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Reset Observers alleviating the Peaking and the

Robustness tradeoffs: A Case Study on Force estimation

in Teleoperation

Abstract

The peaking phenomenon is an undesirable effect appearing in observers and

destroying controller performance. Several solutions have been proposed to

mitigate peaking in state estimation. The literature shows that reset or im-

pulsive observers are superior to linear (Luenberger) observers. However, the

comparisons are based on particular choices of linear observers. This paper

investigates this issue. First, comparative frameworks are proposed based on

two traded-off performance indices: ensemble maximum-peak versus ensem-

ble settling time for nominal conditions, and ensemble settling time versus

size of the error asymptotic invariant set for quadratically bounded uncertain

plants. Next, performance limitations of linear observers are represented by

Pareto-optimal boundaries. In this way, not previously considered in the lit-

erature as far as known, the superiority of the chosen reset observer is more

rigorously assessed. The framework is finally applied to force estimation in

haptic teleoperation.
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1. Introduction

Standard Luenberger observers provide a useful tool for linear state esti-

mation but they are affected by the peaking phenomenon: if the observation

poles are located at fast positions to reduce settling time, then undesired

large-modulus transients (peaks) appear [1]. This implies a trade-off between

making fast the response and keeping it bounded.

If the observer is a component of an output feedback scheme, the ob-

server peaking contaminates the control and deteriorates the response. In

particular, if the plant model is a linearization, the peaking effect may lead

to instability. This is a potential problem in high-gain observers which is

solved typically with control saturation [2].

Control saturation prevents instability by isolating the control part from

the observer peaks and it is a valid approach in control-targeted applications.

However in applications where it is also important maintaining or monitoring

good state estimates, Luenberger observers are constrained by the peaking

tradeoff.

Several solutions based on reset or impulsive strategy [3], [4], [5], [6]

have been proposed to alleviate the peaking effect. Basically, reset observers

are proportional-integral observers endowed with a reset law that resets the

output of the integrator depending on a predefined switching condition [5].

Due to introduction of this nonlinear law, reset observers can overcome linear

observers limitations: they are able to produce estimates at the same time

fast and overdamped, or at least faster and less underdamped (less peaking)

than the estimates of Luenberger observers.

The nonlinear observer in [3] is able to obtain the exact state in a prede-
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termined finite time. The idea is that by running in parallel two (differently

tuned) Luenberger observers, the duplicate dynamic information allows to

solve for the unknown state. The observer in [6] is focused to high-gain con-

trol of two-dimensional systems. The idea is that, in the plane of position

and speed errors, peaking starts when entering the second and fourth quad-

rant. Thus, peaking is removed by adequately resetting the position error

when certain condition on the sign of speed error is estimated.

The superiority of the previous reset observers is clearly shown in the

references by means of comparisons with linear observers. However the com-

parisons are based on examples and on certain choices of the linear observers,

that have worse performance.

It would be desirable to elaborate a more complete comparative analysis,

the comparison should be made between the proposed reset observer and

certain set that reflects all possible linear observers. In this way, no linear

observer would be lost in the comparison and consequently a more solid and

quantitative measure of the superiority of reset observers would be available.

This paper investigates this issue. First, a comparative framework for

nominal plants is proposed based on two traded-off performance indices:

ensemble settling-time (J1) and ensemble maximum-peak (J2n). Second,

we have also studied a new framework to include an analysis for quadratic

bounded (QB) uncertain plants. In the QB technique [7], a quadratic bound

of the uncertainty is assumed and conditions are obtained such that the es-

timation error tends, after a transient, to a final asymptotic invariant set

(AIS). We extend this standard linear QB analysis to nonlinear reset ob-

servers, proposing a new LMI to obtain a robust reset observer for the un-
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certain plant. This robust reset observer minimizes the AIS in presence

of unknown but bounded uncertainties. Thus, it is proposed another two

traded-off performance indices for quadratic bounded (QB) uncertain plants

J1, J2r: ensemble settling time (J1) and the size of the AIS as a robustness

measure (J2r).

In both cases, all initial estimation errors are potentially considered, using

initial conditions on a unit (scaled) box. This choice has nice convexity

properties that facilitate the computations.

Next, the performance limitation of all linear (Luenberger) observers is

represented by Pareto-optimal boundaries in the planes of the performance

indices (J1, J2n and J1, J2r). Then the superiority of the chosen reset observer

is measured by the distance of its performance to the Pareto fronts. In this

way the comparison is more rigorously addressed, with a more exhaustive

and quantitative validation, not previously considered in the literature, as

far as known.

The proposed framework is finally applied to disturbance (force) esti-

mation in haptic teleoperation under the force reflection architecture. In

general, disturbance observers are designed to obtain estimates of unknown

plant inputs, for example unmeasured forces in mechanical systems [8]. Good

disturbance estimates are crucial for satisfactory control performance [9]. In

addition, accurate disturbance estimates may be also important for more

general purposes: monitoring, alarms, faults, etc.

In haptic teleoperation, the control system tries to coordinate two me-

chanical robotic-arm devices, master and slave, in order to facilitate remote

operation with force feedback. Cheap mechatronic devices provide position
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encoders but no force measurement. However in haptic teleoperation, in par-

ticular in force reflection architectures, the external force estimations, using

typically the concept of disturbance observer (DOB) [10], [11], [12], [13], are

important for providing the operator with the sense of touching the true

environment.

These DOBs that cope with unmeasured human or environmental forces

can be represented as stable, fast filters affected by the uncertainty in the

plant modeling. If the DOBs modeling error tends to zero and the observer

filters are selected for fulfilling certain design requirements, it can be ensured

that estimated external forces tend to the real ones with null error, quickly

and robustly. However, any DOB on the slave side must only be applied

when environmental forces are nonzero. This last issue can be understood

by bearing the DOB structure (see Fig.3ab in [13]) in mind. If the model-

ing errors are distinct to zero and the unknown signal is zero (for example

when the slave is in free motion, without contact with the environment), the

observer output will tend to known signal, and so the estimations provide

erroneous force reflections to operator.

Having this in mind, in this work we use the Extended State Observer

(ESO) concept in teleoperation, where an extended dynamical model is em-

ployed, that includes force as an extra state variable. Furthermore, among

the several hybrid solutions which have been proposed in the literature, the

simplest reset observer in [4] has been chosen, to facilitate the comparison

within the proposed framework. Finally, the ideas are applied to haptic

teleoperation under the force reflection architecture. In this architecture,

it is important to provide the operator with an accurate estimation of the
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workspace force, thus the performance of the observer is crucial.

The paper is organized as follows. Section 2 proposes a formulation of the

peaking and robustness trade-offs with Luenberger observers and Section 3

explains the nominal and robust Reset observer. The proposed framework is

finally adapted and applied to force estimation in haptic teleoperation under

the force reflection architecture in Section 4, showing how the Reset observers

can overcome these linear limitations. Finally, the conclusions are discussed

in Section 5.

2. Formulation of the peaking and robustness tradeoffs with Luen-

berger observers

Let us consider the equations of a standard Luenberger observer that

gives an estimate x̂(t) of the state x̄(t) of a linear, n-dimensional plant:

˙̄x(t) = A x̄(t) + B u(t) + ε(t),

ȳ(t) = C x̄(t) + δ(t),

˙̂x(t) = A x̂(t) + B u(t) − K (Cx̂(t)− ȳ(t)) ,

(1)

where ȳ(t) is the scalar (m = 1) measurement and ε(t), δ(t), are unmodelled

effects or noise signals. Since A and Bu(t) are accurately known by the

observer, the state estimation error, x(t) = x̂(t) − x̄(t), is uncoupled and

follows the dynamics:

ẋ(t) = (A−KC) x(t) +Kδ(t)− ε(t), x(0) = x0. (2)

When (A,C) is observable, it is possible to assign by the Ackermann’s

formula all the poles of A−KC to prescribed locations L = {λ1, . . . , λn}, and
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to obtain any desired pL(s) = (s−λ1)·. . .·(s−λn) as characteristic polynomial.

To improve the speed of convergence what can be done is to force the poles λi

to have large negative real parts. But a well-known undesired consequence is

the emergence of peaking: for some initial conditions x(0) = x0, the solution

x(t) has a transient with large peaks of the norm |x(t)|. In practice, extreme

behaviours (too slow, too underdamped) should be avoided.

In other words, there is a peaking tradeoff, that is a compromise between

peaking attenuation and speed of convergence. This tradeoff appears even if

δ(t), ε(t) are negligible. If δ(t), ε(t) are not negigible, it would be desirable to

mitigate the effect of uncertainties by minimization of AIS, but also main-

taining the speed of convergence (which implies high gain). Thus, a second

tradeoff appears.

The objective of this work is:

• Define quantitative frameworks to characterize linear observer limi-

tations, based on the performance tradeoffs: peaking attenuation or

robustness, vs speed of convergence

• Show the possibility of overcoming the limitations by using reset ob-

servers

• Apply the ideas to force estimation in teleoperation

Usually, the reset observers proposed in the literature are tested against

linear ones and shown to be superior. The comparisons in the literature

are fair (good linear observers are chosen for comparisons) but they are not

complete, exhaustive. This issue is related to the fact that the performance

is measured by traded-off objectives (convergence speed, transient peaks,
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robustness in front of uncertainty, etc.). When there are two or more perfor-

mance indices (J1, J2, ...), the choice between two solutions a, b, is clear only

when both indices are better for one solution. When a set of solutions (all

linear observers) is considered, the concept of Pareto-optimality appears. To

compare in terms of (J1, J2) a new proposal (the reset observer) to the whole

set of linear observers, it suffices to compare it with the Pareto-boundary of

the performances (J1, J2) of all linear observers.

2.1. Analysis in nominal conditions

For the nominal system ẋ = (A −KC)x, let us define the settling time

and the maximum peak of a single trajectory as follows. Let x(t, x0) be the

nominal solution of (2). The settling time of x(t, x0) is given by:

ts (x0) = min {τ : ∀t ≥ τ, |x(t)| ≤ δ |x0|}, (3)

where δ = 0.05 (5%). The (normalized) maximum peak of x(t, x0) is defined

as:

Mp(x0) = max{|x(t)| : t ≥ 0} / |x0|. (4)

In (3) and (4) the chosen norm will be the infinity-norm:

| x | = | (x1, . . . , xn)> | = max {|x1|, . . . , |xn|} . (5)

If we consider a set of possible initial conditions X0 ⊂ Rn and the related set

of trajectories, the (ensemble) settling time and (ensemble) maximum peak

are the worst-case values:

ts (X0) = max{ts(x0) : x0 ∈ X0}, Mp (X0) = max{Mp(x0) : x0 ∈ X0}.

(6)
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The following proposition shows that in order to obtain the worst settling

time and worst peaks for all initial conditions in the unit cube, it suffices to

obtain these quantities only for the initial conditions in the vertices. This

implies a great computational simplification, since only a finite number of

trajectories are considered.

Now, let the unit cube (square) be given by U = {x ∈ Rn : |x| = 1}, and its

set of unit vertices be given by V = {x ∈ U : xi ∈ {+1,−1}, 1 ≤ i ≤ n}.

Then:

Proposition 1. The ensemble values in (6) satisfy:

ts (Rn \ 0) = ts (U) = ts (V) , Mp (Rn \ 0) = Mp (U) = Mp (V) .

Proof: The fact that Rn can be replaced by the unit square U follows

from linearity of (2), x(t, λx0) = λx(t, x0), and as a consequence, for any

λ ∈ R, λ 6= 0:

ts(λx0) = ts(x0), Mp(λx0) = Mp(x0). (7)

The fact that the unit square U can be replaced by its set of vertices V

follows from convexity arguments. Consider a segment of initial conditions

x0 contained in U given by:

X0 = {x0 = αu0 + βv0 : x0, u0, v0 ∈ U , 0 ≤ α, β ≤ 1, α+ β = 1}.

Let x(t) = Φ(t)x0, u(t) = Φ(t)u0, v(t) = Φ(t)v0, be the related solutions

of (2) with transition matrix Φ(t) = exp((A − KC)t). Then Mp(X0) =

maxα,β,t |Φ(t)(αu0 + βv0)| and:

Mp(X0) ≤ maxα,β,t α|Φ(t)u0|+β|Φ(t)v0| = max{Mp(u0), Mp(v0)} = Mp({u0, v0}).
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Thus Mp(X0) ≤Mp({u0, v0}), but since u0, v0 ∈ X0 then

Mp(X0) = Mp({u0, v0}). (8)

A similar reasoning applies to the settling time. From x(t) = αu(t) + βv(t)

and since α, β are convex coefficients, it follows that |x(t)| ≤ max{|u(t)|, |v(t)|}

and that (|u(t)| ≤ δ)&(|v(t)| ≤ δ) ⇒ (|x(t)| ≤ δ). Thus, given |x0| = |u0| =

|v0| = 1, we reach : ts(X0) ≤ ts({u0, v0}), but since u0, v0 ∈ X0 then

ts(X0) = ts({u0, v0}). (9)

From (8) and (9) one can compute ts,Mp for all initial conditions in a segment

X0 by simply computing them at the two vertices u0, v0. These convexity ar-

guments can be extended to the whole unit cube U , and this completes the

proof. �.

Let us assume without loss of generality that the initial conditions are taken

on the vertices V of the unit cube. But ts, Mp depend also on the pole loca-

tions L = {λ1, . . . , λn} in (2). Introduce the related notation ts(L), Mp(L).

Suppose that a number of alternative pole sets Lk = {λk1, . . . , λkn} (1 ≤

k ≤ N) can be chosen. The outcomes of these choices are the values

Sk = (ts(Lk), Mp(Lk)). The Sk can be interpreted as points in the plane

ts ×Mp and, from the peaking tradeoff, they are restricted to a region as

shown in Fig.1. Consider the partial order:

(tis, M
i
p) ≤ (tks , M

k
p ) ⇔ (tis ≤ tks) & (M i

p ≤ Mk
p ).

The related optimal observer solutions will form a typical Pareto front as

shown in Fig.1. This Pareto-optimal boundary is crucial for comparison

with new observers. If a nonlinear observer is proposed that achieves (for
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the initial condition set) a performance given by Snl = (tnls ,M
nl
p ), and if this

outcome Snl is in Fig.1 below the optimal linear boundary, then it can be said

that the nonlinear observer outperforms all linear (Luenberger) observers and

overcomes the linear peaking tradeoff. This is the underlying idea in what

follows.

Mp

ts

Linear (suboptimal)

Linear (optimal)

Nonlinear

Figure 1: Achievable Mp and ts by linear (Luenberger) and nonlinear observers

2.2. Quadratic Boundedness Analysis

The previous subsections study Luenberger observers in nominal mode

but in practice the error convergence is affected by state and output uncer-

tainties. A very convenient way to deal with uncertainties is the quadratic

boundedness (QB) approach [7]. In this approach the exogenous disturbances

are supposed quadratically bounded and consequently a quadratic bound is

estimated for the system solutions. The Luenberger observer is a linear sys-

tem ẋ = Alx + Blw where x is the observation error and w the uncertain

disturbances, with matrices Al = (A − KC), Bl = (W1 − KW2) depend-

ing on the observation gains K, with some noise state distribution matrix

W1 = (-I,0) and noise measurement distribution matrix W2 = (0, -I), where

I,0 are identity and zero matrix or vectors of adequate dimensions. The QB

analysis is based on the following:
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Definition 1. The system ẋ = Alx + Blw is said to be quadratically

bounded (QB) with respect to positive definite matrices Q,P > 0 when:

w>Qw ≤ 1 and x>Px ≥ 1 ⇒ V̇P (x, w) < 0, (10)

where VP is the associated Lyapunov function VP (x) = x>Px, and

V̇P (x, w) =
(
x>, w>

) A>l P + PAl PBl
B>l P 0

 x

w

 . � (11)

The QB property means that the convergence error x(t) decreases (V̇P <

0) when the error x(t) is relatively larger than the disturbance w(t). It can

be seen that

Proposition 2. The system ẋ = Alx+Blw is QB if and olny if any of the

following equivalent conditions hold:

(i) There exists γ > 0 such that A>l P + PAl + γP PBl
B>l P −γQ

 < 0. (12)

(ii) There exists γ > 0 such that for all (x, w) 6= (0, 0)

V̇p + γVP − γw>Qw < 0. � (13)

The proof of (i) is based on the S-procedure and (ii) follows directly from

the expression for V̇P . The consequence of (ii) under condition w>Qw ≤ 1 is

that x(t) converges, with guaranteed exponential factor e−γt, for t → ∞, to

the asymptotic invariant set (AIS) EP given by:

EP =
{
x ∈ Rn : x>Px ≤ 1

}
(14)
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Thus, fixing the required uncertainty bounds from Q, for each linear so-

lution Al,Bl given by some observation gains, we can compute, as a measure

of its robustness, the minimum size of the AIS AISm = trace(P−1/2) in the

interval of 0 < γ < γmax that verifies (12).

See one example of this in Fig.2 for the system A =

 −12 1

0 0

, C =

(1, 0), Q = 102

3

 I2 02×1

01×2 104

, W1 = (−I2, 02×1), W2 = (0 0 1), and three

Luenberger solutions L0 = (38 1200)>, L1 = (27.25 600)>, L2 = (8 150)>.

0 2 4 6 8 10
0

5

10

15

20

25

γ
−1

A
IS

 s
iz

e

 

 

L0

L1

L2

Figure 2: Size of EP for 0 < γ < γmax in Luenberger observers

Notice that although γ−1 in (13) is a time-constant for Vp(t), since any

design L0, L1, ... also have to satisfy nominal settling-time ts specifications, it

will be more adequate to consider ts (and not γ−1) as a performance measure.

Thus, we can replace AIS(γ) by the minimum value AISm = minγ AIS(γ),

and study the Pareto fronts in the plane ts × AISm.
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3. Nominal and robust Reset Observers

From the discussion after (2), any Luenberger observer given by (1), (that

is, any choice of gains K) is subject to performance tradeoff and has a lim-

ited set of achievable especifications as shown in Fig.1. To overcome this

limitation, a reset observer (ReO) can be used.

As the authors define in [4], this is a dynamic observer consisting of an inte-

grator and a reset law that resets the output of the integrator depending on

a predefined condition. The main advantage of ReOs compared with tradi-

tional observers is that their estimation laws are nonlinear (at some instants

it is possible to reset some states), and then they can overcome the inherent

limitations of linear dynamic observers.

Define the output error as y = ŷ− ȳ = Cx̂− ȳ = Cx̂−Cx̄− δ = Cx− δ,

with δ(t) the measurement error, then a reset observer takes the form as

suggested in [4]:

˙̂x(t) = A x̂(t) + B u(t) − K y(t) − KI ξ(t), (15)

which can be interpreted as an extension of the linear observer (1) based on

the auxiliary signal ξ(t) introduced in order to apply reset. The dynamics of

ξ are obtained passing y(t) through the reset system, with aρ = 0 :

 ξ̇ = aξ ξ + bξ y y · ξ > 0, F low mode

ξ+ = aρ ξ y · ξ ≤ 0 Jump mode
(16)

Furthermore, the observation error of the reset observer has the base linear

dynamic: ẋ

ξ̇

 =

 A − K C −KI

bξ C aξ

 x

ξ

 +

 −ε + K δ

−bξ δ

 (17)
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in which the reset action is given by the second equation in (16).

This reset observer is based on four tuning gains: the proportional gain

K and the integral gain KI , which modify the convergence speed of the state

estimation error; and the reset term coefficients aξ and bξ, which regulate

the transient response of the reset term. These parameters can be tuned

following some general guidelines as the proposed in [4]. First, the reset

term gain aξ is chosen to be Hurwitz with |aξ| at least 5 times lower than

the minimum absolute value of the eigenvalues of A, to guarantee a proper

integration of the error dynamic, because analyzing (16) it is evident that

the reset term ξ stands for a low-pass filter whose cutoff frequency relays on

aξ. The other reset gain is selected bξ = −aξ because in this way, the effect

of the integral term relies only on KI . The second step is to look for K and

KI gains to accomplish with the desired time domain requirements by using

any pole placement method. At this moment, one should obtain a quicker

response increasing the integral gain, no matter if the peaking effect appears,

because it will be removed by resetting the integral term. In this way, the

reset observer will achieve some specifications that cannot be accomplished

by any linear observer.

As an example, consider the system whose data are A =

 −12 1

0 0

, B =

(1, 0)> and C = (1, 0). For designing the reset observer (R0), the reset

coefficients aξ, bξ, are tuned after some trial-and-errors from simulations,

fulfilling the guidelines mentioned above. Also, the observer proportional and

integral gains are tuned first defining and assigning the observed desired poles

in (17) for nominal conditions: two complex poles with damping ς = 0.36 and

15



natural frequency ωn = 11.18, and the third real pole in −2ςωn. From this

selection we obtain K and KI0. Finally, we force a quicker response increasing

the integral gain KI = 5KI0, because it will be removed by resetting the

integral term.

Several linear estimations of the states x1 and x2 increasing K to improve

the settling time (then peaks appear), and the reset solution R0 with K =

(3.6, 125)>, KI = (722, 11870)> (observer gains), aξ = −0.4, bξ = 0.4, aρ =

0 (reset coefficients) are plotted in Fig.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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(a) x1, x2 state variables
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0 0.1 0.2 0.3 0.4
−1

0

1

 

 

K
I2

 ξ

K
I1

 ξ

(b) Reset condition y·ξ and nonlinear reset

integral action

Figure 3: Linear and Reset estimation error

3.1. Quadratic Boundedness Analysis of Reset Observers

In this subsection we extend the standard QB analysis of linear (Lu-

enberger) observers to nonlinear reset observers. The previously defined

reset observers in (17), with z = (x ξ)>, A =

 A − K C −KI

bξ C aξ

,
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B =

 W1 −K W2

bξ W2

 , AR =

 I 0

0 0

,

can be written in the form:

ż = A z + B w when ν>Mν > 0 (Flow mode)

z+ = AR z when ν>Mν ≤ 0 (Jump mode),
(18)

where ν> = (z>, w>) and M is a symmetric matrix that determines de

flow and jump modes. The QB definition must be adapted to take into

account the reset mode (jumps). A reasonable extension is:

Definition 2. The reset system is said to be quadratically bounded (QB)

with respect to positive definite matrices Q,P > 0 when:

(i) w>Qw ≤ 1 and z>Pz ≥ 1 and ν>Mν > 0 ⇒ V̇P (z, w) < 0,

(ii) w>Qw ≤ 1 and z>Pz ≥ 1 and ν>Mν ≤ 0 ⇒ ∆VP (z) ≤ 0,

(19)

where VP is the associated Lyapunov function VP (z) = z>Pz,

V̇P (z, w) =
(
z>, w>

) A>P + PA PB

B>P 0

 z

w

 , (20)

and

∆VP (z) = VP (z+) − VP (z) = VP (AR z) − VP (z). � (21)

Thus the QB property means that the convergence error z(t) is decreasing

(V̇P < 0) in the flow mode and nonincreasing (∆VP ≤ 0) at the jump instants.

This is a direct adaptation of the hybrid Lyapunov conditions in [14], and as

a consequence the state z(t) converges to the asymptotic invariant set (AIS)
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EP =
{
z : z>Pz ≤ 1

}
. The proof is the same than in [14], the only

difference is that in [14] the AIS is {0} whereas here the AIS is EP .

It is important to characterize conditions (i) and (ii) for QB reset systems.

Let us start with the jump condition (ii). Notice that for the reset observer

the state, disturbance and Lyapunov matrix can be partitioned as:

z =

 x

ξ

 , w =

 ε

δ

 , P =

 P P>b

Pb pc

 > 0, (22)

where ξ, δ, pc are scalars. Since the reset takes the form ξ+ = 0, the Lyapunov

jump is:

∆VP (z) = Vp(x, 0) − Vp(x, ξ) = −2 (Pb x) ξ − pc ξ
2. (23)

Recall that the reset condition ν>Mν ≤ 0 is precisely

y ξ = (Cx − δ) ξ ≤ 0, (24)

but notice that ξ is the output of a FORE (first order reset system [14]) given

by ξ̇ = −aξ + by, ξ+ = 0. The FORE in flow mode satisfies y ξ > 0 and

the jump ξ+ = 0 prevents the sign change y ξ < 0, thus the reset condition

y ξ ≤ 0 can be replaced by y ξ = 0 or simply by y = 0. Putting it all

together, jump condition (19-ii) can be written as:

(ii)′

 ε

δ

>Q
 ε

δ

 ≤

 x

ξ

> P
 x

ξ

 and

C x = δ ⇒ ∆VP (z) = −2 (Pb x) ξ − pc ξ
2 ≤ 0. (25)
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Proposition 3. The reset observer satisfies the jump condition (19-ii)

(25) of the quadratic boundedness (QB) property if and only if

Pb = 0, P = diag (P, pc) > 0. (26)

Proof : In the first part, it can be proved that Pb = βC for some β ∈ R.

If we take ε = 0, δ = 0, ξ = 1 and some nonzero x in the kernel of C

(Cx = 0), then from (25) it must be true that −2(Pb x)− pc ≤ 0. But since

x can be replaced by any λx with positive or negative λ, then the kernel of

C must be contained in the kernel of Pb thus Pb = βC for some β ∈ R.

In the second part, it can be proved that β = 0 and Pb = 0. Notice that

if Cx = δ the right-hand-side (rhs) of (25) is

∆VP (z) = −2 (β δ) ξ − pc ξ
2 ≤ 0. (27)

Let us proceed by contradiction. Suppose that β 6= 0 and find δ, ξ that

violate the rhs (∆VP > 0). Those δ, ξ exist only if β 6= 0. We will show that

there exists some (x, ε) = (x, 0) that satisfy the lhs (and violate the rhs),

which is a contradiction, thus β = 0.

The idea is to put x in the form x = x1 + λx2 with λ ∈ R where Cx1 = δ

and x2 is a nonzero vector in the kernel of C. Then Cx = C(x1 + λx2) = δ.

If we expand the lhs in (25) as a polynomial in λ, it takes the form 0 ≤

αλ2 + βλ + γ. The leading coefficient is precisely α = x>2 Px2 > 0, hence

irrespectively of β, γ, there exists some (large enough) λ ∈ R such that the

polynomial is positive. Thus if it were true β 6= 0 we would be able to find

values x, ξ, ε, δ that satisfy the lhs and violate the rhs of (25), which concludes

the proof. �
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It remains to characterize the QB property in the flow mode

Proposition 4. The reset observer satisfies the flow condition (19-i) of

the quadratic boundedness (QB) property if there exists γ > 0 and α ≥ 0

such that

 A>P + PA+ γP + αNc PB + αN1

B>P + αN>1 −γQ

 < 0. (28)

where Nc, N1 are the (n+ 1)× (n+ 1) matrices

Nc =

 0n×n C>

C 0

 , N1 =

 0n×n 0n×1

01×n −1

 . (29)

Proof: First, the flow condition y · ξ > has to be written as a quadratic

inequality. Since y = Cx − δ it can be put in the form (Cx − δ)ξ > 0 or

2(Cx)ξ − 2δξ > 0 or

(x> ξ) Nc

 x

ξ

 + (x> ξ) N1

 ε

δ

 + (ε> δ) N1

 x

ξ

 > 0. (30)

Letting z> = (x>ξ), w> = (ε>δ) and ν> = (z>w>), the flow condition is

ν>Mν > 0, with M =

 Nc N1

N>1 0m×m

 . (31)

Secondly, the QB property in flow mode amounts to

ν> diag (P ,−Q) ν ≥ 0 and ν>Mν > 0 ⇒ V̇P (z, w) < 0. (32)

By using the S-procedure and introducing the two coefficients γ, α the

QB property takes the form given by the proposition. The main difference
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with the linear case is that here, with two preconditions at the left-hand

side, the S-procedure gives a sufficient condition for V̇P < 0, that is we

have an ’if’ in the proposition, not an ’if and only if’ as for linear observers.

�.

Now, in the same way that in the linear case, we can fix the required

uncertainty quadratic bounds in Q, the observer parameters (K,KI , aξ, bξ, aρ)

and compute the minimum size of the asymptotic invariant set AISm in the

interval of 0 < γ < γmax that verifies the propositions 3 and 4, for some

α ≥ 0.

For example, for the system A =

 −12 1

0 0

, C = (1, 0), Q =

102

3

 I2 02×1

01×2 104

, W1 = (−I2, 02×1), W2 = (0 0 1), and ReO R0 pa-

rameters previously defined, we obtain for α = 0 the minimum size of

the AIS on γ = 0.3654, where P =


54.1299 −2.1693 0

−2.1693 0.1518 0

0 0 4.2158 ∗ 104

 ,

and the size is computed as AISm = trace(P−1/2) = 4.0654 from P = 54.1299 −2.1693

−2.1693 0.1518

 .

Notice that from (26), P = diag(P, pc), the AIS is given by zT P z ≤ 1,

that is by xTP x + ξ2pc ≤ 1. But since ξ is irrelevant for the estimation

errors x, the error AIS is actually given by xTP x ≤ 1. From (28) one has to

find P = P(γ) or P = P (γ) that minimizes AISm = minγ trace (P−1/2(γ)).
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4. Case Study: Force estimation in haptic teleoperation

4.1. Problem formulation

Each degree of freedom of a haptic device can be programmed such that it

behaves as:

d

dt


p̄

v̄

f̄

 =


0 1 0

0 −b̄ ā

0 0 0




p̄

v̄

f̄

 +


0

ā

0

 u +


0

εv

εf

 , (33)

which is equivalent to the first equation of (1), where p̄(t), v̄(t), u(t), f̄(t) are,

respectively, position, velocity, applied force and unknown force disturbance.

The coefficients (ā, b̄) define the transfer function ā/(s + b̄) from force

to velocity and represent the inertia and damping of the device (the true

physical values, or the virtual programmed values).

The error of the model ā/(s + b̄) is included in the external signal εv(t)

(expected to be small) and the unknown force f̄(t) is assumed slowly-varying

(with respect to short time scales) thus the term εf (t) is expected to be small,

as well. Commercial haptic devices have position sensors (p̄(t) is known) and

allow to apply virtual forces u(t), but real external forces f̄(t) are usually

not measured, thus they have to be estimated.

A complete Luenberger observer for (33) would have estimated states

(p̂, v̂, f̂)>. Since position is known, one can make p̂(t) = p̄(t) and apply the

concept of reduced order observer, that estimates only (v̄, f̄)>. In this case,

the output ȳ(t), that is the signal that gives information, is:

ȳ(t) = v̄(t) + δy(t) = ˙̄p(t) + δy(t), (34)
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which is equivalent to the second equation of (1), and δy(t) denotes the

measurement error, including the error due to approximate differentiation of

p̄(t). Now, the reduced order observer, equivalent to the third equation of

(1), is:

d

dt

 v̂

f̂

 =

 −b a

0 0


︸ ︷︷ ︸

A

 v̂

f̂

 +

 a

0


︸ ︷︷ ︸

B

u − K

C
 v̂

f̂

 − ȳ

 ,
(35)

where C = (1, 0) and the observer gains are K = (k1, k2)
>. Define x̄ =

(v̄, f̄)>, x̂ = (v̂, f̂)>, and the estimation errors x = x̂ − x̄ = (v, f)>.

Assuming perfect knowledge of the parameters, a = ā, b = b̄, from (33-35)

one reaches:

ẋ = (A−KC) x − εvf + K δy, (36)

which is equivalent to (2). Therefore, to overcome the fundamental limita-

tions, is proposed a reset observer (ReO) as defined by (15-17).

Simulations of the reset and Luenberger observers R0, L1 (in Table 1)

in nominal conditions (εvf , δy = 0) are shown in Fig.4. The parameters are

a = 1, b = 12 (virtual impedance 1/(s+ 12)).

The initial errors are assigned to the scaled unit square, weighted by

diag(0.1, 0.5), giving more importance to uncertainty in x2 (force error) than

in x1 (velocity error). The Fig.4 shows the time trajectories of x1(t), x2(t) and

the influence (change in direction) in Fig.4b due to the resets of the variable

ξ(t) (not shown). This opens up the possibility of achieving a reset observer

performance better than any other Luenberger observer, as suggested by

Fig.1.
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Figure 4: Error trajectories for nominal observers estimating haptic force

4.2. Overcoming the peaking tradeoff in nomimal conditions using reset ob-

servers

Using the quantitative approach described in Section 2, we compute the

Pareto-optimal boundary to obtain linear observer limitations for achievable

specifications Mp and ts in the case study described before. The results in

ideal conditions for the virtual impedance with a = 1, b = 12, are shown in

Fig. 5.

The numerical computations for Fig.5 are as follows. For simulating the

observation error dynamics ẋ = (A−KC)x, there are two free parameters in

the gain K = (k1, k2)
> of the Luenberger observers. From Proposition 1, to

obtain the ensemble settling time and maximum peak for any initial condition

x(0) = (x10, x20)
>, it suffices to consider initial conditions at the square

vertices. From symmetry, only two vertices need to be chosen. To weight

the relative importance of each variable, x10, x20 can be scaled accordingly

(e.g., 1 versus 5). In summary, for each K only two trajectories have been

considered, starting at (0.1,+0.5)> and at (0.1,−0.5)>.
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Figure 5: Mp and ts by linear (Luenberger) and nonlinear reset observers in haptic tele-

operation

The cloud of points in Fig.5 for linear, Luenberger specifications is based

on parameter sweeping for K = (k1, k2)
>. In this 2-dimensional case, the

problem is computationally simple. After some initial trial-and-error, the

whole gain ranges are restricted to finite intervals [ki,min, ki,max], (i = 1, 2).

Outside these intervals, trajectories are either too slow or have large devia-

tions. These intervals are discretized and give rise to the cloud of points in

Fig.5. The density of points is not uniform, one important reason for this is

that although the maximum Mp is a continuous function of K, the settling

time tss is not a continuous function of K.

Among all linear Pareto-optimal tunings in Fig.5, we choose and mark

three linear solutions: L1 the minimum ts (within these ranges), L3 the

minimum peak (within these ranges) and finally, L2 one optimal compromise
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Solutions KT KT
I aξ bξ aρ ts Mp

L1 (27.25 600) – – – – 0.19 2.80

L2 (8 150) – – – – 0.37 1.79

L3 (30 150) – – – – 0.76 1.5

R0 (3.6 125) (722 11870) -0.4 0.4 0 0.18 2.33

R1 (1.8 75) (722 11870) -0.4 0.4 0 0.20 1.97

R2 (3.6 25) (180.5 2374) -0.4 0.4 0 0.33 1.43

Table 1: Design parameters and achieved specifications of linear and reset observers

marked in Figure 5

solution about Mp and ts specifications. We also provide, marked as R0, R1,

R2, three reset observer solutions, better than any other Luenberger solution.

The design parameters and achieved specifications of these six linear and reset

observers are listed in Table 1. The following figures Fig.6, Fig.7, show in

the time-domain what is already clear in Fig.5: the superiority of the reset

observer over any linear solution.

4.3. Overcoming the robustness tradeoff in QB uncertain plant using reset

observers

Based on the quadratic boundedness (QB) approach summarized for the

linear case in Subsection 2.2 and proposed for the reset observers in Subsec-

tion 3.1, we will analyze in this Subsection the robustness trade-off against

convergence velocity as a performance limitation in linear solutions and the

possibility of overcoming it using reset observers.

For that, we analyze the same example used in nominal case for estimating

haptic force, with a=1, b=12, but now the exogenous disturbances ω =
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Figure 6: Comparative between L1 (minimum ts), R0 and R1 Observers.

(εv εf δy)
T verify the condition ωTQ ω ≤ 1.

Simulations are obtained with A =

 −12 1

0 0

, C = (1, 0), W1 =

(−I2, 02×1), W2 = (0 0 1), Q = 1
3


1
σ2
εv

0 0

0 1
σ2
εf

0

0 0 1
σ2
δy

.

Notice that we can select uniformly distributed random signals ( ωTQ ω ≤

1) or the worst case, when ωTQ ω = 1, given for example by:

εv =
√

3 σεv cos α1cos α2, εf =
√

3 σεf sin α1cos α2, and δy =
√

3 σδy sin α2,

in our simulations with values α1 = 4πt and α2 = 20πt.

The Fig.8 shows the error trajectories of the linear L1 and reset R3 observers

with parameters in Table 3 and uncertainties verifying ωTQ ω = 1 with

σεv = σεf = 0.1 and σδy = 0.01.

The two solutions are obtained from the same uncertainty set, but the
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Figure 7: Observer error trajectories: L2 (compromise Mp - ts) and L3 (minimum Mp)

observers vs. R2 reset observer.

reset solution besides reducing the peaking, improves the robustness with an

AISm minor than the linear one.

Taking into account these previous results we propose a new performance

plane to compare Pareto boundaries (within R3-L1 ranges) plotting AISm

(vertical) versus enssemble settling time (horizontal). We compute using

the QB approach described in Subsection 2.1, linear AISm based on pa-

rameter sweeping for K, and propose several robust ReO solutions verifying

Proposition 3 and 4 (with α = 0), that improve the robustness (and the

peaking) with similar velocity of convergence. Recall that, from Section

3.1, the minimum size of the asymptotic invariant set, AISm, is defined by

AISm = min(trace(P−1/2)) where P is the main block in P (26) and the
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Figure 8: Error trajectories for robust observers estimating haptic force

minimum is taken with respect to the free parameters in the LMI (28).

This Pareto front is calculated for two levels of uncertainties Q as described

before: Q1 , with σεv = σεf = 0.1 and σδy = 0.001, with results in Fig. 9 and

Table 2, and Q2 with σεv = σεf = 0.1 and σδy = 0.01, with results in Fig. 10

and Table 3.

We quantitatively check the robustness trade-off against convergence ve-

locity as a performance limitation in linear solutions. Furthermore, there are

some ReO solutions that can improve this linear limitation.

4.4. Application to the Force-Reflection control architecture

The analysis in the previous section provides a systematic and quantita-

tive approach to the problem of linear observer limitations and their over-

coming by means of reset observers. The focus of the approach is on the

observer design and performance, but since observers form part of a control

system it is also interesting to see how they work within the whole control

architecture. In this section we check by simulations the performance of the
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Figure 9: AISm and ts by linear and reset observers in haptic teleoperation (uncertainty

Q1)

proposed velocity-force reset observers in a given teleoperation system under

the Force-Reflection (FR) architecture. In this architecture, it is important

to provide the operator with an accurate estimation of the workspace force,

thus the performance of the observer is crucial.

In the FR scheme (see Fig.11) the master, here with dynamics from forces

to positions given by the model in the form ā/(s(s+ b̄)), sends its position pm,

and the slave (with the same dynamics), transmits the estimated environment

force f̂e (the unknown force disturbance) through the communication chan-

nel following UDP protocol, which introduce a time-varying delay τ(t) with

bounded magnitude and variation. More details about teleoperation control

schemes and delay characteristics can be seen in [15] and references therein.
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Solutions KT KT
I aξ bξ aρ ts AISm

L1 (27.25 600) – – – – 0.19 7.09

L2 (8 150) – – – – 0.37 2.04

R0 (3.6 125) (722 11870) -0.4 0.4 0 0.18 4.06

R2 (3.6 25) (180.5 2374) -0.4 0.4 0 0.33 1.52

R3 (3.6 125) (722 11870) -1.5 0.4 0 0.18 1.37

Table 2: Design parameters and achieved specifications of linear and reset observers

marked in Figure 9

Solutions KT KT
I aξ bξ aρ ts AISm

L1 (27.25 600) – – – – 0.19 11.05

L2 (8 150) – – – – 0.37 3.83

R3 (3.6 125) (722 11870) -1.5 0.4 0 0.18 4.68

R4 (3.6 25) (180.5 2374) -1.5 0.4 0 0.33 1.54

Table 3: Design parameters and achieved specifications of linear and reset observers

marked in Figure 10

Therefore, the input of the master plant is the master force fm = fh − fmc,

with fh a ramp-step reference force as the force applied by the human opera-

tor, and fmc = Cm · pm− f̂ed the force from the local master controller (Km),

based on the master position pm, the delayed estimated environment force f̂ed

and a tuned gain Cm = 36. At the slave side, the input of the plant is given

by fs = fe + fsc, where fe is the unknown force from the environment, and

fsc = −Cm ·ps+C1 ·pmd the force provided by the local slave controller (Ks),

defined as a function of the slave position ps, the delayed master position pmd

and C1 = s2+12s+36
(1+0.001s)2

.
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Figure 10: AISm and ts by linear and reset observers in haptic teleoperation (uncertainty

Q2)

As example, the environment force is simulated by fe = (ps−pw)·Ke, that

is, the slave with position ps, at a pw = 0.3 position of its workspace, finds an

obstacle with stiffness Ke = −40. Then, the reset observer R0 described in

(15-17), with the values given in (17-18) and Table 1, from the initial state

x̂(0) = (0.1,−0.5)T , with u = fsc + εf and ȳ = ṗs + δy, estimates the slave

velocity v̂s and the force f̂e. Another values used in the simulations are: ā =

1.05, b̄ = 13.16, a = 1, b = 12, εf and δy uniformly distributed random signals

over the intervals [fsc − 0.1, fsc + 0.1] and [ṗs − 0.01, ṗs + 0.01] respectively.

Finally, the simulated time-varying delay satisfies the following conditions:

0 ≤ τ(t) = h+ %(t) ≤ hmax, |%(t)| ≤ 0.001 ≤ h = 0.08, |τ (̇t)| ≤ d = 0.45 < 1.
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Simulation results are shown in Fig.12, which prove the good performance

of the reset observer within the force reflection architecture, under realistic

assumptions (time-varying delays, noise, uncertainty,...).

5. Conclusions

This paper has investigated the improvements obtained by means of im-

pulsive, reset observers when compared to standard linear observers. Since

the comparisons in the literature are usually based on individual or partic-

ular linear solutions (chosen according to some criteria) it leaves open the

question on whether some linear solutions are missed or to which extent the

linear performance could be improved.

Having this is mind, two comparative frameworks are proposed based

on tradeoffs performance indices: ensemble settling time (J1) and ensemble

maximum-peak (J2n) for nominal conditions; and size of the asymptotic in-

variant set (J2r) and ensemble settling time (J1) for QB uncertain plants.

Furthermore, we adapted the QB approach for the reset observer, proposing
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a new LMI to obtain a robust reset observer for the uncertain plant, that

minimizes the size of the estimation error respect to linear solutions.

All initial estimation errors are potentially considered, using initial con-

ditions on a unit (scaled) box. This choice has nice convexity properties that

facilitate the computations. Next, the performance limitation of all linear

(Luenberger) observers has been represented by Pareto-optimal boundaries

in the planes of the performance indices.

Within this framework, no linear observer and no initial condition are lost

in the comparison and consequently a more solid and quantitative measure

of the superiority of reset observers is available.

Among several hybrid solutions which have been proposed in the litera-

ture to mitigate peaking in state estimation, a reset observer has been chosen,

to perform the comparison within the proposed approach. Finally, the frame-

work was applied to disturbance (force) estimation in haptic teleoperation

under the force reflection control architecture.

This research has several possible extensions to be addressed in future

work, such as to apply reset strategies to other classical observers (least

squares or Kalman-based).
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Figure 12: Teleoperation control scheme FR under the estimated environment force using

ReO. a) Observed slave velocity. b) Observed environment force. c) Master and slave

positions. d) Forces in the teleoperation loop.
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