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ON DIMENSION OF SOME FINITE ALGEBRAIC GRAPHS OF

FINITE RINGS

M. G. TALESHANI1∗, M. T. LASKUKALAYEH1, A. ABBASI2, §

Abstract. Suppose that Γπ(Zp1p2···pα) is a graph with the vertex set of nonzero zero-
divisors of the finite ring Zp1p2...pα , where α > 1, and x − y is an edge if and only if x
and y are π-prime, where π = {p1, p2, . . . , pα} is a set of odd prime numbers and a and
b are π-prime if either (a, b) = 1 or (a, b) = p, p /∈ π. In this paper we study dimension,
edge metric dimension and fraction dimension of the graph.
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1. Introduction

The metric dimension of a general metric space was introduced in 1953 by Blumenthal
[1]. About twenty years later, it was applied by Slater [7] who introduced the concept of
locating set of a graph. Independently, Harary and Melter [3] introduced the same concept
as the resolving sets for calculating the metric dimension of a tree. This notion has been
frequently used in graph theory, chemistry, biology, robotics and many other disciplines.

Let G = (V,E) be a simple, finite, undirected graph. For vertices x and y of G, we
define the distance d(x, y) to be the length of a shortest path from x to y, (d(x, x) = 0
and d(x, y) = ∞ if there is no such path). The diameter of the graph G is given as
diam(G) = sup{d(x, y)| x and y are vertices of G}. G is said to be connected if there
exists a path between any two distinct vertices, and it said to be complete if it is connected
with diameter one. The girth of G denoted by gr(G), is the length of a shortest cycle in
G (gr(G) =∞ if G contains no cycles). A subset S ⊆ V is an independent set in G if no
two vertices in S are adjacent. The independence number of G is the maximum size of all
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independent sets of vertices, denoted by α(G). For the relevant graph theoretical terms,
see [2].

For a non-zero commutative ring R, let Z∗(R) be the set of nonzero zero-divisors of R.
In this paper, we consider π = {p1, p2, . . . , pα} for α > 1, as a set of odd prime numbers
and define the graph Γπ(Zp1p2...pα), with all elements of Z∗(Zp1p2...pα) as vertices, and two
distinct vertices x and y are adjacent if and only if x and y are π-prime, where a and b
are π-prime if either (a, b) = 1 or (a, b) = p, p /∈ π. We find diameter of this graph, and
investigate the various dimensions.

2. preliminary

Definition 2.1. A vertex u ∈ V distinguishes two vertices x, y ∈ V if d(u, x) 6= d(u, y).

Definition 2.2. A metric generator for G is a set B ⊆ V with the property that, for each
pair of vertices x, y ∈ V there exists a vertex u ∈ B which distinguishes x and y. If for
some metric generator A ⊆ V , we have that |A| = min{|B| : B is a metric generator for
G}, we say that A is a metric basis for G and dim(G) = |A|, is the metric dimension of
G.

Definition 2.3. The distance between the vertex v and the edge e is defined as d(e, v) =
min{d(u, v), d(w, v)}, where e = uw.

Definition 2.4. A vertex w ∈ V distinguishes two edges e1, e2 ∈ E if d(w, e1) 6= d(w, e2).

Definition 2.5. A nonempty set S ⊆ V is an edge metric generator for G if any two edges
of G are distinguished by some vertex of S. An edge metric generator with the smallest
possible cardinality is called an edge metric basis for G, and its cardinality is the edge
metric dimension, which is denoted by dime(G).

Definition 2.6. For any two vertices x and y of G, R{x, y} denotes the set of vertices
z such that d(x, z) 6= d(y, z). In this view, a metric generating of G is a subset W of V
such that W ∩R{x, y} 6= ∅ for any two distinct vertices x and y of G.

Definition 2.7. Let f : V (G) −→ [0, 1] be a real valued function. For W ⊆ V , denote
f(W ) =

∑
v∈W f(v). We call f a resolving function of G if f(R{x, y}) ≥ 1 for any two

distinct vertices x and y of G.

Definition 2.8. The fractional metric dimension, denoted by dimf (G), is given by dimf (G) =
min{|g| : g is a resolving function of G}, where |g| = g(V (G)).

Definition 2.9. Let π = {p1, p2, . . . , pα} for α > 1, be a set of odd prime numbers. We
say that a and b are π-prime if either (a, b) = 1 or (a, b) = p, p /∈ π.

Definition 2.10. Let R be a non-zero commutative ring and Z∗(R) be its set of nonzero
zero-divisors. Consider π = {p1, p2, . . . , pα} for α > 1, as a set of odd prime numbers.
We define the graph Γπ(Zp1p2...pα) with all elements of Z∗(Zp1p2...pα) as vertices, where two
distinct vertices x and y are adjacent if and only if x and y are π-prime.

3. decomposition

In this section we first decompose the graphs Γπ(Zp1p2), Γπ(Zp1p2p3), Γπ(Zp1p2p3p4) where
pi’s are distinct odd prime numbers and then we generalize it to Γπ(Zp1p2···pα), where α > 1.

Remark 3.1. The number of vertices of Γπ(Zp1p2···pα) is |Z∗(Zp1p2···pα)| = |Z(Zp1p2···pα)|−
1. It is known by Euler’s function that |Z(Zn)| = n−φ(n) such that φ(n) = nΠα

i=1(1− 1
pi

).

So, we have |Z(Zp1p2···pα)| = p1p2 · · · pα −
α∏
i=1

(pi − 1), and then
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|V (Γπ(Zp1p2···pα))| = p1p2 · · · pα −
α∏
i=1

(pi − 1)− 1.

Definition 3.1. A decomposition of a graph G is a list of r subgraphs G1, G2, . . . , Gr such
that each edge appears in exactly one subgraph in the list. By this terminology, we mean
that G is decomposed by G1, G2, . . . , Gr, i.e., G = G1 +G2 + · · ·+Gr.

Theorem 3.1. Γπ(Zp1p2) has the following decomposition;

Γπ(Zp1p2) = Kp1−1,p2−1.

Proof. Let G = Γπ(Zp1p2) and π = {p1, p2}. Consider V1 = {kp1; p2 - k, k ∈ Z},
V2 = {kp2; p1 - k, k ∈ Z}. Then |V1| = p2 − 1, |V2| = p1 − 1 and V1 ∪ V2 = V (G),
V1 ∩ V2 = ∅. By definition of adjacency in G, it is clear that for any two vertices u1 ∈ V1,
u2 ∈ V2, we have u1 ∼ u2. So, V1 and V2 are two independent sets which formed two parts
of the complete bipartite graph Kp1−1,p2−1. �

Example 3.1. In the following Γπ(Z15) is shown.

10

5

3

6

9

12

Figure 1. The decomposition of Γπ(Z15).

Theorem 3.2. For the graph Γπ(Zp1p2p3), the decomposition is as the following.

Γπ(Zp1p2p3) = Kθ1,θ2,θ3 +
3∑
i=1

Kpi−1,θi

where, θi =
3∏
j=1
j 6=i

pj −
3∑
j=1
j 6=i

pj + 1.

Proof. Let G = Γπ(Zp1p2p3) and π = {p1, p2, p3}. For 1 ≤ i ≤ 3, consider

Vi = {kpi; pj - k, 1 ≤ j 6= i ≤ 3, k ∈ Z}.
Let xi ∈ Vi be distinct vertices. We show that x1 ∼ x2 ∼ x3 ∼ x1. Since (x1, x2) = 1
or (x1, x2) = p, p /∈ π, x1 and x2 are π-prime, i.e., x1 ∼ x2. Similarly, x2 ∼ x3 and
x3 ∼ x1. Clearly, Vi contains the nonzero vertices which have only the prime factor pi. So,
by inclusion-exclusion principle, θi = |Vi| = pjpk − (pj + pk) + 1. Therefore, we have the
complete 3-partite graph Kθ1,θ2,θ3 in the decomposition of G. Moreover, for any xi = kpi
and u = k

′
pjpk, xi ∼ u for 1 ≤ i, j, k ≤ 3, j, k 6= i. So, the remaining edges take part in

three complete bipartite graphs Kpi−1,θi . �

In the next theorem we show that Γπ(Zp1p2p3p4) can be decomposed similar to Γπ(Zp1p2p3)
with more vertices and edges as follows. More details about this decomposition and the
proof of the theorem comes after some results which described in the next section.

Theorem 3.3. For the graph Γπ(Zp1p2p3p4), the decomposition is Γπ(Zp1p2p3p4) = H1+H2,
where

H1 = Kθ1,θ2,θ3,θ4 +

4∑
i=1

Kpi−1,θi ,
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θi =
4∏
j=1
j 6=i

pj −
∑
i<j

4∏
k=1
k 6=i,j

pk +
4∑
j=1
j 6=i

pj − 1,

and H2 is an induced subgraph of Γπ(Zp1p2p3p4) formed by the remaining edges of A{pi}
and A{pi,pj}.

Theorem 3.4. In general, we have Γπ(Zp1p2···pα) = H1 +H2, where

H1 = Kθ1,θ2,θ3,...,θα +

α∑
i=1

Kpi−1,θi ,

θi =
α∏
j=1
j 6=i

pj −
∑
i<j

α∏
k=1
k 6=i,j

pk +
∑
i<j<k

α∏
l=1

l 6=i,j,k

pl −
∑

i<j<k<l

α∏
t=1

t6=i,j,k,l

pt + · · ·+ (−1)α
α∑
j=1
j 6=i

pj + (−1)α+1,

and H2 is an induced subgraph of Γπ(Zp1p2...pα) formed by the remaining adjacencies.

4. Twin equivalence classes of Γπ(Zp1p2···pα)

For a vertex u, the open neighborhood of u in G is N(u) = {v ∈ V | uv ∈ E} and the
closed neighborhood of u is N [u] = N(u) ∪ {u}. Two vertices u, v are true twins of G if
N [u] = N [v]. They are false twins if N(u) = N(v). Define a relation ≡ on V (G) by u ≡ v
if and only if u = v or u, v are twins. By Lemma 2.6 in [4], ≡ is an equivalence relation.
It is not difficult to see that the equivalence classes of the true-twin relations are cliques
and those of the false-twin relations are independent sets. There are three possibilities for
each twin equivalence class U :

(a) U is a singleton set, or
(b) |U | > 1 and N(u) = N(v) for any u, v ∈ U , or
(c) |U | > 1 and N [u] = N [v] for any u, v ∈ U .

We will refer to the type (c) as the true twin equivalence classes.
Consider the equivalence relation ≡. For each vertex v ∈ V (G), let v∗ be the set of

vertices of G that are equivalent to v under ≡. Let {v∗1, ..., v∗k} be the partition of V (G)
induced by ≡, where each vi is a representative of the set v∗i . The twin graph of G, denoted
by G∗, is the graph with vertex set V (G∗) := {v∗1, ..., v∗k}, where v∗i v

∗
j ∈ E(G∗) if and only

if vivj ∈ E(G). By Lemma 2.10 in [4], one can see that this definition is independent of
the choice of representatives.

Note that in Γπ(Zp1p2...pα) the vertices can be classified in multiples and common mul-
tiples of pi’s. In the next, we show that this partition forms equivalence classes. Also, we
obtain the number of the equivalence classes by counting the ways of selecting common
multiples of pi’s.

Notation 4.1. For any nonempty proper subset S ⊂ π, let

AS = {x ∈ Z∗(Zp1p2...pα); p | x⇐⇒ p ∈ S}.
Set A = {AS ; S ⊂ π} and for all 1 ≤ i ≤ α, Ai = {AS ; S ⊂ π, |S| = i}.

One sees that |Ai| =
(
α
i

)
. In the next theorem we show that for all S ⊂ π, AS is an

equivalence class.

Remark 4.1. Every equivalence class AS of Γπ(Zp1p2...pα) is an independent set; by ad-
jacency definition, x � y for all x, y ∈ AS.

Theorem 4.2. The number of twin equivalence classes of Γπ(Zp1p2...pα) is 2α − 2.
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Proof. Let S = {pi1 , . . . , pis} ⊂ π. We show that N(x) = N(y) for every x, y ∈ AS ∈ As.
Suppose that z ∈ N(x). So, for any p ∈ S, p - z. Since all divisors of y belong to S,
d(y, z) = 1. So, z ∈ N(y). Thus, AS is an equivalence class.

By assumption, we have
(
α
s

)
sets of AS ’s. Therefore, the number of the equivalence

classes is equal to
α∑
i=1

(
α
i

)
− 1 = 2α − 2. �

Example 4.1. In the following we describe the twin graphs of Γπ(Zp1p2p3).

A{p2}

A{p3}

A{p1}

A{p1,p2}

A{p1,p3} A{p2,p3}

Figure 2. The twin graph of Γπ(Zp1p2p3)).

Example 4.2. Twin graphs of Γπ(Zp1p2p3p4) is described as the following.

A{p2,p3,p4} A{p1,p3,p4}

A{p1,p2,p4}A{p1,p2,p3}

A{p3,p4}

A{p1,p4}

A{p1,p2}

A{p2,p3}

A{p2,p4} A{p1,p3}

A{p1} A{p2}

A{p3}A{p4}

Figure 3. The twin graph of Γπ(Zp1p2p3p4).
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Proof Of Theorem 3.3 Similar to the proof of Theorem 3.2, some edges of G induce the
graph H1 = Kθ1,θ2,θ3,θ4 +

∑4
i=1Kpi−1,θi . Let H2 be the graph formed by the remaining

edges of A{pi} and A{pi,pj}. It is clear that for all u ∈ A{pi}, v ∈ A{pj ,pk}, u ∼ v. Also,
for all x ∈ A{pi,pj}, y ∈ A{pk,pl}, x ∼ y. Since we have four equivalence classes A{pi},
1 ≤ i ≤ 4, and six equivalence classes A{pi,pj}, 1 ≤ i, j ≤ 4, i 6= j. So, the twin graph
of H2 is a 3-regular graph on ten vertices, which is isomorphic to Petersen graph as the
Figure 3.

A{p1}

A{p2,p3}

A{p4}

A{p1,p3}A{p2,p4}

A{p3}

A{p1,p4}

A{p2}

A{p3,p4} A{p1,p2}

Figure 4. The twin graph of H2.

Corollary 4.1. Let G = Γπ(Zp1p2···pα), then

(i) The clique number of G is α.
(ii) The independence number of G is Max{θi : 1 ≤ i ≤ α}.

Proof. One can see both of items by presence of the induced subgraph Kθ1,θ2,θ3,...,θα in
decomposition of G, by Theorem 3.4, and being independent sets for equivalence classes,
by Remark 4.1. �

Corollary 4.2. The girth of Γπ(Zp1p2...pα) is as the following.

(i) gr(Γπ(Zp1p2)) = 4;
(ii) gr(Γπ(Zp1p2...pα)) = 3, where α ≥ 3.

Proof. It is easy to see in Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem 3.4. �

Theorem 4.3. Let X,Y ⊂ π be two nonempty proper subsets of π = {p1, . . . , pα}. For
any x ∈ AX and y ∈ AY ;

(i) d(x, y) = 1 if and only if X ∩ Y = ∅;
(ii) d(x, y) = 2 if and only if X ∩ Y 6= ∅ , X ∪ Y 6= π;
(iii) d(x, y) = 3 if and only if X ∩ Y 6= ∅, X ∪ Y = π.

Proof. (i) This statement is an equivalent definition for the adjacency of graph G.

(ii) Since X ∩ Y 6= ∅, d(x, y) 6= 1 by part (i), and for all z ∈ AZ ; Z ⊆ π \ X ∪ Y ,
x ∼ z ∼ y. So, d(x, y) = 2. Conversely, let d(x, y) = 2. By part (i), X ∩ Y 6= ∅. Also,
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x ∼ z ∼ y for some z ∈ AZ such that Z 6= X,Y , Z ∩X = ∅, Z ∩Y = ∅. Thus, X ∪Y 6= π.

(iii) Let d(x, y) = 3, then X ∩ Y 6= ∅ and X ∪ Y = π, by parts (i), (ii). Conversely,
let X ∩ Y 6= ∅, X ∪ Y = π. We show that d(x, y) = 3. Suppose that there is a path of
length greater than 3 between x and y. We may assume that x− u− v − w − y is a path
of length four such that u ∈ AU , v ∈ AV , w ∈ AW , where U, V,W ⊂ π. Since X ∩ Y 6= ∅,
d(x, y) 6= 1. Also, If d(x, y) = 2, then there exists z ∈ AZ such that x ∼ z ∼ y. So,
Z ∩X = ∅, Z ∩ Y = ∅, which is a contradiction. If V ∩X = ∅ or V ∩ Y = ∅, then x ∼ v
or v ∼ y. So, d(x, y) = 3.
Assume that V ∩X 6= ∅, V ∩Y 6= ∅. Since w ∼ y, W ∩Y = ∅ by part (i). Also, X∪Y = π,
so we have W ⊂ X \ Y . Thus, W ∩ X 6= ∅ and d(x,w) = 2 by part (ii). Therefore,
d(x, y) = 3.

�

Corollary 4.3. diam(Γπ(Zp1p2...pα)) = 3.

Proof. According to Theorem 4.3, (iii), we can shorten any path of length greater than
four between x and y to a path of length four. �

Corollary 4.4.
(i) Γπ(Zp1p2···pα) is a connected graph.
(ii) The edge connectivity of Γπ(Zp1p2···pα) is min{pi − 1; 1 ≤ i ≤ α}.

Proof. (i) Consider two distinct vertices x, y of G and the equivalence classes AX , AY
where X,Y ⊂ π, x ∈ AX and y ∈ AY . Then by Theorem 4.3, since d(x, y) ≤ 3, there
exists a path of length 1, 2 or 3 between x and y. So, Γπ(Zp1p2···pα) is connected.

(ii) By the structure of G, we see that the twin graph of Γπ(Zp1p2···pα) has α vertices
of degree one, which are the representatives of the equivalence classes AS such that |S| =
α − 1. So, by removing the edges between AS and AT such that |T | = 1, G becomes
disconnected. The minimum size of such AS is the edge connectivity of G. �

5. dimension

In this section we obtain some types of dimension for the graph Γπ(Z(Zp1p2...pα)). First,
we note that determining whether a given set B of vertices of G is a metric generating set
of G, one needs to investigate only the pairs of vertices in V (G) − B, since u ∈ B is the
only vertex of G whose distance from u is 0.

Theorem 5.1. [5] If G∗ is the twin graph of G, then dim(G) ≥ n(G)− n(G∗).

Theorem 5.2. Let G = Γπ(Zp1p2...pα). Then dim(G) = n(G)− 2α + 2.

Proof. By Theorems 5.1 and 4.2, dim(G) ≥ n(G) − 2α + 2. Set R as a complete set of
representative vertices of equivalence classes. By Theorem 4.2, |R| = 2α − 2. We show
that M = V (G)−R is a metric basis for G.

Let u, v ∈ R and suppose S and T be two subsets of π such that u ∈ AS and v ∈ AT .
There exists L ⊂ π such that L ∩ S 6= ∅ and L ∩ T = ∅. So, for every vertex x ∈ AL,
x /∈ R; d(x, v) = 1 and d(x, u) ∈ {2, 3}, by Lemma 4.3.

Hence, M is a metric basis and dim(G) ≤ n(G)− 2α + 2. �

Lemma 5.1. Let y and z be twins. If e, f ∈ E(G) such that e = xy and f = xz, then
every edge metric basis E contains at least one of y and z.
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Proof. Let S, T be two nonempty proper subsets of π such that S∩T = ∅. Let x ∈ AS and
y, z ∈ AT . Consider two edges e = xy and f = xz. It is clear that d(e, x) = d(f, x) = 0.
So, x doesn’t distinguish e and f . Let v 6= x, y, z.

If v ∈ AS , then d(e, v) = d(f, v) = 1. If v /∈ AS , then v ∈ AT for some T ⊂ π and by
Lemma 4.3, d(e, v) = d(f, v) ∈ {1, 2, 3}. So, any vertex v 6= x, y, z doesn’t distinguish e
and f . Thus, at least one of y and z must be in an edge metric basis E. �

Remark 5.1. The argument in the proof of Lemma 5.1 can be repeated for any pair of
incident edges. Then every edge metric basis E of G contains at least |AS | − 1 vertices of
the equivalence class AS.

Theorem 5.3. Let G = Γπ(Zp1p2...pα). Then dime(G) = n(G)− 2α + 2.

Proof. For any edge metric basis E of G, by Theorem 4.2, |E| ≥ n(G) − 2α + 2. Let R
be a set of representative vertices of equivalence classes. By Theorem 4.2, |R| = 2α − 2.
We claim that E = V (G) − R is an edge metric basis for G. According to the structure
of the graph and by the view of Theorem 4.3, for any pair of edges e and f we have the
following cases. In each case, we show that there is x ∈ E which distinguishes e and f .
First consider that e and f have a common endpoint. We have two cases.

Case A1. Let e = xy, f = xz such that x ∈ AS , y, z ∈ AT for S, T ⊂ π such that
S ∩ T = ∅. It is clear that d(e, x) = d(f, x) = 0. Also, we know that at most one of y and
z belongs to R. Let y ∈ R, then d(e, z) = 1 and d(f, z) = 0. Otherwise, y, z ∈ E and both
of y and z distinguish e and f .

Case A2. Let e = xz, f = zy such that x ∈ AS , y ∈ AT , z ∈ AK for S, T,K ⊂ π
where S ∩ T 6= ∅, S ∪ T 6= π and S ∩K = T ∩K = ∅. If x or y doesn’t belong to R, say
x /∈ R, then d(e, x) = o, d(f, x) = 1. So, x distinguishes e and f . If x, y ∈ R, then there
exists v ∈ AL such that L ∩ S = ∅, L ∩ T 6= ∅, L ∩K 6= ∅, and d(e, v) = 1, d(f, v) = 2.
Now, assume that e and f are two distinct edges. There are three cases.

Case B1. If e = xy, f = zw such that x, z ∈ AS , y, w ∈ AT for S, T ⊂ π with
S∩T = ∅, then there exists a vertex of {x, y, z, w} which does not belong to R, say x /∈ R.
So, d(e, x) = o, d(f, x) = 1.

y

z

xAS AT

y

w

x

z

Case A1 Case B1

AS AT
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x

y

zAS AK

AT

x z

w

y

Case A2 Case B2

AS AK

AT

Case B2. Let e = xz, f = yw such that x ∈ AS , y ∈ AT , z, w ∈ AK for S, T,K ⊂ π
such that S ∩ T 6= ∅, S ∪ T 6= π and S ∩K = T ∩K = ∅. If x or y doesn’t belong to R,
say x /∈ R, then d(e, x) = o, d(f, x) = 1. So, x distinguishes e and f . Let x, y ∈ R, since
at most one of z and w belongs to R, consider z ∈ R, then d(e, w) = 1, d(f, w) = 0. It
means that w distinguishes e and f .

Case B3. Let e = xz, f = yw such that x ∈ AS , z ∈ AK , y ∈ AT , w ∈ AL for
S, T,K,L ⊂ π such that S ∩ T 6= ∅, S ∩K = L ∩K = T ∩ L = ∅ and T ∩K 6= ∅. If x
or y doesn’t belong to R, say x /∈ R, then d(e, x) = 0, d(f, x) = 2. So, x distinguishes e
and f . Let x, y ∈ R, then there exists u ∈ AS such that d(e, u) = 1, d(f, u) = 2. So, u
distinguishes e and f .

w
x

y

z

Case B3

AL

AS AK

AT

In each case, E is an edge metric basis of G. Thus, dime(G) ≤ n(G)− 2α + 2. �

Lemma 5.2. For any twin vertices x, y of a connected graph G, R{x, y} = {x, y}.
Proof. Let z ∈ R{x, y} − {x, y}, then d(x, z) 6= d(y, z). So, z /∈ N(x) ∩N(y). Since G is
connected and x, y are twins, d(x, z) = d(y, z), which is a contradiction. �

Theorem 5.4. ( See [6]) Let G be a connected graph of order at least two. Then

dimf (G) = |V (G)|
2 if and only if there exists a bijection ϕ : V (G) −→ V (G) such that

ϕ(v) 6= v and |R{v, ϕ(v)}| = 2 for all v ∈ V (G).

Theorem 5.5. Let G = Γπ(Zp1p2...pα)). Then dimf (G) = n(G)
2 .

Proof. Let ϕ : V (G) −→ V (G) such that ϕ(x) = x+
∏
pi|x

pi. Then it is easy to check that

ϕ is a bijection which takes any vertex x to it’s twin and ϕ(x) 6= x. Moreover, by Lemma
5.2, R{x, ϕ(x)} = {x, ϕ(x)}, and the result follows by Theorem 5.4. �
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