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Abstract

In this work we optimize di↵erent issues related to phytoremediation techniques for
heavy metals removal from shallow water, by means of a combination of mathe-
matical modelling, optimal control of partial di↵erential equations and numerical
optimization. We introduce, analyze and solve a 2D mathematical system of non-
linear partial di↵erential equations representing the concentrations of heavy metals,
algae and nutrients in large waterbodies. Then, we formulate an optimal control
problem related to the optimization of the phytoremediation process. In particular,
we determine the minimal quantity of algae to be used in the heavy metals reme-
diation process, and locate the optimal place for such algal mass. We also propose
two di↵erent full algorithms for computing the numerical solution of the control
problem and, finally, we present several numerical results for a realistic case.
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1 Introduction

Phytoremediation is one of the most usual techniques for in situ bioremedia-
tion in order to deal with environmental problems related to high concentra-
tions of heavy metals in waterbodies. The main di�culty when operating with
heavy metals pollution (mercury, lead, nickel, chromium, zinc, etc.) is due to
the fact that these cannot be biodegraded once released into water. So, their
indefinite persistence in the environment (and their subsequent accumulation
in living organisms) can only be combated with an appropriate removal from
water [1].

Phytoremediation refers to the usage of any treatment employing natural or-
ganisms (in this case plants and algae) to clean up heavy metals-contaminated
water. Its main advantages are based on the e↵ectiveness of plants to withdraw
chemicals from the environment (the well-known ability of biological materials
to remove and accumulate heavy metals from solutions by means of adsorption
mechanisms [2]), and on their low cost when compared to other techniques (the
utilization of cheap materials such as naturally abundant macroalgae and mi-
croalgae as bioadsorbents). Customary phytoremediation techniques are based
on adding algal masses in regions su↵ering from high levels of heavy metals
concentration, so that the bioadsorbent capacity of algae may reduce heavy
metals contamination inside their influence area.

In order to study this environmental problem (as far as we know, unaddressed
from a mathematical viewpoint), in next section we present a mathemati-
cal model for the evolution of heavy metals concentrations, set its analytical
well-posedness, and introduce a computational algorithm for its numerical
resolution. Then, we formulate the physical problem as a constrained optimal
control problem of partial di↵erential equations, and propose two di↵erent
methods for its solution. Finally, we present several numerical examples, for
a real-world case, in order to assess the e�ciency of our mathematical tech-
niques. Some of the results presented here were previously announced, for a
very preliminary version of the problem, in two short notes from the authors
[3,4]. In particular, in [3] a preparatory, simplified model for heavy metals
concentration is proposed -although not mathematically analyzed- and in [4]
a primitive formulation of the control problem is set and solved by means
of a simple, naive numerical method. In the present work, following these
initial steps, we state and deeply analyze a rigorous formulation of the com-
plete problem (coupling concentrations of nutrients, algae and heavy metals
in water) and propose two di↵erent sophisticated algorithms for achieving the
optimal solutions that, applied in a realistic scenario, show the robustness of
our approach.
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2 A mathematical model

To fix ideas, let ⌦ ⇢ R2 be a bounded domain (corresponding, for instance, to
a lake or an estuary) representing a shallow water body, su↵ering from several
wastewater discharges (rich in heavy metals), which causes a contamination
of water surpassing the maximum admissible thresholds for heavy metals con-
centrations, and gives raise to sanitary problems.

We start this work by setting and analyzing a mathematical model (hat will
be denoted as the state system) designed to simulate the concentration of a
heavy metal in water, and to be suitable in order to indicate water quality
in the domain under study ⌦ throughout the whole simulation time period
[0, T ]. In this study we will consider as controls (design variables in order to
optimize phytoremediation techniques) the quantity ã � 0 of added algae and
the subdomain K ⇢ ⌦ where they are placed.

2.1 The state system

To formulate a mathematical model in order to simulate the evolution of
heavy metal levels in a domain of shallow water, we consider the following
concentrations that will be height averaged in the water column), defined to
be the state variables in our problem. So, for each x 2 ⌦ and for each t 2 [0, T ],
we consider:

• c(x, t) [g/m3]: the concentration of a generic heavy metal in water,
• q(x, t) [g/g]: the concentration of heavy metal deposited in algae,
• a(x, t) [g/m3]: the concentration of algae in water,
• p(x, t) [g/m3]: the concentration of nutrients in water.

In order to model the interactions between nutrients (mainly nitrogen and
phosphorus) and algae we use nonlinear convection-reaction-di↵usion partial
di↵erential equations with Michaelis-Menten coupling terms [5]. In particular,
for adsorption terms, the classical Lagergren model is used, which is based on
a linear driving force between the concentration q of heavy metal adsorbed at
time t, and the concentration of heavy metal adsorbed at equilibrium q

⇤, that
is:

@q

@t
= q (q

⇤ � q) , (1)

where q [1/s] is a first order mass transfer coe�cient for adsorption rate.
Moreover, in this expression, the equilibrium concentration q

⇤ is derived from
the adsorption isotherm given, for instance, by the Langmuir model:

3
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q
⇤ =

Qmax b c

1 + b c
, (2)

where Qmax [g/g] denotes the maximum adsorption capacity, and b [m3
/g] rep-

resents an equilibrium adsorption constant related to the biosorption e�ciency
of algal masses.

Thus, taking into account these considerations on the interactions of nutrients,
algae and heavy metals in water, above concentrations can be computed as
the solution of the following system of coupled partial di↵erential equations:

@c

@t
+ v ·rc� µc �c+ c a

@q

@t
= F in ⌦⇥ (0, T ), (3)

@q

@t
= q

 
Qmax b c

1 + b c
� q

!

in ⌦⇥ (0, T ), (4)

@a

@t
+ ṽ ·ra� µa �a� �

p

p + p
a+ � a = 0 in ⌦⇥ (0, T ), (5)

@p

@t
+ v ·rp� µp �p+ � �

p

p + p
a = G in ⌦⇥ (0, T ), (6)

with initial conditions given by:

c(0) = c
0
, q(0) = q

0
, p(0) = p

0 in ⌦, (7)

a(0) = a
0 ⌘ ã

0 + ã 1K in ⌦, (8)

and with homogeneous Neumann boundary conditions:

@c

@n
=

@a

@n
=

@p

@n
= 0 on @⌦⇥ (0, T ), (9)

where

• v(x, t) = (v1, v2) [m/s] denotes water velocity (also averaged in height
h(x, t) [m]), being both variables the solution of the classical shallow water
Saint-Venant equations,

• ṽ(x, t) [m/s] represents algal velocity (for instance, in the case of immobi-
lized algae, ṽ = 0, and if algae move with water, ṽ = v),

• µc, µa and µp [m2
/s] represent the di↵usion coe�cients for metal, algae, and

nutrient, respectively,
• c is the coe�cient related to mass transfer,
• � [1/s] denotes the coe�cient of luminosity,
• p [g/m3] represents the semi-saturation constant for nutrients,
• � [1/s] is the algal mortality rate,
• � [g/g] corresponds to the nutrient-carbon stoichiometric coe�cient,

4
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• F (x, t) [g/m3
/s]and G(x, t) [g/m3

/s] denote the source terms of heavy met-
als and nutrients, respectively,

• 1K(x) is the indicator function of the region K ⇢ ⌦ where an algae mass of
concentration ã � 0 is added, at time t = 0, to the original concentration
ã
0(x) (it is worthwhile recalling here that K and ã are intended to be the

design variables of our control problem).

2.2 Mathematical analysis

In order to analyze from the mathematical viewpoint the state system (3)-
(9) we will follow similar techniques to those introduced, for instance, in [6]
for a di↵erent problem. So, assuming some minimal hypotheses of nonneg-
ativeness, boundedness and regularity for initial data c

0, q0, a0 and p
0, for

the source terms F and G, and for the velocities v and ṽ, we will demon-
strate that the state variables c, q, a and p remain nonnegative and bounded,
and that they belong to a smooth enough functional space. Specifically, in
our proof, we will need that the initial data c

0
, q

0
, a

0
, p

0 2 L
2(⌦) satisfy

0  c
0(x), q0(x), a0(x), p0(x)  M, 8x 2 ⌦, the source terms F, G 2

L
2(0, T ;L2(⌦)) satisfy 0  F (x, t), G(x, t)  M, 8(x, t) 2 ⌦ ⇥ [0, T ], and

the velocities v, ṽ 2 L
1(0, T ;L1(⌦))2.

2.2.1 Reformulation of the State System

As a preliminary step, we rewrite the linear ordinary di↵erential equation for
q in the standard form:

@q

@t
+ qq = q

Qmax b c

1 + b c
in (0, T ), q(0) = q

0
, (10)

whose well-known classical solution is given by expression:

q(x, t) = e
�qtq

0(x) +

tZ

0

e
�q(t�s)

q

Qmax b c(x, s)

1 + b c(x, s)
ds. (11)

Then, taking explicit expression (11) to the partial di↵erential equation for c,
we can rewrite it in the integro-di↵erential form:

@c

@t
+ v ·rc� µc �c+ c q a

Qmax b c

1 + b c
(12)

5
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= c q a

0

@e�qtq
0(x) +

tZ

0

e
�q(t�s)

q

Qmax b c(x, s)

1 + b c(x, s)
ds

1

A+ F

In order to study the existence of solution of state system (3)-(9), we use the
following changes of variable:

c(x, t) = e
⌘t
u(x, t), a(x, t) = e

⌘t
r(x, t), p(x, t) = e

⌘t
w(x, t), (13)

for an arbitrary parameter ⌘ > 0. Thus, the equations for a, p and c turn into
following equivalent respective expressions for r, w and u:

@r

@t
+ ⌘r + (� � �

w

p + w
) r � µa �r = �ṽ ·rr in ⌦⇥ (0, T ), (14)

@w

@t
+ ⌘w � µp �w + � � r

w

pe
�⌘t + w

= e
�⌘t

G� v ·rw in ⌦⇥ (0, T ), (15)

@u

@t
+ ⌘u� µc �u+ c q r

Qmax b u

e�⌘t + b u
= c q r

⇣
e
�qtq

0(x) (16)

+

tZ

0

e
�q(t�s)

q

Qmax b u(x, s)

e�⌘s + b u(x, s)
ds

1

A+ e
�⌘t

F � v ·ru in ⌦⇥ (0, T ),

with initial conditions:

r(0) = a
0
, w(0) = p

0
, u(0) = c

0 in ⌦, (17)

and boundary conditions:

@r

@n
=

@w

@n
=

@u

@n
= 0 on @⌦⇥ (0, T ). (18)

Then, for the space B̃ = {(r, w, u) 2 [L2(0, T ;L2(⌦))]3 : 0  r, w, u  A},
with A > 0 a large enough upper bound, we define the mapping H : (r, w, u) 2
B̃ ! H(r, w, u) = (r̂, ŵ, û) 2 B̃, where (r̂, ŵ, û) is the solution of the linear
system:

@r̂

@t
+ ⌘r̂ + (� � �

w

p + w
) r̂ � µa �r̂ = �ṽ ·rr̂ in ⌦⇥ (0, T ), (19)

@ŵ

@t
+ ⌘ŵ � µp �ŵ + � � r

ŵ

pe
�⌘t + w

= e
�⌘t

G� v ·rŵ in ⌦⇥ (0, T ), (20)

@û

@t
+ ⌘û� µc �û+ c q r

Qmax b û

e�⌘t + b u
= c q r

⇣
e
�qtq

0(x) (21)

6
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+

tZ

0

e
�q(t�s)

q

Qmax b u(x, s)

e�⌘s + b u(x, s)
ds

1

A+ e
�⌘t

F � v ·rû in ⌦⇥ (0, T ).

with initial conditions:

r̂(0) = a
0
, ŵ(0) = p

0
, û(0) = c

0 in ⌦, (22)

and boundary conditions:

@r̂

@n
=

@ŵ

@n
=

@û

@n
= 0 on @⌦⇥ (0, T ). (23)

2.2.2 Some apriori estimates

First, we will obtain some estimates for the solution (r̂, ŵ, û) of (19)-(23). So,
if we multiply equation (19) by r̂ and integrate in ⌦⇥ (0, T ), we have:

1

2
kr̂(T )k2

L2(⌦) + ⌘kr̂k2
L2(0,T ;L2(⌦)) +

TZ

0

Z

⌦

(� � �
w

p + w
) r̂2 dx dt

+µakrr̂k2
L2(0,T ;L2(⌦))2 = �

TZ

0

Z

⌦

ṽ ·rr̂ r̂ dx dt+
1

2
ka0k2

L2(⌦)

Since w � 0, then w

p+w
 1 and, consequently, � � �

w

p+w
� � � �. Thus,

TZ

0

Z

⌦

(� � �
w

p + w
) r̂2 dx dt � (� � �) kr̂k2

L2(0,T ;L2(⌦))

On the other hand, by Young inequality,

�
TZ

0

Z

⌦

ṽ ·rr̂ r̂ dx dt  kṽkL1(0,T ;L1(⌦))2krr̂kL2(0,T ;L2(⌦))2kr̂kL2(0,T ;L2(⌦))

 kṽkL1(0,T ;L1(⌦))2

✓
✏

2
krr̂k2

L2(0,T ;L2(⌦))2 +
1

2✏
kr̂k2

L2(0,T ;L2(⌦))

◆
,

for any ✏ > 0. Choosing ✏ = µa

kṽkL1(0,T ;L1(⌦))2
(so that kṽkL1(0,T ;L1(⌦))2

✏

2 = µa

2 ),

we derive that

 

⌘ + (� � �)�
kṽk2

L1(0,T ;L1(⌦))2

2µa

!

kr̂k2
L2(0,T ;L2(⌦)) +

µa

2
krr̂k2

L2(0,T ;L2(⌦))2 
1

2
ka0k2

L2(⌦).

7
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Then, for ⌘ > ⌘a =
kṽk2

L1(0,T ;L1(⌦))2

2µa
� (� � �) we deduce the existence of a

constant C > 0 such that the following estimate for r̂ is verified:

kr̂kL2(0,T ;H1(⌦))  Cka0kL2(⌦). (24)

Now, if we multiply equation (20) by ŵ and integrate in ⌦⇥ (0, T ), we have:

1

2
kŵ(T )k2

L2(⌦) + ⌘kŵk2
L2(0,T ;L2(⌦)) + µpkrŵk2

L2(0,T ;L2(⌦))2

+� �

TZ

0

Z

⌦

r
ŵ

2

pe
�⌘t + w

dx dt =

TZ

0

Z

⌦

e
�⌘t

Gŵ dx dt�
TZ

0

Z

⌦

v ·rŵ ŵ dx dt+
1

2
kp0k2

L2(⌦).

Since r � 0, w � 0 and e
�⌘t  1, then,

TZ

0

Z

⌦

r
ŵ

2

pe
�⌘t + w

dx dt � 0

and

TZ

0

Z

⌦

e
�⌘t

Gŵ dx dt  kGkL2(0,T ;L2(⌦))kŵkL2(0,T ;L2(⌦))

On the other hand,

�
TZ

0

Z

⌦

v ·rŵ ŵ dx dt  kvkL1(0,T ;L1(⌦))2krŵkL2(0,T ;L2(⌦))2kŵkL2(0,T ;L2(⌦))

 kvkL1(0,T ;L1(⌦))2

✓
✏

2
krŵk2

L2(0,T ;L2(⌦))2 +
1

2✏
kŵk2

L2(0,T ;L2(⌦))

◆
,

for any ✏ > 0. Choosing ✏ = µp

kvkL1(0,T ;L1(⌦))2
(so that kvkL1(0,T ;L1(⌦))2

✏

2 = µp

2 ),

we obtain that

 

⌘ �
kvk2

L1(0,T ;L1(⌦))2

2µp

!

kŵk2
L2(0,T ;L2(⌦)) +

µp

2
krŵk2

L2(0,T ;L2(⌦))2

 kGkL2(0,T ;L2(⌦))kŵkL2(0,T ;L2(⌦)) +
1

2
kp0k2

L2(⌦).

Then, for ⌘ > ⌘p =
kvk2

L1(0,T ;L1(⌦))2

2µp
we deduce the existence of a constant

C > 0 such that the following estimate for ŵ is verified:

8
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kŵkL2(0,T ;H1(⌦))  C(kp0kL2(⌦) + kGkL2(0,T ;L2(⌦))). (25)

Finally, arguing in a similar way with equation (21), we multiply by û and
integrate in ⌦⇥ (0, T ), then:

1

2
kû(T )k2

L2(⌦) + ⌘kûk2
L2(0,T ;L2(⌦)) + µckrûk2

L2(0,T ;L2(⌦))2

+c q

TZ

0

Z

⌦

r
Qmax b û

2

e�⌘t + b u
dx dt = c q

TZ

0

Z

⌦

re
�qtq

0(x) û dx dt

+c q

TZ

0

Z

⌦

r

0

@
tZ

0

e
�q(t�s)

q

Qmax b u(x, s)

e�⌘s + b u(x, s)
ds

1

A û dx dt

+

TZ

0

Z

⌦

e
�⌘t

F û dx dt�
TZ

0

Z

⌦

v ·rû û dx dt+
1

2
kc0k2

L2(⌦).

Again, since 0  r  A, u � 0, Qmax b u

e�⌘s+b u
 Qmax and e

�⌘t  1, then, after some
simple computations:

TZ

0

Z

⌦

r
Qmax b û

2

e�⌘t + b u
dx dt � 0,

TZ

0

Z

⌦

re
�qtq

0(x) û dx dt  Akq0kL2(⌦)kûkL2(0,T ;L2(⌦)),

TZ

0

Z

⌦

r

0

@
tZ

0

e
�q(t�s)

q

Qmax b u(x, s)

e�⌘s + b u(x, s)
ds

1

A û dx dt  Aq Qmax T
3
2 |⌦| 12kûkL2(0,T ;L2(⌦)),

TZ

0

Z

⌦

e
�⌘t

F û dx dt  kFkL2(0,T ;L2(⌦))kûkL2(0,T ;L2(⌦)),

and

�
TZ

0

Z

⌦

v ·rû û dx dt  kvkL1(0,T ;L1(⌦))2krûkL2(0,T ;L2(⌦))2kûkL2(0,T ;L2(⌦))

 kvkL1(0,T ;L1(⌦))2

✓
✏

2
krûk2

L2(0,T ;L2(⌦))2 +
1

2✏
kûk2

L2(0,T ;L2(⌦))

◆
,

Choosing now ✏ = µc

kvkL1(0,T ;L1(⌦))2
we have:

9
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⌘ �
kvk2

L1(0,T ;L1(⌦))2

2µc

!

kûk2
L2(0,T ;L2(⌦)) +

µc

2
krûk2

L2(0,T ;L2(⌦))2

 c q Akq0kL2(⌦)kûkL2(0,T ;L2(⌦)) + c 
2
q
AQmax T

3
2 |⌦| 12kûkL2(0,T ;L2(⌦))

+kFk2
L2(0,T ;L2(⌦))kûk2L2(0,T ;L2(⌦)) +

1

2
kc0k2

L2(⌦).

Then, for ⌘ > ⌘c =
kvk2

L1(0,T ;L1(⌦))2

2µc
we deduce the existence of a constant

C > 0 such that the following estimate for û is verified:

kûkL2(0,T ;H1(⌦))  C(1 + kq0kL2(⌦) + kc0kL2(⌦) + kFkL2(0,T ;L2(⌦))). (26)

So, taking ⌘ > ⌘0 = max{⌘a, ⌘p, ⌘c}, above estimates (24), (25) and (26) are
verified.

2.2.3 Nonnegativeness and boundedness

In order to prove that (r̂, ŵ, û) 2 B̃ we only need to demonstrate that r̂, ŵ and
û are nonnegative and bounded. In this subsection, for the sake of conciseness,
we will only prove it for r̂, but the demonstrations for ŵ and û are completely
analogous (with the obvious changes).

In order to demonstrate the nonnegativeness of r̂, we multiply equation (19) by
the negative part r̂� = min{r̂, 0} and integrate in ⌦⇥ (0, t), for t  T . Then,
arguing as in previous subsection and taking into account that by hypothesis
r̂(0) = a

0 � 0 (and consequently r̂�(0) = 0), we have:

1

2
kr̂�(t)k2L2(⌦) + (⌘ + �)

tZ

0

kr̂�(s)k2L2(⌦)ds+ µa

tZ

0

krr̂(s)k2
L2(⌦)2ds

 �

tZ

0

kr̂�(s)k2L2(⌦)ds�
tZ

0

Z

⌦

ṽ(s) ·rr̂(s) r̂(s) ds

 �

tZ

0

kr̂�(s)k2L2(⌦)ds+ kṽkL1(0,T ;L1(⌦))2

⇥
0

@ ✏

2

tZ

0

krr̂�(s)k2L2(⌦)2ds+
1

2✏

tZ

0

kr̂�(s)k2L2(⌦)ds

1

A .

Choosing ✏ = µa

kṽkL1(0,T ;L1(⌦))2
(so that kṽkL1(0,T ;L1(⌦))2

✏

2 = µa

2 ), we derive that

10
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1

2
kr̂�(t)k2L2(⌦) +

 

⌘ + � �
kṽk2

L1(0,T ;L1(⌦))2

2µa

! tZ

0

kr̂�(s)k2L2(⌦)ds

+
µa

2

tZ

0

krr̂�(s)k2L2(⌦)2ds  �

tZ

0

kr̂�(s)k2L2(⌦)ds.

Then, for ⌘ � ⌘
⇤
a
=

kṽkL1(0,T ;L1(⌦))2

2µa
� �,

kr̂�(t)k2L2(⌦)  2�

tZ

0

kr̂�(s)k2L2(⌦)ds. (27)

Thanks to Gronwall’s Lemma, we deduce from (27) that kr̂�(t)kL2(⌦)  0, i.e.,
r̂� = 0 or, equivalently, r̂ � 0.

To prove that r̂ is bounded, we need to introduce a new change of variable,
defining r̃ = r̂ �Mt. Denoting, for simplicity, h(x, t) = ⌘ + � � �

w

p+w
, it is

easy to check that h(x, t) � ⌘+ � � �, 8(x, t) 2 ⌦⇥ (0, T ) and, consequently,
h � 0 if and only if ⌘ � �(� + �). So, equation (19) can be rewritten in the
equivalent form:

@r̃

@t
� µa �r̃ + hr̃ + hMt = �ṽ ·rr̃ �M in ⌦⇥ (0, T ), (28)

We multiply now equation (28) by the positive part (r̃�M)+ = max{r̃�M, 0}
and integrate in ⌦ ⇥ (0, t). Since by hypothesis r̃(0) = r̂(0) = a

0  M , we
know that (r̃(0)�M)+ = 0, and we obtain:

1

2
k(r̃(t)�M)+k2L2(⌦) + µa

tZ

0

kr(r̃(s)�M)+)k2L2(⌦)2ds

+

tZ

0

Z

⌦

h(s)(r̃(s)�M)2+dx ds+

tZ

0

Z

⌦

h(s)M(r̃(s)�M)+dx ds

+

tZ

0

Z

⌦

h(s)Ms(r̃(s)�M)+dx ds = �
tZ

0

Z

⌦

ṽ(s) ·r(r̃(s)�M)+ (r̃(s)�M)+ ds

�
tZ

0

Z

⌦

M(r̃(s)�M)+dx ds  �
tZ

0

Z

⌦

ṽ(s) ·r(r̃(s)�M)+ (r̃(s)�M)+ ds

 kṽkL1(0,T ;L1(⌦))2

0

@ ✏

2

tZ

0

kr(r̃(s)�M)+k2L2(⌦)2ds+
1

2✏

tZ

0

k(r̃(s)�M)+k2L2(⌦)ds

1

A .

11
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Choosing again ✏ = µa

kṽkL1(0,T ;L1(⌦))2
(as in the derivation of estimate for r̂),

for ⌘ � ⌘a =
kṽk2

L1(0,T ;L1(⌦))2

2µa
� (� � �) � �(� � �) we have that k(r̃(t) �

M)+kL2(⌦)  0, that is, (r̃ �M)+ = 0 or, equivalently, r̃  M . So, from the
definition of r̃, we obtain the bound r̂  M +MT = M(1 + T ).

By means of analogous arguments we can also obtain that ŵ and û are non-
negative and bounded. Thus, (r̂, ŵ, û) 2 B̃ = {(r, w, u) 2 [L2(0, T ;L2(⌦))]3 :
0  r, w, u  A}, for A > 0 a large enough constant, and the mapping H is
well defined.

2.2.4 Existence of solution

Estimates (24), (25) and (26) for r̂, ŵ and û, remain also valid for r, w and
u. In consequence, we have:

krkL2(0,T ;H1(⌦))  Cka0kL2(⌦) = Mr,

kwkL2(0,T ;H1(⌦))  C(kp0kL2(⌦) + kGkL2(0,T ;L2(⌦))) = Mw,

kukL2(0,T ;H1(⌦))  C(1 + kq0kL2(⌦) + kc0kL2(⌦) + kFkL2(0,T ;L2(⌦))) = Mu.

Thus, it is clear that the mapping H takes the set B = {(r, w, u) 2 B̃ :
krkL2(0,T ;L2(⌦))  Mr, kwkL2(0,T ;L2(⌦))  Mw, kukL2(0,T ;L2(⌦))  Mu} in itself.
If we consider the space W = {(r, w, u) 2 L

2(0, T ;H1(⌦))3 : (@r
@t
,
@w

@t
,
@u

@t
) 2

L
2(0, T ;H1(⌦)⇤)3}, we know by Aubin’s Lemma that bounded sets in W are

relatively compact sets in L
2(0, T ;L2(⌦))3. Then, the mapping H is compact.

Consequently, by Schauder’s Theorem, we deduce that H has a fixed point
(r, w, u) that is a solution of system (14)-(18). Taking into account the changes
of variable (13), it is straightforward that the original variables (a, p, c), solu-
tion of the system (3)-(9), also lie in L

2(0, T ;H1(⌦)) and that remain nonneg-
ative and bounded.

Finally, from the regularity achieved for c in previous subsections, we can eas-
ily obtain, from equation (10), that q 2 L

2(0, T ;H1(⌦)). Moreover, since by
hypothesis we have that 0  q

0(x)  M, 8x 2 ⌦, we deduce by a direct com-
putation that 0  e

�qtq
0(x)  M and 0  e

�q(t�s)
q

Qmax b c(x,s)
1+b c(x,s)  q Qmax,

for all x 2 ⌦ and for all 0  s  t  T . Consequently, from expression (11),
we obtain that 0  q(x, t)  M + q Qmax T, 8(x, t) 2 ⌦⇥ [0, T ], that is, q is
also nonnegative and bounded.

Above results can be summarized in the following statement:

Theorem 1 If we assume that:

• c
0
, q

0
, a

0
, p

0 2 L
2(⌦) satisfy 0  c

0(x), q0(x), a0(x), p0(x)  M, 8x 2 ⌦,

12
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• F, G 2 L
2(0, T ;L2(⌦)) satisfy 0  F (x, t), G(x, t)  M, 8(x, t) 2 ⌦⇥[0, T ],

• v, ṽ 2 L
1(0, T ;L1(⌦))2,

then the system (3)-(9) has a solution (c, q, a, p) 2 [L2(0, T ;H1(⌦))]4 that

verifies:

0  c(x, t), q(x, t), a(x, t), p(x, t)  M̃, 8(x, t) 2 ⌦⇥ [0, T ],

for a suitable constant M̃ > 0.

2.3 Numerical resolution

In order to achieve a computational solution of the state system (3)-(9), we
proceed in the usual manner. We start by considering an implicit time semidis-
cretization of the system. Thus, we choose a natural number N 2 N, that
we use to define the time step �t = T

N
, and we denote the discrete times

t
n = n�t 2 [0, T ], for each n 2 {0, . . . , N}. Then, we define the approxima-
tions cn(x) ' c(x, tn), 8n = 0, . . . , N , (we proceed in an analogous way for the
rest of variables q

n, an, pn, and for the data v
n, ṽn, F n and G

n). Therefore,
starting from initial data c

0, q0, a0 and p
0, and defining the new parameter

↵ = 1
�t

= N

T
, we obtain the following system of semidiscretized, nonlinear

equations posed in ⌦:

↵(cn+1 � c
n) + v

n+1 ·rc
n+1 � µc �c

n+1 + c a
n+1

↵(qn+1 � q
n) = F

n+1
, (29)

↵(qn+1 � q
n) = q

 
Qmax b c

n+1

1 + b cn+1
� q

n+1

!

, (30)

↵(an+1 � a
n) + ṽ

n+1 ·ra
n+1 � µa �a

n+1 � �
p
n+1

p + pn+1
a
n+1 + � a

n+1 = 0, (31)

↵(pn+1 � p
n) + v

n+1 ·rp
n+1 � µp �p

n+1 + � �
p
n+1

p + pn+1
a
n+1 = G

n+1
, (32)

for n = 0, . . . , N � 1, completed with the homogeneous Neumann boundary
conditions on @⌦, for cn+1, an+1 and p

n+1, n = 0, . . . , N �1, straightforwardly
obtained from (9):

@c
n+1

@n
=

@a
n+1

@n
=

@p
n+1

@n
= 0 on @⌦. (33)

Then, for the semidiscretization in space, we employ a Lagrange P1 finite
element method (based on the use of test functions that are first-degree poly-
nomials when restricted to each element, but globally continuous in ⌦). Con-
sequently, if we choose a mesh ⌧h of ⌦ formed by triangular elements ⌧ of

13
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diameter less than h, we can approximate the Sobolev space H
1(⌦) by the

finite element space Vh = {vh 2 C(⌦) : vh|⌧ 2 P1, 8⌧ 2 ⌧h}.

Finally, by considering a classical variational formulation of this system of
semidiscretized equations (29)-(33), the fully discretized formulation of the
system can be obtained in a standard way. From this fully discretized system
we are able to obtain discrete approximations of the semidiscretized functions
c
n+1

, q
n+1

, a
n+1

, p
n+1, that will be denoted as c

n+1
h

, q
n+1
h

, a
n+1
h

, p
n+1
h

2 Vh,
respectively.

From a computational viewpoint, the nonlinearities appearing in this varia-
tional formulation will be solved by using an iterative fixed-point algorithm.
With respect to the iterative process, we start the resolution by iterating first
in variable pn+1

h
, then in variable an+1

h
, and finally in variable cn+1

h
. Now, once

computed the approximations p
n+1
h

, an+1
h

and c
n+1
h

, the last variable q
n+1
h

is
updated by a straightforward rewriting of the semidiscretized equation (30)
in the explicit way:

q
n+1
h

=
1

↵ + q

 

↵ q
n

h
+ q

Qmax b c
n+1
h

1 + b c
n+1
h

!

. (34)

3 The optimal control problem

As remarked in previous sections, we are aimed to find the optimal location
K of the algal mass to be added and the minimal quantity ã of algae, such
that the water quality (measured by means of the solution of the state system
(3)-(9)) is optimized. This environmental problem can be formulated as a
control-constrained optimal control problem, so that it can be analyzed by
using techniques related to those already employed by the authors in other
environmental scenarios as can be found, for instance, in previous papers [7–9].

In this formulation of the problem, the control (K, ã) enters the state system
(3)-(9) via the variable a, specifically through its initial condition (8). So, re-
garding the first control K, taking into account geopolitical reasons, we will
impose a few constraints related to the feasible locations of the mass of algae.
In particular, area K will be constructed from an origin point p that we will
assume inside an admissible region Kad ⇢ ⌦. Thus, the algal region K is com-
posed by the triangle where the central point p lies and also the three adjacent
triangles (in this way, the region K takes the form of a “triangular” surface
composed by four contiguous finite elements of the mesh, constructed from the
actual design variable p). With respect to the second control variable ã, that
is nonnegative from definition, we will ask it not to exceed an upper threshold

14
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Amax > 0, determined from economic and technological motivations. In a few
words, we are assuming the following constraints on the control variables:

p 2 Kad, ã 2 [0, Amax]. (35)

With respect to the objective function J to be minimized, we will take, for
example, the concentration of heavy metals inside a “sensitive” region S ⇢ ⌦
(which can be even the whole domain ⌦), needing to be protected against
heavy metals contamination. In this way, the simplest example of cost func-
tional to be optimized can be written, for instance, under the form:

J(p, ã) =

TZ

0

Z

S

c(x, t) dx dt (36)

where c(x, t) is given by the solution of the state system (3)-(9), with the initial
condition a

0 corresponding to control (K, ã), actually defined from the design
variables (p, ã). Further possible choices for alternative objective functions J
can be found in the numerical tests presented in below section).

Thus, the control-constrained optimal control problem to be solved corre-
sponds to find the optimal location K and amount ã of algae to be added
such that verify the associated state system (3)-(9), satisfy the control con-
straints (35) and minimize the objective function J . Therefore, the problem
can be written is a shortened form as:

min
p2Kad

0ãAmax

J(p, ã) (37)

where Kad and Amax are known data.

In order to solve this optimal control problem, we propose two di↵erent ap-
proaches. The former (naiver) approach uses the program Heavy metals of the
2D finite volume hydrodynamic model MIKE 21 [10], developed by the Danish
Institute of Technology (DHI). For optimization purposes, given the essentially
geometric nature of the problem, the authors propose to use a direct search
algorithm: the Nelder-Mead simplex method [11]. This derivative-free algo-
rithm has been successfully used by the authors in other related environmen-
tal problems (see, for instance, previous work [12], where a short description
of the method can be also found), and presents good convergence properties
in low dimensions (it is immediate to check that in our problem the design
variable (p, ã) 2 R3). However, since Nelder-Mead algorithm was originally
designed for unconstrained minimization problems, in order to apply it to
the control-constrained optimization problem (37) we need first to modify our

15
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cost function J by adding a penalty term related to the fulfilling of the control
constraints (35), which can be made in a simple and standard way.

The latter (alternative) approach is developed by using the open-source finite
element software Freefem++ [13], through a full programming of the algo-
rithms presented in above Subsection 2.3. Moreover, to solve the nonlinear
optimization problem (37), the use of the interior-point algorithm IPOPT
[14] is proposed. This is an interior-point filter line-search method especially
intended for nonlinear programming of large-scale problems, which can be
interfaced with the Freefem++ code. In the optimization procedure, the com-
putation of the necessary cost gradients is approximated by a finite di↵erence
scheme. It is worthwhile saying in advance that the results obtained from both
approaches have been completely similar, both from a qualitative and from a
quantitative point of view, which assures the robustness of our methodology.

4 Computational results

This concluding section presents some numerical tests for a real-world scenario
posed in the estuary Rı́a de Vigo (Galicia, NW Spain), particularly in the
region surrounding Cangas harbour. The case shown here corresponds to a
known wastewater discharge from a small number of shipyards located in the
area, which shows a high concentration of lead. For the phytoremediation
process, the native green alga Ulva -commonly known as sea lettuce- was used
as a bioadsorbent.

For the computational experience presented here, the numerical results have
been achieved through the two di↵erent, above commented approaches. For
the sake of conciseness, from the large set of numerical tests developed to
analyze the e↵ects of the presence of an algal mass in the surroundings of the
given discharge point, only a few figures are shown and commented here.

4.1 A gradient-free approach

In this approach, we combine the application of the finite volume software
MIKE 21, widely employed in the study of environmental problems, with our
own code for the Nelder-Mead algorithm (modified with an oriented restarting
when stagnation at a non-optimal point is detected).

In the numerical experiment presented here, we have chosen as cost function
J the mean concentration of heavy metals in water inside the sensitive region
S, that is:
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J(p, ã) =
1

T |S|

TZ

0

Z

S

c(x, t) dx dt (38)

where |S| denotes the Euclidean measure of set S. Moreover, for the control
constraints in the optimization process, the feasible region Kad is given by a
rectangular area centered in the wastewater discharge point, and the upper
threshold for added algae is taken as Amax = 60.00 g/m3.

So, in this computational test, we start from a set of four initial random
simplices:

(p1, ã1) = ((518376.99, 4677839.17), 20.00),

(p2, ã2) = ((518587.76, 4677845.97), 25.00),

(p3, ã3) = ((518465.38, 4678070.33), 15.00),

(p4, ã4) = ((518492.57, 4677920.76), 30.00),

whose cost values range from J = 9.1250 10�4 to J = 9.4375 10�4. Then, after
173 cost function evaluations, we arrive to the optimal control:

(p, ã) = ((518864.62, 4677937.99), 59.99),

where the objective function takes now the optimized value J = 6.9125 10�4

(which represents a reduction in lead concentration of almost a 25% with
respect to the best uncontrolled situation).

The four figures included here correspond to zooms on the area of interest
in the Rı́a de Vigo (region of the harbour of Cangas). So, Figure 1 shows
the lead concentration c at high tide, after two complete tidal cycles (about
T = 24.8 hours) for the initial (uncontrolled) configuration, obtained by the
numerical resolution of the problem in a spatial triangular mesh ⌧h of 1941
elements and 1129 vertices, with a time step �t = 30 s. We can appreciate
here the protected area (formed by two regions delimited by a white thick
line), and the original location K for algae (region composed of four triangles
depicted by a white thin line). Figure 2 shows the heavy metal concentration
c, at same final time, for the optimized (controlled) configuration, where the
optimal location K is now depicted by a coloured thick line. Figures 3 and 4
show lead concentrations c at low tide, for the uncontrolled and the controlled
configurations, respectively.

After a direct visual comparison of these pictures, we can easily appreciate the
di↵erences between the original (uncontrolled) mass of Ulva in the discharge
zone (Figures 1 and 3) and the optimized addition of an algal mass in that zone
(Figures 2 and 4). We can notice in these graphics how the lead concentration
in water is considerably diminished by adding the optimal amount of algae in
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Fig. 1. Levels of lead concentration in water at high tide, for the uncontrolled situ-
ation posed in a part of the estuary Rı́a de Vigo. The discharge zone corresponds
to the black point on the left side of the peak of concentration, the protected areas
S are depicted by white thick lines, and the initial algae location K is delimited by
a white thin line.

Fig. 2. Levels of lead concentration in water, corresponding to the same scenario,
after the controlled placement of a mass of algae ã = 59.99 g/m3 in the optimal area
K depicted by a coloured thin line. The discharge point can be clearly seen close to
the peak of concentration.

the optimal region near the source of pollution (black point close to the most
highly contaminated vertex in Figures 1 to 4).

We must note here how the tidal movement a↵ects to the propagation of pol-
lution: when approaching high tide, water moves to the right and consequently
heavy metal moves so. However, at low tide period, water moves to the left
and accordingly heavy metal moves in the same direction. It is also important
to notice how the reduction of lead concentration is not only restricted to
the particular area where the algal mass is placed, but it also expands to the
surrounding regions of the estuary, essentially due to the natural movement
of water by the tide e↵ect.
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Fig. 3. Levels of lead concentration in water at low tide, for the uncontrolled situ-
ation posed in a part of the estuary Rı́a de Vigo. The discharge zone corresponds
to the point on the right side of the peak of concentration, the protected areas S
are depicted by white thick lines, and the initial algae location K is delimited by a
white thin line.

Fig. 4. Levels of lead concentration in water, corresponding to the same scenario,
after the controlled placement of a mass of algae ã = 59.99 g/m3 in the optimal area
K depicted by a coloured thin line.

Finally, from a quantitative point of view, we can observe how -in absence
of other additional constraints as, for instance, those related to the economic
cost of the processes or to technological restriction- the optimized quantity
of added algae ã = 59.99 g/m3 approaches the maximum allowed quantity
Amax = 60.00 g/m3 (because the larger the quantity of algae, the more intense
the bioremediation e↵ects and then, as there are no other restrictions, the
optimal amount of added algae is at its maximum level). Moreover, we can
also notice how, as might be expected, the optimal region K moves closer to
the upper half of the protected region S and also to the wastewater discharge
point, in order to intensify phytoremediation e↵ects (since the lower half of
the protected area S is farther from the discharge point and, consequently, it
is much less a↵ected by lead emissions than the upper half).
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4.2 An alternative interior-point approach

Among all the numerical tests developed under this approach (i.e., obtained
by means of the code Freefem++ interfaced with the IPOPT algorithm), we
only present here a pair of figures. These graphics correspond to a new exam-
ple posed in the scenario presented in previous approach (with same model
data and parameters), including only two di↵erences. The first di↵erence is
associated to the definition of the cost function: in this approach we choose J
as the mean concentration of heavy metal in protected region S at final time
T , that is:

J(p, ã) =
1

|S|

Z

S

c(x, T ) dx, (39)

The second di↵erence is connected to the control constraints: the feasible re-
gion Kad is the same rectangle surrounding the discharge point, but the upper
threshold for the algal mass is expanded to Amax = 80.00 g/m3.

For the minimization procedure, we start from an initial random point:

(p1, ã1) = ((518684.26, 4677554.95), 20.00),

whose objective value is J = 7.0318 10�4. Then, after 8 iterations of the
interior-point algorithm (that correspond to 9 evaluations of the cost function
and its gradient), we arrive to the optimal point:

(p, ã) = ((518711.88, 4677554.95), 79.99),

where the cost function now drops down to J = 5.1327 10�4 (which means an
e↵ective reduction in lead concentration of more than a 27% with respect to
the initial arbitrary case).

Both figures presented here show the whole Rı́a de Vigo (su↵ering from the
same lead discharge in the region of Cangas harbour as in previous example).
In particular, Figure 5 depicts, for the whole domain ⌦, lead concentration c

after two complete tidal cycles corresponding to the uncontrolled configura-
tion, as computed by means of the numerical resolution of the state system
(3)-(9) with initial condition constructed from initial random point (p1, ã1).
Figure 6 represents the lead concentration c, at same time as above, for the
optimized configuration. In this case, we can clearly appreciate the discharge
point, that corresponds to the small area with the maximum concentration of
lead, and also the optimal location K, that corresponds to the region, close to
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Fig. 5. Whole representation of the lead concentration in water for the uncontrolled
situation posed in the estuary Rı́a de Vigo, once two tidal cycles have passed.

Fig. 6. Concentration of lead in water for the same scenario, after the optimized
placement of an algal mass ã = 79.99 g/m3 in the optimal area K. The discharge
point corresponds to the peak of concentration, and the optimal location K is the
region (near to the discharge point) where lead concentration takes lowest values.
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the discharge point, with the minimum lead concentration. We can also appre-
ciate here the discharge zone, corresponding to the region with the maximum
concentration of lead. Again, despite the di↵erent colour scales, a striaight-
forward comparison of both figures shows us the clear di↵erences between the
lead concentrations obtained in both cases for the whole region ⌦.

Finally, although the figures for the first example (Figures 1 to 4) are focused
only in the region of interest and the figures for the second example (Figures 5
and 6) show the whole domain, we can appreciate that the solutions achieved
from both approaches are completely similar both from the qualitative and the
quantitative point of view, which assesses the accurateness of our methodology.
Consequently, the remarks from above subsection on the reduction of lead
concentration and on the behaviour of optimal controls remain also valid for
this second approach. Specifically, the optimized region K also approaches the
protected region and the discharge point (by the reasons already commented),
and the optimal quantity of algae ã = 79.99 g/m3 tends to the maximum
threshold Amax = 80.00 g/m3, since no further constraints are imposed.

5 Conclusions and future work

In this paper, we present an optimal control approach to phytoremediation
techniques for heavy metals removal from water. First, a novel formulation
of the problem has been introduced and fully analyzed from a theoretical
viewpoint. The considered systems describe the evolution of concentrations of
nutrients, algae and heavy metals in water, in order to optimize phytoreme-
diation methods. Here we have focused on only two (albeit very important)
aspects of the phytoremediation process: the minimal quantity of algae to be
added in the procedure and the optimal location of this mass of algae. How-
ever, our methodology can be straightforwardly applied to study other related
issues as, for instance, the determination of the optimal time of residence of
algae to optimize heavy metals removal, or the minimization of the total eco-
nomic cost of the process. We have also proposed two numerical algorithms for
computing the optimized phytoremediation techniques. In addition, through
a realistic test example, the e↵ectiveness and usefulness of our approach were
confirmed, showing that, in our particular case, the removal of heavy metals
from water could be improved more than a 25% by employing the optimized
configuration.

Although the mathematical analysis of the modelling system is fully developed
in the first part of the paper, the study of the optimal control problem remains
still partially open (in particular, the interesting point related to obtaining

22



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

optimality conditions in order to achieve a theoretical characterization of the
optimal solutions). The reason for this shortcoming may be the strongly non-
linear nature of the elements defining the optimal control problem. A deeper
research on these issues should be developed as part of any future work.
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[14] A. Wächter, L.T. Biegler, On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming, Math. Program. 106
(2006) 25–57.

24


	ELSEVIER
	Mathematical_Analysis_and_Optimal_Control

