking place in the classroom 28 
while the student is performing academic activities. 29 
 30 
LONG ABSTRACT:  31 
Wearable commercial-off-the-shelf (COTS) devices have become popular during the last years 32 
to monitor sports activities, primarily among young people. These devices include sensors to 33 
gather data on physiological signals such as heart rate, skin temperature or galvanic skin 34 
response. By applying data analytics techniques to these kinds of signals, it is possible to obtain 35 
estimations of higher-level aspects of human behavior. In the literature, there are several works 36 
describing the use of physiological data collected using clinical devices to obtain information on 37 
sleep patterns or stress. However, it is still an open question whether data captured using COTS 38 
wrist wearables is sufficient to characterize the learners’ psychological state in educational 39 
settings. This paper discusses a protocol to evaluate stress estimation from data obtained using 40 
COTS wrist wearables. The protocol is carried out in two phases. The first stage consists of a 41 
controlled laboratory experiment, where a mobile app is used to induce different stress levels 42 
in a student by means of a relaxing video, a Stroop Color and Word test, a Paced Auditory Serial 43 
Addition test, and a hyperventilation test. The second phase is carried out in the classroom, 44 



where stress is analyzed while performing several academic activities, namely attending to 45 
theoretical lectures, doing exercises and other individual activities, and taking short tests and 46 
exams. In both cases, both quantitative data obtained from COTS wrist wearables and 47 
qualitative data gathered by means of questionnaires are considered. This protocol involves a 48 
simple and consistent method with a stress induction app and questionnaires, requiring a 49 
limited participation of support staff. 50 
 51 
INTRODUCTION: 52 
State-of-the-art wearable technologies are widely available, and their application environments 53 
are continuously expanding. We can find in the market many different devices, among which 54 
COTS wrist wearables1, such as smart watches and smart bands, are popular among athletes as 55 
a personal physical fitness monitoring tool2. By applying data analytic techniques, the data 56 
obtained using these devices can be processed to provide indicators such as general physical 57 
state, sleep quality or recovery factor. The demonstrated applicability in this area raised 58 
interest in the academic community about their possible application to other fields, especially 59 
in the health domain3,4, although the strict requirements of clinical trials limit their 60 
introduction. However, in a less demanding context such as education, we can find in the 61 
literature recent investigations involving the use of different types of wearable devices, both 62 
related to teaching activities5,6 and to the estimation of certain characteristics of the student 63 
such as sleep patterns7, or the analysis of students’ engagement in different educational 64 
activities8. 65 
 66 
In our case, we focus on analyzing COTS wrist wearable devices as means to collect 67 
physiological signals that would eventually facilitate stress estimation, which in turn is a key 68 
aspect in educational contexts. Stress has a relevant influence in the development of academic 69 
activities and overall students’ performance. For example, stress levels are directly related to 70 
the onset of the burnout syndrome in students9–11, and high stress levels are especially relevant 71 
during the freshman year, where drop-out rates between 20% and 30%12,13 are common. 72 
Detecting and controlling stress indicators could dramatically improve academic performance. 73 
 74 
The use of COTS wrist wearable devices is justified because they have sensors that provide 75 
information on physiological signals that have been widely used by the scientific community in 76 
stress assessment and detection. Some of the signals referred to in the literature used for this 77 
purpose include heart rate (HR)14, heart rate varaibility15, skin temperature (ST)16, respiration14, 78 
and galvanic skin response (GSR)17. These signals can be collected by COTS wrist wearables. 79 
However, they do not offer the same performance as clinical devices. There are differences 80 
related to the accuracy of sensors among devices18–21. Nevertheless, previous works18–21 have 81 
shown that, in a slow movement scenario, COTS wrist wearable sensors have error patterns 82 
similar to specialized devices.  83 
 84 
The aim of this paper is to introduce a protocol to evaluate different solutions for stress 85 
estimation in students using COTS wrist wearables. There are many arrangements that can be 86 
proposed to estimate stress levels, involving the use of different wrist wearable devices and 87 
data analytics techniques, and more specifically machine learning algorithms. COTS wrist 88 



wearables are characterized by their high fragmentation, heterogeneity and interoperability 89 
problems22. Three companies have an aggregated market share of almost 50%23, but many 90 
other companies account for much smaller individual market shares, with an aggregated share 91 
above 50%. On the other hand, in terms of heterogeneity, not all wearables have the same 92 
number and type of sensors, with accelerometers and h sensors being the most common, and 93 
ST’s and GSR’s being only present in 5% of the devices studied. As for interoperability, there are 94 
different operating systems and data collection approaches that are not compatible with each 95 
other. As for the machine learning techniques that can be applied to estimate stress from the 96 
data collected by means of a wrist device, there are many options available24, including decision 97 
trees, neural networks, nearest neighbor approaches, Naïve Bayes classifiers, etc. To sum up, 98 
there is a great variety of solutions that may be developed for stress estimation, so it is 99 
instrumental to design an evaluation protocol to facilitate the comparison among different 100 
tentative options to eventually select the most suitable in a given context. 101 
 102 
For the implementation of the protocol, several tools are needed (Figure 1). First, a COTS wrist 103 
wearable device is needed to fetch physiological data. This wearable device should have at least 104 
HR monitoring capabilities, but additional sensors are desirable (e.g., accelerometer, ST, GSR 105 
sensors). Second, a smartphone running the PhysiologicalSignal app is required to collect the 106 
data captured by the wearable device. Third, a tablet running the StressTest app is needed to 107 
run stress induction exercises (the smartphone could be used instead the tablet for this 108 
purpose). Fourth, some questionnaires to collect qualitative data on students’ perception on 109 
stress. Fifth, a server with a Web service25 to perform data collection and pre-processing, and a 110 
Web dashboard to show the evolution of the signals. And finally, a data analytics package26 to 111 
process the data collected about students using machine learning techniques.  112 
 113 
The evaluation protocol is organized into two phases. The first one, the laboratory phase, is 114 
carried out in a comfortable room, where different stress levels (i.e., "relax", "concentrated 115 
stress" and "stress") are induced to a target subject (a student) through several common stress-116 
inducing tasks. The second part takes place in the classroom, and it involves monitoring the 117 
student during the accomplishment of several academic activities: theoretical explanations, 118 
individual activities, short tests, exams, etc. During the implementation of this protocol, the 119 
subject’s physiological signals are captured by means of a wrist device. Finally, these signals are 120 
processed by machine learning algorithms to provide estimations on the level of stress. 121 
 122 
During the laboratory phase, the StressTest app is used to induce different stress levels. This 123 
app guides the subject to the completion of four different tasks. The first task is to create a 124 
baseline for stress analysis. In this task, the student visualizes a 4-minute relaxing video in 125 
which different shots of a sunset on a bridge are shown. The second task is an adaptation of the 126 
Stroop Color and Word Test27 (SCWT). Every two seconds, the subject must choose the color in 127 
which the name of a color is painted (red, green, orange, blue and purple). Several buttons 128 
located at the bottom of the screen containing the initial letter of each color are available for 129 
the subject to choose the painted color at each time. For example, the button that refers to 130 
blue depicts the letter B. In our case, this test is divided into three different levels of difficulty. 131 
For the first level (SCWT1), the colored "words of colors" will appear in the same order as the 132 



buttons, so color and name match directly. This level is taken as baseline, as it does not involve 133 
any difficulty and the subject should only press the buttons properly, always in the same order. 134 
For the second level (SCWT2), the colored “words of colors” appear randomly, but the 135 
correspondence between name and color is maintained. Every time the subject fails a beep is 136 
emitted, and if two errors are made, the correct color score will be reset. For the last, most 137 
difficult level (SCWT3), name and color do not match. In this way this level is intended to be 138 
more complex and stressful for the subject. The third task consists on the Paced Auditory Serial 139 
Addition test (PASAT)28, which measures how the student experiences a concentration test. 140 
During this task, a sequence of consecutive numbers is played aloud, and the student must add 141 
the last two numbers and write the result in the provided on-screen box before listening to the 142 
next number. In this task, if the subject makes a mistake, a disturbing event occurs to generate 143 
stress (two numbers sound at the same time or a long period of silence in maintained). In this 144 
case, if three errors are committed, the sum account will be reset. The fourth task consists on a 145 
hyperventilation activity to induce the same variation in the physiological signals that would 146 
provoke a stressful situation17. At the end of each task and level, the subject has to indicate the 147 
level of perceived stress, using the application itself, according to a 5-value Likert scale. 148 
 149 
During the classroom phase, students carry out their ordinary academic activities together with 150 
the rest of their classmates. The protocol focuses on the stress levels that occur during 151 
classroom-specific activities. At the end of the lecture, a brief questionnaire (Annex 1) is 152 
completed by the student to indicate the perceived level of stress in the several activities 153 
according to a 5-value scale. 154 
 155 
PROTOCOL: 156 
 157 
All methods described below have been approved by the regional government of Galicia’s 158 
committee for research ethics of Pontevedra-Vigo-Ourense (reg. code 2017/336). The protocol 159 
was implemented for first year students at the School of Telecommunication Engineering - 160 
University of Vigo, both in a comfortable laboratory room and in several lectures and practice 161 
sessions of a bachelor’s degree course on Computer Architectures. 162 
 163 
1. Prepare the Devices 164 
 165 
1.1. Connect the smartphone and tablet device to a stable internet connection. 166 
 167 
1.2. Turn on Bluetooth communications in the smartphone. 168 
 169 
1.3. In the smartphone, search in the corresponding official app store the wrist wearable 170 
application. Download and install it. 171 
 172 
1.4. In the smartphone, search for the PhysiologicalSignals app to capture physiological 173 
signals. Download and install it. 174 
 175 
Note: Currently, the app is a beta version and access can be provided by request. 176 



 177 
1.5. In the tablet, search for the StressTest app to be used in the research laboratory 178 
experiments. Download and install it. 179 
 180 
Note: Currently, the app is a beta version and access can be provided by request.  181 
 182 
1.6. Turn on the COTS wrist wearable device and place the wearable. 183 
 184 
1.7. In the smartphone, open the official COTS wrist wearable application. 185 
 186 
Note: The app will proceed to synchronize the wearable device with the smartphone. In some 187 
devices, an e-mail address is required.  188 
 189 
1.8. In the smartphone, open the PhysiologicalSignals app.  190 
 191 
1.8.1. In case of being notified of a sensor access request, accept it. 192 
 193 
1.8.2. Check the device. Wait for the PhysiologicalSignals app to display the word Weared in 194 
green.  195 
 196 
Note: This indicate that the wearable device has been detected and therefore the transmission 197 
of information from the sensors to the smartphone is enabled. If this message does not appear 198 
repeat from step 1.6. 199 
 200 
2. The Laboratory Phase 201 
 202 
2.1. Prepare the laboratory setting. Choose a comfortable and non-disturbing room without 203 
distracting noise and with a comfortable temperature (between 22 °C and 26 °C). 204 
 205 
2.2. Turn on the wrist wearable device, place it around the subject´s non-dominant wrist and 206 
place the headphones on the head of the student. Fit the wearable tightly but comfortably 207 
around the wrist. 208 
 209 
2.3. Connect the smartphone and tablet to a stable internet connection and verify that the 210 
Bluetooth connection is active. 211 
 212 
2.4. In the smartphone, launch the PhysiologicalSignals app. 213 
 214 
2.4.1. Wait for the app to display the word Weared in green. 215 
 216 
2.4.2. Select the Change User option in the left configuration menu and provide the ID of the 217 
subject who will complete the tests and click Save.  218 
 219 
2.5. In a laptop, access the dashboard and enter the test administrator’s ID and password. 220 



 221 
Note: Currently, for private and security concerns, access to the dashboard is only available 222 
under request. 223 
 224 
2.5.1. Select the subject ID and the subject’s stress tab.  225 
 226 
2.5.2. Check the physiological signals evolution and wait for the wearable device to reach 227 
thermal stability before starting the experiment. 228 
 229 
Note: The thermal stability is identified as a plateau in the graph. 230 
 231 
2.6. In the tablet, launch the StressTest application. 232 
 233 
2.6.1. Explain to the subject the four laboratory tasks. Show some of the screens and actions 234 
to perform during each one of the tasks. 235 
 236 
Note: This is very important, because the subject should feel stressed or relaxed in accordance 237 
to the performed activities, and not fear or concern about what is going to happen.  238 
 239 
2.6.2. Tell the student not to rest their arms on the table and to use the hand where the 240 
wearable device is placed to perform the activities. 241 
 242 
2.6.3. Enter the same user ID as in step 2.4.2 and click the arrow. 243 
 244 
2.7. Launch the video task and give full control to the student. 245 
 246 
2.7.1. Observe that the task is carried out without incident. 247 
 248 
2.7.2. When the task is finished, check that the subject provides the perceived stress. 249 
 250 
2.8. Launch the Stroop Color task (SCWT) consecutively for levels 1, 2 and 3.  251 
 252 
2.8.1. For each level, observe that the subtask is carried out without incident. 253 
 254 
2.8.2. When each subtask is finished, check that the subject provides the perceived stress. 255 
 256 
2.8.3. Only for level 3 and only in case the subject does not solve it after 4 minutes, terminate 257 
the task by pressing the arrow located at the top of the screen. 258 
 259 
2.9. Launch the Paced Auditory Serial Addition test (PASAT). 260 
 261 
2.9.1. Observe that the task is carried out without incident. 262 
 263 



2.9.2. In case the subject does not solve the PASAT test after 4 minutes, terminate the task by 264 
pressing the arrow located at the top of the screen. 265 
 266 
2.9.3. When the task is finished, check that the subject provides the perceived stress. 267 
 268 
2.10. Launch the Hyperventilation test.  269 
 270 
2.10.1. Observe the evolution of HR using the dashboard. If physiological signals do not change 271 
significantly, ask the subject to increase inspiration and expiration rates gradually. 272 
 273 
2.10.2. In case the subject feels dizziness or uncomfortable halt this task. In any case, complete 274 
the task after four minutes. 275 
 276 
2.10.3. When the task is finished, check that the subject provides the perceived stress. 277 
 278 
3. The Classroom Phase 279 
 280 
3.1. Turn on the wrist wearable device and place the wearable around the subject´s non-281 
dominant wrist. Fit the wearable tightly but comfortably around the wrist. 282 
 283 
3.2. Connect the smartphone to a stable internet connection and verify the Bluetooth 284 
connection is active. 285 
 286 
3.3. In the smartphone, launch the PhysiologicalSignals app. 287 
 288 
3.3.1. Wait for the app to display the word Weared in green. 289 
 290 
3.3.2. Select in the configuration menu the Change User option, provide the ID of the subject 291 
who will complete the tests and click Save.  292 
 293 
3.4. In a laptop, access the dashboard and enter the test administrator’s ID and password. 294 
 295 
3.4.1. Select the subject ID and the subject’s stress tab.  296 
 297 
3.4.2. Check the evolution of physiological signals. 298 
 299 
3.5. Take annotations about any relevant event occurring in the classroom in relation to the 300 
student-teacher interaction. 301 
 302 
Note: Relevant information and basic events will be used to label physiological samples 303 
afterwards. Example events are a question from the teacher to the student, or a theoretical 304 
explanation is initiated. 305 
 306 



3.6. At the end of the lecture, ask the subject to complete the questionnaire about their 307 
level of stress at specific times during the session, according to a 5-level scale. 308 
 309 
4. Data Analysis 310 
  311 
4.1. In a laptop, access the dashboard and enter the test administrator’s ID and password. 312 
 313 
4.1.1. Select the subject ID and the subject’s stress tab.  314 
 315 
4.1.2. Select the day of a classroom experiment. 316 
 317 
4.2. Label the samples of the subject by identifying activities and perceived stress levels. 318 
 319 
4.2.1. Identify lecture-room activities and their duration according to the starting and finishing 320 
times and their types.  321 
 322 
4.2.2. For each activity, select a perceived stress level. 323 
 324 
4.3. For each subject and each session, download the file with the tagged samples. 325 
 326 
Note: A comma-separated-values (CSV) file is created for each student, each row reflecting the 327 
values of the physiological signals with their standard deviation, slope and diff, the activity type, 328 
the activity-based stress (i.e., the stress associated by default to the activity) and the subject 329 
perceived stress.  330 
 331 
4.4. Launch the data analytics package. 332 
 333 
4.4.1. Choose a set of classifiers (e.g., SVM, C4.5, k-NN, Random Forest, Naïve Bayes and Zero 334 
R) and import the CSV file for all students for each session.  335 
 336 
4.4.2. Train and evaluate classifiers using the 10-fold cross-validation technique. 337 
 338 
Note: Depending on the analyses, activity type, activity-based stress or stress perceived, shall 339 
be selected as dependent variable for the analysis. 340 
 341 
4.4.3. Finally, check the results for accuracy and error rates.  342 
 343 
REPRESENTATIVE RESULTS:  344 
The protocol discussed was put into practice in a Computer Architectures course in the first 345 
year of the Telecommunication Engineering degree at the University of Vigo. This course has 346 
more than 200 students enrolled who are organized into 10 working groups. To carry out this 347 
experiment, students from four of the groups were invited to enroll at the beginning of the 348 
academic year. The project attracted considerable interest among the students, and around 30 349 



students volunteered to participate in the study. From them, 12 students were randomly 350 
selected for participation. 351 
 352 
The COTS wrist wearable device selected for our experiments has HR, ST, GSR and 353 
accelerometer sensors. The choice of this wearable was based on its variety of sensors and the 354 
provision of real-time data feeding. Technical conditions in which sensor data is collected were 355 
also taken into account. Data capture is performed at certain frequencies, generally imposed by 356 
the operation of the sensors, but also due to the device’s energy-saving characteristics. In the 357 
case of the selected device, HR was sampled every second (1 Hz). The accelerometer offered 62 358 
Hz, 31 Hz and 8 Hz as sampling frequencies, from which 8 Hz was selected because it offers 359 
enough granularity for movement capture with reasonable energy requirements when 360 
compared to the other frequencies. GSR may be sampled at 0.2 or 5 Hz. In this case, we opted 361 
to gather GSR data once every 5 seconds. As for the accelerometer, this frequency provided 362 
enough granularity while keeping energy requirements to a minimum. Finally, ST is sampled at 363 
the same frequency as HR (i.e., 1 Hz). Data collected by the device is transferred to the 364 
PhysiologicalSignals app in the smartphone every second, including the HR and ST sample, the 365 
maximum acceleration value, and the last value for GSR collected. To reduce HR noise, the 366 
server applies to the received data a FIR filter commonly used in real-time applications29 and in 367 
the filtering of ECG signals30, using a 15-sample window.  368 
 369 
Information gathered during laboratory and classroom sessions is stored in the server´s 370 
database. This information should be downloaded to be processed using a data analytics 371 
package. The set of generated data files contains raw signals’ data and variables derived from 372 
those signals. More specifically, for each raw physiological signal (HR, ST, GSR and 373 
accelerometer), its standard deviation (st), slope (sl), and the difference between the present 374 
value and the extreme value in the last 30 seconds are recorded.  375 
 376 
The laboratory phase of the protocol was carried out in a comfortable room of the Telematics 377 
Engineering department that has the appropriate conditions for the experiment. Figure 2 378 
depicts the evolution of HR, GSR and ST values collected during one of these sessions for an 379 
actual student. As can be seen in the figure, significant variations in the physiological signals 380 
occur as the student performs each of the tasks (video, STC1, STC2, STC3, PASAT and 381 
Hyperventilation) included in the experiment. A relatively high initial HR value can be observed, 382 
most probably due to the stress induced when facing this task for the first time while being 383 
monitored. The rapid growth of ST during the hyperventilation test is also noteworthy. 384 
 385 
Also observed during the laboratory experiments were the remarkable variations in the 386 
physiological signals at specific experimental moments, no matter that these periods were not 387 
always perceived as stressful by the target student. This is due to the fact that perceived stress 388 
is a subjective variable, and participating students do not fully agree in a common concept of 389 
stress. During the laboratory phase, it was intended to generate brief periods of high stress. 390 
These brief periods of stress were sometimes defined as frustration, but not as stress, which 391 
leads participating students to respond differently to what their physiological signals expressed. 392 
This effect can be visualized in the graphs in Figure 3. For example, in the interval between 393 



12:15 and 12:20 (completion of the last test of the Stroop Color and Word Test) the strong GSR 394 
variations are a clear symptom of potential stress. These strong variations are also present 395 
between 12:25 and the end of the test (Hyperventilation test), but on both occasions, the user 396 
claimed to feel a similarly low stress level.  397 
 398 
The situation discussed above stresses the subjective character of stress evaluation in such a 399 
short period of time. As a consequence, from the candidates for dependent variables in data 400 
sets (i.e., activity type, activity-based stress, or subject-perceived stress) we opted for activity-401 
based stress. This variable defines stress levels according to the level of difficulty of the task 402 
addressed and not on the answers provided by the students about their perceived stress levels 403 
at the end of each task. This way, video watching would be tagged as “relax” while SCWT3 and 404 
PASAT would be labelled as “concentration” and the Hyperventilation test as “stress”. Note that 405 
samples from SCWT1 and SCWT2 were discarded in our case because in a previous pilot 406 
research was observed that, on average, SCWT1 and SCWT2 are activities that show a transition 407 
between a relaxed feeling (reached during video visualization) and stressful one. For these 408 
reason, we discarded from our analysis the signals from these 2 activities, and we included only 409 
those from video visualization, SCWT3, PASAT and Hyperventilation activities. The HR, ST and 410 
GSR variations among these states (relax, concentration, stress) are summarized in Figure 4. 411 
This figure depicts the physiological signal quartiles for the three stress levels in the 12 students 412 
involved in the experiment. In general, HR and GSR signals gradually increase as the student 413 
faces tasks of increasing difficulty. Also, in all cases the temperature level is affected. However, 414 
in some cases it increases for relaxed events and decreases in stressful situations, while in other 415 
cases it occurs just the opposite depending of the person. 416 
 417 
In order to analyze the correlation observed visually in the variation of the physiological signals, 418 
machine learning techniques were applied over processed CSV files. To avoid initial transitory 419 
variations for each task and level, only the last 3 minutes of each activity are considered in 420 
order to avoid non-representative samples. In particular, several classification algorithms, 421 
particularly SVM, C4.5, k-NN, Random Forest, NaiveBayes and ZeroR, were trained to detect 422 
stress situations from the collected physiological signals. The trained classifiers became high 423 
accuracy, low mean absolute error rates and high Cohen’s Kappa index level stress detectors, as 424 
it is shown in Table 1. For all the 12 subjects and algorithms (except ZeroR), the accuracy of 425 
stress detection in over 90%, mean absolute error value is near 0 and Cohen’s kappa index is 426 
close to 1.  427 
 428 
The classroom phase defined in the protocol took place during actual course sessions in the 429 
lecture rooms of the School of Telecommunications Engineering. Several academic activities 430 
were considered for this study: theoretical lectures; questions arbitrarily asked by the teacher 431 
to the students about some aspect of the course; doubts or questions posed to the teacher by 432 
students; short tests; regular exams/finals consisting of collection of problems to be solved by 433 
the student in 50-70 minutes. 434 
 435 
The visualization of the evolution of physiological signals in this case shows that variations are 436 
subtler, that is, the differences in signal values for different activities are smaller than during 437 



the laboratory phase. The most relevant variations were observed during classroom sessions in 438 
which a regular lecture occurs after a pop quiz is completed. In this case, one or several of the 439 
physiological signals suffer significant differences, as illustrated in Figure 5. This figure depicts 440 
the signals captured for a student facing a short test (first part of the graphs). During the test, 441 
the most relevant variable would be HR. It can be observed that the student has a higher heart 442 
rate when compared to theoretical lecture time. In the same way, skin temperature is kept 443 
relatively low when compared to theoretical lecture time, when it raises around 1 °C.  444 
 445 
To analyze this in a numerical way, the correlation between the variations in the signals and the 446 
activities addressed by the students, machine learning techniques were applied analogously to 447 
the laboratory phase. The results for the combined pop quiz and lecture sessions show an 448 
average classification accuracy of 97.62% (± 3.82) using C4.5. Note that for the analysis of these 449 
sessions skin temperature was discarded due to possible biases in the final result. During the 450 
transition period between the pop quiz and the following lecture students leave the classroom 451 
for approximately 20 minutes, with dramatically affects temperature values. 452 
 453 
A comprehensive formal analysis of the collected classroom sessions is still in progress. This is a 454 
complex process where several challenging situations are addressed. First, abrupt short-time 455 
variations in the physiological signals are frequently observed with no associated stress-456 
generating event. In most cases, these periods last for less than one minute without anything 457 
significant being recorded by the researcher. Another incidence observed is the instability of 458 
the GSR values when the wearable is not well adjusted or if sudden movements occur. Both 459 
situations result in a very low GSR values, close to 0 μS. In a similar way, although much less 460 
usual, there are incorrect ST values, close to the ambient temperature, when the wearable is 461 
too big for the wrist of the user and therefore is loosely worn. To eliminate the analysis errors 462 
derived from these situations, affected variables are discarded. Note that all the signals 463 
monitored can be candidates to detect stress situations and different classifiers may be trained 464 
using different combinations of signals, but anomalous values would compromise classification 465 
no matter the classifier selected. 466 
 467 
FIGURE AND TABLE LEGENDS: 468 
 469 
Figure 1. Tools used in the proposed protocol. This figure represents all the elements involved 470 
in the protocol and their interactions. 471 
 472 
Figure 2. Stress variation in a laboratory session. This figure shows the different parts in which 473 
the laboratory protocol is divided. Each part presents a clear variation in the physiological 474 
signals. 475 
 476 
Figure 3. Stress variation perceived for a student in a laboratory session. This figure shows the 477 
discrepancies between the strong variations of the physiological signals of a student during a 478 
laboratory session and their answer to the stress quiz. 479 
 480 



Figure 4. Physiological signal percentiles for 12 students participating in a laboratory session. 481 
This figure represents a percentile summary for each subject. The strong physiological signal 482 
variations between each stress situation can be visualized. 483 
 484 
Figure 5. HR, ST and GSR variations during classroom activities. Physiological signals variation 485 
during a short test (Left). Physiological signals variation during a theoretical lecture (Right).  486 
 487 
Table 1. Accuracy, mean absolute error, and Cohen’s Kappa index values obtained for SVM, 488 
C4.5, k-NN, Random Forest, NaiveBayes and ZeroR machine learning classifiers using data 489 
from the 12 students participating in the laboratory experiment.  490 
 491 
DISCUSSION:  492 
COTS wearable devices are among the most popular consumer electronics products available 493 
today. These devices are typically used to monitor physical activities, but their capabilities and 494 
performance could be of great interest in other areas. In this paper, a protocol to evaluate the 495 
use of COTS wearable devices for estimating stress in learning environments is discussed. The 496 
definition of such a protocol is especially relevant in order to analyze different solutions 497 
involving wearables and machine learning algorithms. The protocol is intended to be used in 498 
educational settings, where the validation of stress detection procedures and their eventual 499 
introduction may provide significate benefits. For example the use of wearable devices can 500 
contribute to reduce the high levels of stress associated to the so-called burnout syndrome9–11, 501 
and as a consequence the dropout rate at universities12,13, while improving academic 502 
performance. 503 
 504 
A critical aspect to consider is the Bluetooth link between the wearable and the smartphone. 505 
This wireless connection between both devices may be broken during the test, so it is necessary 506 
to pay special attention to it through the visualization of the data collected in the dashboard. 507 
Although recovery is performed automatically after a short period of time (i.e., an interval 508 
ranging from 1 to 10 minutes), this interruption may cause the loss of the samples in that 509 
interval. To reduce the amount of information lost, it may be convenient to manually reset the 510 
smartphone device. Other aspect to be considered is the initial skin temperature sensor value, 511 
as it may affect the achievement of skin stability, which may be delayed up to 10 minutes. 512 
 513 
The main advantages of the protocol proposed in this research are its applicability to a large 514 
group of students, its minimal need for support using automated mobile apps, its simplicity in 515 
the preparation of the devices involved in the experiment and its low intrusiveness while 516 
carrying out the classroom phase. This protocol provides a fast and simple method applicable in 517 
controlled environments, such as classrooms or university laboratories. Besides, technological 518 
abilities of participating students are not an issue, as the protocol is based in straightforward 519 
technical concepts understandable by an average university student independently of their 520 
academic field. As stated in the literature31, reproducibility in experimental sciences requires a 521 
thorough and clear description of the protocols applied and the results thereof. The protocol 522 
discussed in this paper has been designed in a modular way according to simple, 523 
straightforward steps, which facilitates the reproduction of the experiments discussed and their 524 



extension32. Among the most relevant design aspects facilitating reproducibility, we can name 525 
the conciseness of the laboratory phase and its automated implementation by means of 526 
standalone mobile apps. Additionally, the classroom phase does not require any interaction 527 
with the students beyond academic activities. Most students pointed out the simplicity of the 528 
process, and no complaints were reported in relation to their involvement in the experiments. 529 
To sum up, collected evidence so far indicates that this protocol may be applied to subjects 530 
with a broader profile and in fields different to education, such as health facilities or the 531 
working place. Besides, this protocol offers the possibility to study several machine learning 532 
solutions with which to test the best algorithms to implement depending on the requirements 533 
of the experiments and on the wearable device selected. The use of applications to induce 534 
stress and to provide a dashboard to display and tag samples facilitates the training of custom 535 
stress models in a single laboratory session.  536 
 537 
The main limitations of the proposed solution are related on the subjects’ variability and the 538 
reproducibility of academic activities. Recreating exactly the same conditions and situations 539 
taking place in lecture sessions is practically impossible. On the other hand, the stress 540 
experienced by each student is very personal, as in general there are different responses to the 541 
same stimuli. In addition, there are hardware-related issues related to the wearable devices 542 
themselves, such as different access methods, different sensors, access to physiological signals 543 
in real time, or battery life. These technical requirements restrict eligible wearables to a limited 544 
range of devices. In our case, eligible devices include those compatible with smart Bluetooth 545 
capabilities and smart bands with a SDK compatible with major SO smartphone devices. The 546 
number of compatible devices is expected to increase along the next years. 547 
 548 
The proposed protocol is intended to serve as an instrument to eventually define richer student 549 
models than those presently used in learning management systems or student information 550 
systems. For example, the new information captured with the wearable device according to the 551 
protocol discussed could be applied to the early detection of situations affecting performance 552 
such as fatigue or stress, and to guide students to overcome these situations. An alternative to 553 
this protocol may be based on wearable devices worn also outside the classroom in order to 554 
detect variations in physiological signals over a longer period of time. This approach involves 555 
several challenges, such as a constantly changing ambient temperature, or the subject under 556 
study being forced to always be close to their smartphone to prevent data loss. Finally, this 557 
protocol may be also applied to other courses and educational levels, which would facilitate the 558 
capture of additional evidence on how stress influences academic performance for students 559 
with different skills or fields of study. 560 
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