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Mathematical analysis and numerical
resolution of a heat transfer problem arising

in water recirculation
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Aurea Mart́ınez b

aUniversidade de Santiago de Compostela, Instituto de Matemáticas, 15782
Santiago, Spain.

bUniversidade de Vigo, E.I. Telecomunicación, 36310 Vigo, Spain.

Abstract

This work is devoted to the analysis and resolution of a well-posed mathematical
model for several processes involved in the artificial circulation of water in a large
waterbody. This novel formulation couples the convective heat transfer equation
with the modified Navier-Stokes system following a Smagorinsky turbulence model,
completed with a suitable set of mixed, nonhomogeneous boundary conditions of
di↵usive, convective and radiative type. We prove several theoretical results related
to existence of solution, and propose a full algorithm for its computation, illustrated
with some realistic numerical examples.
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1 Introduction

Artificial circulation in large waterbodies is a management technique aimed
to disrupt stratification of temperature and, consequently, to minimize the
development of stagnant zones that may be subject to water quality problems
(for instance, low levels of dissolved oxygen or high concentrations of phyto-
plankton). For its operation, a set of flow pumps take water from the upper
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layers by means of collectors and inject it into the bottom layers, setting up
a recirculation pattern that prevents stratification by means of a forced mix-
ing of water. One of the main problems of the temperature stratification is
related to algal blooms produced in the upper layers due to high temperature
and solar radiation. However, if we circulate water from the bottom layers
(where the temperature is lower) to the upper layers, we can mitigate this
negative e↵ect. Further details and remarks on several issues related to the
optimal design and control of water artificial circulation techniques have been
analyzed by the authors in their recent work [19].

Convective heat transfer has been the subject of an intensive mathematical re-
search in last five decades (ranging, for instance, from the pioneering works on
the Boussinesq system of Joseph [15] in the 1960s to the present). Among the
recent contributions we must mention, for instance, some papers devoted to
study related problems in the steady case [4,16], the analysis a time-dependant
case, but not including convective phenomena, [20], and some numerical ap-
proaches [3,18]. Nevertheless, after an exhaustive search we have not been able
to find in the mathematical literature the analysis of the particular problem
arising in the setting of our water recirculation model: a coupled problem
linking a heat equation with mixed nonlinear boundary conditions to a mod-
ified Navier-Stokes equation following the Smagorinsky model of turbulence.
Thus, the present work deals with the mathematical analysis and the numeri-
cal resolution of this heat transfer problem with specific boundary conditions
related to water artificial circulation in a body of water (for instance, a lake
or a reservoir). The main di�culties in the study of this problem lie in the
nonlinear boundary condition related to the solar irradiation on the surface,
the relations between the water temperature in the collectors and the injec-
tors, and the coupling between water temperature and water velocity due to
convective e↵ects. We use the Smagorinsky model of turbulence instead of
other approaches, like the celebrated k � ✏ system, due to the fact that the
modified Navier-Stokes equations following the Smagorinsky model of turbu-
lence present very interesting properties from a mathematical viewpoint, in
particular the uniqueness of solution and its additional regularity.

The organization of this paper is as follows: First we introduce a well-posed
formulation of the physical problem and present a rigorous definition of a
solution for the problem. In the central part of the paper we prove the existence
of this solution, and in the final part we propose a numerical algorithm for its
resolution, showing several computational tests for a realistic example. At the
end of the paper we include an appendix with several results for a general heat
equation with an advective term and mixed boundary conditions of di↵usive,
convective and radiative type. These results, as far as we know, are new since
we use techniques that will allow us to treat the low regularity of the time
derivative of the solution. This lack of regularity represents, together with the
nonlinearity of the boundary conditions, the main di�culty.
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2 Mathematical formulation of the problem

In this section we present in detail the three-dimensional mathematical model
under study. So, we consider a convex domain ⌦ ⇢ R3 (representing the water-
body) whose boundary surface @⌦ can be split into four smooth enough, dis-
joint sections: �S, �C , �T and �N , in such a way that @⌦ = �S[�C [�T [�N .
Subset �S represents the part of the boundary in contact with air, �C is
the part of the boundary where the collectors are located, �T is the part
of the boundary where the injectors are located, and �N stands for the rest
of the boundary. We will suppose that each collector is linked to an injec-
tor by means of a pumped pipeline, and we also assume that there exist
NCT collector/injector pairs {(Ck

, T
k)}NCT

k=1 . Therefore, �C = [NCT
k=1 C

k, and
�T = [NCT

k=1 T
k. In Fig. 1 we can see a schematic geometrical configuration of

a rectangular domain ⌦ for a particular case of NCT = 4 collector/injector
pairs.

1

C1

C2

T 1T 2

C3

C4

T 4T 3

⌦

�S

�N �N

�N

Fig. 1. Geometrical configuration of an example domain ⌦ with NCT = 4 col-
lector/injector pairs, showing the di↵erent boundary sections: �S , �C = [4

k=1C
k,

�T = [4
k=1T

k, and �N .

As above commented, we suppose the boundary @⌦ regular enough to assure
the existence of elements '

k
, e'k 2 H

3/2(@⌦), k = 1, . . . , NCT , satisfying the
following assumptions (corresponding to suitable regularizations of the indi-
cator functions of T k and C

k, respectively):

• '
k(x), e'k(x) � 0, a.e. x 2 @⌦,

• '
k(x) = 0, a.e. x 2 @⌦ \ T k, and

Z

Tk
'
k(x) d� = µ(T k),

• e'k(x) = 0, a.e. x 2 @⌦ \ Ck, and
Z

Ck
e'k(x) d� = µ(Ck),

where µ(S) represents the area measure of any set S ⇢ @⌦.
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We denote by ✓(x, t) (measured in K) the solution of the following convection-
di↵usion partial di↵erential equation with nonhomogeneous, nonlinear, mixed
boundary conditions:

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

@✓

@t
+ v ·r✓ �r · (Kr✓) = 0 in ⌦⇥]0, T [,

✓ = �✓ on �T⇥]0, T [,

K
@✓

@n
= 0 on �C⇥]0, T [,

K
@✓

@n
= b

N

1 (✓N � ✓) on �N⇥]0, T [,

K
@✓

@n
= b

S

1 (✓S � ✓) + b
S

2 (T
4
r
� |✓|3✓) on �S⇥]0, T [,

✓(0) = ✓
0 in ⌦,

(1)

where Dirichlet boundary condition �✓ is given by expression:

�✓(x, t) =
NCTX

k=1

'
k(x)

Z
T

�T

⇢✏(t� ✏� s) �k

✓
(s) ds (2)

with, for each k = 1, . . . , NCT ,

�
k

✓
(s) =

8
>>><

>>>:

1

µ(Ck)

Z

Ck
✓
0
d� if s  0,

1

µ(Ck)

Z

Ck
✓(s) d� if s > 0,

(3)

representing the mean temperature of water in the collector Ck, and with the
weight function ⇢✏ defined by:

⇢✏(t) =

8
>><

>>:

c

✏
exp

 
t
2

t2 � ✏2

!

if |t| < ✏,

0 if |t| � ✏,

(4)

for c 2 R the positive constant satisfying the unitary condition:
Z

R
⇢1(t) dt = 1. (5)

In other words, we are assuming that the mean temperature of water at each
injector Tk is a weighted average in time of the mean temperatures of water
at its corresponding collector Ck. In order to obtain the mean temperature
at each injector, we convolute the mean temperature at the collector with a
smooth function with support in (t � 2✏, t). In this way, we have that the
temperature in the injector only depends on the mean temperature in the
collector in the time interval (t � 2✏, t). Parameter 0 < ✏ < T represents, in
a certain sense, the technical characteristics of the pipeline that define the
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stay time of water in the pipe. We also suppose that there is not heat transfer
thought the walls of the pipelines (that is, they are isolated).

Moreover,

• T > 0 (s) is the length of the time interval.
• n is the unit outward normal vector to the boundary @⌦.
• K > 0 (m2 s�1) is the thermal di↵usivity of the fluid: K = ↵

⇢ cp
, where

↵ (Wm�1 K�1) is the thermal conductivity, ⇢ (gm�3) is the density, and
cp (W s g�1 K�1) is the specific heat capacity of water.

• b
K

1 � 0 (m s�1), for K = N,S, are the coe�cients related to convective heat
transfer through the boundaries �N and �S, obtained from the relation
⇢ cp b

K

1 = h
K , where h

K � 0 (Wm�2 K�1) are the convective heat transfer
coe�cients on each surface. These coe�cients are relevant in the convective
heat transfer flux through the frontiers �S and �N , bK1 (✓K � ✓), K = N,S.

• b
S

2 > 0 (m sK�3) is the coe�cient related to radiative heat transfer through
the boundary �S, given by b

S

2 = �B "

⇢ cp
, where �B (Wm�2 K�4) is the Stefan-

Boltzmann constant and " is the emissivity. This coe�cient is fundamental
in the radiative flux through the frontier �S (see, for instance, the classical
reference [5] for a complete description of this type of boundary conditions).

• ✓
0 � 0 (K) is the initial temperature.

• ✓S, ✓N � 0 (K) are the temperatures related to convection heat transfer on
the surfaces �S and �N .

• Tr � 0 (K) is the radiation temperature on the surface �S, derived from
expression �B "T

4
r

= (1 � a)Rsw,net + Rlw,down, where a is the albedo,
Rsw,net (Wm�2) denotes the net incident shortwave radiation on the surface
�R, and Rlw,down (Wm�2) denotes the downwelling longwave radiation.

Finally, v(x, t) (m s�1) is the water velocity, solution of a modified Navier-
Stokes equations following a Smagorinsky model of turbulence:

8
>>>>>>>>><

>>>>>>>>>:

@v

@t
+rv v �r · ⌅(v) +rp = ↵0(✓ � ✓

0)ag in ⌦⇥]0, T [,

r · v = 0 in ⌦⇥]0, T [,

v = �g on @⌦⇥]0, T [,

v(0) = v0 in ⌦,

(6)

where ag = g e3 (m s�1) is the gravity acceleration, ↵0 = �1
⇢

@⇢

@✓
(K�1) is the

thermic expansion coe�cient. We must remark here that we are assuming
the thermodynamic process to be close to an initial equilibrium state that we
denote with the zero subscript, so ⇢ = ⇢0�↵0⇢0(✓� ✓0)+ k0⇢0(p� p0)+ o(✓�
✓0) + o(p � p0), where k0 = 1

⇢

@⇢

@p
is the isothermal compressibility coe�cient.

The details of this approach (known as the Boussinesq model for natural
convection) can be consulted, for instance, in Section 10.7 of [6]. Finally, v0
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is the initial velocity, and boundary field �g is the element given by:

�g(t,x) =
NCTX

k=1

g
k(t)

"
'
k(x)

µ(T k)
�

e'k(x)

µ(Ck)

#

n. (7)

with, for each k = 1, . . . , NCT , gk(t) 2 H
1(0, T ), representing the volumetric

flow rate by pump k at each time t (gk(t) > 0, 8t 2]0, T [, and g
k(0) = 0). The

turbulence term ⌅(v) is given by:

⌅(v) =
@D(e)

@e

�����
e=e(v)

, with e(v) =
1

2

⇣
rv +rvt

⌘
, (8)

where D is a potential function (for instance, in the particular case of the clas-
sical Navier-Stokes equations, D(e) = ⌫ [e : e], with ⌫ (m2 s�1) the kinematic
viscosity of the water, and, consequently, ⌅(v) = 2⌫ e(v)). However, in our
case, the Smagorinsky model, the potential function is defined as [17]:

D(e) = ⌫ [e : e] +
2

3
⌫tur [e : e]

3/2
, (9)

where ⌫tur (m2) is the turbulent viscosity. So, for the Smagorinsky case,

⌅(v) =
@D(e)

@e

�����
e=✏(v)

= 2⌫ ✏(v) + 2⌫tur [✏(v) : ✏(v)]
1/2

✏(v)

=
⇣
2⌫ + 2⌫tur [✏(v) : ✏(v)]

1/2
⌘
✏(v) = �(✏(v)) ✏(v),

(10)

with �(✏(v)) = 2⌫ + 2⌫tur [✏(v) : ✏(v)]
1/2

System (6) has been recently studied by the authors in [9], where it is demon-
strated the existence and the uniqueness of solution for a recirculation model
based in the modified Navier-Stokes equations. In the present work we will
use some of the results shown in [9] in order to prove the existence of solution
for the coupled problem (1) and (6). The main di�culties of this work relies
in the coupling of a heat equation with nonlinear boundary value terms and
the modified Navier-Stokes system. The nonlinear terms do not allow us to
work with regular solutions for the heat equation, which forces us to use more
sophisticated techniques in order to demonstrate existence and uniqueness of
solution.
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3 The concept of solution

We start this section defining the functional spaces used in the definition of
solution for the system (1) and (6). So, for the water temperature we consider:

X1 = {✓ 2 H
1(⌦) : ✓|�S

2 L
5(�S)},

fX1 = {✓ 2 X1 : ✓|�T
= 0},

(11)

and we define the following norm associated to above space X1:

k✓kX1 = k✓kH1(⌦) + k✓kL5(�S). (12)

We have that X1 is a reflexive separable Banach space (cf. Lemma 3.1 of
[8]) and fX1 ⇢ L

2(⌦) ⇢ fX 0
1 is an evolution triple. For the water velocity we

consider:

X2 =
n
v 2 [W 1,3(⌦)]3 : r · v = 0, v|�S[�N

= 0
o
,

fX2 =
n
v 2 [W 1,3(⌦)]3 : r · v = 0, v|@⌦ = 0

o
.

(13)

In order to define an appropriate space for the solution of problems (1) and
(6), we consider, for a Banach space V1 and a locally convex space V2 such
that V1 ⇢ V2, the following Sobolev-Bochner space (cf. Chapter 7 of [21]), for
1  p, q  1:

W
1,p,q(0, T ;V1, V2) =

(

u 2 L
p(0, T ;V1) :

du

dt
2 L

q(0, T ;V2)

)

, (14)

where du

dt
denotes the derivative of u in the sense of distributions. It is well

known that, if both V1 and V2 are Banach spaces, then W
1,p,q(0, T ;V1, V2) is

also a Banach space endowed with the norm kukW 1,p,q(0,T ;V1,V2) = kukLp(0,T ;V1)+���du
dt

���
Lq(0,T ;V2)

.

Then, we define the following spaces that will be used in the mathematical
analysis of system (1):

W1 = {✓ 2 W
1,2,5/4(0, T ;X1, X

0
1) :

✓|�S
2 L

5(0, T ;L5(�S))} \ L
1(0, T ;L2(⌦)),

fW1 = {✓ 2 W
1,2,5/4(0, T ; fX1,

fX 0
1) :

✓|�S
2 L

5(0, T ;L5(�S))} \ L
1(0, T ;L2(⌦)),

(15)
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and, for the system (6), we define

W2 = W
1,1,2(0, T ;X2, [L

2(⌦)]3) \ C([0, T ];X2),

fW2 = W
1,1,2(0, T ;fX2, [L

2(⌦)]3) \ C([0, T ];fX2).
(16)

Hypothesis 1 We will assume the following hypotheses for coe�cients and

data of the problem:

(a) ✓
0 2 X2

(b) ✓S 2 L
2(0, T ;L2(�S))

(c) ✓N 2 L
2(0, T ;L2(�N))

(d) Tr 2 L
5(0, T ;L5(�S))

(e) v0 2 [H2
�
(⌦)]3 = {v 2 [H2(⌦)]3 : r · v = 0, v|@⌦ = 0} ⇢ fX2

(f) g
k 2 H

1(0, T ) with g
k(0) = 0, 8k = 1, . . . , NCT

Remark 2 In order to define in a rigorous way the concept of solution, we

will need to extend Dirichlet conditions of ✓ and v to the whole domain ⌦.

So, for water velocity v, thanks to Lemma 2 of [9], for each g 2 [H1(0, T )]NCT ,

there exists an element ⇣g 2 W
1,2,2(0, T ; [H2

�
(⌦)]3 , [H2

�
(⌦)]3) such that ⇣g|@⌦

=

�g, with �g defined by (7). Besides, by Lemma 3 of [9], W
1,2,2(0, T ; [H2

�
(⌦)]3 ,

[H2
�
(⌦)]3) ⇢ W

1,1,2(0, T ; [H2(⌦)]3, [H2(⌦)]3) \ C([0, T ]; [H2(⌦)]3) and, then,

we can use this element to reformulate the original problem for v as an ho-

mogeneous Dirichlet boundary condition one.

For water temperature ✓ we can proceed in an analogous way and prove that

there exists an extension that allows us to reformulate the problem for ✓ as

one with homogeneous boundary conditions.

Lemma 3 We have that the following operator is compact

Rh : [L2(0, T )]NCT ! W
1,2,2(0, T ;H2(⌦), H2(⌦))

h ! Rh(h) = ⇣h,

(17)

where:

⇣h(x, t) =
NCTX

k=1

�0('
k(x))

Z
T

�T

⇢✏(t� ✏� s)�k

h(s) ds, (18)

with �
k

h(s) 2 L
2(�T, T ), for k = 1, 2, . . . , NCT , defined by:

�
k

h(s) =

8
>><

>>:

1

µ(Ck)

Z

Ck
✓
0
d� if s  0,

h
k(s) if s > 0,

(19)
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and �0 : u 2 H
3/2(@⌦) ! �0(u) 2 H

2(⌦) the right inverse of the classical

trace operator �0 (that is, (�0 � �0)(u) = u.)

We also have that there exists a constant C1, that depends continuously on the

space-time configuration of our computational domain and ✓
0
, such that:

k⇣hkW 1,2,2(0,T ;H2(⌦),H2(⌦))  C1(✓
0)(1 + khk[L2(0,T )]NCT ). (20)

PROOF. Let {hn}n2N be a bounded sequence in [L2(0, T )]NCT . Then, taking
subsequences if necessary, we have that hn * h weakly in [L2(0, T )]NCT . We
also have that �hn * �h weakly in [L2(�T, T )]NCT and, if we denote by

b
k

h(t) =
Z

T

�T

⇢✏(t� ✏� s)�k

h(s) ds, (21)

we obtain that bkhn
(t) ! b

k

h(t) pointwise a.e. t 2 [0, T ], 8k = 1, . . . , NCT . Thus,
the sequence {bhn}n2N is bounded by a function in [L2(0, T )]NCT , so we have
the strong convergence in [L2(0, T )]NCT . We can repeat the same argument
with the time derivative of {bhn}n2N, obtaining that bhn ! bh strongly in
H

1(0, T ), thus ⇣hn ! ⇣h strongly in W
1,2,2(0, T ;H2(⌦), H2(⌦)). Finally, by

the properties of the operator �0 we have that

k�0('
k)kH2(⌦)  Ck'kkH3/2(@⌦), k = 1, . . . , NCT . (22)

So, thanks to the regularity of function ⇢✏, it is clear that bkh 2 H
1(0, T ), and

kbkhkH1(0,T )  Ck�k

hkL2(�T,T ). (23)

In the other hand,

k�k

hk2L2(�T,T ) =
Z

T

�T

⇣
�
k

h(s)
⌘2

ds

=
1

µ(Ck)2

Z 0

�T

✓Z

Ck
✓
0
d�

◆2

+
Z

T

0

⇣
h
k(s)

⌘2
ds

 T

µ(Ck)
k✓0k2

L2(@⌦) + khkk2
L2(0,T ).

(24)

Thereby, we have the following inequality:

k⇣hkW 1,2,2(0,T ;H2(⌦),H2(⌦)) C

⇣
k✓0kL2(@⌦) + khk[L2(0,T )]NCT

⌘NCTX

k=1

µ(T k)

C1(✓
0)
⇣
1 + khk[L2(0,T )]NCT

⌘
,

where C(✓0) is a positive constant than depends continuously on the spatial-
time configuration of our computational domain and on the initial tempera-
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ture. Moreover, it is worthwhile remarking here that we can make this constant
as small as we want by considering data appropriately. ⌅

Finally, the following technical lemma will be necessary in order to guaranty
that the sum of an element ofW1 plus an element ofW 1,2,2(0, T ;H2(⌦), H2(⌦))
makes sense.

Lemma 4 We have that the following inclusion is compact:

W
1,2,2(0, T ;H2(⌦), H2(⌦)) ⇢⇢ W1. (25)

Now, we define the concept of solution for coupled system (1) and (6) in terms
of homogeneous Dirichlet systems, so we establish the following notations:

• ⇠ = ✓ � ⇣h 2 fW1, with ⇣h 2 W
1,2,2(0, T ;H2(⌦), H2(⌦)) the extension ob-

tained from Lemma 3, where:

h
k(s) =

1

µ(Ck)

Z

Ck
✓(s) d�, k = 1, 2, . . . , NCT . (26)

• z = v � ⇣g 2 fW2, with ⇣g 2 W
1,2,2(0, T ; [H2

�
(⌦)]3, [H2

�
(⌦)]3) the extension

of the trace given in Lemma 2 of [9].

Thus, using above notations, we can reformulate the state system (1) and (6)
in the following way:

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

@⇠

@t
+ v ·r⇠ �r · (Kr⇠)

= �@⇣h

@t
� v ·r⇣h +r · (Kr⇣h) in ⌦⇥ (0, T ),

⇠ = 0 on T
k ⇥ (0, T ), for k = 1, . . . , NCT ,

K
@⇠

@n
= �K

@⇣h

@n
on C

k ⇥ (0, T ), for k = 1, . . . , NCT ,

K
@⇠

@n
= b

N

1

⇣
✓N � ⇣h � K

b
N
1

@⇣h

@n
� ⇠

⌘
on �N ⇥ (0, T ),

K
@⇠

@n
= b

S

1

⇣
✓S � ⇣h � K

b
S
1

@⇣h

@n
� ⇠

⌘

+b
S

2

⇣
T

4
r
� |⇠ + ⇣h|3(⇠ + ⇣h)

⌘
on �S ⇥ (0, T ),

⇠(0) = ✓
0 � ⇣h(0) in ⌦.

(27)
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8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

@z

@t
+r(⇣g + z)z+rz⇣g

�div
✓
2⌫✏(z) + 2⌫tur

Z

⌦

h
✏(⇣g + z) : ✏(⇣g + z)

i1/2
✏(⇣g + z)

◆

+rp = ↵0(✓ � ✓
0) ag �

@⇣g

@t
�r⇣g⇣g

+2⌫r · ✏(⇣g) in ⌦⇥ (0, T ),

z = 0 on @⌦⇥ (0, T ),

z(0) = v0 in ⌦.

(28)

It is worthwhile remarking here that above system shows homogeneous Dirich-
let boundary conditions and, consequently, we will be able to define the con-
cept of solution of the original state systems (1) and (6) in terms of the mod-
ified state systems (27) and (28). It should be also noted that, in the case of
equation (1), the coupling terms in the Dirichlet boundary conditions are now
transferred to the partial di↵erential equation in system (27).

Definition 5 A pair (✓,v) 2 W1⇥W2 is said to be a solution of problem (1)

and (6) if there exist elements (⇠, z) 2 fW1 ⇥ fW2 such that:

(1) v = ⇣g + z, with ⇣g 2 W
1,2,2(0, T ; [H2(⌦)]3, [H2(⌦)]3) the reconstruc-

tion of the trace given in Lemma 2 of [9], and ✓ = ⇣h + ⇠, with ⇣h 2
W

1,2,2(0, T ;H2(⌦), H2(⌦)) the extension obtained in Lemma 3, where:

h
k(s) =

1

µ(Ck)

Z

Ck
✓(s) d�, k = 1, 2, . . . , NCT . (29)

(2) z(0) = v0
, and ⇠(0) = ✓

0 � ⇣h(0), a.e. x 2 ⌦.
(3) (⇠, z) verifies the following variational formulation:

Z

⌦

@⇠

@t
⌘ dx+

Z

⌦
v ·r⇠⌘ dx+K

Z

⌦
r⇠ ·r⌘ dx+ b

N

1

Z

�N

⇠⌘ d�

+b
S

1

Z

�S

⇠⌘ d� + b
S

2

Z

�S

|⇠ + ⇣h|3(⇠ + ⇣h)⌘ d� =
Z

⌦
Hh⌘ dx

+
Z

�C

g
C

h ⌘ d� + b
N

1

Z

�N

g
N

h ⌘ d� + b
S

1

Z

�S

g
S

h⌘ d� + b
S

2

Z

�S

T
4
r
⌘ d�,

a.e. t 2]0, T [, 8⌘ 2 fX1.

(30)

Z

⌦

@z

@t
· ⌘ dx+

Z

⌦
r(⇣g + z)z · ⌘ dx+

Z

⌦
rz⇣g · ⌘ dx

+2⌫
Z

⌦
✏(z) : ✏(⌘) dx

+2⌫tur
Z

⌦

h
✏(⇣g + z) : ✏(⇣g + z)

i1/2
✏(⇣g + z) : ✏(⌘) dx

=
Z

⌦
Hg · ⌘ dx, a.e. t 2]0, T [, 8⌘ 2 fX2,

(31)

11



where

Hh =
@⇣h

@t
� v ·r⇣h +r · (Kr⇣h) 2 L

2(0, T ;L2(⌦)),

g
C

h = �K
@⇣h

@n
2 L

2(0, T ;L2(�C)),

g
N

h = ✓N � ⇣h � K

b
N
1

@⇣h

@n
2 L

2(0, T ;L2(�N)),

g
S

h = ✓S � ⇣h � K

b
S
1

@⇣h

@n
2 L

2(0, T ;L2(�S)),

Hg = ↵0(✓ � ✓
0)ag �

@⇣g

@t
�r⇣g⇣g 2 L

2(0, T ; [L2(⌦)]3).

(32)

4 Existence of solution

We will prove now that, under certain hypotheses over coe�cients and data,
there exists a unique solution for the system (1) and (6) in the sense of Defi-
nition 5. The procedure used here for demonstrating the existence of solution
is based in the Schauder fixed point Theorem (cf. section 9.5 of [7]) and is
similar to one employed by the authors, for instance, in [10]. The main di�-
culties in the present case lie in the coupling of the Dirichlet conditions for
the water temperature, and in the nonlinear radiation terms. To overcome
these di�culties we will need to define a compact extension for the nonhomo-
geneous Dirichlet conditions and to prove novel results for the heat equation
with radiation boundary conditions (see Appendix A).

So, we consider the following operator:

M : L2(0, T ;L2(⌦))⇥ [L2(0, T )]NCT ! L
2(0, T ;L2(⌦))⇥ [L2(0, T )]NCT

(✓⇤,h⇤) ! M(✓⇤,h⇤) = (✓,h)
(33)

where:

• v 2 W2 is such that z = v � ⇣g 2 fW2 is the solution of the following
problem:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

@z

@t
+r(⇣g + z)z+rz⇣g

�r ·
✓
2⌫✏(z) + 2⌫tur

h
✏(⇣g + z) : ✏(⇣g + z)

i1/2
✏(⇣g + z)

◆

+rp = ↵0(✓
⇤ � ✓

0)ag �
@⇣g

@t
�r⇣g⇣g + 2⌫r · ✏(⇣g) in ⌦⇥]0, T [,

z = 0 on �⇥]0, T [,

z(0) = v0 � ⇣g(0) in ⌦,

(34)

12



with ⇣g 2 W
1,2,2(0, T ; [H2

�
(⌦)]3, [H2

�
(⌦)]3) the extension obtained from the

Lemma 2 of [9].
• ✓ 2 W1 is such that ⇠ = ✓ � ⇣h⇤ 2 fW1 is the solution of:

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

@⇠

@t
+ v ·r⇠ �r · (Kr⇠) = �@⇣h⇤

@t
� v ·r⇣h⇤

+r · (Kr⇣h⇤) in ⌦⇥]0, T [,

⇠ = 0 on T
k⇥]0, T [, for k = 1, . . . , NCT ,

K
@⇠

@n
= �K

@⇣h⇤

@n
onCk⇥]0, T [, for k = 1, . . . , NCT ,

K
@⇠

@n
= b

N

1

⇣
✓N � ⇣h⇤ � K

b
N
1

@⇣h⇤

@n
� ⇠

⌘
on�N⇥]0, T [,

K
@⇠

@n
= b

S

1

⇣
✓S � ⇣h⇤ � K

b
S
1

@⇣h⇤

@n
� ⇠

⌘

+b
S

2

⇣
T

4
r
� |⇠ + ⇣h⇤ |3(⇠ + ⇣h⇤)

⌘
on�S⇥]0, T [,

⇠(0) = ✓(0)� ⇣h⇤(0) in⌦,

(35)

with ⇣h⇤ 2 W
1,2,2(0, T ;H2(⌦), H2(⌦)) defined as in Lemma 3.

• h 2 [L2(0, T )]NCT is such that:

h
k(s) =

1

µ(Ck)

Z

Ck
✓(s) d�, for k = 1, 2, . . . , NCT . (36)

The following technical results are necessary to prove that the operator M

defined in (33) is well defined. The first one corresponds to the existence of
solution for problem (34), and the second one is related to the existence of
solution for problem (35).

Theorem 6 Within the framework stablished in Hypothesis 1, given elements

⇣g 2 W
1,2,2(0, T ; [H2

�
(⌦)]3, [H2

�
(⌦)]3) and ✓

⇤ 2 L
2(0, T ;L2(⌦)), there exists an

element v 2 W2 such that z = v� ⇣g 2 fW2 is the unique solution of problem

(34) in the following sense:

Z

⌦

@z

@t
· ⌘ dx+

Z

⌦
r(⇣g + z)z · ⌘ dx

+
Z

⌦
rz⇣g · ⌘ dx+ 2⌫

Z

⌦
✏(z) : ✏(⌘) dx

+2⌫tur
Z

⌦

h
✏(⇣g + z) : ✏(⇣g + z)

i1/2
✏(⇣g + z) : ✏(⌘) dx

=
Z

⌦
Hg · ⌘ dx, a.e. t 2]0, T [, 8⌘ 2 fX2,

(37)

with z(0) = v0
, a.e. x 2 ⌦, where:

Hg = ↵0(✓
⇤ � ✓

0)ag �
@⇣g

@t
�r⇣g⇣g 2 L

2(0, T ; [L2(⌦)]3). (38)

13



Besides, we have the following estimates:

kzkL1(0,T ;[L2(⌦)]3) + kzkL2(0,T ;[W 1,2(⌦)]3) + kzkL3(0,T ;[W 1,3(⌦)]3)

 C2(v
0
, ✓

0
,g)


1 + k✓⇤kL2(0,T ;L2(⌦))

� (39)

�����
@z

@t

�����
L2(0,T ;[L2(⌦)]3)

+ k✏(z)kL1(0,T ;[L3(⌦)]3⇥3) + k✏(z)kL1(0,T ;[L2(⌦)]3⇥3)

 C3(v
0
, ✓

0
,g) exp

⇣
1 + k✓⇤k2

L2(0,T ;L2(⌦))

⌘ 
1 + k✓⇤kL2(0,T ;L2(⌦))

�
.

(40)

where C2 and C3 are positive constants that depend continuously with respect

to the space-time configuration of our computational domain, v0
, ✓

0
and g.

PROOF. It is a direct consequence of Theorem 8 in [9]. In this theorem
the authors prove the wellposedness (existence, uniqueness and regularity of
solution) for a modified Navier-Stokes system with non-homogeneous Dirich-
let boundary conditions, by building a continuous extension of the Dirichlet
condition and a Galerking approximation of the corresponding problem with
homogeneous boundary conditions. ⌅

Theorem 7 Within the framework stablished in Hypothesis 1, given elements

⇣h⇤ 2 W
1,2,2(0, T ;H2(⌦), H2(⌦)) and v 2 L

10/3(0, T ; [L3
�
(⌦)]3), there exits an

element ✓ 2 W1 such that ⇠ = ✓ � ⇣h⇤ 2 fW1 is the unique solution of problem

(35) in the following sense:

Z

⌦

@⇠

@t
⌘ dx+

Z

⌦
v ·r⇠⌘ dx+K

Z

⌦
r⇠ ·r⌘ dx+ b

N

1

Z

�N

⇠⌘ d�

+b
S

1

Z

�S

⇠⌘ d� + b
S

2

Z

�S

|⇠ + ⇣h⇤ |3(⇠ + ⇣h⇤)⌘ d� =
Z

⌦
Hh⇤⌘ dx

+
Z

�C

g
C

h⇤⌘ d� + b
N

1

Z

�N

g
N

h⇤⌘ d� + b
S

1

Z

�S

g
S

h⇤⌘ d�

+b
S

2

Z

�S

T
4
r
⌘ d�, a.e. t 2]0, T [, 8⌘ 2 fX1,

(41)

with ⇠(0) = ✓
0 � ⇣h⇤(0), a.e. x 2 ⌦.

Besides, we have the following estimates:

k⇠kL1(0,T ;L2(⌦)) + k⇠k
L2(0,T ; eX1))

+ k⇠kL5(0,T ;L5(�S))

 C4(✓
0
, ✓N , ✓S, Tr)


1 + kh⇤k[L2(0,T )]NCT

�
,

(42)

�����
d⇠

dt

�����
L5/4(0,T ; eX0

1)

 C5(✓
0
, ✓N , ✓S, Tr)


1+

kvk2
L10/3(0,T ;[L3(⌦)]3) + kh⇤k2[L2(0,T )]NCT

�
,

(43)
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where C4 and C5 are positive constants that depend continuously with respect

to the space-time configuration of our computational domain, ✓
0
, ✓N , ✓S and

Tr.

PROOF. It is a straightforward consequence of Theorem 14 that we will
prove in Appendix A. In our case, we have to choose there �R = �S, �L = �T

and �A = �C [ �N . ⌅

Lemma 8 The operator M defined in (33) is well defined and compact.

PROOF. Thanks to above Theorems 6 and 7, it is straightforward that the
operator M is well defined. Let us check now its compactness.

So, given a bounded sequence {(✓⇤
n
,h⇤

n
)}n2N ⇢ L

2(0, T ;L2(⌦))⇥ [L2(0, T )]NCT ,
we have, using estimates (39) and (40), that the corresponding sequence
{zn}n2N ⇢ fW2 of solutions for the problem (37) is bounded in fW2. Then,
we have, taking subsequences if necessary, that:

• ✓
⇤
n
* ✓ in L

2(0, T ;L2(⌦)),
• h⇤

n
* h in [L2(0, T )]NCT ,

• zn ! z strongly in L
p(0, T ; [Lq(⌦)]3), for all 1 < p < 1, and 2  q < 1,

• zn * z weakly in L
3(0, T ;fX),

• dzn
dt

*
dz

dt
weakly in L

2(0, T ; [L2(⌦)]3),

• rzn *
⇤ rz weakly-⇤ in L

1(0, T ; [L3(⌦)]3),
• �(✏(⇣g + zn)) ✏(⇣g + zn) * �(✏(⇣g + z)) ✏(⇣g + z) weakly in L

3/2(0, T ;fX0),

where z 2 fW2 is the solution of (37) associated to ✓. The last convergence is
a consequence of the monotony of operator (see [9] for more details)

A : fX2 ! fX0
2

z ! A(z),
(44)

where, for any ⇠ 2 fX2,

hA(z), ⇠i =
Z

⌦
�(✏(⇣g + z))✏(⇣g + z) : ✏(⇠) dx. (45)

Now, using the results proved in Lemma 3, we have that the corresponding
sequence {⇣h⇤

n
} converges to ⇣h strongly in W

1,2,2(0, T ;H2(⌦), H2(⌦)), and,
consequently,

• Hh⇤
n
! Hh in L

2(0, T ;L2(⌦)),
• g

C

h⇤
n
! g

C

h in L
2(0, T ;L2(�C)),

15



• g
N

h⇤
n
! g

N

h in L
2(0, T ;L2(�N)),

• g
S

h⇤
n
! g

S

h in L
2(0, T ;L2(�S)).

Finally, thanks to estimates (42) and (43), the corresponding sequence {⇠n}n2N
⇢ fW1 is bounded. Thus, taking subsequences if necessary, we have thanks to
a straightforward adaptation of Lemma 19 in Appendix A, that

• ⇠n * ⇠ in L
2(0, T ; fX),

• ⇠n *
⇤
⇠ in L

1(0, T ;L2(⌦)),
• ⇠n ! ⇠ in L

10/3�✏(0, T ;L10/3�✏(⌦)),
• ⇠n ! ⇠ in L

2(0, T ;L2(�C)),
• ⇠n ! ⇠ in L

5(0, T ;L5(�R)).

Using the same techniques that we present in Appendix A for the demonstra-
tion of Theorem 14, we can pass to the limit in the variational formulation of
⇠n and prove that ⇠ 2 fW2 is the solution of (7) associated to ✓ and h. Thus,
we have that

• ✓n = ⇠n + ⇣h⇤
n
! ✓ = ⇠ + ⇣h in L

2(0, T ;L2(⌦)),
• ✓n = ⇠n + ⇣h⇤

n
! ✓ = ⇠ + ⇣h in L

2(0, T ;L2(@⌦)),

and, consequently, M(✓⇤
n
,h⇤

n
) ! M(✓,h) in L

2(0, T ;L2(⌦)) ⇥ [L2(0, T )]NCT ,
which concludes the proof. ⌅

Theorem 9 Given positive constants bC1
and bC2

, there exist coe�cients and

data small enough such that the operator M defined in (33) has a fixed point

in the space {(✓,h) 2 L
2(0, T ;L2(⌦)) ⇥ [L2(0, T )]NCT : k✓kL2(0,T ;L2(⌦)) 

bC1, khk[L2(0,T )]NCT  bC2}. Moreover, the corresponding (✓,v) 2 W1 ⇥W2 is

a solution for the system (1) and (6) in the sense of Definition 5.

PROOF. The existence is a direct consequence of the Schauder fixed point
Theorem. Given an element (✓⇤,h⇤) 2 L

2(0, T ;L2(⌦)) ⇥ [L2(0, T )]NCT , we
have, thanks to (20), (39), (40), (42) and (43), the following estimates for
(✓,h) = M(✓⇤,h⇤):

kvkW2  C6(v
0
, ✓

0
,g) exp(1 + k✓⇤k2

L2(0,T ;L2(⌦)))
h
1 + k✓⇤kL2(0,T ;L2(⌦))

i
,

k✓kW1  C7(✓
0
, ✓N , ✓S, Tr)

h
1 + kvk2W2

+ kh⇤k2[L2(0,T )]NCT

i
,

khk[L2(0,T )]NCT  C8(✓
0
, ✓N , ✓S, Tr)

h
1 + kvk2W2

+ kh⇤k2[L2(0,T )]NCT

i
,

(46)

where C6, C7, C8 are positive constants that depend continuously on the coef-
ficients and data. If we take the first inequality to the second and third ones,
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we obtain that:

k✓kW1  C7(✓
0
, ✓N , ✓S, Tr)

"

1 + kh⇤k2[L2(0,T )]NCT

+C9(v
0
, ✓

0
,g) exp(1 + k✓⇤k2

L2(0,T ;L2(⌦)))
h
1 + k✓⇤k2

L2(0,T ;L2(⌦))

i#

,

khk[L2(0,T )]NCT  C8(✓
0
, ✓N , ✓S, Tr)

"

1 + kh⇤k2[L2(0,T )]NCT

+C9(v
0
, ✓

0
,g) exp(1 + k✓⇤k2

L2(0,T ;L2(⌦)))
h
1 + k✓⇤k2

L2(0,T ;L2(⌦))

i#

.

So, if we suppose that k✓⇤kL2(0,T ;L2(⌦))  bC1 and kh⇤k2[L2(0,T )]NCT
 bC2, we

have that

k✓kW1  C7(✓
0
, ✓N , ✓S, Tr)

"

1 + bC2
2 + C9(v

0
, ✓

0
,g) exp(1 + bC2

1)
h
1 + bC2

1

i#

,

khk[L2(0,T )]NCT  C8(✓
0
, ✓N , ✓S, Tr)

"

1 + bC2
2 + C9(v

0
, ✓

0
,g) exp(1 + bC2

1)
h
1 + bC2

1

i#

.

Thus, we are led to solve the following inequality:

C7(✓
0
, ✓N , ✓S, Tr)

"

1 + bC2
2 + C9(v

0
, ✓

0
,g) exp(1 + bC2

1)
h
1 + bC2

1

i#

 bC1,

C8(✓
0
, ✓N , ✓S, Tr)

"

1 + bC2
2 + C9(v

0
, ✓

0
,g) exp(1 + bC2

1)
h
1 + bC2

1

i#

 bC2.

(47)

However, it is obvious that, given bC1 and bC2, we can consider small enough
data v0, g, ✓0, ✓N , ✓S and Tr, such that

C9(v
0
, ✓

0
,g)  1

exp(1 + bC2
1)
h
1 + bC2

1

i , (48)

C7(✓
0
, ✓N , ✓S, Tr) 

bC1

2 + bC2

, (49)

C8(✓
0
, ✓N , ✓S, Tr) 

bC2

2 + bC2

. (50)

Then, choosing suitable coe�cients and data that verify (48)-(50), we have
that M maps elements of the set {(✓⇤,h⇤) 2 L

2(0, T ;L2(⌦))⇥ [L2(0, T )]NCT :
k✓⇤kL2(0,T ;L2(⌦))  bC1, kh⇤k[L2(0,T )]NCT  bC2} into itself. Thus, thanks to
Schauder fixed point Theorem, there exists a fixed point (✓,h) of operator
M , such that the corresponding (✓,v) is a solution of the coupled system (1)
and (6) in the sense of Definition 5. ⌅
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5 Numerical resolution

Once proved in above section that the coupled system (1) and (6) admits a
solution, we will introduce here a full numerical algorithm in order to compute
it, and show several computational test for a realistic example.

We must recall here that our main aim is related to understanding which is the
best strategy for reducing the water temperature in the upper layers. In order
to achieve this objective, and for the sake of completeness, we will consider an
algorithm able to deal with more general states than those we have presented in
previous mathematical analysis of the problem. In particular, in the numerical
resolution proposed here we will also take into account the possibility that
g
k(t) takes non-positive values. To be exact, if gk(t) > 0 we will say that the

pump k is turbinating (water enters by the collector Ck and is turbinated by
the corresponding pipeline to the injector T

k), and if gk(t) < 0 we will say
that the pump k is pumping (water enters by injector T k and is pumped to the
collector Ck). As it is evident, the situation g

k(t) = 0 corresponds to the case
in which the pump k is o↵. In addition, we will also suppose that the parameter
✏ used in the definition (2) tends to cero, that is, the mean temperature in
the injectors is equal to the mean temperature in the collectors. It is essential
emphasizing here that it is also possible to perform a similar mathematical
analysis for the general case (with the obvious embarrassing notations), under
the only assumption of the existence of a partition of the time interval verifying
that the groups do not change their state within any element of the partition
(as can be seen in following section devoted to the numerical examples).

5.1 Space-time discretization

For the discretization of the problem, let us consider a regular partition 0 =
t0 < t1 < . . . < tN = T of the time interval [0, T ] such that tn+1�tn = �t = 1

↵
,

8n = 0, . . . , N � 1, and a family of meshes ⌧h for the domain ⌦ with char-
acteristic size h. Associated to this family of meshes, we also consider three
compatible finite element spaces Zh, Wh and Mh corresponding, respectively,
to the water temperature, velocity and the pressure of water. From the compu-
tational viewpoint, for the generation of the mesh associated to the domain and
for the numerical resolution of the system, we propose the use of FreeFem++
[14]. Finally, we have employed an Uzawa algorithm [12] for computing the
solution of the Stokes problems that appears after the discretization, and a
fixed point algorithm for solving the nonlinearities.

So, we consider the following space-time discretization for system (1) and (6):

(1) Dirichlet condition for the water velocity : We consider the following ap-
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proximation for a function g = (g1, . . . , gNCT ) 2 [H1(0, T )]NCT ,

g
k(x) =

NX

n=0

g
k,n

e
n(x), (51)

where, for all n = 0, . . . , N , e
n 2 C([0, T ]) is such that e|[tn�1,tn]

2
P1([tn�1

, t
n]), n = 1, . . . , N and e

n(tk) = �k,n, k, n = 0, . . . , N . It is well
known that the linear closure of the functions of the basis {en}N

n=0 is a vec-
tor subspace of H1(0, T ), so if we suppose that gk,0 = 0, k = 1, . . . , NCT ,
we can consider the following coordinate vector in the basis of the corre-
sponding subspace of [H1(0, T )]NCT :

g = (g1,1, g2,1, . . . , gNCT ,1

| {z }
g1

, . . . , g
1,N

, g
2,N

, . . . , g
NCT ,N

| {z }
gN

) 2 RN⇥NCT , (52)

with g
k,n 2 [�M,M ], k = 1, . . . , NCT , n = 1, . . . , N , with M > 0 a

technical bound related to mechanical characteristics of pumps.
(2) Coupling of temperature in collectors and injectors : We denote by ✓n 2 Zh

the water temperature at time step n = 0, . . . , N . Then, we can consider
the following approximation in the case of g

k,n
> 0, k = 1, . . . , NCT ,

n = 1, . . . , N , for (3) by functions �k

✓
, k = 1, . . . , NCT , :

�
k

✓
(t) =

1

µ(Ck)

"

�(�1,t0)

Z

Ck
✓
0
d�

+
NX

n=1

�[tn�1,tn)

Z

Ck
✓
n�1

d� + �[tN ,1)

Z

Ck
✓
N
d�

#

Moreover, if we assume the value ✏ = �t

2 in the definition (4) of function ⇢✏

we have that the support of ⇢�t/2(tn��t

2 �s) is contained in (tn��t, t
n) =

(tn�1
, t

n), for all n = 1, . . . , N , and then:

�
n

✓
(x) =

NCTX

k=1

'
k(x)

Z
T

�T

⇢�t/2(t
n � �t

2
� s) �k

✓
(s) ds

=
NCTX

k=1

'
k(x)

Z
tn

tn�1

⇢�t/2(t
n � �t

2
� s)

"
1

µ(Ck)

Z

Ck
✓
n�1

d�

#

ds

=
NCTX

k=1

'
k(x)

1

µ(Ck)

Z

Ck
✓
n�1

d�.

Finally, we approximate each element '
k by the indicator function of

the injector T
k, k = 1, . . . , NCT , and each element '̃

k by the indicator
function of the collector C

k, k = 1, . . . , NCT . Thus, the temperature in
each injector at time step tn is the mean temperature in the corresponding
collector at time step tn�1. The previous approximation is still valid in the
general case with obvious modifications. For instance, if we suppose that
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g
k,n

< 0, k = 1, . . . , NCT , n = 1, . . . , N , then, we consider the Dirichlet
condition in the collectors:

�
n

✓
(x) =

NCTX

k=1

e'k(x)
1

µ(T k)

Z

Tk
✓
n�1

d�.

(3) Water temperature: Given ✓
0 2 Zh, ✓1 2 Zh is the solution of:

↵

Z

⌦
✓
1
⌘ dx+K

Z

⌦
r✓

1 ·r⌘ dx+ b
N

1

Z

�N

✓
1
⌘ d� + b

S

1

Z

�S

✓
1
⌘ d�

+b
S

2

Z

�S

|✓1|3✓1⌘ d� = ↵

Z

⌦
(✓0 �X0)⌘ dx+ b

N

1

Z

�N

✓
1
N
⌘ d�

+b
S

1

Z

�S

✓
1
S
⌘ d� + b

S

2

Z

�S

(T 1
r
)4⌘ d�, 8⌘ 2 Zh,

(53)

where the discrete characteristic X
0(x) = x��tv0(x).

Then, for each n = 1, . . . , N , ✓n+1 2 Zh, with

@✓
n+1

@n |Ck

= 0, ✓
n+1
|Tk

=
1

µ(Ck)

Z

Ck
✓
n+1

d� if gk,n > 0, (54)

✓
n+1
|Ck

=
1

µ(T k)

Z

Tk
✓
n+1

d�,
@✓

n+1

@n |Tk

= 0 if gk,n < 0, (55)

@✓
n+1

@n |Ck

= 0,
@✓

n+1

@n |Tk

= 0 if gk,n = 0, (56)

for all k = 1, . . . , NCT , is the solution of:

↵

Z

⌦
✓
n+1

⌘ dx+K

Z

⌦
r✓

n+1 ·r⌘ dx+ b
N

1

Z

�N

✓
n+1

⌘ d�

+b
S

1

Z

�S

✓
n+1

⌘ d� + b
S

2

Z

�S

|✓n+1|3✓n+1
⌘ d� = ↵

Z

⌦
(✓n �Xn)⌘ dx

+b
N

1

Z

�N

✓
n+1
N

⌘ d� + b
S

1

Z

�S

✓
n+1
S

⌘ d� + b
S

2

Z

�S

(T n+1
r

)4⌘ d�, 8⌘ 2 Z
n

h
,

(57)

where the discrete characteristic Xn(x) = x��tvn(x), for n = 1, . . . , N ,
and where the functional space Z

n

h
is given by:

{⌘ 2 Zh : ⌘|⇣
[NCT
k=1

1
2 (1�sign(gk,n))Ck

⌘
|sign(gk,n)|[

⇣
[NCT
k=1

1
2 (1+sign(gk,n))Tk

⌘
|sign(gk,n)|

= 0},

(58)
with sign(y) denoting the sign function:

sign(y) =

8
>>>>><

>>>>>:

1 if y > 0,

�1 if y < 0,

0 if y = 0.
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For instance, in the case of gk,n > 0 for all k = 1, . . . , NCT , n = 1, . . . , N ,
then

⇣
[NCT

k=1
1
2(1� sign(gk,n))Ck

⌘
|sign(gk,n)| [

⇣
[NCT

k=1
1
2(1 + sign(gk,n))T k

⌘

= [NCT
k=1 T

k, so

Z
n

h
= {⌘ 2 Zh : ⌘|

[NCT
k=1

Tk
= 0}, n = 1, . . . , N. (59)

That is, we are considering the Dirichlet condition on the injectors. In
the oposite case, gk,n < 0 for all k = 1, . . . , NCT , n = 1, . . . , N , we have
that

Z
n

h
= {⌘ 2 Zh : ⌘|

[NCT
k=1

Ck
= 0}, n = 1, . . . , N, (60)

and we are considering the Dirichlet condition on the collectors. In the
general case, we can have alternating Dirichlet conditions on the collectors
and injectors, so the definition for the space Z

n

h
, n = 1, . . . , N , given in

(58) covers all the possibilities.
(4) Water velocity and pressure: Given v0 2 Vh, for each n = 0, 1, . . . , N�1,

the pair velocity/pressure (vn+1
, p

n+1) 2 Wh ⇥Mh, with:

vn+1
|Tk = �g

k,n+1

µ(T k)
n, vn+1

|Ck =
g
k,n+1

µ(Ck)
n, 8k = 1, . . . , NCT , (61)

is the solution of:

↵

Z

⌦
vn+1 · z dx+ 2⌫

Z

⌦
✏(vn+1) : ✏(z) dx

+2⌫tur
Z

⌦
[✏(vn+1) : ✏(vn+1)]1/2✏(vn+1) : ✏(z) dx

�
Z

⌦
p
n+1r · z dx�

Z

⌦
r · vn+1

q dx = ↵

Z

⌦
(vn �Xn) · z dx

+
Z

⌦
↵0(✓

n+1 � ✓
0)ag · z dx, 8z 2 Vh, 8q 2 Mh,

(62)

where the functional space Vh = {z 2 Wh : z|[NCT
k=1 (Tk[Ck)

= 0}.

Remark 10 It is worthwhile noting here that in above scheme we have to

compute one additional time step for the water temperature. This shift is mo-

tivated by the dependence diagram shown in Fig. 2. We observe that, due to the

time discretization proposed here, the Dirichlet boundary condition for the hy-

drodynamic model begins to have influence from the second step of time for the

water temperature. In the first time step n = 1, water circulation does not af-

fect the water temperature, so for this first time step we consider �N = @⌦\�S.

However, for n � 2, we impose at each of the NCT collector/injector pairs one

of the boundary conditions (54), (55) or (56), depending on the sign of the

Dirichlet condition g
k,n�1

in previous time step.
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Fig. 2. Dependence scheme for the discretized variables.

5.2 Numerical results

This final subsection is devoted to present some numerical results that we
have obtained using realistic coe�cients and data. Nevertheless, for the sake of
clarity and comprehensibility, we will show results for a simplified 2D domain.
For this purpose, we have considered a rectangular domain ⌦ = [0, 16]⇥ [0, 19]
(measured in meters), corresponding a reservoir, in which we have distributed
NCT = 4 collector/injector pairs with a symmetrical configuration similar
to that shown in Fig. 1. For the time discretization we have chosen a time
step of �t = 1800 seconds with N = 96 time steps (which represents a time
period of 2 days), and for the space discretization we have used a regular mesh
formed by triangles of characteristic size h = 0.5 meters (corresponding to 1599
vertices). Finally, the finite element spaces employed for space discretizations
have been the Taylor-Hood element P2/P1 for the hydrodynamic model, and
the Lagrange P2 element for the water temperature. In Fig. 3 we can observe
the evolution of the radiation temperature:

Tr =
✓

1

" �B

[(1� a)Rsw,net +Rlw,down]
◆1/4

(63)

along the whole period of 2 days (17.28 104 seconds), considering a = 0.1,
Rsw,net = 1000Wm�2, Rlw,down = 350Wm�2 (typical values in mediterranean
countries during the summer) and multiplied by a sinusoidal function in order
to simulate the e↵ects of day and night. The parameters used for the numerical
resolution of the coupled system can be seen in Table 1.

In order to analyze the influence of water artificial circulation in the thermal
behavior of top 1.5 meters from water upper layer we have solved the problem

22



Fig. 3. Profile of the radiation temperature Tr for the whole time interval of
T = 17.28 104 seconds (2 days).

Parameters Values Units

⌫ 1.3 10�3 m2 s�1

⌫tur 5.0 10�2 m2

K 1.4 10�5 m2 s�1

hN , hS 3.0 102 Wm�2K�1

⇢ 9.9 102 gm�3

cp 4.2 W s g�1K�1

✓0 283.0 K

✓S 286.0 K

✓N 283.0 K

↵0 8.7 10�7 K�1

Table 1
Physical parameters for the numerical example.

in five di↵erent scenarios:

(1) NNNN: In this configuration we take gk,n = 0, for all k = 1, . . . , NCT and
n = 1, . . . , N (reference configuration with all the groups o↵).

(2) TTTT: In this configuration we take gk,n = 2.0 10�3, for all k = 1, . . . , NCT

and n = 1, . . . , N (all the groups are turbinating).
(3) PPPP: In this configuration we take g

k,n = �2.0 10�3, for all k =
1, . . . , NCT and n = 1, . . . , N (all the groups are pumping).

(4) TPTP: In this configuration we take g
1,n = g

3,n = 2.0 10�3 and g
2,n =

g
4,n = �2.0 10�3, for all k = 1, . . . , NCT and n = 1, . . . , N (groups 1 and

3 are turbinating, and groups 2 and 4 are pumping).

23



(5) PTPT: In this configuration we take g
1,n = g

3,n = �2.0 10�3 and g
2,n =

g
4,n = 2.0 10�3, for all k = 1, . . . , NCT and the groups 2 and 4 are

turbinating).

Fig. 4. Evolution of the mean temperature in the top 1.5 meters upper layer of the
water domain for the five scenarios under study.

In Fig. 4 we present the evolution of the mean temperature in the top 1.5
meters upper layer along the whole time interval corresponding to two days.
We can clearly distinguish here that the best configurations correspond, in
a very evident manner, to the second scenario (TTTT) and to the fourth
one (TPTP). Moreover, we can notice how third and fifth scenarios (PPPP
and PTPT, respectively) do not improve in a significant way the reference
configuration (NNNN).

Finally, we show in Fig. 5 water temperatures and velocities at last time step
for NNNN and TTTT configurations and, in Fig. 6, the behavior of water
at same time step for configurations TPTP and PTPT. (In all of the cases,
velocities have been multiplied by an amplifying factor to make their graphic
representations more perceptible). As we can easily notice, the best strategies
correspond to evacuating the excess of temperature in the upper layers to the
bottom layers instead of refrigerating the upper layers with cold water from
the bottom ones.

Although we only present here one realistic example of application of our
approach to understand the behaviour of water velocity and temperature in
the upper section of the domain, we have developed many other numerical
experiences for di↵erent choices of parameters and data (that will not be
presented here for the sake of conciseness). However, from these computational
tests we can derive two important consequences: For the modified Navier-
Stokes equations, the second member -corresponding to the thermic term-
shows less influence in the numerical resuls than the Smagorinsky turbulence

24



x

y

z

GiD
step 96
Display Vectors of  Velocity , | Velocity | factor 15000.

y

xz

283
283.3
283.6
283.9
284.2
284.5
284.8
285.1
285.4
285.7
286

 Temperature 

Contour Fill of  Temperature .
step 96

y

xz

283
283.3
283.6
283.9
284.2

284.8
285.1
285.4
285.7
286

 Temperature 

284.5

step 96
Contour Fill of  Temperature . GiDFig. 5. Water temperatures and velocities (multiplied by factors 1500/500) in the

last time step for the worst configuration NNNN (left) and the best configuration
TTTT (right).

y

xz

283
283.3
283.6
283.9
284.2
284.5
284.8
285.1
285.4
285.7
286

 Temperature 

GiDContour Fill of  Temperature .
step 96

y

xz

283
283.3
283.6
283.9
284.2
284.5
284.8
285.1
285.4
285.7
286

 Temperature 

Contour Fill of  Temperature .
step 96

x

y

z

Display Vectors of  Velocity , | Velocity | factor 500.
step 96

GiDFig. 6. Water temperatures and velocities (multiplied by a factor 500) in the last
time step for the “good” configuration TPTP (left) and the “bad” configuration
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term. For the convective heat equation, the radiation term in the nonlinear
boundary condition a↵ects in a significative way the final results. Finally, for a
better resolution of the numerical examples, it would be possible to use, instead
of an uniform mesh like the one employed in previous example, a finer mesh
in the neighbourhoods of collectors and injectors. Nevertheless, this approach
would mean a significant increase in the computational time, already quite
high in the current case (especially in the part referring to the resolution of
the hydrodynamic problem).
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A A radiation heat transfer problem with nonhomogeneous mixed
boundary conditions

In this appendix we mathematically analyze a heat equation with an advective
term and mixed boundary conditions of di↵usive, convective and radiative
type. The essential di�culty for demonstrating the existence and uniqueness
of solution lies, in one hand, in the presence of nonlinear boundary conditions
of radiative type and, in the other hand, the lack of regularity of the time
derivative of the solutions. This lack of regularity does not allow us to take
the solution itself as a test function in the variational formulation, and we are
led to use more refined techniques (similar to those employed, for instance, in
[1]).

So, we suppose that we have a convex domain ⌦ ⇢ R3, whose boundary
can be split into three disjoint, smooth enough parts: �L, �A and �R, with
@⌦ = �L [ �A [ �R. We denote by ✓ the solution of the following initial-
boundary value problem:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@✓

@t
+ v ·r✓ �r · (Kr✓) = f in ⌦⇥]0, T [,

✓ = ✓L on �L⇥]0, T [,

Kr✓ · n = b
A

1 (✓A � ✓) on �A⇥]0, T [,

Kr✓ · n = b
R

1 (✓R � ✓) + b
R

2 ('
4 � |✓|3✓) on �R⇥]0, T [,

✓(0) = ✓
0 in ⌦,

(A.1)

where K > 0 (m2 s�1) is the thermal di↵usivity, bH1 � 0 (m s�1), for H = A,R,
are the coe�cients related to convective heat transfer through the boundaries
�A and �R, and b

R

2 > 0 (m sK�3) is the coe�cient related to radiative heat
transfer through the boundary �R, ✓0 � 0 (K) is the initial temperature, ✓L �
0 (K) is Dirichlet temperature on �L, ' � 0 (K) is the radiation temperature
on �R, and ✓A, ✓R � 0 (K) are the temperatures related to convection heat
transfer in surfaces �A and �R.

Remark 11 In this work we will suppose that �L, �A and �R are nonempty,

but all the results can be easily extended to the case where �A and/or �R

are empty sets. The only drawback is when �L = ; because in this case we
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cannot use Poincare type inequalities, and we should apply another type of

techniques for obtaining energy estimates in the Galerkin approximation. A

related problem with �L = ; was studied, for instance, in [20].

We consider the following spaces

X = {✓ 2 H
1(⌦) : ✓|�R

2 L
5(�R)},

fX = {✓ 2 X : ✓|�L
= 0},

(A.2)

and

W = {✓ 2 W
1,2,5/4(0, T ;X,X

0) :

✓|�R
2 L

5(0, T ;L5(�R))} \ L
1(0, T ;L2(⌦)),

fW = {✓ 2 W
1,2,5/4(0, T ; fX, fX 0) :

✓|�R
2 L

5(0, T ;L5(�R))} \ L
1(0, T ;L2(⌦)).

(A.3)

Hypothesis 12 We will assume the following hypotheses for the coe�cients

and data:

(1) ✓
0 2 L

2(⌦).
(2) f 2 L

2(0, T ;L2(⌦)).
(3) v 2 L

10/3(0, T ; [L3
�
(⌦)]3).

(4) ✓A 2 L
2(0, T ;L2(�A)).

(5) ✓R 2 L
2(0, T ;L2(�R)).

(6) ' 2 L
5(0, T ;L5(�R)).

(7) ✓L(x, t) = g(t)✓D(x), a.e. (x, t) 2 �L⇥]0, T [, with g 2 H
1(0, T ) and

✓D = c✓D |�L
, where c✓D 2 H

3/2(@⌦).

Definition 13 Within the framework established in Hypothesis 12, we say

that an element ✓ 2 W is a solution of the system (A.1) if there exists ⇠ 2 fW
such that:

• ✓ = ⇣D + ⇠, with ⇣D = g �0(c✓D) 2 W
1,2,2(0, T ;H2(⌦), H2(⌦)), where �0 is

the right inverse of trace operator �0 : H2(⌦) ! H
3/2(@⌦).

• ⇠(0) = ✓
0 � ⇣D(0), a.e. x 2 ⌦.

• ⇠ 2 fW is the solution of the following variational formulation:

Z

⌦

@⇠

@t
⌘ dx+

Z

⌦
v ·r⇠⌘ dx+K

Z

⌦
r⇠ ·r⌘ dx

+b
A

1

Z

�A

⇠⌘ d� + b
R

1

Z

�R

⇠⌘ d� + b
R

2

Z

�R

|⇠ + ⇣D|3(⇠ + ⇣D)⌘ d�

=
Z

⌦
HD⌘ dx+ b

A

1

Z

�A

g
A

D
⌘ d�

+b
R

1

Z

�R

g
R

D
⌘ d� + b

R

2

Z

�R

'
4
⌘ d�, a.e. t 2]0, T [, 8⌘ 2 fX,

(A.4)
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where some of previous integrals must be understood as duality pairs, and

HD = �v ·r⇣D +
@⇣D

@t
+r · (Kr⇣D) 2 L

2(0, T ;L2(⌦)),

g
A

D
= ✓A � ⇣D � D

b
A
1

r⇣D · n 2 L
2(0, T ;L2(�A)),

g
R

D
= ✓R � ⇣D � D

b
R
1

r⇣D · n 2 L
2(0, T ;L2(�R)).

(A.5)

We have the following result that we will prove in the following subsections:

Theorem 14 Within the framework established in Hypothesis 12, there exists

a unique solution ⇠ 2 fW of equation (A.4) in the sense of Definition 13.

Moreover, there exists a constant C > 0, such that this solution satisfies the

following inequalities:

k⇠k2
L1(0,T ;L2(⌦)) + k⇠k2

L2(0,T ;H1(⌦)) + k⇠k5
L5(0,T ;L5(�S))

 C


k✓0 � ⇣D(0)k2L2(⌦) + kHDk2L2(0,T ;L2(⌦)) + kgA

D
k2
L2(0,T ;L2(�A))

+kgR
D
k2
L2(0,T ;L2(�R) + k⇣Dk5L5(0,T ;L5(�R)) + k'k5

L5(0,T ;L5(�R))

�
,

(A.6)

�����
d⇠

dt

�����
L5/4(0,T ; eX0)

 C


kHDk2L2(0,T ;L2(⌦)) + kgA

D
kL2(0,T ;L2(�A))

+kgR
D
kL2(0,T ;L2(�R)) + k'k4

L5(0,T ;L5(�R)) + kvkL10/3(0,T ;[L3(⌦)]3)k⇠kL2(0,T ; eX)

+k⇠k
L2(0,T ; eX)

+ k⇠k4
L5(0,T ;L5(�R)) + k⇣Dk4L5(0,T ;L5(�R))

�
.

(A.7)

In order to better understand the proof of the previous result, we will divide
it in five parts: in the first part we will prove some technical results related to
the space where we look for the solution. In the second part we will obtain the
Galerkin approximation of problem (A.1). In the third part we will analyze the
di↵erential equation obtained from the Galerkin discretization. In the fourth
part we will derive the convergence of the Galerkin approximation in a suitable
space. Finally, in fifth part we will prove Theorem 14.

A.1 Part 1: Some technical results

We have the following lemma that we will use in following subsections:

Lemma 15 Let Z ⇢ fX a Banach space such that L
5(�R) ⇢ Z

0
. The following

inclusion is compact:
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{✓ 2 W
1,2,5/4(0, T ; fX,Z

0) :

✓|�R
2 L

5(0, T ;L5(�R))} ⇢⇢ L
5(0, T ;L5(�R))

(A.8)

PROOF. The proof is a direct consequence of Aubin and Lions Lemma (see,
for instance, Lemma 7.7 of [21]), the compactness of fX in L

5(�R), and the
dominated convergence theorem in Banach spaces. ⌅

Remark 16 We have that W
1,2,2(0, T ;H2(⌦), H2(⌦)) ⇢ C([0, T ];H2(⌦)) (in

fact, it is well known that if p, q � 1 and V1 ⇢ V2 continuously, then W
1,p,q(0, T ;

V1, V2) ⇢ C([0, T ];V2) continuously), and that C([0, T ];H2(⌦)) ⇢ W . Then, the

sum ✓D+⇠ makes sense in the space W . Moreover, v·r⇣D 2 L
10/3(0, T ;L2(⌦)).

We can also consider as a Dirichlet condition the restriction to �L of one

element of the space W
1,2,2(0, T ;Hs�1/2(@⌦), Hs�5/2(@⌦)), with s � 2. In this

case, we can obtain an extension in the space W
1,2,2(0, T ;Hs(⌦), Hs�2(⌦)) (cf.

Theorem 3.2 of [11]) and, if we want to ensure that W
1,2,2(0, T ;Hs(⌦), Hs�2(⌦))

⇢ W , we can take, for instance, s � 3.

A.2 Part 2: Galerkin approximation

In this part we will construct a sequence of approximations that will converge
to a solution of problem (A.1). So, let {!n}n2N ⇢ fX be a dense subset of
independent vectors of fX, which we can assume orthonormal in L

2(⌦), such
that the projection

PN(v) =
NX

k=1

✓Z

⌦
!kv dx

◆
!k (A.9)

is selfadjoint and kPN |ZkL(Z,Z)  1, 8N 2 N, where Z is a Banach space, as
given in Lemma 15. Then, for N 2 N, we denote by:

⇠N =
NX

n=1

⇠
N

n
(t)!n, (A.10)

where the coe�cients ⇠N
n
(t), n = 1, . . . , N , are such that ⇠N is the solution of

the following di↵erential equation:

Z

⌦

@⇠N

@t
!k dx+

Z

⌦
v ·r⇠N!k dx+K

Z

⌦
r⇠N ·r!k dx+ b

A

1

Z

�A

⇠N!k d�

+b
R

1

Z

�R

⇠N!k d� + b
R

2

Z

�R

|⇠N + ⇣D|3(⇠N + ⇣D)!k d� =
Z

⌦
HD !k dx

+b
A

1

Z

�A

g
A

D
!k d� + b

R

1

Z

�R

g
R

D
!k d� + b

R

2

Z

�R

'
4
!k d�, 8k = 1, . . . , N,

(A.11)
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which can be rewritten in the following standard formulation:

8
><

>:

dy

dt
= F(y(t), t), a.e. t 2]0, T [,

y(0) = y0,

(A.12)

where:
y(t) =

⇣
⇠
N

1 (t), ⇠N2 (t), . . . , ⇠N
N
(t)
⌘
T

, (A.13)

y0 =
⇣
(⇠N0 ,!1), (⇠

N

0 ,!2), . . . , (⇠
N

0 ,!N)
⌘
T

, (A.14)

F(y, t) =

0

BBBBBBBB@

hf(t),!1i � a(t;y · !,!1)

hf(t),!2i � a(t;y · !,!2)
...

hf(t),!Ni � a(t;y · !,!N)

1

CCCCCCCCA

, (A.15)

! = (!1,!2, . . . ,!N)
T
, (A.16)

hf(t),!ki =
Z

⌦
HD(t)!k dx+ b

A

1

Z

�A

g
A

D
(t)!k d�

+ b
R

1

Z

�R

g
R

D
(t)!k d� + b

R

2

Z

�R

'
4(t)!k d�,

(A.17)

a(t;y · !,!k) =
Z

⌦
v(t) ·r(y · !)!k dx

+K
R
⌦ r(y · !) ·r!k dx

+ b
A

1

Z

�A

(y · !)!k d� + b
R

1

Z

�R

(y · !)!k d�

+ b
R

2

Z

�R

|(y · !) + ⇣D(t)|3((y · !) + ⇣D(t))!k d�,

(A.18)

where k = 1, . . . , N , and ⇠
N

0 = PN(✓0 � ⇣D(0)) is the projection of ✓0 � ⇣D(0)
onto fXN = h{!1, . . . ,!N}i.

Thus, we say than an element ⇠N 2 W
1,5/4(0, T ; fXN) is a solution of system

(A.11) if it satisfies the ordinary di↵erential equation problem (A.12). We must
recall here that k⇠N0 kL2(⌦)  k✓0 � ⇣D(0)kL2(⌦), 8N 2 N, and that, if ⇠N is a
solution of problem (A.11), then y 2 C([0, T ];RN).

Lemma 17 Within the framework established in Hypothesis 12, there exits a

constant C > 0 independent of N such that:

k⇠Nk2L1(0,T ;L2(⌦)) + k⇠Nk2L2(0,T ;H1(⌦)) + k⇠Nk5L5(0,T ;L5(�S))

 C


k✓0 � ⇣D(0)k2L2(⌦) + kHDk2L2(0,T ;L2(⌦)) + kgA

D
k2
L2(0,T ;L2(�A))

+kgR
D
k2
L2(0,T ;L2(�R) + k⇣Dk5L5(0,T ;L5(�R)) + k'k5

L5(0,T ;L5(�R))

�
,

(A.19)

30



�����
d⇠N

dt

�����
L5/4(0,T ;Z0)

 C


kHDkL2(0,T ;L2(⌦)) + kgA

D
kL2(0,T ;L2(�A))

+kgR
D
kL2(0,T ;L2(�R)) + k'k4

L5(0,T ;L5(�R)) + kvk
L10/3(0,T ;[L3(⌦)]3)k⇠NkL2(0,T ; eX)

+k⇠NkL2(0,T ; eX)
+ k⇠Nk4L5(0,T ;L5(�R)) + k⇣Dk4L5(0,T ;L5(�R))

�
.

(A.20)

PROOF. Multiplying (A.11) by ⇠
N

k
(t), summing in k and adding to both

sides the term

b
R

2

Z

�R

|⇠N(s) + ⇣D(s)|3(⇠N(s) + ⇣D(s))⇣D(s) dx, (A.21)

we have:

1

2

d

dt
k⇠N(s)k2L2(⌦) +Kkr⇠N(s)k2[L2(⌦)]3 + b

R

2 k⇠N(s) + ⇣D(s)k5L5(�R)

 kHD(s)kL2(⌦)k⇠N(s)kL2(⌦) + b
A

1 kgAD(s)kL2(�A)k⇠N(s)kL2(�A)

+b
R

1 kgRD(s)kL2(�R)k⇠N(s)kL2(�R) + b
R

2 k'(s)k4L5(�R)k⇠N(s)kL5(�R)

+b
R

2 k⇠N(s) + ⇣D(s)k4L5(�R)k⇣D(s)kL5(�R).

(A.22)

As a consequence of the continuity of trace operator and of the inequalities of
Young and Poincare, we obtain:

kHD(s)kL2(⌦)k⇠N(s)kL2(⌦) 
C1

✏1
kHD(s)k2L2(⌦) + ✏1kr⇠N(s)k2[L2(⌦)]3 ,

kgA
D
(s)kL2(�A)k⇠N(s)kL2(�A) 

C2

✏2
kgA

D
(s)k2

L2(�A) + ✏2kr⇠N(s)k2[L2(⌦)]3 ,

kgR
D
(s)kL2(�R)k⇠N(s)kL2(�R) 

C3

✏3
kgR

D
(s)k2

L2(�R) + ✏3kr⇠N(s)k2[L2(⌦)]3 ,

k'(s)k4
L5(�R)k⇠N(s)kL5(�R) 

C4

4
p
✏4
k'(s)k5

L5(�R) + ✏4k⇠N(s)k5L5(�R),

k⇠N(s) + ⇣D(s)k4L5(�R)k⇣D(s)kL5(�R) 
C5

4
p
✏5
k⇣D(s)k5L5(�R)

+✏5k⇠N(s) + ⇣D(s)k5L5(�R),

where ✏k, k = 1, . . . , 5, are arbitrary strictly positive numbers, and Ck, k =
1, . . . , 5, are constants that may depend on the trace operator and Young and
Poincare’s inequalities. If we take ✏k, k = 1, 2, 3, such that K�P3

k=1 ✏k = K/2
and ✏5 = b

R

2 /2, then (renaming the constants if necessary):
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1

2

d

dt
k⇠N(s)k2L2(⌦) +

K

2
kr⇠N(s)k2[L2(⌦)]3 +

b
R

2

2
k⇠N(s) + ⇣D(s)k5L5(�R)

 C1kHD(s)k2L2(⌦) + C2kgAD(s)k2L2(�A) + C3kgRD(s)k2L2(�R)

+
C4

4
p
✏4
k'(s)k5

L5(�R) + ✏4k⇠N(s)k5L5(�R) + C5k⇣D(s)k5L5(�R).

(A.23)

Adding to both sides b
S
2
2 k⇣D(s)k

5
L5(�R), using the inequality (a + b)5  16a5 +

16b5 (for a, b � 0), and taking ✏5 = b
R

2 /64:

1

2

d

dt
k⇠N(s)k2L2(⌦) +

K

2
kr⇠N(s)k2[L2(⌦)]3 +

b
R

2

64
k⇠N(s)k5L5(�R)

 C1kHD(s)k2L2(⌦) + C2kgAD(s)k2L2(�R) + C3kgRD(s)k2L2(�R)

+C4k'(s)k5L5(�R) + C5k⇣D(s)k5L5(�R).

(A.24)

Finally, integrating over the time interval [0, t] (renaming again the constants):

k⇠N(t)k2L2(⌦) +
Z

t

0
kr⇠N(s)k2[L2(⌦)]3 ds+

Z
t

0
k⇠N(s)k5L5(�R) ds

 C


k✓0 � ⇣D(0)k2L2(⌦) +

Z
t

0
kHD(s)k2L2(⌦) ds+

Z
t

0
kgA

D
(s)k2

L2(�R) ds

+
Z

t

0
k'(s)k5

L5(�R) ds+
Z

t

0
k⇣D(s)k5L5(�R) ds

�
,

(A.25)

where we have used that k⇠N0 kL2(⌦)  k✓0 � ⇣D(0)kL2(⌦), 8N 2 N. Finally,
applying Gronwall’s Lemma, we obtain that there exists a positive constant
C independent of N such that (A.19) is satisfied.

For obtaining (A.20) it is su�cient to apply Holder inequality and bear in mind
the fact that the projection operator PN onto fXN is bounded independently
of N : *

d⇠N

dt
, v

+

=

*

PN

 
d⇠N

dt

!

, v

+

=

*
d⇠N

dt
, PN(v)

+

 C


kHDkL2(0,T ;L2(⌦)) + kgA

D
kL2(0,T ;L2(�A))

+kgR
D
kL2(0,T ;L2(�R)) + k'k4

L5(0,T ;L5(�R))

+kvkL10/3(0,T ;[L3(⌦)]3)k⇠NkL2(0,T ; eX)

+k⇠NkL2(0,T ; eX)
+ k⇠Nk4L5(0,T ;L5(�R))

+k⇣Dk4L5(0,T ;L5(�R))

�
kPNkL(Z,Z)kvkL5(0,T ;Z).

⌅
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A.3 Part 3: Existence of solution for the Galerkin approximation

Now we will demonstrate that there exists, for eachN 2 N, a unique absolutely
continuous solution ⇠N of equation (A.11).

Lemma 18 Within the framework established in Hypothesis 12, there exists a

unique absolutely continuous solution defined on the whole time interval [0, T ]
of Cauchy problem (A.12).

PROOF. To state this lemma we can apply the Caratheodory theorem for
ordinary di↵erential equations (cf., for example, Theorem 5.2 of [13]). Indeed,
F(·, t) is continuous for any t 2 [0, T ], and F(y, ·) 2 L

5/4(0, T ) for any y 2 RN .
Then, given an open ball B in RN , if we prove that there exist two functions
mB, lB 2 L

1(0, T ) such that:

kF(y, t)k  mB(t), a.e. t 2]0, T [, 8y 2 B,

kF(y1, t)� F(y2, t)k  lB(t)ky1 � y2k, a.e. t 2]0, T [, 8y1, y2 2 B,

(A.26)

we can conclude that problem (A.12) has a unique absolutely continuous so-
lution, which can be extended to the boundary of ]0, T [⇥B. It is worthwhile
mentioning here that, if

diam(B)2 > C


k✓0 � ⇣D(0)k2L2(⌦) + kHDk2L2(0,T ;L2(⌦))

+kgA
D
k2
L2(0,T ;L2(�A)) + kgR

D
k2
L2(0,T ;L2(�R)

+k⇣Dk5L5(0,T ;L5(�R)) + k'k5
L5(0,T ;L5(�R))

�
,

(A.27)

then the solution y cannot reach the boundary of B because of the a priori

estimate (A.19) and the fact that k⇠N(t)k2L2(⌦) = ky(t)k2. The first of the
Caratheodory conditions (A.26) can be obtained by applying Holder inequality
(in fact, we obtain that mB 2 L

5/4(0, T )). In the other hand, for the second
Caratheodory condition, we can use the following inequality (straightforward
consequence of the mean value Theorem):

b|b|3 � a|a|3 = 4|c|3(b� a), (A.28)

for c = �b+ (1� �)a and � 2 (0, 1). So, we obtain the following inequality:
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|Fk(y1, t)� Fk(y2, t)| = |a(t;y1 · !,!k)� a(t;y2 · !,!k)|

 C1


kv(t)k[L3(⌦)]3kr!k[L2(⌦)]N⇥3k!kkL6(⌦)

+kr!k[L2(⌦)]N⇥3kr!kkL2(⌦) + k!k[L2(�A)]Nk!kkL2(�A)

+k!k[L2(�R)]Nk!kkL2(�R)

�
ky1 � y2k

+C2

✓
max{ky1k, ky2k}3k!k3[L5(�R)]N

+k⇠D(t)k3L5(�R)

◆
k!k[L5(�R)]Nk!kkL5(�R)

�
ky1 � y2k.

Therefore, we can conclude the existence of a function lB 2 L
1(0, T ) (in fact,

lB 2 L
5/3(0, T )) such that the second of the Caratheodory conditions (A.26)

is achieved. ⌅

A.4 Part 4: Convergence of the Galerkin approximation

In previous subsections we have seen that there exists a bounded sequence
{⇠N}N2N ⇢ fW of solutions of problem (A.12). In this subsection we will pass
to the limit and obtain a solution of equation (A.4).

Lemma 19 There exists a subsequence of {⇠N}N2N, still denoted in the same

way, such that:

(1) ⇠N * ⇠ in L
2(0, T ; fX),

(2) ⇠N *
⇤
⇠ in L

1(0, T ;L2(⌦)),
(3) ⇠N ! ⇠ in L

10/3�✏(0, T ;L10/3�✏(⌦)),
(4) ⇠N ! ⇠ in L

2(0, T ;L2(�A)),
(5) ⇠N ! ⇠ in L

5(0, T ;L5(�R)).

PROOF. Thanks to the boundedness in fW of the sequence {⇠N}N2N, we
obtain the first two convergences. The third and fourth limits are a direct
consequence of Aubin, and Lions Lemma (cf. Lemma 7.7 of [21]) and the
compactness of H1(⌦), respectively, in L

6�✏(⌦) and L
4�✏(@⌦), 8✏ > 0. Finally,

the fifth convergence is a consequence of Lemma 15. ⌅

Lemma 20 If {⇠N}N2N is a bounded sequence in fW , then there exists a

subsequence of {⇠N}N2N, still denoted in the same way, such that, for all

� 2 L
5(0, T ;L5(�R)):

lim
N!1

Z
T

0

Z

�R

|⇠N + ⇣D|3(⇠N + ⇣D)� d� dt

=
Z

T

0

Z

�R

|⇠ + ⇣D|3(⇠ + ⇣D)� d� dt.
(A.29)
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PROOF. Using the same technique that we have employed in the proof of
Lemma 18, from the strong convergence of {⇠N}N2N to ⇠ in L

5(0, T ;L5(�R))
and the inequality (A.19) we have:

lim
N!1

Z
T

0

Z

�R

h
|⇠N + ⇣D|3(⇠N + ⇣D)� |⇠ + ⇣D|3(⇠ + ⇣D)

i
� d� dt

 lim
N!1

✓
max{k⇠NkL5(0,T ;L5(�R)), k⇠kL5(0,T ;L5(�R))}3

+k⇠Dk3L5(0,T ;L5(�R))

◆
k'kL5(0,T ;L5(�R))k⇠N � ⇠kL5(0,T ;L5(�R)) = 0.

(A.30)

⌅

A.5 Part 5: Proof of the main result of the Appendix

Now, we can demonstrate the Theorem 14:

PROOF. We will divide the proof into three parts, in the first part we will
pass to the limit in the Galerkin approximation in order to obtain a solution
for the system (A.4), in the second part, we will derive the estimates (A.6) and
(A.7) and, finally, in the third part we will prove the uniqueness of solution.

First, for a fixed index k 2 N, if we multiply (A.11) by a scalar function
 continuously di↵erentiable on [0, T ], such that  (T ) = 0, integrate with
respect to t, and integrate by parts, we have, 8N � k:

�
Z

T

0

Z

⌦
⇠N(t)

d 

dt
(t)!k dx dt+

Z
T

0

Z

⌦
v(t) ·r⇠N(t) (t)!k dx dt

+K

Z
T

0

Z

⌦
r⇠N(t) ·r!k (t) dx dt+ b

A

1

Z
T

0

Z

�A

⇠N(t) (t)!k d� dt

+b
R

1

Z
T

0

Z

�R

⇠N(t) (t)!k d� dt

+b
R

2

Z
T

0

Z

�R

|⇠N(t) + ⇣D(t)|3(⇠N(t) + ⇣D(t)) (t)!k d� dt

=
Z

⌦
⇠
N

0 !k (0) dx+
Z

T

0

Z

⌦
HD(t) (t)!k dx dt+ b

A

1

Z
T

0

Z

�A

g
A

D
(t) (t)!k d� dt

+b
R

1

Z
T

0

Z

�R

g
R

D
(t) (t)!k d� dt+ b

R

2

Z
T

0

Z

�R

'
4(t) (t)!k d� dt.

The passage to the limit for N ! 1 in the integrals of the left-hand side is
due to the Lemmas 19 and 20. We observe also that ⇠N0 ! ✓

0�⇣D(0) in L
2(⌦).

Hence, we find in the limit:
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�
Z

T

0

Z

⌦
⇠(t)

d 

dt
(t)⌘ dx dt+

Z
T

0

Z

⌦
v(t) ·r⇠(t) (t)⌘ dx dt

+K

Z
T

0

Z

⌦
r⇠(t) ·r!k (t) dx dt+ b

A

1

Z
T

0

Z

�A

⇠(t) (t)⌘ d� dt

+b
R

1

Z
T

0

Z

�R

⇠(t) (t)⌘ d� dt

+b
R

2

Z
T

0

Z

�R

|⇠(t) + ⇣D(t)|3(⇠(t) + ⇣D(t)) (t)⌘ d� dt

=
Z

⌦
(✓0 � ⇣D(0))⌘ (0) dx+

Z
T

0

Z

⌦
HD(t) (t)⌘ dx dt

+b
A

1

Z
T

0

Z

�A

g
A

D
(t) (t)⌘ d� dt+ b

R

1

Z
T

0

Z

�R

g
R

D
(t) (t)⌘ d� dt

+b
R

2

Z
T

0

Z

�R

'
4(t) (t)⌘ d� dt,

(A.31)

for each ⌘ 2 fX which is a finite lineal combination of elements !k. Since each
term of above expression depends linearly and continuously on ⌘, for the norm
of fX, previous equality remains still valid, by continuity, for each ⌘ 2 fX. Now,
writing in particular (A.31) for  = � 2 D(0, T ), we obtain the variational
formulation (A.4). Finally, we can prove that ⇠(0) = ✓

0 � ⇣D(0) multiplying
(A.4) by the same  as before, integrating by parts with respect to t, and
comparing with (A.31).

Then, multiplying inequality (A.25) by �, with � 2 D(0, T ), � � 0, and
integrating in [0, T ] we have:

Z
T

0

⇢
k⇠N(t)k2L2(⌦) +

Z
t

0
kr⇠N(s)k2[L2(⌦)]3 ds+

Z
t

0
k⇠N(s)k5L5(�R) ds

�
�(t) dt  C

Z
T

0

⇢
k✓0 � ⇣D(0)k2L2(⌦)

+
Z

t

0
kHD(s)k2L2(⌦) ds+

Z
t

0
kgA

D
(s)k2

L2(�R) ds

+
Z

t

0
k'(s)k5

L5(�R) ds+
Z

t

0
k⇣D(s)k5L5(�R) ds

�
�(t) dt,

(A.32)

from which, taking into account that the norm of a reflexive Banach space
is weakly lower semicontinuous, we can pass to the inferior limit thanks to
convergences of Lemma 19:
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0
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0
k⇠(s)k5

L5(�R) ds

�
�(t) dt  C

Z
T

0

⇢
k✓0 � ⇣D(0)k2L2(⌦)

+
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t

0
kHD(s)k2L2(⌦) ds+
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0
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D
(s)k2

L2(�R) ds+
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t

0
k'(s)k5

L5(�R) ds

+
Z

t

0
k⇣D(s)k5L5(�R) ds

�
�(t) dt, 8� 2 D(0, T ), � � 0.

(A.33)
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Thus, we obtain the following energy inequality for a.e. t 2 (0, T ):

k⇠(t)k2
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0
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L5(�R) ds

 C

 Z
T

0
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Z
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0
kHD(s)k2L2(⌦) ds

+
Z

t

0
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D
(s)k2

L2(�R) ds+
Z

t

0
k'(s)k5

L5(�R) ds+
Z

t

0
k⇣D(s)k5L5(�R) ds

�
.

(A.34)

Finally, (A.6) can be derived from above expression thanks to the Gronwall’s
Lemma, and estimate (A.7) is a direct consequence of Holder inequality.

Now, we will prove the uniqueness of solution. Let us assume the existence
of two solutions ⇠1 and ⇠2 for problem (A.4), and define ⇠12 = ⇠1 � ⇠2. We
have that ⇠12 2 fW , ⇠12(0) = 0, a.e. x 2 ⌦, and that satisfies the following
variational formulation:

Z
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@⇠12
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⌘ dx+

Z

⌦
v ·r⇠12⌘ dx

+K

Z

⌦
r⇠12 ·r⌘ dx+ b

A

1

Z

�A

⇠12⌘ d� + b
R

1

Z

�R

⇠12⌘ d�

+b
R

2

Z

�R

h
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i
⌘ d�

= 0, a.e. t 2]0, T [, 8⌘ 2 fX.

(A.35)

From a direct computation, we observe that d⇠12

dt
= ↵ + � + �, where ↵ 2

L
2(0, T ; fX 0), � 2 L

5/4(0, T ;L5/4(�)) and � 2 L
4/3(0, T ;L5/6(⌦)), defined by:
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,

and � = �v ·r⇠12.

Now, for each � > 0, we define the following function:

�(r) =

8
>>>>><

>>>>>:

1 if r � �,

r

�
if � �  r  �,

�1 if r  ��,

(A.36)

and its primitive,

K�(r) =
Z

r

0
�(s) ds =

8
>>>>><

>>>>>:

r � �

2 if r � �,

r
2

2� if � �  r  �,

�r � �

2 if r  ��.

(A.37)
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We can extend the results proved in Corollary 9 of [2] to our case (we just
need to add the term in L

5/4(0, T ;L5/4(�R)) in the proof of Lemma 6 of [2]
and then we can use this result to prove Corollary 9) and then, we have:
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(A.38)

By a direct evaluation of previous expression, we have:
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a.e. t 2]0, T [. Moreover, it is obvious that:
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for c(s) = �(s)⇠1(s) + (1 � �(s))⇠2(s) and �(s) 2 (0, 1), a.e. s 2]0, T [. Thus,
we can deduce that:

Z

⌦
K�(⇠12(t)) dx = 0, a.e. t 2]0, T [. (A.39)

Finally, from the definition (A.37) of K� it is straightforward that 0  |r| �
K�(r)  �

2 , 8r 2 R, and then:

k⇠12(t)kL1(⌦) 
�

2
|⌦|+

Z

⌦
K�(⇠12(t)) dx, 8� > 0, (A.40)

with |⌦| denoting the volume of ⌦, which implies that ⇠12(x, t) = 0, a.e.
(x, t) 2 ⌦⇥]0, T [, and, consequently, ⇠1 = ⇠2. ⌅
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I wish to submit this revised version of the manuscript “Mathematical analysis and 
numerical resolution of a heat transfer problem arising in water recirculation”, where we 
have addressed all the interesting suggestions of the two referees, as listed below in the 
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We feel confident that with these changes the manuscript could be reconsidered for 
publication. 
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Lino J. Alvarez-Vázquez 
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LETTER TO REVIEWER #1 (LIST OF CHANGES): 
 
 
We thank you the careful reading of the manuscript and the interesting suggestions on 
it, which have helped us to improve it. We also thank your comments on the interest of 
the work.  
 
Following your kind remarks, we have addressed all of your recommendations on 
modifications and/or corrections in the following way: 
 
• We agree with the referee that the choice of the Smagorinsky approach needs to be 

justified (in opposition to other classical alternatives as, for instance, the $k-
\epsilon$ model). This has been made in the rewritten second paragraph of the 
Introduction, where we have included several sentences on the topic. 
 

• With respect to the nonlinear boundary condition imposed on $\theta$ on the 
boundary $\Gamma_S$ in contact with air, we have added an explanation at the 
beginning of page 5, where we justify the use of this condition, and give a related 
reference [5] for the combination of convective and radiative heat transfer. 

 
• The first time that it is used (in page 3), the Euclidean measure $\mu(S)$ is 

rigorously defined as the area measure of any part of the surface $\partial \Omega$ 
(in our case, collectors $C^k$ and injectors $T^k$). The volume measure of 
$\Omega$ (which only appears at the final proof of the Appendix) is now denoted 
by $ | \Omega | $, in order to avoid mistakes. 

 
• Following your kind suggestion, we have added an explicit expression (10) for the 

term $\Xi$ before the last paragraph of Section 2. 
 
• We agree with the reviewer in the fact that some details on the proof of Theorem 6 

should be given. So, we have included a few sentences explaining the main details 
of the demonstration. 
 

• We also think that the study of some additional regularity results could be 
interesting (for instance, to know what happens if data or second members are 
smoother). However, this analysis would exceed the main aim of this paper, 
enlarging it unnecessarily. In all the results presented here we give the regularity 
obtained for the solutions of the problem under the minimal necessary regularity 
conditions (in order to achieve solutions). Obviously, when assuming more 
regularity on data, more regularity on solutions should be expected. 
 

• Finally, thanks for the indications about the margins of some formulas. In this 
revised version of the paper we have tried to arrange all of them. 

 
We feel confident that with this new redaction, all the weaknesses and deficiencies of 
the manuscript have been overcome. 
 
For an easier review, these changes have been highlighted in blue (and in brown for 
those common to both reviewers). � 
 



LETTER TO REVIEWER #2 (LIST OF CHANGES): 
 
 
We are very grateful to the interesting and helpful suggestions on the paper, which have 
greatly helped us to improve the manuscript, making it more clear, complete and 
readable.  
 
In the following we explain how we address remarks/questions proposed in the review:  
 
• We agree with the reviewer that a more exhaustive state-of-art in the study of the 

heat/hydrodynamics problems would be necessary, in order to give more relevance 
to the coupled system considered here. With this aim in mind, we have rewritten the 
second paragraph of Section 1: Introduction (page 2), including several recent 
references related to these problems: [3,4,16,18]. Also -following your suggestions- 
we have added the motivations and difficulties related to the choice of the 
Smagorinsky turbulence model. 

 
• The nonlinear boundary condition of Stefan-Boltzmann type arising from solar 

radiation in heat equation (1) has been explained in more detail, and the new related 
reference [5] has been added in page 5. 

 
• Following your interesting remark, the coupling between the heat equation (1) and 

the Navier-Stokes system (6) through the thermal expansion coefficient $\alpha_0$ 
is now explained at the end of page 5, where a commentary on its importance has 
been added. 

 
• We also agree with the fact that a more detailed explanation on the previous results 

of the authors [9] about turbulence model is needed. So, at the end of Section 2, we 
specify the main conclusions of this previous work, outstanding the additional 
difficulties for the case considered here. We hope that, with this new redaction, this 
point is now clearer to readers.  

 
• Definition 5 (now in page 11) has been reformulated, explaining now the details of 

the proposed variational formulations (30) and (31): substitution of decompositions 
for $theta$ and $v$ in heat equation (1) and Navier-Stokes system (6), integration 
by parts after multiplying by suitable test functions, etc. We have also remarked 
some important points (useful for reasoning in following sections). 

 
• In the first paragraph of Section 4 (now in page 12), we have added a new sentence 

about the new difficulties appearing here with respect to the proof of existence for 
previous cases (based on standard fixed-point theory). 

 
• We have clarified, for a better understanding of the end of the proof of Lemma 8 

(now in page 16), several details for the derivation of the convergence limits “in the 
spirit of the techniques used in Appendix A”.  

 
 

 



• In order to clarify the second paragraph of Section 5 (related to the meaning of a 
change in the sign of $g^k(t)$), an explanation about why we restrict our study to 
the positive case has been added. In fact, we explain that -for the sake of simplicity- 
we only deal with this case, but that it would be possible to study the generic case 
(including the negative and the null case) under the only assumption on the fact that 
the flow rates do not change their sign along each time subinterval. In addition, 
following the suggestion of the referee, we have referred to following section for the 
computational details. 

 
• We agree with the referee in the fact that the presentation of the numerical 

resolution is a little confusing (specially subsection 5.1 devoted to the space-time 
discretizations). In particular:  

 
- the notation (52) for the discretized control ($g^{k,n}$ representing the value of 

$g^k(t_n)$) is detailed.  
- the discrete characteristic $X^0$ is explicitly defined after (53). 
- discrete characteristics $X^n$ for $n=1, … ,N$ are defined when appearing, 

after (52). 
- a clearer definition of discretized space $Z^n_h$ is given. 
- Remark 10 is clarified. 

 
• Figure 3 (old Figure 2) represents a standard profile for radiation temperature in the 

sense that, for the time period corresponding to two days, we can find here the null 
periods corresponding to two nights, and the two non-null periods of daytime (with 
maximum peaks at noon). A full explanation is given through new formula (63), 
added in page 22. 
 

• Following your kind suggestion, we have included in Subsection 5.2 a final 
paragraph with several remarks on the influence of the different parameters in the 
numerical results (for instance, the importance of the turbulence term, the role of the 
radiation term $T_r$, the values of parameter $\alpha_0$, the possibility of refining 
the mesh in the neighbourhoods of injectors and collectors, etc.). On the other hand, 
a comment on the suitable values of parameter $\varepsilon$ has been already 
included in previous section (page 19). 

 
• We agree with the reviewer in the fact that Appendix A is a little confusing, and it 

misses some general information, in the first paragraph, on the general purposes of 
the whole section. So, following your remarks, we have completely reordered the 
content of the Appendix in order to make it clearer to readers. 

 
• As the referee comments, in generic system (A.1), the water velocity $v$ is now a 

given data, and the other parameters are equal to those in system (1). In this way, the 
old parameter $D$ would represent the thermal diffusivity and second member $f$ 
the external forcing. However, in order to avoid misunderstandings from the 
readers, we have now changed the old notations to the same as in the coupled 
system (1), defining them again for the sake of completeness. We feel confident that 
that with this new redaction this issue is now clearer to reader, emphasizing the 
necessity of studying in deep the generic system (A.1), in order to obtain 
existence/uniqueness/regularity results for the coupled problem. 

 



We hope that with this new redaction, the article becomes more useful and clear to 
readership.  
 
For an easier review, these changes have been highlighted in red (and in brown for those 
common to both reviewers). 
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