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REAL INTERPOLATION OF COMPACT BILINEAR OPERATORS

LUZ M. FERNÁNDEZ-CABRERA AND ANTÓN MARTÍNEZ*

Abstract. We establish an analog for bilinear operators of the compactness inter-

polation result for bounded linear operators proved by Cwikel and Cobos, Kühn and

Schonbek. We work with the assumption that T : (A0 +A1)×(B0 +B1) −→ E0 +E1 is

bounded, but we also study the case when this does not hold. Applications are given

to compactness of convolution operators and compactness of commutators of bilinear

Calderón-Zygmund operators.

1. Introduction

Compact bilinear operators occur rather naturally in harmonic analysis as it has been
shown recently by Bényi and Torres [4], Bényi and Oh [3], Hu [28] and other authors.
Since interpolation theory is a very useful tool in harmonic analysis (see the books by
Bergh and Löfström [5], Triebel [39, 40] or Bennett and Sharpley [1]), it is natural to
enquire into the behaviour under interpolation of compact bilinear operators. In fact,
already in 1964, Calderón [7, 10.4] established an interpolation theorem for compact
bilinear (or multilinear) operators in his seminal paper on the complex interpolation
method. He assumed that the couple in the target satisfies a certain approximation
property (see [7, 9.6]). Some complementary results have been established by the present
authors in the recent paper [24]. Part of them refer to the degenerated case where the
couple in the target reduces to a single Banach space or the source is a product of two
fixed Banach spaces [24, Corollaries 5.5 and 5.6].

In [24] we also prove results in the non degenerated case for the general real method,
but assuming either than the two restrictions of the bilinear operator are compact, or
only one of them is compact and the couple in the target satisfies an approximation
property. In other words, we obtain the bilinear results which correspond to the com-
pactness results for linear operators established by Hayakawa [27] (see also [9]) and by
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A. Persson [35]. Previous results on real interpolation of bilinear compact operators are
due to Fernandez and da Silva [23] but they work under very restrictive conditions on
parameters.

As for real interpolation of compact linear operators, the more general result was
obtained by Cwikel [19] and Cobos, Kühn and Schonbek [17]. It works without any
condition on the couples and it shows that if any restriction of the operator is compact,
then the interpolated operator is compact as well.

In the present paper we establish an analog of this result for bilinear operators in-
terpolated by the general real method. The approach that we follow is based on the
methods developed in [18] and [17], splitting the bilinear operator by means of certain
families of projections on the vector-valued sequence spaces that come up with the con-
struction of the general real method. This is done in Section 3 after fixing notation
in Section 2 and reviewing the construction of the general real method and the results
of [24] which are needed here. Then, in Section 4, we discuss compactness interpola-
tion results under weaker assumptions on the bilinear operator T than boundedness of
T : (A0 + A1) × (B0 + B1) −→ E0 + E1. The final Section 5 contains applications of
the interpolation results. Among other things, we establish there the compactness of
commutators of bilinear Calderón-Zygmund operators acting between certain Lorentz
spaces and certain Lorentz-Zygmund spaces.

2. Preliminaries

Let A, B, E be Banach spaces, write V = {(a, b) ∈ A×B : ‖a‖A ≤ 1, ‖b‖B ≤ 1} and
let T : A × B −→ E be a bilinear operator. We say that T is bounded if ‖T‖A×B,E =
sup

{
‖T (a, b)‖E : (a, b) ∈ V

}
< ∞. The operator T is said to be compact if for any

bounded set W ⊆ A × B, we have that T (W ) is precompact in E. This condition is
equivalent to precompactness of T (V ) in E, and also equivalent to the fact that for any
bounded sequence (zn) ⊆ A × B, the sequence (Tzn) has a convergent subsequence in
E (see [4, Proposition 1]).

Clearly any compact bilinear operator is bounded. Furthermore, the set K(A×B,E)
of all compact bilinear operators from A×B into E is a closed subspace of the space of
all bounded bilinear operators from A×B into E (see [4, Proposition 3]). Examples of
distinguished compact bilinear operators can be found in [4, 3, 28].

If T ∈ K(A × B,E) and R ∈ L(E,E1), where E1 is another Banach space, then
RT = R ◦ T belongs to K(A × B,E1). Moreover, if A1, B1 are Banach spaces and
S1 ∈ L(A1, A), S2 ∈ L(B1, B) then the operator T ◦ (S1, S2)(x, y) = T (S1, S2)(x, y) =
T (S1x, S2y) belongs to K(A1 ×B1, E).
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When E = K (the scalar field) it follows from the definition that any bounded bilinear
form is compact . If A and B are Hilbert spaces, a more restrictive concept of compact
bilinear form has been studied in [16], and the references given there.

For 1 ≤ q ≤ ∞, we designate by `q the usual space of q-summable scalar sequences

with Z as index set. Given a sequence (λm) of positive numbers, we put `q(λm) =
{
ξ =

(ξm) : (λmξm) ∈ `q
}

endowed with the natural norm.
A Banach space Γ of real valued sequences with Z as index set is said to be a Banach

sequence lattice if Γ satisfies the following conditions:

(i) Γ contains all sequences with only finitely many non-zero co-ordinates.
(ii) Whenever |ξm| ≤ |ηm| for each m ∈ Z and (ηm) ∈ Γ, then (ξm) ∈ Γ and
‖(ξm)‖Γ ≤ ‖(ηm)‖Γ.

(iii) The Calderón transform

S(ξm) =

( ∞∑
k=−∞

min(1, 2m−k)ξk

)
m∈Z

is bounded in Γ.
(iv) For each k ∈ Z, the shift operator τk, τk(ξm) = (ξm+k)m∈Z, is bounded in Γ and

the norms satisfy that lim
n→∞

2−n‖τn‖Γ,Γ = 0 = lim
n→∞

‖τ−n‖Γ,Γ.

Since e0 = (δ0
m)m∈Z ∈ Γ, where δ0

m is the Kronecker delta, we have that (min(1, 2m)) =
Se0 ∈ Γ. Moreover,

sup

{ ∞∑
m=−∞

min(1, 2−m)|ξm| : ‖(ξm)‖Γ ≤ 1

}
≤ ‖e0‖−1

Γ ‖S‖Γ,Γ <∞.

In other words, any Banach sequence lattice Γ is K-non-trivial and J-non-trivial in the
terminology of Nilsson [32].

We associate to Γ the function f(t) = ‖τ[log2 t]
‖Γ,Γ, t > 0, where the logarithm is

taken in base 2 and [ · ] is the greatest integer function. This function satisfies that
f(t) = o(max{1, t}) (see [13, Lemma 4.2]).

Let Ā = (A0, A1) be a Banach couple, that is to say, A0 and A1 are Banach spaces
continuously embedded in some Hausdorff topological vector space. We endow Σ(Ā) =
A0 +A1 and ∆(Ā) = A0 ∩A1 with the norms K(1, ·) and J(1, ·), respectively, where for
t > 0 we put

K(t, a) = K(t, a;A0, A1) = inf {‖a0‖A0 + t‖a1‖A1 : a = a0 + a1 , aj ∈ Aj}

and

J(t, a) = J(t, a;A0, A1) = max {‖a‖A0 , t‖a‖A1} .
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We write T : Ā −→ Ā to mean that T is a linear operator from Σ(Ā) into Σ(Ā),
whose restriction to Aj defines a bounded operator from Aj into Aj for j = 0, 1. We
put ‖T‖Ā,Ā = max

{
‖T‖Aj ,Aj : j = 0, 1

}
.

Let A be a Banach space such that ∆(Ā) ↪→ A ↪→ Σ(Ā), where ↪→ means continuous
embedding. We say that A is an interpolation space with respect to Ā if given any
T : Ā −→ Ā, the restriction of T to A defines a bounded operator from A into A. If
that is the case, there is a constant C = C(A, Ā) such that

(2.1) ‖T‖A,A ≤ C‖T‖Ā,Ā

for all operators T : Ā −→ Ā (see [5, Theorem 2.4.2]).
Let Γ be a Banach sequence lattice. The general real interpolation space ĀΓ =

(A0, A1)Γ in the form of aK-space, is the collection of all a ∈ Σ(Ā) such that (K(2m, a)) ∈
Γ. We put

‖a‖ĀΓ;K
= ‖(K(2m, a))‖Γ.

The space ĀΓ is an interpolation space with respect to Ā. See [34], [6] and [32] for
properties of these spaces.

Since the Calderón transform S is bounded in Γ (condition (iii)), the space ĀΓ can be

equivalently defined by means of the J-functional as the set of all sums a =
∞∑

m=−∞
um

(convergence in Σ(Ā)), where (um) ⊆ A0 ∩A1 and (J(2m, um)) ∈ Γ. Furthermore,

‖a‖ĀΓ;J
= inf

{
‖(J(2m, um))‖Γ : a =

∞∑
m=−∞

um

}
defines an equivalent norm to ‖ · ‖ĀΓ;K

. By ‖ · ‖ĀΓ
we mean any of the norms ‖ · ‖ĀΓ;K

or ‖ · ‖ĀΓ;J
. This however will not cause any confusion.

Let A◦j be the closure of ∆(Ā) in the norm of Aj . We write A◦ = (A◦0, A
◦
1). For later

use, we point out that

(2.2) (A0, A1)Γ = (A◦0, A
◦
1)Γ.

This follows from the equality A0∩A1 = A◦0∩A◦1 and the J-representation of the general
real space.

If B̄ = (B0, B1) and Ē = (E0, E1) are other Banach couples, we write T : Ā×B̄ −→ Ē

to mean that T is a bounded bilinear operator T : Σ(Ā) × Σ(B̄) −→ Σ(Ē) whose
restriction to each Aj × Bj defines a bounded bilinear operator from Aj × Bj into Ej

for j = 0, 1. We put ‖T‖j for the norm of T : Aj ×Bj −→ Ej .
The following norm estimate for interpolated operators was established in [24, Theo-

rem 3.1]. We put Γ0 ∗ Γ1 for the collection of all sequences obtained by convolution of
sequences of Γ0 and Γ1.
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Theorem 2.1. Let Γ0, Γ1, Γ2 be Banach sequence lattices with Γ0 ∗ Γ1 ↪→ Γ2. Let
Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1) be Banach couples and let T : Ā× B̄ −→ Ē.
Then the restriction of T to ĀΓ0 × B̄Γ1 defines a bounded bilinear operator T : ĀΓ0 ×
B̄Γ1 −→ ĒΓ2 whose norm ‖T‖ satisfies that ‖T‖ = 0 if ‖T‖0 = 0 and

‖T‖ ≤ c ‖T‖0f1

(
‖T‖1/‖T‖0

)
if ‖T‖0 6= 0, where f1 is the function associated to Γ1 and c is a constant independent
of T .

Now we recall two interpolation results for compact bilinear operators which have
been established in [24, Theorems 5.1 and 5.3].

Theorem 2.2. Let Γ0, Γ1 be Banach sequence lattices. Let Ā = (A0, A1), B̄ = (B0, B1)
be Banach couples and let E be a Banach space. Assume that T : Σ(Ā)×Σ(B̄) −→ E is
a bounded bilinear operator such that the restriction T : Aj × Bj −→ E is compact for
j = 0 or 1. Then T : ĀΓ0 × B̄Γ1 −→ E is also compact.

Theorem 2.3. Let Γ be a Banach sequence lattice. Assume that A, B are Banach
spaces and let Ē = (E0, E1) be a Banach couple. If T : A × B −→ ∆(Ē) is a bounded
bilinear operator such that any of the restrictions T : A × B −→ Ej is compact for
j = 0, 1, then T : A×B −→ ĒΓ is compact as well.

Next we give some important examples.

Example 2.4. For Γ = `q(2−θm) with 1 ≤ q ≤ ∞ and 0 < θ < 1. It is easy to check
that `q(2−θm) is a Banach sequence lattice. Since ‖τk‖`q(2−θm),`q(2−θm) ≤ 2θk we can
replace f(t) by tθ. The space (A0, A1)`q(2−θm) is equal to the real interpolation space
(A0, A1)θ,q (see [30, 5, 39, 1]). Theorem 2.1 corresponds to the bilinear interpolation
theorem of Lions and Peetre [30, Théorème I.4.1].

Example 2.5. We say that the function ρ : (0,∞) −→ (0,∞) is a function pa-
rameter if ρ(t) increases from 0 to ∞, ρ(t)/t decreases from ∞ to 0 and, for every
t > 0, sρ(t) = sup {ρ(ts)/ρ(s) : s > 0} is finite with sρ(t) = o(max{1, t}) as t → 0 and
t → ∞. Then Γ = `q(1/ρ(2m)) is a Banach sequence lattice and (A0, A1)`q(1/ρ(2m)) is
the real interpolation space with a function parameter (see [26], [29], [36]). This time
‖τk‖`q(1/ρ(2m)),`q(1/ρ(2m)) ≤ sρ(2k), hence we can work with sρ instead of f .

Example 2.6. If g : (0,∞) −→ (0,∞) is equivalent to a function parameter ρ, meaning
that there are positive constants c1, c2 such that c1 g(t) ≤ ρ(t) ≤ c2 g(t) for all t > 0,
then Γ = `q(1/g(2m)) is also a Banach sequence lattice. This is the case of

g(θ,γ)(t) = tθ(1 + | log t|)γ
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and

g(θ;α0,α∞)(t) =

tθ(1− log t)α0 if 0 < t ≤ 1,

tθ(1 + log t)α∞ if 1 ≤ t <∞,

where 0 < θ < 1 and γ, α0, α∞ ∈ R. These interpolation spaces have been studied
in [31, 21, 22] among other papers. For Γ = `q(1/g(θ,γ)(2m)), instead of f we can
use the function tθ(1 + | log t|)|γ| and for Γ = `q(1/g(θ;α0,α∞)(2m)) we can work with
tθ(1 + | log t|)|α0|+|α∞| (see [15, Lemma 2.1]).

Note that in order to fulfill (iv), we do not allow that θ takes the limit values 0 and 1.
Therefore, the results of this paper do not apply to the interpolation methods considered
in [10, 14, 15, 8].

Given any Banach sequence lattice Γ, any sequence (Wm) of Banach spaces and any
sequence (λm) of positive numbers, we put

Γ(λmWm) =
{
w = (wm) : wm ∈Wm and (λm‖wm‖Wm) ∈ Γ

}
.

The norm in Γ(λmWm) is given by ‖w‖Γ(λmWm) = ‖ (λm‖wm‖Wm) ‖Γ.
The following result is a consequence of ([11, Lemmata 3.4 and 4.5]) and the fact that

the Calderón transform is bounded in Γ.

Lemma 2.7. Let Γ be a Banach sequence lattice and let (Wm) be a sequence of Banach
spaces. Then(

`∞(Wm), `∞(2−mWm)
)

Γ
= Γ(Wm) =

(
`1(Wm), `1(2−mWm)

)
Γ
.

3. Interpolation of compact bilinear operators

In this section we establish a bilinear analog of the compactness result for linear
operators proved by Cwikel [19] and Cobos, Kühn and Schonbek [17]. Subsequently, we
write UA for the closed unit ball of the Banach space A.

Theorem 3.1. Let Γ0, Γ1, Γ2 be Banach sequence lattices with Γ0 ∗ Γ1 ↪→ Γ2. Let
Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1) be Banach couples and let T : Ā× B̄ −→ Ē

such that any of the restrictions T : Aj × Bj −→ Ej is compact for j = 0, 1. Then
T : ĀΓ0 × B̄Γ1 −→ ĒΓ2 is compact as well.

Proof. We know by (2.2) that ĀΓ0 = A◦Γ0 and B̄Γ1 = B◦Γ1 . Moreover, we have that
T : A◦×B◦ −→ Ē, and compactness of T : Aj×Bj −→ Ej yields that T : A◦j×B◦j −→ Ej

is compact as well. Hence we can work with the couples A◦, B◦ instead of Ā, B̄.
For m ∈ Z, put

Fm = (A◦0 ∩A◦1 , J(2m, · ;A◦0, A◦1)) , Gm = (B◦0 ∩B◦1 , J(2m, · ;B◦0 , B◦1))
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and Wm = (E0 + E1 , K(2m, · ;E0, E1)) .

The space A◦Γ0 realized as a J-space is the quotient space of Γ0(Fm) given by the

surjective map π : Γ0(Fm) −→ A◦Γ0 defined by π(um) =
∞∑

m=−∞
um (convergence in

A◦0 +A◦1). This map also satisfies that

π : `1(Fm) −→ A◦0 and π : `1(2−mFm) −→ A◦1

are bounded with norm less than or equal to 1. The same happens for B◦Γ1 with
respect to Γ1(Gm). As for ĒΓ2 , if we realize this space as a K-space and we put
jz = (. . . , z, z, z, . . . ) then the map j : ĒΓ2 −→ Γ2(Wm) is a metric injection. Note
also that the maps

j : E0 −→ `∞(Wm) and j : E1 −→ `∞(2−mWm)

are bounded with norm less than or equal to 1.
Let T̂ = jT (π, π). By the properties of π and j, to show that T : A◦Γ0×B◦Γ1 −→ ĒΓ2

is compact, it suffices to prove compactness of T̂ : Γ0(Fm)× Γ1(Gm) −→ Γ2(Wm). This
fact and Lemma 2.7 lead us to work with the couples

`1(F ) =
(
`1(Fm), `1(2−mFm)

)
, `1(G) =

(
`1(Gm), `1(2−mGm)

)
and

`∞(W ) =
(
`∞(Wm), `∞(2−mWm)

)
.

On these couples of vector-valued sequences we can consider certain families of projec-
tions which will help in splitting the operator T̂ in suitable pieces. For n ∈ N, put

Rn(zm) = (. . . , 0, 0, z−n, z−n+1, . . . , zn−1, zn, 0, 0, . . . ),

R+
n (zm) = (. . . , 0, 0, zn+1, zn+2, zn+3, . . . ),

R−n (zm) = (. . . , z−n−3, z−n−2, z−n−1, 0, 0, . . . ).

Then (Rn)n∈N ⊆ L
(

Σ(`1(F )),∆(`1(F ))
)

, (R+
n )n∈N, (R−n )n∈N ⊆ L

(
Σ(`1(F )),Σ(`1(F ))

)
and these operators satisfy the following properties:

(3.1) They have norm 1 acting from `1(Fm) into `1(Fm), from `1(2−mFm) into
`1(2−mFm) and from Γ0(Fm) into Γ0(Fm).

(3.2) The identity operator I on Σ(`1(F )) can be written as I = Rn+R+
n +R−n , n ∈ N.

(3.3) For each n ∈ N, we have that
R+
n : `1(Fm) −→ `1(2−mFm) and R−n : `1(2−mFm) −→ `1(Fm) are bounded with

‖R+
n ‖`1(Fm),`1(2−mFm) = 2−(n+1) = ‖R−n ‖`1(2−mFm),`1(Fm).

Moreover, ‖Rn‖`1(Fm),`1(2−mFm) = 2n = ‖Rn‖`1(2−mFm),`1(Fm).
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We denote by Sn, S+
n , S−n and Pn, P+

n , P−n the corresponding projections acting on the
couples `1(G) and `∞(W ), respectively. They have similar properties to Rn, R+

n , R−n .
Assume that T : A1 × B1 −→ E1 is compact. The case where T : A0 × B0 −→ E0 is

compact can be treated analogously. Given any n ∈ N, we can decompose

T̂ = (Pn + P+
n + P−n )T̂ = PnT̂ + P+

n T̂ + P−n T̂ (Rn +R+
n +R−n , Sn + S+

n + S−n )

= PnT̂ + P−n T̂ (Rn, Sn) + P+
n T̂ + P−n T̂ (Rn, S+

n ) + P−n T̂ (R+
n , Sn) + P−n T̂ (R+

n , S
+
n )

+ P−n T̂ (Rn, S−n ) + P−n T̂ (R+
n , S

−
n ) + P−n T̂ (R−n , Sn) + P−n T̂ (R−n , S

+
n ) + P−n T̂ (R−n , S

−
n ).

Our plan is to show that PnT̂ and P−n T̂ (Rn, Sn) are compact from Γ0(Fm) × Γ1(Gm)
into Γ2(Wm), and that the norms of the remaining operators tend to 0 as n→∞. This
will show that T̂ : Γ0(Fm)× Γ1(Gm) −→ Γ2(Wm) is the limit of a sequence of compact
operators and therefore that it is compact.

For PnT̂ we have the diagram

`1(Fm)× `1(Gm) T̂ // `∞(Wm)
Pn

''PPPPPPPPPPP

∆(`∞(W )) � � // Γ2(Wm)

`1(2−mFm)× `1(2−mGm)
T̂ // `∞(2−mWm)

Pn
77oooooooooooo

where the last embedding is a consequence of Lemma 2.7. Compactness of T : A1 ×
B1 −→ E1 yields that

PnT̂ : `1(2−mFm)× `1(2−mGm) −→ Γ2(Wm)

is compact. Then Theorem 2.2 and Lemma 2.7 give that PnT̂ : Γ0(Fm) × Γ1(Gm) −→
Γ2(Wm) is compact.

As for P−n T̂ (Rn, Sn) we use the factorization

Γ0(Fm)× Γ1(Gm)
� _

��

`1(Fm)× `1(Gm)
P−n T̂ // `∞(Wm)

Σ(`1(F ))× Σ(`1(G))

(Rn,Sn)
44iiiiiiiiiiiiiiiii

(Rn,Sn)

**UUUUUUUUUUUUUUUUU

`1(2−mFm)× `1(2−mGm)
P−n T̂ // `∞(2−mWm).
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Since P−n T̂ (Rn, Sn) : Γ0(Fm)×Γ1(Gm) −→ `∞(2−mWm) is compact, applying Theorem
2.3 and Lemma 2.7 we conclude that P−n T̂ (Rn, Sn) : Γ0(Fm) × Γ1(Gm) −→ Γ2(Wm) is
compact.

Next we proceed to estimate the norm of the other operators. For this aim we rely
on the estimate given in Theorem 2.1 and the properties of the function f1. Namely,

f1(t) = o(max{1, t}) , f1(st) ≤ cf1(s)f1(t) for all t, s > 0(3.4)

and if s < t then f1(s) ≤ cf1(t) and
f1(t)
t
≤ cf1(s)

s

(see [13, Lemma 4.2]). For any of the remaining sequences of operators, say (Vn), we show
that either (‖Vn‖`1(Fm)×`1(Gm),`∞(Wn)) is bounded and (‖Vn‖`1(2−mFm)×`1(2−mGm),`∞(2−mWn))
converges to 0 , or (‖Vn‖`1(Fm)×`1(Gm),`∞(Wn)) converges to 0 and the sequence
(‖Vn‖`1(2−mFm)×`1(2−mGm),`∞(2−mWn)) is bounded. These facts together with Theorem
2.1 and (3.4) imply that the sequence of norms of the interpolated operators go to 0 as
n→∞.

We start with P+
n T̂ . We have ‖P+

n jT‖A◦0×B◦0 ,`∞(Wm) ≤ ‖T‖A◦0×B◦0 ,E0 . Hence, Theorem
2.1, Lemma 2.7 and (3.4) yields

‖P+
n T̂‖Γ0(Fm)×Γ1(Gm),Γ2(Wm) ≤ ‖P+

n jT‖A◦Γ0
×B◦Γ1

,Γ2(Wm)

≤ c1 ‖P+
n jT‖A◦0×B◦0 ,`∞(Wm) f1

(
1

‖P+
n jT‖A◦0×B◦0 ,`∞(Wm)

)
f1

(
‖P+

n jT‖A◦1×B◦1 ,`∞(2−mWm)

)
≤ c2 f1

(
‖P+

n jT‖A◦1×B◦1 ,`∞(2−mWm)

)
.

So, to check that the norm of P+
n T̂ between the interpolated spaces goes to 0 as n →

∞, it is enough to show that ‖P+
n jT‖A◦1×B◦1 ,`∞(2−mWm) −→ 0 as n → ∞. Take any

ε > 0. Using compactness of jT : A◦1 × B◦1 −→ `∞(2−mWm) we can find a finite set
{z1, · · · , zr} ⊆ UA◦1×B◦1 such that

jT
(
UA◦1×B◦1

)
⊆

r⋃
k=1

{jTzk +
ε

2
U`∞(2−mWm)}.

Since A0 ∩ A1 is dense in A◦1 and B0 ∩ B1 is dense in B◦1 , without loss of generality we
may assume that {z1, · · · , zr} ⊆ ∆(A◦) ×∆(B◦). So jTzk ∈ ∆(`∞(W )) for 1 ≤ k ≤ r.
By the corresponding property to (3.3) for P+

n , there exits N ∈ N such that for any
n ≥ N and any 1 ≤ k ≤ r, we have ‖P+

n jTzk‖`∞(2−mWm) ≤ ε/2. Whence, given any
z ∈ UA◦1×B◦1 , if we choose zk such that ‖jTz − jTzk‖`∞(2−mWm) ≤ ε/2, we get

‖P+
n jTz‖`∞(2−mWm) ≤ ‖P+

n (jTz−jTzk)‖`∞(2−mWm)+‖P+
n jTzk‖`∞(2−mWm) ≤

ε

2
+
ε

2
= ε.
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Consider now the operators P−n T̂ (Rn, S+
n ), P−n T̂ (R+

n , Sn) and P−n T̂ (R+
n , S

+
n ). Their

norms from `1(2−mFm) × `1(2−mGm) into `∞(2−mWm) are bounded by ‖T‖A◦1×B◦1 ,E1 .
By Theorem 2.1, Lemma 2.7 and (3.4), it is enough to show that their norms acting
from `1(Fm)× `1(Gm) into `∞(Wm) go to 0 as n→∞. The factorization

`1(Fm)×`1(Gm)
(Rn,S

+
n )−−−−−−−→ `1(2−mFm)×`1(2−mGm) T̂−−−→ `∞(2−mWm) P−n−−−−→ `∞(Wm)

and (3.3) yields

‖P−n T̂ (Rn, S+
n )‖`1(Fm)×`1(Gm),`∞(Wm) ≤ ‖Rn‖`1(Fm),`1(2−mFm)

× ‖S+
n ‖`1(Gm),`1(2−mGm)‖T̂‖`1(2−mFm)×`1(2−mGm),`∞(2−mWm)‖P−n ‖`∞(2−mWm),`∞(Wm)

≤ 2n 2−(n+1) ‖T‖A◦1×B◦1 ,E1 2−(n+1) −→ 0 as n→∞.

In the same way

‖P−n T̂ (R+
n , Sn)‖`1(Fm)×`1(Gm),`∞(Wm) ≤ ‖R+

n ‖`1(Fm),`1(2−mFm)

× ‖Sn‖`1(Gm),`1(2−mGm)‖T̂‖`1(2−mFm)×`1(2−mGm),`∞(2−mWm)‖P−n ‖`∞(2−mWm),`∞(Wm)

≤ 2−(n+1) 2n ‖T‖A◦1×B◦1 ,E1 2−(n+1) −→ 0 as n→∞.

Similarly

‖P−n T̂ (R+
n , S

+
n )‖`1(Fm)×`1(Gm),`∞(Wm) ≤ ‖R+

n ‖`1(Fm),`1(2−mFm)

× ‖S+
n ‖`1(Gm),`1(2−mGm)‖T̂‖`1(2−mFm)×`1(2−mGm),`∞(2−mWm)‖P−n ‖`∞(2−mWm),`∞(Wm)

≤ 2−(n+1) 2−(n+1) ‖T‖A◦1×B◦1 ,E1 2−(n+1) −→ 0 as n→∞.

Consider now the operator P−n T̂ (Rn, S−n ). We have

(3.5) ‖P−n T̂ (Rn, S−n )‖`1(Fm)×`1(Gm),`∞(Wm) ≤ ‖T‖A◦0×B◦0 ,E0 .

The other restriction satisfies that

‖P−n T̂ (Rn, S−n )‖`1(2−mFm)×`1(2−mGm),`∞(2−mWm)

≤ ‖T (πRn, πS−n )‖`1(2−mFm)×`1(2−mGm),E1
.

We claim that

(3.6) lim
n→∞

‖T (πRn, πS−n )‖`1(2−mFm)×`1(2−mGm),E1
= 0.

Indeed, if this would not be the case, then there would exist λ > 0, a subsequence (n1)
and vectors an1 ∈ U`1(2−mFm), bn1 ∈ U`1(2−mGm) such that

lim
n1→∞

‖T (πRn1an1 , πS
−
n1
bn1)‖E1 = λ.

By (3.1), the sequence (πRn1an1) is bounded in A◦1 and (πS−n1
bn1) is bounded in B◦1 .

Using the compactness of T : A◦1 × B◦1 −→ E1, we may assume, passing to another
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subsequence if necessary, that
(
T (πRn2an2 , πS

−
n2
bn2)

)
converges to some w in E1. So

‖w‖E1 = λ > 0. But

‖T (πRn2an2 , πS
−
n2
bn2)‖E0+E1 ≤ ‖T‖Σ(A◦)×Σ(B◦),Σ(Ē)‖Rn2an2‖Σ(`1(F ))

‖S−n2
bn2‖Σ(`1(G))

≤ ‖T‖Σ(A◦)×Σ(B◦),Σ(Ē)‖Rn2an2‖`1(2−mFm)‖S−n2
bn2‖`1(Gm)

≤ c 2−(n2+1) −→ 0 as n→∞

where we have used (3.3) in the last inequality. By compatibility we conclude that w = 0
contradicting w 6= 0.

Now, using (3.5) and (3.6), it follows from Theorem 2.1, Lemma 2.7 and (3.4) that

‖P−n T̂ (Rn, S−n )‖Γ0(Fm)×Γ1(Gm),Γ2(Wm) −→ 0 as n→∞.

Operators P−n T̂ (R+
n , S

−
n ), P−n T̂ (R−n , Sn), P−n T̂ (R−n , S

+
n ) and P−n T̂ (R−n , S

−
n ) can be treated

similarly to P−n T̂ (Rn, S−n ).
The proof is complete. �

For the case of the real method with a function parameter (Example 2.5), the result
reads as follows.

Theorem 3.2. Assume that ρ0, ρ1, ρ2 are function parameters such that for some
constant C > 0 we have

(3.7) ρ0(t) ρ1(s) ≤ C ρ2(ts) , t, s > 0.

Let 1 ≤ p, q, r ≤ ∞ with 1/p + 1/q = 1 + 1/r. Let Ā = (A0, A1), B̄ = (B0, B1) and
Ē = (E0, E1) be Banach couples. If T : Ā× B̄ −→ Ē and T : Aj×Bj −→ Ej is compact
for j = 0 or j = 1, then

T : (A0, A1)ρ0,p × (B0, B1)ρ1,q −→ (E0, E1)ρ2,r

is compact as well.

Proof. We have Γ0 = `p(1/ρ0(2m)),Γ1 = `q(1/ρ1(2m)) and Γ2 = `r(1/ρ2(2m)). Since
1/p + 1/q = 1 + 1/r, Young’s inequality for convolution yields that `p ∗ `q ↪→ `r.
Take any ξ = (ξm) ∈ `p(1/ρ0(2m)) and η = (ηm) ∈ `q(1/ρ1(2m)). For ξ ∗ η =(∑∞

k=−∞ ξkηm−k
)
m∈Z using (3.7) and Young’s inequality, we obtain

‖ξ ∗ η‖`r(1/ρ2(2m)) ≤ C
( ∞∑
m=−∞

( ∞∑
k=−∞

(
|ξk|/ρ0(2k)

)(
|ηm−k|/ρ1(2m−k)

))r)1/r

≤ C‖ξ‖`p(1/ρ0(2m))‖η‖`q(1/ρ1(2m)).

Hence, `p(1/ρ0(2m)) ∗ `q(1/ρ1(2m)) ↪→ `r(1/ρ2(2m)) and the result is a consequence of
Theorem 3.1. �
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For the special case of the real method (Example 2.4) we get the following

Theorem 3.3. Let 0 < θ < 1 and 1 ≤ p, q, r ≤ ∞ with 1/p + 1/q = 1 + 1/r. Let
Ā = (A0, A1), B̄ = (B0, B1) and Ē = (E0, E1) be Banach couples. If T : Ā × B̄ −→ Ē

and T : Aj ×Bj −→ Ej is compact for j = 0 or j = 1, then

T : (A0, A1)θ,p × (B0, B1)θ,q −→ (E0, E1)θ,r

is compact as well.

Proof. The result follows from Theorem 3.2 by taking ρ0(t) = ρ1(t) = ρ2(t) = tθ. �

4. Interpolation under weaker assumptions

So far we have been working with bilinear operators T : Ā × B̄ −→ Ē. Hence, they
satisfy

(4.1) T : Σ(Ā)× Σ(B̄) −→ Σ(Ē) boundedly.

However, sometimes in applications we do not have (4.1) but only that T is defined on
∆(Ā)×∆(B̄) with values in ∆(Ē) and that there are constants Mj > 0 such that

(4.2) ‖T (a, b)‖Ej ≤Mj‖a‖Aj‖b‖Bj , a ∈ ∆(Ā), b ∈ ∆(B̄), j = 0, 1.

Subsequently, we write B(Ā, B̄; Ē) for the collection of all those bilinear operators T
satisfying (4.2).

Assumption (4.2) is the one used by Calderón for the bilinear (and multilinear) in-
terpolation theorem for the complex method [7, 10.1] (see also [5, 4.4]).

Since (4.2) is weaker than the assumption T : Ā × B̄ −→ Ē, it is natural to enquire
into the validity of the compactness results when we only assume that T belongs to
B(Ā, B̄; Ē). This is the aim of this section.

Given any T ∈ B(Ā, B̄; Ē), the operator T may be uniquely extended to a bilinear
operator Tj : A◦j ×B◦j −→ Ej , j = 0, 1. We put

‖T‖j = ‖Tj‖A◦j×B◦j ,Ej , j = 0, 1.

We say that T : A◦j ×B◦j −→ Ej is compact if Tj does it.
Recall that we have pointed out in (2.2) that (A0, A1)Γ = (A◦0, A

◦
1)Γ.

Let ek be the sequence of scalars which is 0 at all co-ordinates but the kth co-ordinate
where it is 1. We are going to assume in the later results that some Banach sequence
lattices Γ satisfy

(4.3) ξ = lim
n→∞

n∑
k=−n

ξkek (convergence in Γ) for all ξ = {ξm} ∈ Γ.
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In this case it is easy to check that for any Banach couple Ā it holds that ∆(Ā) is dense
in ĀΓ.

We also recall that given any Banach sequence lattice Γ and any Banach couple Ā,

for any a ∈ ∆(Ā) there is a J-representation a =
∞∑

m=−∞
um with only a finite number of

terms um different from 0 such that

(4.4) ‖(J(2m, um))‖Γ ≤ 8 ‖a‖ĀΓ;K
(see [12, Lemma 2.2]).

Using (4.4) we can adapt the arguments in the proof of [24, Theorems 3.1] to cover
operators in B(Ā, B̄; Ē).

Theorem 4.1. Let Γ0, Γ1 be Banach sequence lattices satisfying (4.3) and let Γ2 be
another Banach sequence lattice with Γ0 ∗ Γ1 ↪→ Γ2. Suppose that Ā = (A0, A1), B̄ =
(B0, B1) and Ē = (E0, E1) are Banach couples and let T ∈ B(Ā, B̄; Ē). Then T may
be uniquely extended to a bilinear operator from ĀΓ0 × B̄Γ1 to ĒΓ2 and its norm ‖T‖
satisfies that ‖T‖ = 0 if ‖T‖0 = 0 and

‖T‖ ≤ c ‖T‖0f1

(
‖T‖1/‖T‖0

)
if ‖T‖0 6= 0, where f1 is the function associated to Γ1 and c is a constant independent
of T .

Proof. Take any a ∈ ∆(Ā), b ∈ ∆(B̄). If ‖T‖0 = 0 then T (a, b) = 0 and therefore
‖T‖ = 0. Assume that ‖T‖0 6= 0. Take any representation a = a0 + a1 with aj ∈ Aj .

Then aj ∈ ∆(Ā) for j = 0, 1. Choose also a J-representation b =
∞∑

m=−∞
um with only a

finite number of terms um different from 0 and satisfying the corresponding inequality

to (4.4). Let s ∈ Z such that 2s ≤ ‖T‖1/‖T‖0 < 2s+1. Since b =
∞∑

k=−∞
uk+s we obtain

K(2m, T (a, b); Ē) ≤
∞∑

k=−∞
K(2m, T (a, uk+s); Ē)

≤
∞∑

k=−∞
‖T (a0, uk+s)‖E0 + 2m‖T (a1, uk+s)‖E1

≤
∞∑

k=−∞

(
‖T‖0‖a0‖A0 + 2m−k−s‖T‖1‖a1‖A1

)
J(2k+s, uk+s; B̄).
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Therefore

K(2m, T (a, b); Ē) ≤ max{‖T‖0, 2−s‖T‖1}
∞∑

k=−∞
K(2m−k, a; Ā)J(2k+s, uk+s; B̄)

≤ 2 ‖T‖0
∞∑

n=−∞
K(2n, a; Ā)J(2k+s−n, uk+s−n; B̄).

Having in mind the embedding Γ0∗Γ1 ↪→ Γ2, that ‖τs‖Γ1,Γ1 ≤ f1(2s) ≤ c1f1

(
‖T‖1/‖T‖0

)
and the choice of (um), we get

‖T (a, b)‖ĒΓ2
≤ c2 ‖T‖0‖a‖ĀΓ0

‖(J(2k+s, uk+s; B̄))‖Γ1

≤ c2 ‖T‖0‖τs‖Γ1,Γ1‖a‖ĀΓ0
‖(J(2k, uk; B̄))‖Γ1

≤ c ‖T‖0f1

(
‖T‖1/‖T‖0

)
‖a‖ĀΓ0

‖b‖B̄Γ1
.

Since ∆(Ā) is dense in ĀΓ0 , ∆(B̄) is dense in B̄Γ1 and ĒΓ2 is complete, we derive the
desired conclusion. �

Regarding interpolation of compact bilinear operators, in the case of Theorem 2.3
where the source space reduces to a product of two fixed Banach spaces, i.e. A0 =
A1 = A and B0 = B1 = B, note that assumption T : Ā × B̄ −→ Ē is the same as
T ∈ B(Ā, B̄; Ē).

The situation is different for Theorem 2.2 even when Γ0, Γ1 satisfy (4.3). The reason
is that there is still a lot of freedom with Γ0 and Γ1. Next we show it by means of
examples.

Counterexample 4.2. Let 1 < p <∞, 1/p+1/p′ = 1 and 0 < τ < θ < 1. The Banach
sequence lattices Γ0 = `p(2−θm), Γ1 = `p′(2−τm) satisfy (4.3). Consider the Banach
couples (`p, `p(2−m)),

(
`p′(2m), `p′

)
, and let T by the operator given by

T (ξ, η) =
∞∑

m=−∞
ξm2−mη−m , ξ = (ξm) , η = (ηm).

Then T ∈ B
(
(`p, `p(2−m)) ,

(
`p′(2m), `p′

)
; (K,K)

)
because

|T (ξ, η)| =
∣∣∣ ∞∑
m=−∞

ξm2−mη−m
∣∣∣ ≤ ( ∞∑

m=−∞
|ξm|p

)1/p( ∞∑
m=−∞

|2−mη−m|p
′

)1/p′

= ‖ξ‖`p‖η‖`p′ (2m)

and similarly

|T (ξ, η)| ≤

( ∞∑
m=−∞

|2−mξm|p
)1/p( ∞∑

m=−∞
|η−m|p

′

)1/p′

= ‖ξ‖`p(2−m)‖η‖`p′ .
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Both restrictions

T : `p × `p′(2m) −→ K , T : `p(2−m)× `p′ −→ K

are compact because the target space is K, but the interpolated operator

T :
(
`p, `p(2−m)

)
Γ0
×
(
`p′(2m), `p′

)
Γ1
−→ K

is not even bounded. Indeed, by [5, Theorem 5.6.1] we have(
`p, `p(2−m)

)
Γ0

= `p(2−θm) ,
(
`p′(2m), `p′

)
Γ1

= `p′(2(1−τ)m).

Vectors 2θnen , 2(1−τ)ne−n , satisfy that

‖2θnen‖`p(2−θm) = 1 = ‖2(1−τ)ne−n‖`p′ (2(1−τ)m)

but
T (2θnen, 2(1−τ)ne−n) = 2θn2−n2(1−τ)n = 2(θ−τ)n

which is not bounded.

Counterexample 4.3. Consider the couples
(
`2(n), `2(n−1)

)
,
(
`2(n−3/4), `2(n)

)
of

sequence spaces with N as index set, and the Banach sequence lattices Γ0 = `2(2−m/4),
Γ1 = `2(2−m/7) which satisfy (4.3). According to [5, Theorem 5.5.1]) , we have(

`2(n), `2(n−1)
)

Γ0
= `2(n1/2) ,

(
`2(n−3/4), `2(n)

)
Γ1

= `2(n−1/2).

Let T (ξ, η) = (ξnηn) for ξ = (ξn), η = (ηn). Since

‖T (ξ, η)‖`1 =
∞∑
n=1

|n−1ξn||nηn| ≤ ‖ξ‖`2(n−1)‖η‖`2(n),

we have that T : `2(n−1)× `2(n) −→ `1 is bounded. Moreover,
T : `2(n)× `2(n−3/4) −→ `1 is the limit of the sequence of finite rank operators

Tk(ξ, η) = (ξ1η1, · · · , ξkηk, 0, 0, · · · ), k ∈ N,

because

‖(T − Tk)(ξ, η)‖`1 =
∞∑

n=k+1

n−1/4|nξn||n−3/4ηn| ≤ (k + 1)−1/4‖ξ‖`2(n)‖η‖`2(n−3/4).

Hence,
T ∈ B

((
`2(n−1), `2(n)

)
,
(
`2(n), `2(n−3/4)

)
; (`1, `1)

)
and

T : `2(n)× `2(n−3/4) −→ `1 compactly.

However, the interpolated operator T : `2(n1/2)× `2(n−1/2) −→ `1 is bounded but it is
not compact. Indeed, the sequences (n−1/2en) and (n1/2en) are formed by unit vectors
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in `2(n1/2) and `2(n−1/2), respectively, but
(
T (n−1/2en, n

1/2en)
)

= (en) does not have
any convergent subsequence.

Remark 4.4. As for the complex interpolation method, since [`p, `p(2−m)]θ = `p(2−θm)
and

[
`p′(2m), `p′

]
τ

= `p′(2(1−τ)m) (see [5, Theorem 5.5.3]), Counterexample 4.2 (and also
Counterexample 4.3) shows that [24, Corollary 5.5] fails if we replace assumption

T : Σ(Ā)× Σ(B̄) −→ E boundedly

by
‖T (a, b)‖E ≤Mj‖a‖Aj‖b‖Bj , a ∈ ∆(Ā), b ∈ ∆(B̄), j = 0, 1.

Next we show that it is possible to establish a positive result if the couple in the
target of the operator satisfies the following approximation property.

We say that a Banach couple Ē = (E0, E1) satisfies condition (H) if for any compact
subset K ⊆ E0, there is a family of operators {Pλ}λ∈Λ ⊆ L

(
Σ(Ē),∆(Ē)

)
and a constant

C > 0 such that

(4.5) Pλ : Σ(Ē) −→ ∆(Ē) is compact, λ ∈ Λ.

(4.6) ‖Pλ‖Ej ,Ej ≤ C , j = 0, 1 , λ ∈ Λ.

(4.7) For every ε > 0 , there is λ0 ∈ Λ such that ‖x−Pλ0x‖E0 ≤ ε for every x ∈ K.

Similar conditions have been used by Calderón [7, 10.4], A. Persson [35, p. 216] and
Edmunds and Teixeira [38, p. 133].

Next, we show examples of couples satisfying (H).

Proposition 4.5. Let (Ω, µ) be any measure space and let E0, E1 be both interpolation
spaces with respect to the couple (L1(Ω), L∞(Ω)). If the simple functions are dense in
E0, then (E0, E1) satisfies (H).

Proof. We are going to associate the same family of operators to any compact subset
K ⊆ E0, namely the set of operators

(4.8) Pf =
M∑
k=1

(
µ(Ok)−1

∫
fχOkdµ

)
χOk

where O1, . . . , OM is any finite collection of pairwise disjoint measurable sets of finite
measure. As it was shown in [24, Proposition 4.1], any of these operators P satisfies
that P ∈ L

(
L1(Ω)+L∞(Ω), L1(Ω)∩L∞(Ω)

)
with ‖P‖L1(Ω),L1(Ω) = 1 = ‖P‖L∞(Ω),L∞(Ω).

Since Ej , j = 0, 1, are interpolation spaces, we have P ∈ L(Ej , Ej). Moreover, by (2.1),
there is a constant C > 0 such that ‖P‖Ej ,Ej ≤ C, j = 0, 1. Clearly, P : Σ(Ē) −→ ∆(Ē)
compactly because it has finite rank. Finally, given any ε > 0, since K is compact and
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the simple functions are dense in E0, we can find a finite collection of simple functions
f1 · · · , fN such that

K ⊆
N⋃
j=1

{
fj +

ε

2(1 + C)
UE0

}
.

We can also choose pairwise disjoint measurable sets O1 · · · , OM such that each of the
functions fj assumes a constant value on each of the sets Ok. Then the operator P
defined by (4.8) satisfies (4.7) because given f ∈ K there is 1 ≤ j ≤ N such that
‖f − fj‖E0 ≤ ε

2(1+C) and so

‖f − Pf‖E0 ≤ ‖f − fj‖E0 + ‖fj − Pfj‖E0 + ‖P (fj − f)‖E0 ≤ ε.

�

Theorem 4.6. Let Γ0, Γ1 be Banach sequence lattices satisfying (4.3) and let Γ2 be
another Banach sequence lattices with Γ0 ∗ Γ1 ↪→ Γ2. Let Ā = (A0, A1), B̄ = (B0, B1)
and Ē = (E0, E1) be Banach couples with Ē satisfying condition (H). If T ∈ B(Ā, B̄; Ē)
and T : A◦0 × B◦0 −→ E0 is compact, then T may be uniquely extended to a compact
bilinear operator from ĀΓ0 × B̄Γ1 to ĒΓ2.

Proof. By Theorem 4.1, T may be uniquely extended to a bounded bilinear operator
from ĀΓ0 × B̄Γ1 to ĒΓ2 . Since T : A◦0×B◦0 −→ E0 is compact, the closure in E0 of the
image by T0 of the unit ball of A◦0 ×B◦0 is a compact set K. Let {Pλ}λ∈Λ be the family
of operators associated to K by condition (H). Factorization

ĀΓ0 × B̄Γ1

T−−−−→ ĒΓ2 ↪→ Σ(Ē) Pλ−−−−−→ ∆(Ē) ↪→ ĒΓ2

and (4.5) show that for any λ ∈ Λ the operator

PλT : ĀΓ0 × B̄Γ1 −→ ĒΓ2 is compact.

Hence, it suffices to show that T can be uniformly approximated by operators PλT .
Using that ‖T − PλT‖1 ≤ (1 + C)‖T‖1, Theorem 4.1 and (3.4), we get

‖T − PλT‖ĀΓ0
×B̄Γ1

,ĒΓ2
≤ c ‖T − PλT‖0f1

(
‖T − PλT‖1
‖T − PλT‖0

)
≤ c1‖T − PλT‖0f1

(
1

‖T − PλT‖0

)
.

Now, given any ε > 0, using (3.4) we can find t0 such that tf(1/t) < ε/c1 for any t ≤ t0.
By (4.7), there exits λ0 ∈ Λ such that ‖T − Pλ0T‖0 ≤ t0. Consequently,

‖T − Pλ0T‖ĀΓ0
×B̄Γ1

,ĒΓ2
< ε.

�
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We close this section by writing down the corresponding versions of Theorem 4.6 for
the case of the real method with a function parameter and for the case of the classical
real method.

Theorem 4.7. Assume that ρ0, ρ1, ρ2 are function parameters such that for some
constant C > 0 we have ρ0(t) ρ1(s) ≤ C ρ2(ts), t, s > 0. Let 1 ≤ p, q < ∞ and 1/r =
1/p+1/q−1. Let Ā = (A0, A1), B̄ = (B0, B1) and Ē = (E0, E1) be Banach couples with
Ē satisfying condition (H). If T ∈ B(Ā, B̄; Ē) and T : A◦0×B◦0 −→ E0 is compact, then T
may be uniquely extended to a compact bilinear operator from (A0, A1)ρ0,p× (B0, B1)ρ1,q

to (E0, E1)ρ2,r.

Theorem 4.8. Assume that 0 < θ < 1, 1 ≤ p, q < ∞ and 1/r = 1/p + 1/q − 1. Let
Ā = (A0, A1), B̄ = (B0, B1) and Ē = (E0, E1) be Banach couples with Ē satisfying
condition (H). If T ∈ B(Ā, B̄; Ē) and T : A◦0 × B◦0 −→ E0 is compact, then T may
be uniquely extended to a compact bilinear operator from (A0, A1)θ,p × (B0, B1)θ,q to
(E0, E1)θ,r.

5. Applications

In this section we apply the previous results to show compactness of certain bilinear
operators acting between function spaces.

Let (Ω, µ) be a σ-finite measure space. Let 1 < p < ∞, 1 ≤ q ≤ ∞ and b ∈ R.
Recall that the Lorentz-Zygmund space Lp,q(logL)b(Ω) is formed by all those measurable
functions f on Ω having a finite norm

‖f‖Lp,q(logL)b(Ω) =
(∫ µ(Ω)

0

[
t1/p−1(1 + | log t|)b

∫ t

0
f∗(s)ds

]q dt
t

)1/q

(the integral should be replaced by the supremum if q = ∞) (see [2, 1, 20]). Here f∗

stands for the non-increasing rearrangement of f . If Ω = Rn and µ is the Lebesgue
measure then we skip the measure space in the notation.

For the couple (L1(Ω), L∞(Ω)) it turns out that K(t, f) =
∫ t

0
f∗(s)ds (see [5, Theo-

rem 5.2.1] or [39, 1.18.6, p. 133]). This yields that (L1(Ω), L∞(Ω))1−1/p,q = Lp,q(Ω) and
(L1(Ω), L∞(Ω))ρ,q = Lp,q(logL)b(Ω) where ρ(t) = t1−1/p(1+ | log t|)−b. If p0 6= p1, 1/p =
(1− θ)/p0 + θ/p1 and ρ(t) = tθ(1 + | log t|)−b, then (Lp0(Ω), Lp1(Ω))ρ,q = Lp,q(logL)b(Ω)
(see, for example, [36, Prop. 6.2]).

Let (Ωj , µj) be σ-finite measure spaces for j = 0, 1, 2. In what follows, the Banach
couple Ā = (A0, A1) [respectively, B̄ = (B0, B1) and Ē = (E0, E1)] is formed by certain
Lorentz-Zygmund spaces on (Ω0, µ0) [respectively, (Ω1, µ1) and (Ω2, µ2)]. The bilinear
operator T is defined for all pairs (f, g), where f ∈ ∆(Ā) and g ∈ ∆(B̄), taking values
in ∆(Ē).
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Next we establish a reinforced version of [1, Theorem IV.7.7].

Theorem 5.1. Suppose 1 < p < ∞ and 1 ≤ α, β, γ ≤ ∞ with 1/α + 1/β = 1 + 1/γ.
Let Ā = (L1(Ω0), L∞(Ω0)), B̄ = (L1(Ω1), L∞(Ω1)) and Ē = (L1(Ω2), L∞(Ω2)). If
T ∈ B(Ā, B̄; Ē) and T : L1(Ω0) × L1(Ω1) −→ L1(Ω2) is compact, then T may be
uniquely extended to a compact bilinear operator from Lp,α(Ω0)× Lp,β(Ω1) to Lp,γ(Ω2).

Proof. Apply Theorem 4.8 with θ = 1− 1/p. The couple Ē satisfies (H) by Proposition
4.5. �

Operators belonging to T ∈ B ((L1(Ω0), L∞(Ω0)), (L1(Ω1), L∞(Ω1)); (L1(Ω2), L∞(Ω2)))
are referred in [1] and [37] as tensor-product operators. An example is

T (f, g)(x, y) = (f ⊗ g)(x, y) = f(x)g(y).

The following result deals with integral operators in the terminology of [37]. That
is, operators T belonging to B ((L1(Ω0), L∞(Ω0)), (L∞(Ω1), L1(Ω1)); (L1(Ω2), L∞(Ω2))).
The prototype is

T (f, g)(x) =
∫

Ω1

f(x, y)g(y) dµ1.

Theorem 5.2. Suppose 1 < p < ∞, 1/p + 1/p′ = 1 and 1 ≤ α, β, γ ≤ ∞ with
1/α + 1/β = 1 + 1/γ. Let Ā = (L1(Ω0), L∞(Ω0)), B̄ = (L∞(Ω1), L1(Ω1)) and Ē =
(L1(Ω2), L∞(Ω2)). If T ∈ B(Ā, B̄; Ē) and T : L1(Ω0)× L∞(Ω1) −→ L1(Ω2) compactly,
then T may be uniquely extended to a compact bilinear operator from Lp,α(Ω0)×Lp′,β(Ω1)
into Lp,γ(Ω2).

Proof. It follows from Theorem 4.8 with θ = 1− 1/p. �

Next we consider convolution operators in the sense of [33] and [1]. That is, a bilinear
operators T satisfying

(5.1)


‖T (f, g)‖L1(Ω2) ≤ ‖f‖L1(Ω0)‖g‖L1(Ω1),

‖T (f, g)‖L∞(Ω2) ≤ ‖f‖L∞(Ω0)‖g‖L1(Ω1),

‖T (f, g)‖L∞(Ω2) ≤ ‖f‖L1(Ω0)‖g‖L∞(Ω1).

The common example being

T (f, g)(x) = (f ∗ g)(x) =
∫

Ω1

f(x− y)g(y) dµ1.

Theorem 5.3. Suppose 1 < p, q, r < ∞, 1 ≤ α, β < ∞, 1 ≤ γ ≤ ∞ with 1/p + 1/q =
1 + 1/r and 1/α+ 1/β = 1 + 1/γ. Let T be a bilinear operator satisfying (5.1) and such
that T : L1(Ω0)×L1(Ω1) −→ L1(Ω2) compactly. Then T may be uniquely extended to a
compact bilinear operator from Lp,α(Ω0)× Lq,β(Ω1) to Lr,γ(Ω2).
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Proof. Since 1/p + 1/q = 1 + 1/r and 1/q < 1, we have 1/p > 1/r. Let θ = 1 − 1/r
and u = θ(1/p − 1/r)−1. Then 1/p = 1 − θ + θ/u. Since the operator T belongs to
B ((L∞(Ω0), L1(Ω0)), (L1(Ω1), L∞(Ω1)); (L∞(Ω2), L∞(Ω2))), using the complex bilinear
interpolation theorem [5, Theorem 4.4.1] with η = 1/u we derive that T : Lu(Ω0) ×
Lu′(Ω1) −→ L∞(Ω2) boundedly, where 1/u+ 1/u′ = 1. This yields that

T ∈ B ((L1(Ω0), Lu(Ω0)), (L1(Ω1), Lu′(Ω1)); (L1(Ω2), L∞(Ω2))) .

Applying now Theorem 4.8 and using that (L1(Ω2), L∞(Ω2))θ,γ = Lr,γ(Ω2), and sim-
ilarly (L1(Ω0), Lu(Ω0))θ,α = Lp,α(Ω0) and (L1(Ω1), Lu′(Ω1))θ,β = Lq,β(Ω1) because
1− θ + θ/u′ = 1/q, we conclude the wanted result. �

Finally we consider commutators of bilinear Calderón-Zygmund operators. We take
(Ω0, µ0) = (Ω1, µ1) = (Ω2, µ2) = (Rn, dx) so in what follows we skip the measure space
in our notation for function spaces. By a bilinear Calderón-Zygmund operator T we
mean a bounded bilinear operator T : Lp × Lq −→ Lr where 1 < p, q <∞, 1 ≤ r <∞,
1/r = 1/p + 1/q, such that there exits a kernel K(x, y, z) defined away of the diagonal
x = y = z such that

|K(x, y, z)| ≤ c 1
(|x− y|+ |x− z|)2n

, |∇K(x, y, z)| ≤ c 1
(|x− y|+ |x− z|)2n+1

,

and

T (f, g)(x) =
∫

Rn

∫
Rn
K(x, y, z)f(y)g(z) dydz , x /∈ supp f ∩ supp g

where f, g are bounded functions with compact support. See the paper by Grafacos and
Torres [25] and the references given there.

Let b, b1, b2 be functions in CMO, the closure in BMO of the space of C∞ functions
with compact support. Consider the following bilinear commutators

(5.2)


[T, b]1(f, g) = T (bf, g)− bT (f, g),

[T, b]2(f, g) = T (f, bg)− bT (f, g),

[[T, b1]1, b2]2 (f, g) = [T, b1]1(f, b2g)− b2[T, b1]1(f, g).

It has been shown by Bényi and Torres [4, Theorem 1] that the three commutators acting
from Lp×Lq −→ Lr are compact. We can now complement this result by showing some
other function spaces where the action of the commutators is also compact.

Theorem 5.4. Let T be a bilinear Calderón-Zygmund operator, let b, b1, b2 ∈ CMO

and let S be any of the bilinear commutators defined in (5.2). Suppose 1 < p, q, r < ∞
with 1/p+ 1/q = 1/r.

(a) If 1 ≤ α, β <∞, 1 ≤ γ ≤ ∞ and 1/α+ 1/β = 1 + 1/γ,
then S : Lp,α × Lq,β −→ Lr,γ is compact.
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(b) If 1 < s <∞ and δ > (s− 1)/s or s = 1 and δ ≥ 0,
then S : Lp,s(logL)δ × Lq,s(logL)δ −→ Lr,s(logL)δ is compact.

Proof. Take ε > 0 such that 1 < (1−ε) min{p, q, r} and θ = (1+ε)/2 < 1. For u = p, q, r,
write u0 = (1−ε)u and u1 = (1+ε)u. Then 1 < u0, u1 <∞, (1−θ)/u0+θ/u1 = 1/u and
1/pj+1/qj = 1/rj for j = 0, 1. Hence, by [4, Theorem 1], S : Lpj×Lqj −→ Lrj compactly
for j = 0, 1. Now, using Theorem 4.8 and having in mind that (Lu0 , Lu1)θ,v = Lu,v, we
obtain the case (a).

To establish (b) we take Γ0 = Γ1 = Γ2 = `s(2−θm(1 + |m|)δ). According to [12,
Example 2.4 and Corollary 3.9], these Banach sequence lattices satisfy that Γ0∗Γ1 ↪→ Γ2.
Moreover, we have that

(Lu0 , Lu1)`s(2−θm(1+|m|)δ) = Lu,s(logL)δ

by [36, Proposition 6.2]. Consequently, applying Theorem 4.6 we obtain the case (b). �
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