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PERFORMANCE ANALYSIS OF LOAD BASED M/M/3 TRANSIENT

QUEUEING SYSTEM WITH FINITE CAPACITY

B. R. WAGLE1∗, R. P. GHIMIRE2, §

Abstract. This paper deals with the investigation of M/M/3 queueing model under the
provision of service rates of jobs depend upon the load of the jobs arrived in the system.
The customers (jobs) arrive in the system in Poisson fashion and they are served in the
chronological order of their arrival. Differential equations of transient probability distri-
bution functions by using a transition diagram have been set up. Laplace Transform,
probability generating function, and Rouchey’s Theorem have been applied to get the
probability of n customer in time t. Various performance indices such as the mean num-
ber of customers in the system, expected number of customers in a queue, probability
that one has not to wait, expected mean time spent in a system, expected mean time
spent in a queue, probability that the queue size being greater than or equal to N have
been obtained analytically. Finally, the analytical results are validated graphically with
the help of computing software.

Keywords: Load-Based Teansient Queue, M/M/3 Model, Performance Analysis, Laplace
Transform.
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1. Introduction

The queueing system started from the existence of organisms on earth. Human beings
also following the lining system from the ancient period but its study begins from 1909
[5, 7]. Chronological development of queueing theory from 1909 to 1969 can be found in
Morse [29], Kleinrock [22], Medhi [27], Lawler[26], Jazwinski [18], Gross [13]. Jain [15]
investigated a finite multiserver queueing system with queue-dependent heterogeneous
servers and obtained the average number of customers in the system by using a recursive
method to solve the steady-state equation. Chakravarthy and Parthasarathy [8] studied
queueing network model of two different capacity buffers, where customer arrival rate
is constant and servers serve customers in heterogeneous service rates. They described
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blocking conditions of the servers and observed steady-state performance measures by
using Markov chain theory. Wang and Tai [41] considered M/M/3 queue dependent server
model in finite capacity and obtained performances average number of customers and the
average number of waiting-customers in steady-state characteristics and he claimed that
the problem considered in his paper is more general than the work Kaczynski et al [19],
Kasper [20]. Sharma and Tarabia [38] worked for a simple formula for M/M/1/N queueing
model. Worthington et al. [42] claimed that the decision-makers understand the level of
congestion with the help of load-based steady-state M/G/∞ queueing model.

A lot of literature can be found in which customers joining the queue can be occupied
in the system potentially infinite in number. However, sometimes we encounter some
unexpected situation in the infinite queueing system, to address such situations instantly
we have to make quick decisions and form a finite queue, such as on the battlefield, in
the process of evacuation of people, in the pandemic like COVID-19 wherein temporal
type queueing models have to be constructed. Such finite queueing models have not been
tractable by steady-state queueing model approaches. It is worthwhile to report some
of the works done on the line. Kim et al. [21] studied a tandem queueing system with
finite and infinite buffers and they analyzed the ergodicity condition and steady-state
distribution of the system states.

In our daily life, steady-state systems are not always practicable. Even when the system
under study has frequent inherent changes in arrival or service rates. Numerous situations
can be found where arrival rates, service rates, and other system parameters may change
continuously. In a realistic approach, transient analysis is essential which we experience
in a service business that never reaches equilibrium. To overcome such problems transient
solutions are desirable. In this transient concept, some works did have been in queueing
system [9]. Gorden [32] introduced the time-dependent arrival of customers in the queue-
ing system. Blomqvist [6] developed a transient queueing system and proved the theorem
for the standard deviation of waiting time. Mori [28] followed transient study of mean
waiting time and results validate in M/M/1 and M/D/1. Kumar et al. [24] demonstrated
how the transient solution for the state probabilities and busy period in a single server
Poisson queue with balking can be obtained simply and directly. Law [25] noted many
initial transient failure outputs in his study, which was led by Gafarian et al [12]. They
studied the problem to determine the point in simulated time when near-equilibrium has
been achieved. Literature of transient queueing systems found first in 1950′s. Ammar
[1] studied impatient behavior in two heterogeneous servers within a time-dependent ap-
proach. Ayyappan et al. [2] developed a single server transient queue with batch service
under catastrophe. Ayyppan and Shyamaly [3], Jain and Kanethia [14], Kumar and Mad-
heswri [23] made some contributions to repairmen and catastrophe queueing models in the
transient framework. Jain et al. [17] developed a finite queueing model having single and
batch service modes for telecommunication systems, wherein the transient state queue size
distribution and expected busy period, expected idle period have been obtained. Jain and
Singh [16] studied Markovian queue in transient structure analytically by applying the
technique of probability generating function. Curry et al. [11] applied transient founda-
tion of queueing system in healthcare departments junction based on hospital responding
to demand increases during epidemics and pandemics such as the recent COVID-19. Some
of the transient queueing models have been developed in Murray and Kelton [30], Nagpal
[31], Odoni and Roth [33], Parthasarthy and Selvaraju [35], Parthasarthy and Lenin [36],
Ruchi [37], Suhasiui et al. [39], Sundari and Srinivasan [40].

The scope and purpose of this article is to study the load-based M/M/3 queueing model
with finite capacity in every epoch beneath the first-come-first-serve discipline. Various
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performance measures under study have been determined as the functions of time. The
probability generating function technique, Laplace transform and its inverse Laplace meth-
ods have been employed to solve the system of ordinary differential equations. The model
under investigation has its novelty in the way that it takes jobs-dependent servers into ac-
count that generates a more complex system of ordinary differential-difference equations,
which leads the problem more rigorous. Finding various performance indices of such a
model analytically counts as one of the few innovative works. Our model under study
can be applied in health care system of corona patient in the way that health care unit is
equipped with all the facilities (Doctors, Nurse, oxygen, personal protection equipment,
polymerase chain reaction test kit, medicine, isolation ward, bed) and they move from one
health care center to other according to rush of the patients in health care centers set up
in cluster wise in particular area. This article is organized into sections. The first section
covers an introduction of the topic thoroughly. Section 2 involves model description, sec-
tion 3 generates governing birth-death equations which are derived by making the balance
of in-flow and out-flow of system states, section 4 includes performance indices, section
5 presents numerical results and interpretation, and in section 6 concluding remarks &
scope of our work have been given.

2. Model Description

The queueing model under study consists of at most three servers. The first server gives
the service to the customers with µ1(t) service rate if there are J − 1 customers in the
system. If there are greater or equal to J and less than K customers in the system then two
servers are employed for the service with service rate µ2(t). If there are K to L customers in
the system then three servers are provisioned wherein the third server has µ3(t) service rate.
The model under study assumes that customers arrive at the system in the Poisson process
with the rate λ and the service time of servers is exponentially distributed. Differential
difference equations have been obtained with the help of a transition diagram. We set,
µ1 = µ2 = µ′, µ′ = µ3, λ1 + λ2 = λ for n = J(1), J(2),K(1),K(2) state.

3. Mathematical Model and Analysis

Under the description of our model, we have constructed the following transient dia-
gram.

Fig. 1. State-transition diagram
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Let X(t) be the number of units in the system at time t. Then X(t) : t > 0 is a
continuous-time Markov process with the state space S = {0, 1, ..., J − 1, J, J + 1, ...,K −
1,K,K+ 1, ..., L−1, L} where J = J(1) +J(2), K = K(1) +K(2). Transient equations
for the finite M/M/3 queueing system with queue-dependent heterogeneous servers, the
system is governed by the following set of differential-difference equations obtained from
Fig. 1.

dP0(t)

dt
= −λP0(t) + µ1P1(t) (1)

dPn(t)

dt
= −(λ+ µ1)Pn(t) + λPn−1(t) + µ1Pn+1(t) (1 ≤ n ≤ J − 2) (2)

dPJ−1(t)

dt
= −(λ1 + λ2 + µ1)PJ−1(t) + λPJ−2(t) + µ1PJ(1)(t) + µ2PJ(2)(t)

= −(λ+ µ1)PJ−1(t) + λPJ−2(t) + µ1PJ(1)(t) + µ2PJ(2)(t)
(3)

dPJ(1)(t)

dt
= −(λ+ µ1)PJ(1)(t) + λPJ−1(t) + µ1PJ+1(t) (4)

dPJ(2)(t)

dt
= −(λ+ µ2)PJ(2)(t) + λPJ−1(t) + µ2PJ+1(t) (5)

dPn(t)

dt
= −(λ+ µ′)Pn(t) + λPn−1(t) + µ′Pn+1(t) (J + 1 ≤ n ≤ K − 2) (6)

dPK−1(t)

dt
= −(λ1 + λ2 + µ′)PK−1(t) + λPK−2(t) + µ′PK(1)(t) + µ3PK(2)(t)

= −(λ+ µ′)PK−1(t) + λPK−2(t) + µ′PK(1)(t) + µ3PK(2)(t)
(7)

dPK(1)(t)

dt
= −(λ+ µ′)PK(1)(t) + λPK−1(t) + µ′PK+1(t) (8)

dPK(2)(t)

dt
= −(λ+ µ3)PK(2)(t) + λPK−1(t) + µ3PK+1(t) (9)

dPn(t)

dt
= −(λ+ µ′′)Pn(t) + λPn−1(t) + µ′′Pn+1(t) (K + 1 ≤ n ≤ L− 1) (10)

dPL(t)

dt
= −µ′′PL(t) + λPL−1(t) (11)

Where µ′ = µ1 + µ2, µ′′ = µ1 + µ2 + µ3
By using Laplace transform from equation (1) to (11).

(s+ λ)P0(s)−
µ1
s2
P1(s) = 1 (12)

(s+ λ+
µ1
s2

)Pn(s)− λPn−1(s)−
µ1
s2
Pn+1(s) = 0 (1 ≤ n ≤ J − 2) (13)

(s+ λ+
µ1
s2

)PJ−1(s)− λPJ−2(s)−
µ1
s2
PJ(1)(s)−

µ1
s2
PJ(2)(s) = 0 (14)

(s+ λ+
µ1
s2

)PJ(1)(s)− λ1PJ−1(s)−
µ1
s2
PJ+1(s) = 0 (15)

(s+ λ+
µ1
s2

)PJ(2)(s)− λ2PJ−1(s)−
µ2
s2
PJ+1(s) = 0 (16)

(s+ λ+
µ′

s2
)Pn(s)− λPn−1(s)−

µ′

s2
Pn+1(s) = 0 (J + 1 ≤ n ≤ K − 2) (17)

(s+ λ+
µ′

s2
)PK−1(s)− λPK−2(s)−

µ′

s2
PK(1)(s)−

µ′

s2
PK(2)(s) = 0 (18)

(s+ λ+
µ′

s2
)PK(1)(s)− λ1PK−1(s)−

µ′

s2
PK+1(s) = 0 (19)
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(s+ λ+
µ′

s2
)PK(2)(s)− λ2PK−1(s)−

µ3
s2
PK+1(s) = 0 (20)

(s+ λ+
µ′′

s2
)Pn(s)− λPn−1(s)−

µ′′

s2
Pn+1(s) = 0 (K + 1 ≤ n ≤ L− 1) (21)

(s+
µ′′

s2
)PL(s)− λPL−1(s) = 0 (22)

Adding equation (15) and (16) we get(
s+ λ+

µ1
s2

) [
PJ(1)(s) + PJ(2)(s)

]
− (λ1 + λ2)PJ−1(s)−

(µ1
s2

+
µ2
s2

)
PJ+1(s) = 0(

s+ λ+
µ1
s2

)
PJ(s)− λPJ−1(s)−

µ′

s2
PJ+1(s) = 0 (23)

Similarly Adding equations (19) and (20)
We get,(

s+ λ+
µ′

s2

)[
PK(1)(s) + PK(2)(s)

]
− (λ1 + λ2)PK−1(s)−

(
µ′

s2
+
µ3
s2

)
PK+1(s) = 0(

s+ λ+
µ′

s2

)
PK(s)− λPK−1(s)−

µ′′

s2
PK+1(s) = 0 (24)

Then equation (13) and (14) can be express in

(s+ λ+
µ1
s2

)Pn(s)− λPn−1(s)−
µ1
s2
Pn+1(s) = 0 (0 ≤ n ≤ J − 1) (25)

Similarly, equations (23), (17) and (18) can be express in

(s+ λ+
µ′

s2
)Pn(s)− λPn−1(s)−

µ′

s2
Pn+1(s) = 0 (J ≤ n ≤ K − 1) (26)

And equations (24), (21) and (22) can be express in

(s+ λ+
µ′′

s2
)Pn(s)− λPn−1(s)−

µ′′

s2
Pn+1(s) = 0 (K ≤ n ≤ L) (27)

Let us define generating function as

P (z) =

∞∑
n=0

Pn(s)zn (28)

Taking sum of (12) and (25) ×zn, we have

(s+ λ+
µ1
s2

)

J−1∑
n=0

Pn(s)zn − λ
J−1∑
n=0

Pn−1(s)z
n − µ1

s2

J−1∑
n=0

Pn+1(s)z
n = 1

(s+ λ+
µ1
s2

)

J−1∑
n=0

Pn(s)zn − λz
J−1∑
n=0

Pn−1(s)z
n−1 − µ1

s2z

J−1∑
n=0

Pn+1(s)z
n+1 = 1 (29)

From (26)

(s+ λ+
µ′

s2
)
K−1∑
n=J

Pn(s)zn − λ
K−1∑
n=J

Pn−1(s)z
n − µ′

s2

K−1∑
n=J

Pn+1(s)z
n = 0

(s+ λ+
µ′

s2
)
K−1∑
n=J

Pn(s)zn − λz
K−1∑
n=J

Pn−1(s)z
n−1 − µ′

s2z

K−1∑
n=J

Pn+1(s)z
n+1 = 0 (30)
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From (27)

(s+ λ+
µ′′

s2
)

L∑
n=K

Pn(s)zn − λ
L∑

n=K

Pn−1(s)z
n − µ′′

s2

L∑
n=K

Pn+1(s)z
n = 0

(s+ λ+
µ′′

s2
)

L∑
n=K

Pn(s)zn − λz
L∑

n=K

Pn−1(s)z
n−1 − µ′′

s2z

L∑
n=K

Pn+1(s)z
n+1 = 0 (31)

Add equations (29), (30) and (31) we get

(s+ λ+
µ′′

s2
)

[
J−1∑
n=0

Pn(s)zn +
K−1∑
n=J

Pn(s)zn +
L∑

n=K

Pn(s)zn

]

− λz

[
J−1∑
n=0

Pn−1(s)z
n−1 +

K−1∑
n=J

Pn−1(s)z
n−1 +

L∑
n=K

Pn−1(s)z
n−1

]

− µ′′

s2z

[
J−1∑
n=0

Pn+1(s)z
n+1 +

K−1∑
n=J

Pn+1(s)z
n+1 +

L∑
n=K

Pn+1(s)z
n+1

]
= 1

or (s+ λ+
µ′′

s2
)

L∑
n=0

Pn(s)zn − λz
L∑
n=0

Pn−1(s)z
n−1 − µ′′

s2z

L∑
n=0

Pn+1(s)z
n+1 = 1

or (s+ λ+
µ′′

s2
)

L∑
n=0

Pn(s)zn − λz
L∑
n=1

Pn−1(s)z
n−1 − µ′′

s2z

[
L∑
n=0

Pn(s)zn − P0(s)

]
= 1

or (s+ λ+
µ′′

s2
)P (z)− λzP (z)− µ′′

s2z
[P (z)− P0(s)] = 1

(32)

where P (z) =

L∑
n=0

Pn(s)zn

P (z)

(
s+ λ+

µ′′

s2
− λz − µ′′

s2z

)
= 1− µ′′ × P0(s)

s2z

P (z)
(s3z + s2λz + µ′′z − s2λz2 − µ′′)

s2z
=
s2z − µ′′ × P0(s)

s2z

P (z) =
s2z − µ′′ × P0(s)

−{s2λz2 − (s3 + s2λ+ µ′′)z + µ′′}
(33)

We may write

P (z) =
N(z, s)

D(z, s)
=
N

D

Where D = −{s2λz2 − (s3 + s2λ+ µ′′)z + µ′′} = −s2λ [z − α1(s)] [z − α2(s)]
Two zeros of D are,

α1(s) =
(s3 + s2λ+ µ′′) +

√
(s3 + s2λ+ µ′′)2 − 4s2λµ′′

2s2λ
(34)

& α2(s) =
(s3 + s2λ+ µ′′)−

√
(s3 + s2λ+ µ′′)2 − 4s2λµ′′

2s2λ
(35)
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We wish to show that | α2(s) |<| α1(s) | for Re(s) > 0, or that | α2(s) |2 − | α1(s) |2> 0.

Defining m ,
√

(s3 + s2λ+ µ′′)2 − 4s2λµ′′ and substituting for α1(s) and α2(s) in the
latter inequality yields the equivalent condition.

Re(s3 + s2λ+ µ′′)Re(m) + Im(s3 + s2λ+ µ′′)Im(m) > 0 (36)

Since | α2(s) |≤| α1(s) |, the one zero of D of interest must be α2(s). By the analyticity
of P(z) for | z |< 1 (Re(s) > 0), α2(s) is a zero of the numerator [by Rouchey Theorem].
Hence,

s2α2(s)− µ′′P0(s) = 0⇒ P0(s) =
s2α2(s)

µ′′
(37)

Then from equation 33, we have

P (z) =
s2z − µ′′ × s2α2

µ′′

−s2λ(z − α1)(z − α2)

=
1

λα1

(
1 +

z

α1
+
z2

α2
1

+ ...+
zn

αn1
+ ...

)
Equating the like coefficient of zn, we have

Pn(s) =
1

λα1
× 1

αn1
= P0(s)

1

αn1
(38)

By using the normalize condition
L∑
n=0

Pn(s) =
1

s
(39)

From equations (38) and (39)

L∑
n=0

1

αn1
P0(s) =

1

s
⇒ P0(s) =

1

s

[
L∑
n=0

1

αn1

]−1
(40)

Then equation (38)

Pn(s) =
1

sαn1

[
L∑
n=0

1

αn1

]−1
(41)

The inverse transform Pn(t) is given by the well−known inversion formula

Pn(t) =

(
1

2πi

)∫ a+i∞

a−i∞
estPn(s)ds

or, alternately,

Pn(t) =

(
eat

π

)∫ ∞
0

[Re{Pn(s)}cos wt− Im{Pn(s)}sin wt]dw, (42)

s = a + iw, where a can be any real number greater than α. Equation (42) can also be
represented by cosine transform pair

Pn(t) =

(
2eat

π

)∫ ∞
0

Re{Pn(s)}cos wt dw, (43)

or by the sine transform pair,

Pn(t) =

(
−2eat

π

)∫ ∞
0

Im{Pn(s)}sin wt dw. (44)

The technique for numerically inverting Pn(s) is essentially a trapezoidal rule approxima-
tion to (43) which involves only Re(Pn(s)). An essential feature of the method is that an



B. R. WAGLE, R. P. GHIMIRE: PERFORMANCE ANALYSIS OF LOAD BASED M/M/3... 389

expression for the error in the computed inverse transform is available which allows us to
control the maximum error in the inversion technique Pn(t) = Pc(t) − Ec where Pc(t) is
the approximation to Pn(t) defined by

Pc(t) =

(
2eat

T

)[
1

2
P (a) +

∞∑
k=1

Re{P (a+
kπi

T
)}cos(kπt

T
)

]
(45)

with the error

Ec =
∞∑
m=1

exp(−2mat){P (2mT + t) + exp(2at)P (2mT − t)} (46)

where the parameter a, T satisfy the condition T ≥ t, and a ≥ α. Using the bound
|P (t)| ≤ Meat(shifting theorem) in (46) and summing the resulting geometric series, we
find that

Ec ≤Meat[exp{2(a− α)t}+ 1]/[exp{2(a− α)T} − 1] (47)

By choosing a − α sufficiently large with T > t, the error Ec can be made as small as
desired.

One shortcoming of the method is that usually the series (45) converges slowly. One
must often sum hundreds of terms before convergence to three significant figures is at-
tained. If we take T = 2t to make above series converge fast

Pc(t) =

(
eat

t

)[
1

2
P (a) +

∞∑
k=1

Re{P (a+
kπi

t
)}(−1)k

]
(48)

For numerical results we have used the equation (41) in equation (42) which is the numer-
ical inversion of (41) that gives completely Pn(t) in explicit form.

4. Performance Indices

We have been observed the following six performance of the model.

(i) The mean number of customers in the system is

Ls(t) =
L∑
n=1

nPn(t) =
J−1∑
n=1

nPn(t) +
K−1∑
n=J

nPn(t) +
L∑

n=K

nPn(t)

(ii) Expected number of customers in the queue is

Lq(t) =
L∑
n=1

(n− 1)Pn(t) =
J−1∑
n=1

(n− 1)Pn(t) +
K−1∑
n=J

(n− 1)Pn(t) +
L∑

n=K

(n− 1)Pn(t)

(iii) Probability that the queue size being greater than equal to N

P (Queue size ≥ N) =

L∑
n=N

Pn(t) =

L∑
n=0

Pn(t)−
N−1∑
n=0

Pn(t)

(iv) Probability that one has not to wait = P0(t)

(v) Expected mean time spent in the system Ws(t) = Ls(t)
λ

(vi) Expected mean time spent in the queue Wq(t) =
Lq(t)
λ
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5. Numerical Results and Interpretation

The matlab software has been used to obtain various measures of performance such as
the transient probability distribution (Pn(t)), mean number of customers in the system
(Ls(t)), mean number of customers in the queue (Lq(t)), mean-time that a customer
spent in the system (Ws(t)), mean of waiting time that a customer has to wait in the
queue (Wq(t)).

Fig.2. Transient probability
distribution versus time

Fig.3. Number of customers
in the system versus time

Fig.4. Number of customers
waiting in queue versus time

Fig.5. Mean waiting time in
the system versus time
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Fig.6. Mean waiting time in
queue versus time

Fig.7. Transient probability
distribution vs Mean wait-
ing time

Fig.8. Transient probability distribution vs mean waiting time in queue

For the numerical computations, we have taken values of some parameters as; J =
2,K = 4, L = 6, a = 0.01, w = 0.12, and service rates µ1 = 0.023, µ2 = 0.024, µ3 = 0.025.
Graph of transient probability distribution drawn against time for various arrival rates
λ = 0.015, λ = 0.02, λ = 0.025 shown in the Fig. 2, The soar of arrival rate showed
to increase the transient probability with time increases, which is experienced in real-life
situations. Graphs start with Pn(t) axis is meant to have servers busy from the beginning.
In all the figures graphs come to at zero levels because servers are idle for a moment, which
has been shown by some valley on the curve. Fig. 3 displays that at the beginning as the
arrival rate increases the number of customers in the system Ls(t) increases with time.
But as time passes on the number of customers decrease gradually. Which is also realistic.
Fig. 4 is the graph of the number of customers waiting in queue against time which is
of the same nature as that of the number of customers in the system but in the system,
the number of customers in the queue is less which is inherently true. Graphs of system
time and waiting time against the time have been shown in Fig. 5 and Fig. 6 respectively
shows that as the arrival rate increases the system time as well as the waiting time in
queue decreases since after fixed number of customers there are provisions of introducing
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a new server. Graphs also show that increasing arrival rates do not show a significant
change in system time and waiting time.

Fig. 7 and Fig. 8 show an increase of arrival rates, increase of system time and waiting
time yields the increase in transient probability which proportionate have been illustrated
by the graphs.

6. Concluding Remark and Scope

(i) Various methods of solving transient queueing systems explained in detail can be
the guideline for researchers in the future.
(ii) Our model can be extended to a more general M/M/n model by taking the ′n′ number
of servers, however, it will become more complex to tackle.
(iii) The model under study can be converted to the steady-state condition when t→∞.
The model can be studied in both time-varying arrival rates and service rates so that the
model can be much more realistic.
The model under study has paramount applications in telecommunications in which after
a rushing of telephone calls when it exceeds a certain number there can be switching
of guard channels to serve the calls. The model can be experienced in peak hours in
service sectors such as the bank, government tax offices, etc., where employees are used
in additional service counters, after completion of peak hours, they join their regular job.
In a flexible manufacturing system, an automatic switch-over system can be equipped to
fit our model.
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