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Abstract In this paper we consider a two-echelon supply chain with one sup-
plier that controls a limited resource and a finite set of manufacturers who
need to purchase this resource. We analyze the effect of the limited resource
on the horizontal cooperation of manufacturers. To this end, we use coopera-
tive game theory and the existence of stable distributions of the total profit
among the manufacturers as a measure of the possibilities of cooperation. The
game theoretical model that describes the horizontal cooperation involves ex-
ternalities, which arise because of the possible scarcity of the limited resource
and the possible coalition structures that can be formed. Furthermore, man-
ufacturers do not know how the supplier will allocate the limited resource,
therefore, how much of this resource they will obtain is uncertain for all con-
cerned. Nevertheless, when the limited resource is not scarce for the grand
coalition, the existence of stable distributions of the total profit is guaranteed
and consequently the collaboration among the manufacturers is profitable for
them all. In the event that the limited resource is insufficient for the grand
coalition, we introduce a new cooperative game that assesses the expectations
of each coalition of manufacturers regarding the amount of the limited re-
source they can obtain. We analyze two extreme expectations: the optimistic
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and the pessimistic. In the optimistic case, we cannot reach a conclusion re-
garding the full cooperation of the manufacturers. In the pessimistic case, with
one reasonable assumption, the existence of stable distributions of the total
profit is guaranteed and as a result the collaboration among manufacturers is
a win-win deal.

Keywords linear production processes · limited resource · horizontal
cooperation · externalities

1 Introduction

Production planning is an important part of supply chain management, which
entails all the activities in industrial organizations from buying resources to
the delivery of products to clients. In this paper, we focus on production pro-
cesses where several manufacturers can obtain resource bundles, from suppliers
that have no restrictions on their capacities, which they use to produce vari-
ous products via fixed proportion technologies that are available to all firms.
Manufacturers differ in the amount of resources they can manage. Thus, they
are different in size and therefore they are asymmetric. We assume that man-
ufacturers may collaborate sharing resources and their goal is to maximize
their profit, which equals the revenue from their products at the given market
prices. These are the so-called linear production (LP ) situations, because the
optimization programs that arise for maximizing the revenues are linear pro-
grams. LP situations and corresponding cooperative games were introduced
by Owen (1975).

However, there are many real-life situations in which some resources are
very limited and then the demands of the producers could not be completely
satisfied. For example, natural resources such as water, fish quotas, coltan or
carbon dioxide permits are very important to irrigate in agriculture, food com-
panies, technological companies or pollutant companies respectively, but those
resources are limited and the amounts requested by the interested companies
could be larger than the natural resources available in each moment. The
resources mentioned above are (almost) absolutely necessary to produce, so
without water it is not possible to produce any agricultural products, without
a fish quota it is not allow to fish, without coltan almost no electronic device
can be manufactured and without emission permits the polluting companies
can not produce. Moreover, on many occasions these resources are under the
control of a single authority that is responsible for allocating the amounts of
resources to the companies that demand them. To do this, that authority will
use different criteria. Examples of these situations are carbon dioxide emission
permits after the Kyoto Protocol in 1997 and the Paris Agreement in 2015,
because each signatory country has a limit or target for each period to be di-
vided among the sectors involved; and watershed and irrigators communities
in which there is very often an agency that is responsible for the distribution
of freshwater.
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Bearing this in mind, we consider the aforementioned LP situations when
there is a resource limited by a certain amount and managed by an authority
that needs to be purchased and is absolutely necessary to manufacture any
product. In terms of supply chain management, we have a two-echelon system
in which there is only one supplier and n manufacturers. We do not consider
the suppliers with unbounded capacity, because we assume that they do not
introduce any restriction neither in the operations of the production process
nor in the profit margins of the goods produced. The supplier who controls the
limited resource can be seen as a monopolist that imposes the price, because
the companies are unable to buy the resource from other suppliers.

In this paper we analyze the problem of distributing the limited resource
for companies, when they do not know how the supplier will behave in the
allocation of this limited resource, i.e, they do not have enough information
about what procedure or criteria the supplier will use to allocate the sales
of the scarce resource to the claimants. In this sense, the procedure followed
by the supplier to assign the resource would be a kind of black box for the
producers, who would only know the resource demands of each one but would
not be able to determine the result that the black box procedure would give.
We use the context of production situations in which horizontal cooperation
among manufacturers by utility transfers is possible, trading among companies
is allowed and there is a fixed price per unit on the limited resource. As far
as we know, this approach -when manufacturers do not know how the limited
resource will be sold or allocated- has not been analyzed before. Our research
aims to fill this gap in the literature by examining the following key questions:

a) How can the existence of only one supplier with a limited resource affect
horizontal cooperation among manufacturers?

b) How does the uncertainty on the procedure used by the supplier to sell
this limited resource affect the coalition formation of manufacturers?

In this paper we look for answers to the above questions from a cooperative
game theoretical approach. The amount available of the limited resource plays
a crucial role in the analysis of the associated games, because externalities can
arise due to its possible scarcity. We distinguish two cases: when the coopera-
tion of all manufacturers enables the limited resource to be sufficient for them
and when it is not sufficient. In the former case, we can find stable alloca-
tions of the revenues, i.e. no subset of manufacturers will have an incentive to
break away and act on its own. In the latter situation, cooperation does not
always guarantee a stable allocation. The analysis of both cases is carried out
taking into account that the exact expression of the corresponding game with
externalities is unknown, because manufacturers do not know exactly how the
limited resource is to be sold or assigned.

The paper is organized as follows. In Section 2 a review of the related litera-
ture is presented. Section 3 contains basic concepts on cooperative transferable
utility games. In Section 4 the model of two-echelon chains with one supplier
with a limited resource and n manufacturers and their corresponding games
with externalities are studied. We show that if the limited resource is not a
constraint for the production process of the grand coalition, then the existence
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of stable distributions of the total profit is guaranteed and consequently the
formation of the grand coalition is a win-win deal. In Section 5 we assume that
the limited resource is not sufficient to satisfy the production process of the
grand coalition and the manufacturers do not know how the limited resource
will be distributed. Therefore, we introduce resource games to deal with this
uncertainty. Different points of view can be used to define these games. We
study the two extremes: the optimistic and the pessimistic. In Section 6 we
give some insights about coalition configurations in these situations. Section 7
concludes. All the proofs of the results are included in an Appendix.

2 Literature review

Non cooperative game theory to model interaction between stakeholders in
supply chains has received much attention in the supply chain literature, but
the cooperative approach has been less common. However, we can find a num-
ber of papers in the supply chain literature using cooperative games for ana-
lyzing different aspects of the interaction between the stakeholders related to
collaboration from many different points of view. Cachon and Netessine (2006)
review applications of mainly non cooperative game theory to supply chain
analysis, and in Nagarajan and Sosic (2008) and Meca and Timmer (2008)
the existing literature on applications of cooperative game theory to supply
chain management is reviewed, particularly in profit allocation and stability.
Nevertheless, our approach on stability differs from related papers reviewed in
Cachon and Netessine (2006), Meca and Timmer (2008), and Nagarajan and
Sosic (2008) in several ways as we consider a cooperative game model with
externalities, a supplier with a limited resource and it is not known in advance
how the limited resource will be sold. Netessine and Zhang (2005) analyze the
impact of externalities on the supply chain performance regarding the stock-
ing decisions of retailers in decentralized and centralized management, but not
from a cooperative game theoretical point of view. In our analysis, we use a
cooperative game model which incorporates externalities and additionally, we
carry out the analysis regarding the production planning. Another difference
is that in Netessine and Zhang (2005) the retailers purchase a product to the
supplier that has unbounded capacity, but in our model manufacturers have
to purchase a resource which may be scarce.

Supply chain collaboration has mainly been studied when the partners are
the companies, their suppliers and customers, i.e. vertical collaboration. For
example, among many others, Akçay and Tan (2008) consider the cooperation
of producers that offer a set of products and propose a model that allows to
identify the conditions of firms and products that would facilitate coopera-
tion. Chen and Roma (2011) consider a two-level distribution channel with a
producer and two retailers and show that, under linear demand curves, group
buying is preferable for symmetric retailers. However, for the asymmetric case
collaborative purchasing is beneficial to the less efficient player. Cho and Tang
(2014) study different implications of the uniform distribution regarding the
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gaming effect and the benefit for the firms and the supply chain. Li et al.
(2017) consider supplier-facilitated transshipment for achieving supply chain
coordination in a single supplier, multi-retailer distribution system with non-
cooperative retailers. They assume the supplier is an active participant in the
system and implements transshipment through a bi-directional adjustment
contract, where each retailer can either buy additional inventory or sell back
excess inventory to the supplier. Liu et al. (2018) study how a central author-
ity can stabilize the grand coalition for an unbalanced cooperative game, by
means of a method that uses simultaneously penalization and subsidization.
Meca and Sosic (2014) introduce the class of cost-coalitional problems that
possess two distinguished types of agents: the so-called benefactors, a group
of players whose participation in an alliance always contributes to the savings
of all members, and the so-called beneficiaries, group of players whose cost
decreases in such an alliance. They study the role played by these two types
of agents in achieving stability.

However, horizontal collaboration has received little attention (Pomponi et
al. (2013), Chen et al. (2017)). Although there is a growing number of works
that use cooperative game theory to model the behaviour of the members in
a supply chain. Krajewska et al. (2008) analyze the horizontal cooperation
among freight carriers, combining routing, scheduling and cooperative game
theory. They analyze the profit margings from horizontal cooperation and how
to distribute them fairly among the partners. More recently, Mohebbi and Li
(2015) analyze the problem of suppliers’ coalition formation to share their
capacities and then the fair distribution of the profit obtained from the co-
operation among the collaborating suppliers. For this analysis, they develop
a model for suppliers’ coalition formation through a dynamical coalitional
game approach. Roma and Perrone (2016) consider two identical firms that
cooperate by sharing a joint venture and compete in setting prices or quan-
tities. They investigate the consequences of using outcome-based versus ex
ante-based sharing mechanisms. However, none of the previous papers studies
the effect of externalities that can arise when coalitions are formed on the
horizontal cooperation as we do in this paper and therefore they do not use
cooperative games with externalities either.

Linear production games model production processes in which a group of
players agree to share their resources in order to improve their profits. Owen
(1975) show that these games always have a non empty core by constructing
a stable allocation via a related dual linear program. Gellekom et al. (2000)
named the set of all elements that can be found in this way, the Owen set. More
general are the production situations studied in Granot (1986), Curiel et al.
(1989), Fragnelli et al. (1999), Tijs et al. (2001) and Molina and Tejada (2006).
Granot (1986) considers that the capacity of managing inputs for groups of
manufacturers is not additive. The paper by Curiel et al. (1989) introduces
a generalization involving committee control. In Fragnelli et al. (1999) and
Tijs et al. (2001) an infinite number of production techniques is used to study
relations between the core of the corresponding game and the Owen set. Molina
and Tejada (2006) considers a refinement of the set of players to deal with the
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analysis of the core, i.e., the set of stable allocations in the model proposed by
Curiel et al. (1989).

In our case, we are interested in addressing LP situations à la Owen, but
with a supplier who has a limited resource which is essential to the manufac-
turers to produce. When a limited resource is introduced in an LP situation
this leads to a linear production situation with a limited resource (LPLR situ-
ation). Although it may intuitively seem that when introducing a small change
in the LP model everything will work in a similar way, in this case it is not
true because, for instance, the games that arise in these situations are games
with externalities. Thus, our model implies the use of games with externalities
(or in partition function form) introduced by Thrall and Lucas (1963), where
the value of a coalition is determined by taking into account not only what
the members of the coalition can do, but also what outsiders can do. The core
of these games can be reduced to the core of a related game in characteristic
function form and the existence of stable allocations is not always guaranteed.
This is another difference when compared with the classic LP games.

Finally, among the papers that deal with the distribution of a limited re-
source and use a cooperative approach we should mention Funaki and Yamato
(1999). They consider a concave production function with labor as the only
input and the benefit as output. In this paper we consider a fixed proportion
production function with several inputs including the limited resource for pro-
ducing several outputs and the profit is obtained by solving a linear program.
Moreover, in Funaki and Yamato (1999) all players are symmetric, but in our
case they are asymmetric. In their model the resource is not bounded from
above and the externalities are always negative. In our case, the externalities
can be either positive or negative. In Gutierrez et al. (2017, 2018) the pro-
duction situations considered are the same, but it is known which allocation
rule the manager will use in order to distribute the quota of gas emissions.
However, this paper deals with a more general framework by considering that
it is not known in advance how the limited resource will be allocated. There-
fore expectations of the different coalitions of manufacturers concerning the
limited resource must be taken into account in order to analyze the problem
of horizontal cooperation.

For all the points mentioned above, this paper is, to the best of our knowl-
edge, novel and interesting since the analysis is performed considering exter-
nalities, either positive or negative, a supplier with a limited resource and it is
unknown how the supplier will allocate the limited resource. This brings inno-
vation to the analysis of horizontal collaboration in a supply chain regarding
the production process planning.

3 Preliminaries

In order to deal with our model, we will need to consider transferable utility
games with externalities introduced by Thrall and Lucas (1963). In a trans-
ferable utility game (TU -game) it is assumed that the utility can be linearly
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transferred among agents. Formally, let N = {1, 2, ..., n} be a non empty fi-
nite set of agents who agree to coordinate their actions. Let P(N) denote
the set of all partitions of N and P = {S1, . . . , Sk} represents one of these
partitions or coalition structures, where the coalitions S1, . . . , Sk are disjoint
and their union is N . The pair (S|P ) such that S ∈ P is usually called
an embedded coalition. A cooperative game with externalities is defined by(
N,P(N), {V (•|P )}P∈P(N)

)
, where N is the set of players, P(N) denotes

the set of all partitions of N and V (S|P ) with S ∈ P is a real number that
represents the profit that a coalition S ⊆ N can obtain when P is formed,
with V (∅|P ) = 0 for all P ∈ P(N). Note that the profit that a coalition can
obtain depends on the coalitions formed by the other players in P ∈ P(N). If
V (S|P ) does not depend on partition P , i.e. V (S|P ) = v(S) for a function
v : 2N → R with v(∅) = 0, the game (N, v) has no externalities and is a
TU-game in characteristic function form.

Given a partition P ∈ P(N), a vector x ∈ Rn is said to be feasible under

P if it satisfies
∑
i∈S

xi ≤ V (S|P ) , ∀S ∈ P. We denote by FP the set of all

feasible vectors under P and F = ∪P∈P(N)FP denotes the set of all feasible
vectors. Given two vectors x, x′ in Rn, we say that x dominates x′ through S
and denote x domS x

′ if the following conditions are satified:

1.
∑
i∈S

xi ≤ V (S|P ) , ∀P ∈ P(N) such that S ∈ P,

2. xi > x′i, ∀i ∈ S.

We say that x dominates x′ if there exists S ⊆ N such that x domS x′, and
denote x dom x′. The core of a cooperative game with externalities is defined
by C (V ) = {x ∈ F |@x′ ∈ F s.t. x′ dom x} . However, if we consider another
definition of dominance, then we will obtain a different core. Thus, if we change
condition 1 by

1.
∑
i∈S

xi ≤ V (S|P ) , for some P ∈ P(N) with S ∈ P,

we obtain a more restrictive concept of dominance that we denote by dom and
the corresponding core is defined as C (V ) =

{
x ∈ F

∣∣@x′ ∈ F s.t. x′ dom x
}
.

If
(
N,P(N), {V (•|P )}P∈P(N)

)
is such that, ∀S ⊆ N, ∀P ∈ P(N) with

S ∈ P , V (S|P ) = v (S), then the two definitions of dominance are equivalent,
(N, v) is a game in characteristic function form and the above concepts of core
reduce to the D-core for games in characteristic function form. However, the
definition of core (Gillies, 1953) for games in characteristic function form is
given by

C(v) =

{
x ∈ RN :

∑
i∈N

xi = v(N), and
∑
i∈S

xi ≥ v(S), for all S ⊂ N

}
.



8 Elisabeth Gutierrez et al.

Associated with each game with externalities two cooperative games in
characteristic function form can be introduced:

(
N, vmin

)
and (N, vmax), where

vmin (S) = min {V (S|P ) |P ∈ P(N) such that S ∈ P } ,
vmax (S) = max {V (S|P ) |P ∈ P(N) such that S ∈ P } .(

N, vmin
)

represents a pessimistic point of view of the gain that a coalition
S can achieve working on its own, while (N, vmax) can be seen as its optimistic
counterpart. It is known (see, for instance, Funaki and Yamato (1999)) that if

V ({N}|N) >
∑
i∈S

V (S|P ), ∀P ∈ P(N), then

a) C(V ) = C(vmin), and
b) C (V ) = C(vmax).

4 The model

We consider a two-echelon supply chain consisting of a set N = {1, . . . , n}
of manufacturers, who produce a set G = {1, . . . , g} of goods from a set
Q = {1, . . . , q, q + 1} of resources by using the same fixed proportion tech-
nology described by the production matrix A ∈ M(q+1)×g, where atj rep-
resents the amount of the resource t needed to produce product j, where
a(q+1)j > 0 ∀ j ∈ G, this means that resource q + 1 is strictly necessary
to produce, and there exists at least another resource t ∈ Q \ {q + 1} with
atj > 0 ∀ j ∈ G. This means that we do not allow for output without input.

Regarding the inputs, there are several suppliers that supply the resources
1, . . . , q which have no restrictions on their capacities, but supplier providing
resource q + 1 has a limited amount of the resource and the manufacturers
cannot obtain that resource from any other supplier. This supplier has available
an amount of r of the resource q + 1 at a fixed unitary price c.

With respect to producers, each manufacturer i can manage a different
bundle bi ∈ Rq+ of resources in Q\{q+1}, which s/he obtains from the suppliers
without any restriction. These bi ∈ Rq+, i ∈ N, represent technical limitations
associated with manufacturers such as size, production organization or other
characteristics of manufacturers. This introduces asymmetry in the problem,
i.e., not all manufacturers are identical, they share technology but have their
own technical characteristics that make them different from each other, in
general. We denote by B ∈Mq×n the matrix of bundles of these resources.

Finally, the produced goods can be sold at given market prices p ∈ Rg++,
i.e. the prices are exogenously given to the problem.

Some additional reasonable assumptions regarding the inputs and the out-
puts are the following. We assume that for each resource t ∈ Q \ {q + 1}
there is at least one manufacturer i that uses it, i.e. bit > 0. This means that
all considered resources in the problem are necessary. We also assume that
pj > a(q+1)jc ∀ j ∈ G, in order to deal with a profitable production process.

A scheme of the structure of the model is shown in Figure 1.
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Fig. 1 Structure of the two-echelon supply chain with a limited resource.

Therefore, a linear production with a limited resource situation (LPLR)
can be described by a 5-tuple (A,B, p, r, c). Note that in this model suppliers
with enough resources for all manufacturers are not consider because they do
not introduce any restriction in the problem.

Now we consider that manufacturers can collaborate in order to result in a
better performance than it would without this cooperation (see, Soosay et al.,
2008). We assume that manufacturers can collaborate sharing resources and
purchasing jointly the limited resource. This collaboration will be based on
shared rewards that yield a win-win deal. Therefore the study of the existence
of such reward distributions is an interesting issue in this context. If a coalition
S of manufacturers cooperates, then they put all their resources together,
bS =

∑
i∈S b

i, and so given this amount of resources, the coalition maximizes
its profit by solving the following linear program,

max
∑g
j=1 pjxj − cz

s.t: Ax ≤
(
bS

z

)
x ≥ 0g, z ≥ 0.

(1)

Thus, an optimal production plan (x; z) for coalition S is an optimal solu-
tion of this linear program. With an abuse of notation, we use z to represent
the amount of the limited resource that a manufacturer or a group of manu-
facturers will need. We denote by value (S; z) the value of this linear program,
for every fixed z and by dS = min {z ∈ R+ |value (S; z) is maximum} , the op-
timal demand of the limited resource. We should point out that these optimal
demands are the desired amount of the limited resource for each coalition S
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and can be seen as their greatest aspirations. Note that they are not bounded
from above by r.

It is easy to prove that once we know that a positive profit is achieved,
all the lower levels of the limited resource also provide positive profits. In the
sequel, we will assume that for all S, there is a feasible production plan (x; z)
such that value (S; z) > 0. This implies that dS > 0.

Let us assume that a partition P of manufacturers is formed and the
amount of the limited resource finally sold to coalition S ∈ P by the sup-
plier is zS(P ). Therefore, the profit that a coalition S ⊆ N can obtain is given
by solving problem (1) taking z = zS(P ). We should point out that zS(P )
is bounded from above by r, because the supplier cannot sell more than this
amount unlike dS , for all S ⊆ N . Furthermore, zS(P ) will be less or equal to
its optimal demand dS , because it does not make sense that they receive more
than they demand.

For each partition P we will obtain a different set of demands of the limited
resource. Therefore, the amount of the limited resource that a coalition of
manufacturers can obtain will depend on the coalitions that make up the rest of
the manufacturers. Associated with these situations we can define cooperative
games, but these games will be cooperative games with externalities. Formally,
this can be expressed as follows.

Definition 1 Let (A,B, p, r, c) be an LPLR situation. The game with exter-

nalities associated with this situation is given by
(
N,P(N), {V (•|P )}P∈P(N)

)
,

where N is the set of manufacturers, P(N) denotes the set of all partitions
of N and V (S|P ) with S ∈ P is obtained from linear program (1), for all
S ⊂ N, where z represents the amount of the limited resource allocated to
coalition S when partition P is formed.

All elements in Definition 1 are perfectly known for all manufacturers ex-
cept V , because it will depend on the specific allocation mechanism used by
the supplier with the limited resource, but this is not revealed by the supplier
or the supplier has not yet made a decision on the procedure to be used when
manufacturing coalitions are formed.

However, despite the lack of knowledge of the manufacturers, the next
result shows that the total profit that all manufacturers can obtain by collab-
orating all together is at least as good as the aggregate profit that any partition
of manufacturers can obtain. This means that, in this kind of situations, the
full collaboration of manufacturers is, in principle, profitable for all of them,
i.e. it could be a win-win agreement.

Proposition 1 Let (A,B, p, r, c) be an LPLR situation with associated game

with externalities
(
N,P(N), {V (•|P )}P∈P(N)

)
. Then,

V (N | {N}) ≥
∑
S∈P

V (S|P ) , ∀P ∈ P(N).
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It is easy to check that C (V ) and C (V ) only include efficient allocations.
The following result is given without a proof because it can be derived in a
similar manner as in Funaki and Yamato (1999).

Corollary 1 Let (A,B, p, r, c) be an LPLR situation, with associated game

with externalities
(
N,P(N), {V (•|P )}P∈P(N)

)
and

(
N, vmin

)
, (N, vmax) the

related games in characteristic function form. Then, C (V ) = C
(
vmin

)
and

C (V ) = C (vmax) .

The amount of the limited resource will play a crucial role in the analysis
of LPLR situations as it is shown in the rest of the paper. We start with the
cases when the limited resource is not a constraint on the production process
or it is only a restriction for the grand coalition. Before presenting the results
we introduce the following notation. Given a partition P = {S1, . . . , Sk}, its

total aggregate demand is d(P ) =
∑k
i=1 dSi .

Proposition 2 Let (A,B, p, r, c) be an LPLR situation with associated game(
N,P(N), {V (•|P )}P∈P(N)

)
.

(i) If d (P ) ≤ r for all P , then
(
N,P(N), {V (•|P )}P∈P(N)

)
is a game in

characteristic function form.
(ii) If dN > r and d (P ) ≤ r, for all P ∈ P(N) , P 6= {N}, then(

N,P(N), {V (•|P )}P∈P(N)

)
is a game in characteristic function form.

Let (A,B, p, r, c) be an LPLR situation. The characteristic function form
game associated with one of the two previous situations (N, v), where dN ≤ r
or dN > r and d (P ) ≤ r for all P 6= {N} , is given by v (S) = value (S; z),
with z = dS for all S 6= N and z = min {dN , r} for the grand coalition N. This
is due to the fact that the limited resource is sufficient to satisfy the demands
for all S 6= N, but for N the maximum amount available is r.

The next result shows that the characteristic function form game obtained
when the limited resource is not a constraint for the production process has a
non empty core.

Theorem 1 Let (A,B, p, r, c) be an LPLR situation where d (P ) ≤ r for all
P ∈ P(N). The characteristic function form game (N, v) associated with this
situation has a non empty core.

Corollary 2 Let (A,B, p, r, c) be an LPLR situation where d (P ) ≤ r for

all P ∈ P(N),
(
N,P(N), {V (•|P )}P∈P(N)

)
the corresponding game with

externalities and (N, v) the related game in characteristic function form. Then,
C (V ) = C (V ) = C (v) .

As a result of Theorem 1 and Corollary 2, we have that in an LPLR
situation where the limited resource is not a constraint on the production
process, the existence of stable distributions of the total profit is guaranteed
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and therefore it is possible for manufacturers to achieve a win-win agreement
and consequently cooperation among all of them is feasible.

Following the idea introduced by Gellekom et al. (2000), we can define
the Owen set of an LPLR situation (A,B, p, r, c) , Owen (A,B, p, r, c) , as the
set whose elements can be obtained through an optimal solution of the dual
problem

min
∑q
t=1 b

N
t yt + 0yq+1

s.t: Aty ≥ p
yq+1 ≤ c
y ≥ 0q+1,

(2)

associated with the optimal solution of (1)
(
xN ; dN

)
such that dN ≤ r. To sum

up, when the limited resource is not a constraint on the production process one
way to obtain a stable distribution of the total profit is to use an element of the
so-called Owen set of the LPLR situation (A,B, p, r, c) . We should mention
that this is similar to the classic results in the LP situations. However, it
does not always work in the same way. Although the games such as those in
Proposition 2 (ii) are characteristic function form games, they can have an
empty core, as the following example shows.

Example 1 Let (A,B, r, p, c) be an LPLR situation, with three manufacturers,
N = {1, 2, 3} , who produce three products from three resources and a limited
resource, where

A =


3 6 6
6 6 6
5 10 6
2 4 4

 , B =

 15 6 9
4 18 9
16 19 2

 , p =

10
9
9

 , c = 2, r = 10.

The demands are

d{1} = 4
3 , d{2} = 4, d{3} = 4

5 ,
d{12} = 22

3 , d{13} = 17
3 , d{23} = 42

5 , dN = 31
3 ,

and min
{

31
3 , 10

}
= 10. Since the limited resource is only a restriction for

the grand coalition, the corresponding TU-game (N, v) associated with this
situation is given by

v ({1}) = 4, v ({2}) = 12, v ({3}) = 12
5 ,

v ({12}) = 22, v ({13}) = 13, v ({23}) = 126
5 , v (N) = 30,

and C (v) = ∅. Obviously, C (V ) = C (V ) = ∅. 0

Now we continue with the case in which the limited resource is enough to
satisfy the demand of the grand coalition, i.e. dN ≤ r. In this case, manufac-
turers do not need to know how the supplier will allocate the limited resource,
because the cooperation of all manufacturers is a win-win deal for them and
therefore they behave as just a single agent, as the following theorem shows.
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Theorem 2 1 Let (A,B, p, r, c) be an LPLR situation with associated game

with externalities
(
N,P(N), {V (•|P )}P∈P(N)

)
. If dN ≤ r, then C (V ) 6= ∅.

This result is important for several reasons. First, we have found a case
in which both cores of the game with externalities are non empty (note that
C(V ) ⊆ C(V )). This is relevant because it means that collaboration can be
based on shared rewards that yield a win-win deal. Second, it shows that
cooperation among all manufacturers is important when it prevents the lim-
ited resource from being scarce. Third, from the proof of Theorem 2 given
in the Appendix, we observe that one procedure to obtain allocations of the
total profit among the manufacturers is by considering elements in the Owen
set. This procedure consists of paying each agent a price (the value that the
corresponding dual variable takes in the optimal solution) for each resource
t ∈ Q\{q+1} that s/he can obtain or manage. This result is similar that done
for LP games (Owen, 1975), but the difference is that the price paid for each
of these resources has implicitly discounted the cost of purchasing the amount
dN of the limited resource necessary to produce optimally.

In the more general case, when the limited resource could be a constraint
on the production process for some partition and it is not enough to satisfy
the demand of the grand coalition. In this situation, each coalition of manufac-
turers will obtain an amount of this resource from a certain procedure decided
by the supplier. Regarding the information that manufacturers have on this
procedure, we consider that they do not know the way in which r will be sold
or allocated because of any of the reasons already aforementioned. The next
section will tackle this situation.

5 The resource game

In this section we assume that dN > r and manufacturers do not know how
the limited resource is to be sold or allocated. Therefore, they cannot evaluate
the game with externalities V . Thus, they can examine the problem of the
amount they will receive from different points of view. We consider that what
a coalition of manufacturers S expects to receive from the limited resource
can be described by means of a resource game (N,R)2. These resource games
are cooperative TU -games in characteristic function form and can be defined
following different approaches. There are two extreme cases, depending on
which point of view is used to deal with the situation, the optimistic and the
pessimistic resource games, that will be addressed in this section. Hence, R (S)

1 Similarly, it can be proved that the result holds when we consider vopt(S) = min{dS , r}
instead of vmax, i.e. C(vopt) 6= ∅. Note that vopt ≥ vmax, but not equal in general. There-
fore, when dN ≤ r it will not be difficult to achieve the agreement of the grand coalition.

2 Resource games are also used in Granot (1986), but the idea behind the resource game
is different. A resource game in Granot (1986) measures the amount of a resource available
to each coalition and these amounts are perfectly determined and known for all agents. In
our case, the resource game measures the expectation of the different coalitions regarding
the amount of limited resource they can obtain.
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is what coalition S thinks it can guarantee from the limited resource working
on their own. In principle, it could be any value between those obtained from
the optimistic and pessimistic points of view.

Once a coalition of manufacturers S receives its share of the resource,
R (S) , using this amount as z in (1), for all S ⊆ N, the LPLR game

(
N, vR

)
is obtained, where vR (S) = value (S;R (S)) . In this way, the game associated
with the LPLR situation (A,B, r, p, c) obtained from the resource game (N,R)
reduces to a characteristic function form game,

(
N, vR

)
, since it does not

depend on what the others may do.
The following theorem states a sufficient condition for the LPLR game(

N, vR
)

to have a non empty core, no matter from what point of view the
resource game (N,R) is defined.

Theorem 3 Let (A,B, p, r, c) be an LPLR situation, let (N,R) be a resource
game associated with it and

(
N, vR

)
the corresponding LPLR game. When

dN > r, if C (R) 6= ∅, then C
(
vR
)
6= ∅.

However, the opposite is not true in general as the next example shows.

Example 2 Let (A,B, r, p, c) be an LPLR situation, with two manufacturers,
N = {1, 2} , who produce three products from two resources and a limited
resource, where

A =

 1 0 1
0 1 1
2 2 1

 , B =

[
4 1
1 4

]
, p =

4
4
8

 , c = 1, r = 4.

Consider the resource game, (N,R), such that R ({1}) = R ({2}) = R ({12}) =
4. In this case, C (R) = ∅, dN = 5 and vR ({1}) = vR ({2}) = 10, vR (N) = 28,

thus C
(
vR
)
6= ∅.0

The use of the resource game simplifies the mathematical analysis of the
problem because we obtain a game without externalities. However, the re-
source game is derived based on the expectations of the different coalitions
of manufacturers, which implies that the interest in collaborating is based on
expectations not on real data. Nevertheless, this approach is very useful when
there is uncertainty as is the case. Therefore, Theorem 3 establishes that when
the expectations on the allocation of the limited resource provides stable re-
sults (C (R) 6= ∅), then the coalition of all manufacturers is achievable based
on shared rewards that yield a win-win deal (C

(
vR
)
6= ∅). Furthermore, this

ex ante analysis is also valid ex post, because once the manufacturers achieve
the agreement of cooperation, they will not be able to know what would have
happened if other coalition structures had been formed, because they do not
have information about the procedure the supplier uses to sell or allocate
the limited resource. Therefore, if manufacturers are able to define a resource
game, which will be common knowledge for all of them, then the analysis will
be consistent with their expectations.
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In the next two sections we study the two extreme cases for resource games:
the case of optimistic expectations and the case of pessimistic expectations.
It is reasonable to expect that whatever resource game we can define will be
between these two extremes, in the following sense:

Rpes(S) ≤ R(S) ≤ Ropt(S), ∀S ⊆ N.

This means that the expectations about the amount of limited resource each
coalition can obtain will be between its pessimistic and optimistic expectations.

5.1 The optimistic approach

From an optimistic point of view, a coalition of manufacturers S will ob-
tain its demand. The related resource game (N,Ropt) is such that Ropt (S) =
min {dS , r}. This game can also be derived if manufacturers think that the
supplier will use a first-in-first-out (FIFO) procedure, then the optimistic case
for a coalition S is to be the first in purchasing the limited resource. Now it is
easy to check that the resource game we obtain by using the former reasoning
is precisely Ropt (S) = min {dS , r}.

Using the amount Ropt (S) as z in (1), for all S ⊆ N, the optimistic LPLR
game (N, vopt) is derived.

The core of this class of games can be non empty, as Example 2 illustrates,
but it can be empty as the next example shows.

Example 3 Let (A,B, r, p, c) be an LPLR situation, with three manufacturers,
N = {1, 2, 3} , who produce two products from two resources and a limited
resource, where

A =

 2 3
3 2
1 1

 , B =

[
40 60 80
60 40 50

]
, p =

(
50
60

)
, c = 14, r = 50

and (N, vopt) the related optimistic LPP game. In this case, the core of the
optimistic LPLR game will be all the points in R3 such that

x1 ≥ 720, x2 ≥ 920, x3 ≥ 1150,
x1 + x2 ≥ 1640, x1 + x3 ≥ 1936, x2 + x3 ≥ 2070, x1 + x2 + x3 = 2300,

but it can be seen that there is no point satisfying all the above inequalities,
then C (vopt) = ∅. Taking into account that

d{1} = 20, d{2} = 20, d{3} = 25,
d{12} = 40, d{13} = 46, d{23} = 45, dN = 66 and min {66, 50} = 50,

it is easy to check that C (Ropt) = ∅.0

At a first sight, it seems that an easy condition to assure that the core of
the optimistic LPLR game is empty, when dN > r, could be ∃P ∈ P(N) such

that
∑
S∈P

dS > r. However, it is not true as the next example shows.
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Example 4 Let (A,B, r, p, c) be the LPP situation described in Example 2. In
this case, d{1} = d{2} = 7, dN = 5, vopt (1) = vopt (2) = 10 and vopt (N) = 28.
Thus, there is a partition P = {{1} , {2}} where d{1}+d{2} > 4 and the core is
non empty. Therefore, the aforementioned condition does not guarantee that
the core is empty.

When dN > r and, ∀P ∈ P(N),
∑
S∈P

dS < r the core of the optimistic

game can be empty as Example 1 shows. But it does not hold in general as
the following example illustrates.

Example 5 Let (A,B, r, p, c) be an LPP situation, with three manufacturers,
N = {1, 2, 3} , who produce three products from three resources and a limited
resource, where

A =


10 8 7
7 10 5
3 6 7
5 2 4

 , B =

 9 6 8
5 18 6
17 13 3

 , p =

8
9
5

 , c = 1, r = 5.

The corresponding optimistic game is

vopt (1) = 1.5, vopt (2) = 5.25, vopt (3) = 3.5,
vopt (12) = 13.125, vopt (13) = 7.7, vopt (23) = 12.25,

and vopt (N) = 17.5. The demands are

d{1} = 1, d{2} = 1.5, d{3} = 1,
d{12} = 3.75, d{13} = 2.2, d{23} = 3.5,

with dN > 5 and the core is non empty.

Hence, when dN > r we have from Theorem 3 a condition which is sufficient
for the non emptiness of the core. Nevertheless, in general, it is not clear
whether the core of the optimistic game is empty or not.

5.2 The pessimistic approach

From a pessimistic point of view, a coalition of manufacturers S will receive
what agents outside S leave using the partition that minimizes the remainder
for S. This situation can be described as a resource game (N,Rpes) , where

Rpes (S) = min

{
min
P :S∈P

{(
r −

∑
T∈P
T 6=S

dT

)
+

}
, dS

}
.

As in the optimistic case, this game can also be derived if manufacturers think
that the supplier will use a FIFO procedure; then the pessimistic case for a
coalition S is to be the last in purchasing the limited resource when the most
demanding partition P such that S ∈ P is formed. Now it is easy to check
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that the resource game we obtain by using the former reasoning is precisely
Rpes.

Using this amount Rpes (S) as z in (1), for all S ⊆ N, the pessimistic
LPLR game (N, vpes) is obtained.

When dN > r the core of the LPLR pessimistic game can be empty as
Example 1 shows and, therefore, C (vmax) = C (V ) = C

(
vmin

)
= C (V ) = ∅.

We should point out that in Example 1 the optimistic and pessimistic games
coincide. The following result states a condition for the non emptiness of the
core of the pessimistic game.

Theorem 4 Let (A,B, p, r, c) be an LPLR situation and (N, vpes) the pes-
simistic LPLR game associated with it. If dN > r and

∑
i∈N

di ≥ r, then

C (vpes) 6= ∅.

This result is strong because the pessimistic resource game is very conser-
vative in the sense that vpes ≤ vmin but not equal in general. Therefore, it is
easy to guarantee the existence of stable outcomes under lower expectations
of the manufacturers. However, even in this case we need an extra condition,∑
i∈N

di ≥ r, which is not negligible.

When dN > r and
∑
i∈N

di < r, the core of the pessimistic game can be

empty as in Example 1 or it can be non empty as Example 5 illustrates, where
the core of the optimistic game is non empty and the core of the pessimistic
one is also non empty. Thus, in this case we have obtained similar results to
those in which we apply the optimistic approach.

Another situation in which the pessimistic core is non empty is when all
manufacturers are symmetric, i.e. bi = b ∈ Rq+, ∀i ∈ N , as the following
theorem shows.

Theorem 5 Let (A,B, p, r, c) be an LPLR situation such that bi = b ∈
Rq+, ∀i ∈ N . The core of its associated pessimistic game, (N, vpes), is always
non empty, i.e. C (vpes) 6= ∅.

6 Coalition configurations. A first look

The results obtained in the previous section show that the grand coalition will
not be always formed based on the distribution of profits among all manufac-
turers by means of side payments because the core can be empty. In fact, the
non emptiness of the core is only guaranteed in some cases. Therefore, it is
reasonable to think that other coalition configurations than the grand coalition
will be formed between manufacturers. What configurations of coalitions will
occur? The answer is not simple, but we next provide a definition of stability
that allows us, in some sense, to extend the concept of the core which we are
using in this paper as key for cooperation to take place.
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Definition 2 Let (N, v) be a cooperative game. A coalition configuration P ∈
P(N) is said to be cc-stable if the following two conditions hold ∀S ∈ P

(1) C (vS) 6= ∅, and

(2) @ {Tk}lk=1 ∈ P such that C
(
vS∪{

⋃l
k=1 Tk}

)
6= ∅,

where (S, vS) is the game reduced to coalition S when coalition configuration
P is formed.

Note the following. First, a coalition configuration is nothing other than a
partition of all the agents. Second, this definition of stability holds for games
in partition function form (with whatever concept of dominance) and in char-
acteristic function form. Finally, when the core of a game is non empty, then
the grand coalition is the only one which is cc-stable.

If we now focus on the problem at hand, and use the resource game, which
is the one that collects the expectations of the different coalitions with respect
to the limited resource, the configurations of coalitions that can be formed will
depend on these expectations.

One possible approach would be that the coalitions that were formed
tended to be as large as possible. In this sense, we introduce the concept
of maximally stable coalition.

Definition 3 Let (N, v) be a cooperative game. A coalition S is said to be
maximally stable if the following two conditions holds:

1. C(vS) 6= ∅.
2. C(vS∪T ) = ∅, ∀T ⊆ N\S.

However, the previous definitions are not enough to analyze the situa-
tion under a limited resource, because when a coalition configuration forms,
the sum of the expectations of each coalition must be compatible with the
availability of the scarce resource. In this sense, we say that a coalition con-
figuration, {S1, ..., Sk}, is compatible with the available limited resource, r, if∑k
j=1R(Sj) ≤ r.

Theorem 6 Let (A,B, p, r, c) be an LPLR situation and (N, vpes) the pes-
simistic game associated with it. There always exists at least one cc-stable
compatible coalition configuration.

The proof of this result is constructive and shows how to obtain a cc-stable
compatible coalition configuration based on the concept of maximally stable.
It also looks like the way to build the Dutta-Ray solution (Dutta and Ray,
1989).

7 Conclusions

First of all, the relation between the total amount of limited resource, r, and
the demand of the limited resource for the grand coalition, dN , plays an im-
portant role in providing the answers to the key questions posed in the In-
troduction. First, the presence of a limited resource leads to the emergence of
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externalities. These externalities hinder the possibility that the grand coali-
tion is formed, because it is not possible to achieve stable distributions of
the total profit obtained from the collaboration of all manufacturers, i.e. the
cores of these games can be empty. This result contrasts with those obtained,
for example, in Owen (1975) and Funaki and Yamato (1999). However, when
horizontal cooperation among all manufacturers prevents the limited resource
from being scarce, dN ≤ r, then the cores of the corresponding game are al-
ways non empty. Therefore, it is possible for all manufacturers to achieve a
win-win agreement. When dN > r, the uncertainty about how the supplier
will sell or allocate the limited resource comes to play a relevant role in the
analysis. This uncertainty compels us to analyze the problem from the point
of view of expectations. In this sense we obtain that if a resource game based
on the expectations of the different coalitions of manufacturers has nonempty
core, then the formation of the grand coalition is possible based on those ex-
pectations. The converse of this result does not hold in general. The answers
to the posed questions open a door to analyze the coalition structures that
could be formed using concepts of stability related to coalition structures (see,
for example, Aumann and Dreze, 1974) or new ones, as the used in this paper,
which can better reflect the situations analyzed.

Therefore, the existence of a limited resource has significant implications
on the configuration of alliances among the manufacturers in order to enhance
their profits. This fosters the no collaboration among all manufacturers, be-
cause this makes it difficult to achieve a final distribution of the profit after
compensations and side payments that satisfy the interests of all the parties.
A sharp decline in the supply of limited resources can lead to a reconfiguration
of alliances between manufacturers. For example, a cooperative that groups
several manufacturers can be broken as a result of the scarcity of a resource,
in the sense that it may be more difficult to continue collaborating based on
a distribution of profits depending on the expectations of the stakeholders es-
pecially when they are asymmetric. And conversely, a sharp rise in the supply
of limited resources may favor the formation of the grand coalition, and that
this may result in a cooperative or other form of stable business collaboration
among the stakeholders, regardless of the asymmetries between them.

Finally, in view of the aforementioned comments, if the supplier of the
limited resource were also a kind of regulator, it could influence the number
of alliances or mergers that could be established between manufacturers by
modifying the scarce resource supply. In addition, it could influence the mix
of products manufactured by manufacturers through variations in the cost of
limited resources.
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Appendix

In this appendix we include all proofs of the results given throughout the paper.
This is done in order to improve the readability of the paper for those readers
not interested in the proofs, but only in the results and insights provided on
horizontal cooperation of manufacturers when there is a limited resource.

Proof of Proposition 1

Given P ∈ P(N), V (S|P ) = value (S; zS(P )) , ∀S ∈ P such that
∑
S∈P

zS(P ) ≤

r. Let be
(
xS ; zS(P )

)
an optimal plan for each coalition S ∈ P . Thus, AxS ≤(

bS

zS(P )

)
and

A

(∑
S∈P

xS

)
≤


∑
S∈P

bS∑
S∈P

zS(P )

 ≤ ( bNr
)
.

Then,

(∑
S∈P

xS ;
∑
S∈P

zS(P )

)
is a feasible production plan for N and

∑
S∈P

value (S; zS(P )) ≤ value

(
N ;
∑
S∈P

zS(P )

)
≤ V (N | {N}) .
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�

Proof of Proposition 2

(i) We know that zS(P ) = dS for all S ⊆ N, due to d (P ) ≤ r for all P .
Therefore, for each S ⊆ N, V (S|P ) = V (S|P ′) for all P, P

′ ∈ P(N) such
that S ∈ P , i.e. for each coalition the value does not depend on the coalitions
formed by other players.

(ii) Since dN > r and d (P ) ≤ r, for all P ∈ P(N) , P 6= {N} , similarly to
(i), for each S ⊆ N,V (S|P ) = V (S|P ′) for all P, P

′ ∈ P(N), i.e. the value
of coalition S does not depend on the coalitions formed by other players. On
the other hand, the value of the grand coalition

max
∑g
j=1 pjxj − cr

s.t: Ax ≤
(
bN

r

)
x ≥ 0g.

(3)

only depends on its own, since there is no partition including N as a proper
subset. Therefore, the related game has no externalities. �

Proof of Theorem 1

The dual problem of (1)3 for the grand coalition, N , is

min
∑q
t=1 b

N
t yt + 0yq+1

s.t: Aty ≥ p
yq+1 ≤ c
y ≥ 0q+1.

(4)

An optimal solution of (1) for the grand coalition N is given by
(
xN ; dN

)
with

dN ≤ r, and the related dual optimal solution is
(
yNq ; yNq+1

)
, where with an

abuse of notation from now on, we represent by yNq the vector
(
yN1 , ..., y

N
q

)
.

From duality, it is known that

g∑
j=1

pjx
N
j − cdN =

q∑
t=1

bNt y
N
t + 0yNq+1 = v (N) .

Therefore, somehow, the cost of the common resource is charged to (discounted
from) the value of the resources. It is easy to check that

(
yNq ; yNq+1

)
is feasible

in the dual problem of (1) for every coalition S ⊂ N. Moreover, we have that

3 We use this problem because it is known by hypotesis that ∃z ≤ r for all problems, i.e.
the limited resource is not scarce in any case.
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for a dual optimal solution
(
ySq ; ySq+1

)
associated with the optimal solution(

xS ; dS
)
, it holds that

q∑
t=1

bSt y
N
t + 0yNq+1 ≥

q∑
t=1

bSt y
S
t + 0ySq+1 = v (S) .

Thus,
∑
i∈S
(∑q

t=1 b
i
ty
N
t + 0yNq+1

)
≥ v (S) , ∀S ⊂ N, and this implies that(

biyN
)
i∈N ∈ C (v) . �

Proof of Theorem 2

Before giving the proof of Theorem 2 we need the following technical lemma,
which is given without a proof because it is easy to derive. It give us two
linear programs that, although they have different optimal solution sets, also
have the same optimal values, i.e. they are optimally equivalents. Note that
an optimal solution of the second one is the optimal demand of the limited
resource for each coalition S, dS . We should highlight that they only differ in
a redundant constraint, z ≤ dS , however, this is the key with which to prove
the next theorem.

Lemma 1 Let (A,B, p, r, c) be an LPLR situation. For all S, the following
linear programs are optimally equivalents ,

max
∑g
j=1 pjxj − cz

s.t: Ax ≤
(
bS

z

)
z ≤ dS
x ≥ 0g, z ≥ 0.

(5)

max
∑g
j=1 pjxj − cz

s.t: Ax ≤
(
bS

z

)
x ≥ 0g, z ≥ 0.

(6)

The previous result provides us with two different, but equivalent, ways in
which to tackle the linear programs. In the proof of the following theorem, we
use one or the other depending on which will be more helpful.

Proof of Theorem 2. Since dN ≤ r, consider the linear program (5) for
the grand coalition,

max
∑g
j=1 pjxj − cz

s.t: Ax ≤
(
bN

z

)
z ≤ dN
x ≥ 0g, z ≥ 0.

(7)
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its dual is given by

min
∑q
t=1 b

N
t yt + 0yq+1 + dNyq+2

s.t: Aty ≥ p
yq+1 − yq+2 ≤ c
y ≥ 0q+2.

(8)

Let
(
xN ; dN

)
and

(
yNq , y

N
q+1, 0

)
be primal and dual optimal solutions for (7)

and (8), respectively with dN ≤ r and yNq+2 = 0. Effectively, by the lemma we
know that linear problems (1) and (5) are optimally equivalent, and therefore
their dual problems will also be optimally equivalent. Now if

(
yNq , y

N
q+1

)
is an

optimal solution of the dual problem (4) associated with the linear problem (1),
then

(
yNq , y

N
q+1, 0

)
is an optimal solution of the dual problem (5). Therefore,

we can take a dual optimal solution with yNq+2 = 0 associated with the optimal

solution
(
xN ; dN

)
.

Now, it is easy to check that
(
yNq , y

N
q+1, 0

)
is a feasible solution for the

dual problem of (5) for every coalition S. If
(
ySq , y

S
q+1, y

S
q+2

)
is an optimal dual

solution associated with
(
xS ; dS

)
, it holds that

q∑
t=1

bSt y
N
t +0yNq+1+dSy

N
q+2 ≥

q∑
t=1

bSt y
S
t +0ySq+1+dSy

S
q+2 = value(S; dS) ≥ V (S | P ),

for all P ∈ P(N). Therefore,
∑
i∈S

(∑q
t=1 b

i
ty
N
t

)
≥ V (S | P ), ∀S ⊆ N , and for

all P ∈ P(N) such that (S | P ) is an embedded coalition, and this implies
that

(
biyN

)
i∈N ∈ C (V ) . �

Proof of Theorem 3

Since C (R) 6= ∅, there is u ∈ RN such that u(S) =
∑
i∈S ui ≥ R (S) , for all

S, and u(N) = r. Let y∗ be an optimal solution of the dual problem of (3).
From duality theory, we know that

∑q
t=1 b

N
t y
∗
t + ry∗q+1 − cr = vR(N). On the

other hand, ∀S ⊆ N

q∑
t=1

bSt y
∗
t + u (S) y∗q+1 − cu (S) ≥

q∑
t=1

bSt y
∗
t +R (S) (y∗q+1 − c) ≥ vR(S),

where the last inequality holds because y∗ is feasible for the dual problem
of coalition S and y∗q+1 > c since dN > r. In effect, assume that y∗q+1 ≤ c.
Consider a variation ∆r such that the basic feasible solution does not change
and r +∆r < dN . Then,

value (N ; r +∆r) = value (N ; r) +
(
y∗q+1 − c

)
∆r.

We distinguish two cases:
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1. If ∆r > 0, then

value (N ; r +∆r) ≤ value (N ; r)
r < r +∆r < dN ⇒ ∃α ∈ (0, 1) such that r +∆r = αr + (1− α) dN .

Since αxr + (1− α)xdN is a feasible solution for the problem with r+∆r,(
xr, xdN

)
is an optimal solution for r and dN , we have

value (N ; r +∆r) ≥ αvalue (N ; r) + (1− α) value (N ; dN ) .

However, value (N ; dN ) > value (N ; r +∆r) by definition of dN and value (N ; r) ≥
value (N ; r +∆r). Therefore, we have a contradiction.

2. If ∆r < 0, then

value (N ; r +∆r) = value (N ; r) +
(
y∗q+1 − c

)
∆r ⇒

⇒ value (N ; r +∆r) ≥ value (N ; r) .
r +∆r < r < dN ⇒ ∃α ∈ (0, 1) such that α (r +∆r) + (1− α) dN = r

Being that αxr+∆r+(1− α)xdN is a feasible solution for the problem with
r,
(
xr+∆r, xdN

)
is an optimal solution with r + ∆r and dN , respectively. We

obtain

value (N ; r) ≥ αvalue (N ; r +∆r) + (1− α) value (N ; dN ) .

But value (N ; dN ) > value (N ; r) by definition of dN and value (N ; r +∆r) ≥
value (N ; r). Thus, there is a contradiction.

Thereby we can conclude that y∗q+1 > c.

Therefore,
(
biy∗ + ui

(
y∗q+1 − c

))
i∈N ∈ C

(
vR
)
6= ∅. �

Proof of Theorem 4

Let (di)i∈N be the individual demands of agents in N . Consider the resource

game (N,w), where w (S) =
(
r −

∑
i/∈S di

)
+
, ∀S ( N, and w (N) = r.

We will distinguish two cases:

a) If
∑
i∈N

di > r, (N,w) is a standard bankruptcy game (O’Neill, 1982) and,

therefore, it has a non empty core. Then, an u ∈ RN such that u (N) = r
exists and

u (S) ≥
(
r −

∑
i/∈S di

)
+
≥ min
P :S∈P

{(
r −

∑
T∈P
T 6=S

dT

)
+

}

≥ min

{
min
P :S∈P

{(
r −

∑
T∈P
T 6=S

dT

)
+

}
, dS

}
= Rpes (S) .

Therefore, C (Rpes) 6= ∅ and using the same arguments as in Theorem 3, the
result holds.
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b) If
∑
i∈N

di = r,

d (S) =
∑
i∈S

di ≥
(
r −

∑
i/∈S

di

)
+
≥ min
P :S∈P

{(
r −

∑
T∈P
T 6=S

dT

)
+

}
≥

≥ min

{
min
P :S∈P

{(
r −

∑
T∈P
T 6=S

dT

)
+

}
, dS

}
= Rpes (S) .

Thus, C (Rpes) 6= ∅ and, then, from Theorem 3 C (vpes) 6= ∅. �

Proof of Theorem 5

If dN ≤ r, the result immediately follows by using a similar argument as in
Theorem 2.

If dN > r, we first note the following:

i) Since the manufacturers are symmetric di = d ∈ R+, ∀i ∈ N
ii) If (x; z) is an optimal plan for just one manufacturer, then by the linearity

of the production system, (sx; sz) is an optimal plan for s manufacturers
and, consequently, dS = |S|d. Therefore, d > r

n .
iii) Rpes(S) = (r − (n− |S|)d)+
iv) r − (n− s)d ≤ r − (n− s) rn = sr

n .

Taking into account (i)−(iv), it is not difficult to prove that
(
r
n

)
i∈N belongs to

C(Rpes), therefore C(Rpes) 6= ∅. Now by Theorem 3, we have that C(vpes) 6=
∅. �

Proof of Theorem 6

Before giving the proof of Theorem 6 we need the following technical lemma.

Lemma 2 Let (A,B, p, r, c) be an LPLR situation and (N,Rpes) the asso-
ciated pessimistic resource game. Each coalition configuration {S1, ..., Sk} is
compatible.

Proof . Given {S1, ..., §k}, we have to prove that

k∑
j=1

Rpes(Sj) ≤ r.

First we recall that

Rpes (S) = min

{
min
P :S∈P

{(
r −

∑
T∈P
T 6=S

dT

)
+

}
, dS

}
.

We now distinguish two cases:



On horizontal cooperation in linear production processes 27

1.
∑k
j=1 dSj ≤ r. In this situation, the result immediately holds.

2.
∑k
j=1 dSj > r. First, note that this relationship implies that

dSh
> r −

∑
j:j 6=h

dSj
> r.

Now we have the following chain of inequalities:

k∑
j=1

Rpes(Sj) ≤
k∑
j=1

min

{
min

P :Sj∈P

{(
r −

∑
T∈P
T 6=Sj

dT

)
+

}
, dSj

}

≤
k∑
j=1

r − ∑
h:h 6=j

dSh


+

≤ r,

where the last inequality holds because the
∑k
j=1

(
r −

∑
h:h 6=j dSh

)
+

is a

non decreasing function in r and when r =
∑k
j=1 dSj

the left hand side
equals r.

�

Proof of Theorem 6. First, we take a maximally stable coalition S1 ⊆
N . This is always possible to do it because in the worst case a singleton is
maximally stable. Next we take a maximally stable coalition S2 ⊆ N\S1 and
so on so forth. This procedure ends in a finite number of steps k and it is well
defined. The coalition configuration obtained {S1, ..., Sk} is by construction
cc-stable compatible. Indeed, Conditions (1) and (2) in Definition 2 hold by
definition of maximally stable coalition. Finally, by Lemma 2 the constructed
coalition configuration is compatible. Therefore, the result holds. �
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