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Abstract Air contamination and road congestion are two major problems
in modern cities. Both are closely related and present the same source: traf-
fic flow. To deal with these problems, governments impose traffic restrictions
preventing the entry of vehicles into sensitive areas, with the final goal of de-
creasing pollution levels. Unfortunately, these restrictions force drivers to look
for alternative routes that usually generate traffic congestions, resulting in
longer travel times and higher levels of contamination. In this work, blending
computational modelling and optimal control of partial differential equations,
we formulate and analyse a bilevel optimal control problem with air pollu-
tion and drivers’ travel time as objectives and look for optimal solutions in
the sense of Stackelberg. In this setting, the leader (local government) imple-
ments traffic restrictions meanwhile the follower (drivers set) acts choosing
travel preferences against leader constraints. We discretize the problem and
propose a numerical algorithm to solve it, combining genetic-elitist algorithms
and interior-point methods. Finally, computational results for a realistic case
posed in the Guadalajara Metropolitan Area (Mexico) are shown.

Keywords Bilevel optimization · Numerical simulation · Optimal control ·
Stackelberg solution · Traffic-related air pollution

N. Garćıa-Chan
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1 Introduction

Expansive growth of big cities all around the world has originated, as an un-
desirable collateral effect, the critical increasing of two closely related environ-
mental problems: traffic congestion and air pollution, whose main factor can
be considered urban traffic. Regarding the first problem, the main negative
consequences are related to the increase in the necessary time for its residents
to carry out their daily moves, with the resulting discomfort associated, for
instance, with excessive fuel consumption, delays and noise pollution. For the
second problem, urban atmospheric contamination is highly subordinate to
vehicular emissions (carbon oxides, nitrogen oxides and so on), but concentra-
tion levels of such pollutants depend also on other external factors such as,
among others, wind or humidity.

To confront these problems, common public policies imposed by the lo-
cal governments are related to traffic restrictions at the intersections of the
urban road network. With these restrictions, they prevent the entry of vehi-
cles into sensitive areas (normally the city center) with the aim of bringing
down the air pollution concentration. However, these limitations force drivers
to choose other road preferences to reach their destiny, inducing traffic con-
gestions. Thus, contrary to expectations, these traffic congestions can increase
pollutant concentrations and present a negative impact on drivers with longer
travel times.

The reduction of air pollution levels by the traffic restrictions and their
consequent change in drivers’ preferences, is nowadays a controversial topic.
Recent studies show that the impact of the traffic restrictions (and other traffic
management strategies) on air pollution levels are moderately successful in low
emissions zones of some European cities. Meanwhile, the lack of data and the
complexity of epidemiology studies made harder the detection and identifica-
tion of traffic-related health impact on inhabitants by exposure to noise, stress
and air pollution (see Bigazzia and Rouleau (2017) and the references therein).
However, studies also showed that this impact on air pollution can be greater
and that society is aware of the need of these traffic restrictions policies. In
Invernizzi et al. (2011) the concentration of black carbon was compared with
the concentration of particulate matter (PM) in three zones of Milan (Italy):
without traffic restrictions, with traffic restrictions and for pedestrians only.
This data analysis showed (roughly speaking) that the concentration levels of
black carbon drop down from traffic areas to pedestrian areas meanwhile, the
PM concentration does it but in a more moderate way. In Pestana-Barros and
Dieke (2008) an inquest to the inhabitants of Lisbon (Portugal) showed that
they are willing to accept charges for vehicular congestions with the aim of a
better quality of life.

Those studies Invernizzi et al. (2011) and Bigazzia and Rouleau (2017) are
mainly empirical, and a priori evaluation or even the certainty of dropping
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down the air pollution levels by traffic restrictions are out of their point of
view. Therefore, a suitable combination of mathematical models, numerical
simulation and optimal control techniques are an important tool for estimating
and optimizing the impact of traffic restrictions and drivers’ preferences on
the air pollution levels and the drivers’ travel times. Moreover, these a priori
estimates and minimization results could be employed as a factor to change the
viewpoint of city inhabitants, making them agree to these traffic management
policies.

Within this context, partial differential equations models are usually em-
ployed both in the analysis of urban traffic flow in road networks (Coclite at
al. (2017), Garavello and Piccoli (2009); Garavello et al. (2016); Goatin et al.
(2016); Goettlich et al. (2015); Holden and Risebro (1995)) and in the investi-
gation of atmospheric pollution (Alvarez-Vázquez et al. (2015a); Garćıa-Chan
et al. (2014); Orun et al. (2018); Skyba and Parra-Guevara (2013); Stockie
(2011)). Nevertheless, the compounding of both topics has been much less
addressed (we can mention, for instance, Berrone et al. (2012); Canic et al.
(2015); Garćıa-Chan et al. (2017); Gottlich et al. (2011); Parra-Guevara and
Skyba (2003)) , and is usually based on the assumption of previous knowledge
of the vehicular flow, which is not adapted to analyze the management of a
road network that may be optimal to travel times and contamination levels.

The authors have addressed this topic in a series of recent works with pro-
gressive complexity. So, in Alvarez-Vázquez et al. (2017) a new methodology
that couples a 1D model for vehicular flow with a 2D model for pollutant dis-
persion was proposed, to estimate the air pollution related to traffic flow. In
Alvarez-Vázquez et al. (2018) an optimal control problem related to the ex-
pansion of an existing urban road network with an environmental perspective
was formulated and solved. Finally, in Vázquez-Méndez et al. (2019) a multi-
objective optimal control problem -where the air pollution and the travel time
were the objectives, the drivers’ preferences were the controls, and the traffic
restrictions were fixed- was solved from a cooperative point of view, that is,
its Pareto front was obtained using a genetic algorithm.

Thus, within the framework of optimal control of partial differential equa-
tions, the current work represents a forward step in the same direction, now
analysing and solving -and this is the main contribution of this research- a
novel formulation from a non-cooperative, hierarchical point of view, that is, a
Stackelberg strategy (Stackelberg (1952)), which seems a more realistic option
for this real-world scenario. Stackelberg strategies are commonly applied in
economy (Julien and Tricou (2012)), and the authors have previously employed
them in the optimal management of a wastewater system (Alvarez-Vázquez et
al. (2015b)). Therefore, in the present context of minimizing the urban air pol-
lution levels and the drivers’ travel time, the existence of a hierarchical relation
between the local government (denoted as the leader) and the set of drivers
(denoted as the follower) is considered. Concerning the follower, we assumed
that drivers are cooperating among them to reduce their travel time against to
leader’s decision, despite individual driver’s interest. This cooperative driving
is a necessary quality in the driver behavior models and possibly achievable
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Fig. 1 Scheme of a typical domain Ω corresponding to a city with a road network

with a social conscience and the use of technology (AbuAli and Abou-Zeid
(2016); Mertens et al. (2020); Shahab (2012)). So, a bilevel optimal control
problem is formulated and its Stackelberg solution is formally defined (Section
3). Then, a complete discretization of the cost functionals and a combination of
an interior-point method (Waltz et al. (2006)) with a genetic-elitist algorithm
(Deb (2000); Goldberg (2016)) is proposed to solve this bilevel problem. This
combination is carried out using adjoint state techniques (Marchuk (1986)),
where the pollutant objective functional is written in an alternative, simpler
way (that considers the adjoint state and the pollutant emissions both only
evaluated on the road network instead of the pollution state evaluated in the
whole urban domain), to reduce the computational cost (Section 4). Finally,
some numerical experiences for a real-world case posed in one of the largest
metropolitan areas in Mexico (the Guadalajara Metropolitan Area (GMA),
with almost five million inhabitants and more than two million vehicles) are
presented (Section 5), and several concluding remarks are derived (Section 6).

2 Mathematical modelling

Let Ω ⊂ R2 be a domain representing a city, including an urban road network
formed by NR unidirectional avenues crossing at NJ intersections, and such
that each road endpoint is either an intersection or lies on the boundary of Ω
(see a schematic example in Fig. 1).

Each avenue Ai ⊂ Ω, i = 1, . . . , NR, is represented by an interval [0, Li]
parametrized by means of the horizontal alignment σi : s ∈ [0, Li] ⊂ R −→
σi(s) = (xi(s), yi(s)) ∈ Ai, where the arc length parameter s preserves the
sense of motion on the road. In the following, we denote by Iin, Iout ⊂
{1, . . . , NR} the sets of indices designating incoming and outgoing avenues in
the network, respectively, and by Iin

j , Iout
j ⊂ {1, . . . , NR} the sets of indices

designating incoming and outgoing avenues at the intersection j ∈ {1, . . . , NJ},
respectively.
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Fig. 2 Classical static relation showing flow rate f(ρ) = ρv versus density ρ, and depicting
maximum density ρmax, critical density ρC and road capacity C

2.1 Modelling traffic flow

In whole road network, traffic flow is modelled by the classical Lighthill-
Whitham-Richards (LRW) model coupled with queue terms. Then, we denote
by ρi(s, t) ∈ [0, ρmax

i ] the density of cars at point σi(s) of avenue Ai and at
time t ∈ [0, T ] (measured in number of cars/km), where ρmax

i represents the
maximum allowed density. The LRW model assumes that the flow rate on each
avenue Ai [number of cars/h] is given by a function fi : [0, ρmax

i ] → R in terms
of the density (i.e., fi(ρi) = ρivi, where vi [km/h] represents the velocity on
the avenue Ai). Fundamental diagram fi is usually known as the static rela-
tion on Ai (see Fig. 2), and its main properties can be found, for instance, in
Vázquez-Méndez et al. (2019).

Moreover, for all y ∈ Iin, we define the queue length qy(t) ≥ 0 (measured
in number of cars) downstream the avenue Ay , where we assume known the
desired inflow rate f in

y (t) and the downstream road capacity Cin
y . We also

suppose that, for all z ∈ Iout, the maximum outflow rates fout
z (t) are given.

So, traffic flow in the whole road network is defined by the solution of the
following system ( Garavello et al. (2016); Vázquez-Méndez et al. (2019)): for
i = 1, . . . , NR, y ∈ Iin, z ∈ Iout, j = 1, . . . , NJ , k ∈ Iin

j , and l ∈ Iout
j :

∂ρi
∂t

+
∂fi(ρi)

∂s
= 0 in (0, Li)× (0, T ), (1a)

ρi(., 0) = ρ0i in [0, Li], (1b)

fk(ρk(Lk, .)) =
∑

l∈Iout
j

min
{

αj
lkDk(ρk(Lk, .)), β

j
klSl(ρl(0, .))

}

in (0, T ), (1c)

fl(ρl(0, .)) =
∑

k∈Iin
j

min
{

αj
lkDk(ρk(Lk, .)), β

j
klSl(ρl(0, .))

}

in (0, T ), (1d)

fz(ρz(Lz, .)) = min{fout
z , Dz(ρz(Lz, .))} in (0, T ), (1e)

fy(ρy(0, .)) = min{Din
y (qy, .), Sy(ρy(0, .))} in (0, T ), (1f)
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6 N. Garćıa-Chan et al.

dqy
dt

= f in
y − fy(ρy(0, .)) in (0, T ),

qy(0) = q0y,

}

(1g)

where terms Di and Si represent the demand and supply functions respec-
tively, and termDin

y (qy , t) represents the demand of queue qy at time t (Alvarez-
Vázquez et al. (2017); Vázquez-Méndez et al. (2019). Furthermore,

∗ array α = (αj
lk) stands for drivers’ preferences when arriving at a junc-

tion, i.e., αj
lk represents the rate of drivers that, reaching intersection j

coming from road Ak, will take the outgoing road Al. Thus, the following
compatibility constraints need to be verified:

0 ≤ αj
lk ≤ 1 and

∑

l∈Iout
j

αj
lk = 1. (2)

∗ array β = (βj
kl) stands for ingoing capacities at outgoing roads, i.e., βj

kl

represents the rate of vehicles that, arriving at junction j for road Ak, can
enter the outgoing road Al. As above, these parameters should satisfy:

0 ≤ βj
kl ≤ 1 and

∑

k∈Iin
j

βj
kl = 1. (3)

We have to mention here that these arrays will be the design variables for
our bilevel problem. Finally, it is also worthwhile recalling the fundamental
role of coupling conditions (1c) and (1d) -depending strongly on arrays α and
β- to guarantee the conservation of the number of cars at intersections.

2.2 Modelling atmospheric pollution

Traffic-related air pollution is simulated here by a mathematical model similar
to the one proposed in Alvarez-Vázquez et al. (2018), whose uniqueness of
solution was analysed in Casas (1997) and Mart́ınez et al. (2017). Due to its
main role, we focus our interests only in pollution related to nitrogen oxides
(NOx), but many other kinds of pollution -like carbon oxides (COx), sulphur
oxides (SOx), total hydrocarbons (THC), etc.- could be also included. The
choice of the type of pollution to be controlled depends on the particular
characteristics of the region under study (for instance, NOx emissions are
more related to diesel engines, whereas on-road COx is more associated with
gasoline engines). So, in our case, the NOx concentration φ(x, t) [kg/km2]
corresponding to each point x ∈ Ω and each time t ∈ [0, T ], can be obtained
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Bilevel optimal control of traffic-related air pollution by Stackelberg strategies 7

by solving the following initial/boundary value problem:

∂φ

∂t
+ v ·∇φ−∇ · (µ∇φ) + κφ =

NR
∑

i=1

ξAi
in Ω × (0, T ), (4a)

φ(., 0) = φ0 in Ω, (4b)

µ
∂φ

∂n
− φv · n =

∑

y∈Iin

λyqyδσy(0) on S−, (4c)

µ
∂φ

∂n
= 0 on S+, (4d)

where field v(x, t) [km/h] denotes wind velocity, and vector n denotes the unit
outward normal vector to the boundary ∂Ω = S− ∪ S+, split into the outflow
boundary S+ = {(x, t) ∈ ∂Ω × (0, T ) such that v · n ≥ 0} and the inflow
boundary S− = {(x, t) ∈ ∂Ω × (0, T ) such that v · n < 0}. Second member
terms ξAi

[kg/km2/h] represent pollution sources due to vehicular traffic on
roads Ai, and are given by means of a Radon measure: for each t ∈ [0, T ], the
distribution ξAi

(t) : C(Ω) −→ R is defined by:

〈ξAi
(t), v〉 =

∫ Li

0
(γifi(ρi(s, t)) + ηiρi(s, t)) v(σi(s)) ds, ∀v ∈ C(Ω),

where σi is the parametrization of avenue Ai, density ρi is given by the traffic
model (1), and parameters γi and ηi are weights associated to pollution rates.
Further details on coefficients can be found in Vázquez-Méndez et al. (2019).

3 A bilevel non-cooperative optimal control problem

In previous approaches to traffic management in a road network, standard
objectives were usually related only to traffic problems, such as travel time or
congestions. Nevertheless, present-day difficulties with air pollution in the sur-
roundings of big metropolises have turned the mitigation of this phenomenon
into another major aim in the optimal management of urban road networks.
Here, two different objectives, one of each type, will be considered simultane-
ously. Concerning optimizing the traffic flow, it is important to minimize the
total travel time and to maximize the outflow of the network. In the spirit,
for instance, of Goatin et al. (2016) and Vázquez-Méndez et al. (2019), the
following functional JT should be minimized:

JT =

∫ T

0





∑

y∈Iin

εqyqy(t) +
NR
∑

i=1

εi

∫ Li

0
ρi(s, t) ds−

∑

z∈Iout

εoutz fz(ρz(Lz, t))



 dt, (5)

where εqy, εi, ε
out
z ≥ 0 are weight parameters to be chosen by the decision

makers according to their social/political preferences.
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8 N. Garćıa-Chan et al.

Regarding air pollution, it is essential to keep the mean concentration of
NOx as low as possible, i.e., we are involved in minimizing the cost functional
JP giving the mean pollution concentration:

JP =
1

T |Ω|

∫ T

0

∫

Ω

φ(x, t) dx dt, (6)

where |Ω| denotes the usual Euclidean measure of set Ω. (We must remark
here that the averaged value could be taken in any sensitive region D ⊂ Ω
and in any time subinterval of [0, T ] but, for the sake of simplicity, we have
chosen here the full domains).

For the controls (that is, the design variables that can be managed within
the network), several different choices have been investigated in previous stud-
ies: incoming fluxes (Goatin et al. (2016)), drivers’ preferences (Gugat et al.
(2005)), network expansions (Alvarez-Vázquez et al. (2018)), etc. However, we
will center our attention at the optimal management of the network intersec-
tions, attempting to obtain those αj

lk, β
j
kl that are the most satisfactory for

our global aims.
Supposing that the parameters αj

lk (drivers’ preferences) change when the

input/output ratios βj
kl are modified at the intersections, we will assume that

the set of drivers always try to minimize the functional JT , while the leader
organization managing the whole network intends to choose the ratios to try
to minimize atmospheric contamination.

Following this reasoning, we face up to a bilevel problem. In the lower
level, we have the follower problem: for a given β = (βj

kl), j = 1, . . . , NJ , k ∈
Iin
j , l ∈ Iout

j , verifying (3), solve:

min JT (α,β)
subject to (2)

(7)

with α = (αj
lk), j = 1, . . . , NJ , k ∈ Iin

j , l ∈ Iout
j .

Then, in the upper level, the leader problem reads as:

min JP (αβ ,β)
subject to (3)

(8)

where αβ is the optimal solution of the follower problem (7) for given data β.
In this approach, our main objective relies in computing a Stackelberg

strategy for the bilevel problem (7)-(8), in the sense of below classical defini-
tion:

Definition 1 A pair (α∗,β∗) is said to be a Stackelberg strategy, solution of
the bilevel problem (7)-(8), if it verifies that:

1. α∗ is the best reaction of the follower to the leader choice β∗, i.e., α∗ is
the solution of the follower problem (7) for given data β∗ (in other words,
α∗ = αβ∗).

2. β∗ is the best option of the leader, i.e., β∗ is the optimal solution of the
leader problem (8).
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Bilevel optimal control of traffic-related air pollution by Stackelberg strategies 9

We must remark here that, by using adjoint techniques (Marchuk (1986)),
the functional JP (α,β) can be rewritten in the more useful alternative form
(see full details in Theorem 3.1 of Alvarez-Vázquez et al. (2018):

JP =
NR
∑

i=1

∫ T

0

∫ Li

0
(γifi(ρi(s, t)) + ηiρi(s, t)) g(σi(s), t) ds dt

+
∑

y∈Iin

∫ T

0
λyqy(t) g(σy(0), t)χS−(σy(0), t) dt+

∫

Ω

φ0(x) g(x, 0) dx,

(9)

where χS− is the characteristic function of the inflow boundary S−, γifi(ρi(s, t))
+ηiρi(s, t) represents the pollutant emissions on the road network, and g(σi(s), t)
is the evaluation on the road network of the so-called adjoint state g(x, t), the
solution of the following final/boundary value problem:

−
∂g

∂t
− v ·∇g −∇ · (µ∇g) + κg =

1

T |Ω|
in Ω × (0, T ), (10a)

g(x, T ) = 0 in Ω, (10b)

µ
∂g

∂n
= 0 on S−, (10c)

µ
∂g

∂n
+ gv · n = 0 on S+. (10d)

This alternative reformulation of functional (9) depends straightforwardly
on traffic density and flow rate and, consequently, on the controls (α,β).
However, this control dependency is implicit (as can be seen in conditions
(1c)-(1d)) making hard to get an explicit expression of the derivative of the
functionals (5) and (9) with respect to the controls. This fact will be a decisive
issue in the choice of methods for solving the bilevel optimal control problem.

Finally, it is important emphasizing here that the adjoint state g(x, t) is
the unique solution of the adjoint equation (Alvarez-Vázquez et al. (2018);
Ladyzenskaja et al. (1969)), being independent of the traffic variable ρ(x, t).
Consequently, the adjoint state does not depend on the traffic model. So, it
can be computed separately, and the adjoint problem (10) only needs to be
solved once in a preliminary step.

4 Numerical solution of the bilevel optimal control problem

The bilevel problem (7)-(8) is generally non-convex. Therefore, many local
solutions are expected. Moreover, effective expressions for the gradients of
objective functionals JT and JP with respect to the controls (α,β) are hard
to compute (leading to the only reasonable option involving its numerical
approximation). So, free-derivative optimization methods or methods using a
numerical approximation of gradients will be the natural and efficient choice
to solve the bilevel problem.
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10 N. Garćıa-Chan et al.

4.1 Discretization of cost functionals JT and JP

With independence on the method chosen to solve the bilevel problem, its
efficiency relies on a good discretization and evaluation of the cost functionals
JT and JP . So, as a previous step, we show how this can be performed in a
suitable way (following the method already introduced in Vázquez-Méndez et
al. 2019).

We choose the following space-time discretization: For each road Ai, the
parametrization interval Ii = [0, Li] is split into Mi cells Ii,h = [si,h− 1

2

, si,h+ 1

2

],

h = 1, . . . ,Mi, of length ∆si > 0, where si,h = (si,h− 1

2

+ si,h+ 1

2

)/2 represents

the midpoint of each cell. On the other part, the time interval [0, T ] is also split
into N ∈ N subintervals of length ∆t = T/N , defining in this way the discrete
times tn = n∆t, n = 0, . . . , N , are defined. Using this discretization the system
(1) can be solved addressing the functional JT with quadrature rules (Alvarez-
Vázquez et al. (2015); Alvarez-Vázquez et al. (2017)). In particular, given the
discrete density ρni,h and queue qni , for n = 0, . . . , N, i = 1, . . . , NR, h =
1, . . . ,Mi, we evaluate the following full-discrete integral:

J∆
T = ∆t

N
∑

n=0





∑

y∈Iin

εqyq
n
y +

NR
∑

i=1

εi∆si

Mi
∑

h=1

ρni,h −
∑

z∈Iout

εoutz fz(ρ
n
z,Mz

)



 . (11)

On the other part, let us consider a polygonal approximation Ωh of Ω, with
an admissible triangulation τh, where vertices {xj , j = 1, . . . , Nv} satisfy that
all the vertices on the boundary ∂Ωh remain on the boundary ∂Ω, that is
σy(0), σz(Lz) ∈ ∂Ωh, for all y ∈ Iin, z ∈ Iout, and that, for n = 0, . . . , N − 1,
each edge of ∂Ωh lies either in (Sn

h )
− = {x ∈ ∂Ωh : v · n < 0} or in

(Sn
h )

+ = {x ∈ ∂Ωh : v · n ≥ 0}.
Then, the adjoint model can be solved numerically on the domain Ωh, and for
the discrete times {tn}Nn=0 we get the discrete adjoint values {{gnh,k}

nv

k=0}
N
n=0

(see Alvarez-Vázquez et al. (2015) and Algorithm 3 of Vázquez-Méndez et
al. (2019)). Once this is done, it is possible to evaluate the adjoint state at
roads’ nodes getting {gnh(σi(si,h))}

NR

i=1 by triangular interpolation. Thus, the
leader functional JP can be now addressed by quadrature rules: Given the
discrete functions ρni,h, fi(ρ

n
i,h), g

n
h,k and gnh(σi(si,h)), for n = 1, . . . , N, i =

1, . . . , NR, h = 1, . . . ,Mi, we evaluate the following full-discrete integral:

J∆
P = ∆t

N
∑

n=1

NR
∑

i=1

Mi
∑

h=1

∆si(γifi(ρ
n
i,h) + ηiρ

n
i,h)g

n
h(σi(si,h))‖σ

′
i(si,h)‖

+
N
∑

n=1

∑

y∈I
in

σy(0)∈(Sn
h )−

λyq
n
y g

n
h(σy(sy,1)) +

1

3

∑

T ∈τh

|T |
∑

xj∈T

Φ0(xj)g
0
j

(12)

It is worthwhile remarking here that each evaluation of the discrete functionals
J∆
T and J∆

P for a pair (α,β) requires the solution of the LWR traffic model
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Bilevel optimal control of traffic-related air pollution by Stackelberg strategies 11

(1), the computation of the adjoint state, and also evaluate the objective func-
tionals. All those computations requires efficient algorithms, see for instance
Algorithms 1,2,3 and 4 of Vázquez-Méndez et al. (2019).

4.2 Solving the follower problem

Given the discrete cost functional J∆
T , the follower problem (7) will be solved

by combining an interior-point method and a genetic algorithm. Both algo-
rithms are implemented respectively by the solvers fmincon and ga from the
Optimization Toolbox of Matlab R2017a, being important the following is-
sues: The solver ga includes a hybrid option that allows combining it with
other Matlab optimization solvers, can be executed in parallel, and uses the
three basic probabilistic rules of the natural selection: elite, crossover and mu-
tation to generate the next generation (cf. Algorithm 1). On the other part,
the solver fmincon can approximate the cost functional gradient in case of
not availability (like our case) and can be also executed in parallel. Moreover,
the direction-search of solver ga presents a large set of probabilities provided
by the population diversity; in contrast, in the solver fmincon the direction-
search is given by a line-search and trust-region criterion which depends on
the direct-step or conjugate-gradient step. Then, to provide fmincon with a
diversity similar to ga, in this work a multi-start execution of fmincon was
carried out (see full details in Algorithm 2).

Algorithm 1: ga algorithm with hybrid option

Data: Initial arrays population α̃0 = {α0,n}Nn=1, fixed array β, and tolerance tol
Result: Optimal array of preferences α∗, and optimal functional value J∆

T (α∗,β)
begin

set k = 0;
while Error > tol do

for n = 1, ..., N do
Compute J∆

T (αk,n,β) by Algorithm 2 of Vázquez-Méndez et al. (2019)
end

Generate the new population α̃k+1 by natural selection: Elite, Crossover

and Mutation;
Compute Error and set k = k + 1;

end
set ᾱ as the array corresponding to the minimum of the functional value set
{JT (αk+1,n,β)}Nn=1;

switch to fmincon;

input ᾱ and compute minJ∆
T (α,β) by fmincon, and get the optimal α∗ and the

optimal functional value J∆
T (α∗,β);

end

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53



12 N. Garćıa-Chan et al.

Algorithm 2: fmincon multi-start algorithm

Data: Multi-initial arrays set α = {αi
0}

N
i=1, fixed array β, and tolerance tol

Result: Optimal array of preferences α∗, and optimal functional value J∆
T (α∗,β)

begin
for i = 1, ...,N do

Input αi
0 and compute minJ∆

T (α,β) by fmincon and get the optimal α∗,i

end

set J∆
T (α∗,β) = min{J∆

T (αi,β)}Ni ;

set α∗ as the best from {α∗,i}Ni=1;
end

4.3 Solving the leader problem

To compute the Stackelberg solution (α∗,β∗) in the sense of Definition 1, a
combination between the solvers ga-hybrid (Algorithm 1) and fminconmulti-
start (Algorithm 2) will be used, with the aim of addressing the complexity
of the leader problem. Thus, the diversity at searching directions provided
by ga could be used for identifying a feasible initial value for the fmincon,
getting in this way a high-quality Stackelberg solution. Nevertheless, since
this hybrid method only gives β∗ as output, the best follower response α∗ to
the leader is computed and saved from the last leader’s functional evaluation in
the convergent sequence βk → β∗ at the fmincon stage of the hybrid solver.
The details of this process are shown in Algorithm 3, where the use of the
adjoint state provides an important saving in the total computational cost.

5 Numerical experiences

Although we have carried out numerous numerical experiments, we only present
and analyse here, for the sake of brevity, some computational results obtained
in a real-world scenario in Mexico, set in the Guadalajara Metropolitan Area
(GMA). Given the previous experiences over the same domain developed by
the authors in Alvarez-Vázquez et al. (2017); Alvarez-Vázquez et al. (2018);
Vázquez-Méndez et al. (2019) we only recall here essential data and assump-
tions in a summarized way.

5.1 Initial/boundary conditions and models parameters

The road network analyzed here is composed by NR = 17 avenues and NJ = 9
junctions, where all avenues have only one lane and its theoretical flow is
regulated by the static relation defined in Alvarez-Vázquez et al. (2018). As
boundary conditions for the traffic model (1), we consider equal downstream
road capacities for the 3 incoming avenues (Cin

i = 2.013 103, i = 1, 2, 10), with
equal sinusoidal desired inflow rate, and also equal maximum outflow rates for
the 3 outgoing roads (fk

z = 2.013 103, k = 13, 14, 15). As initial conditions,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
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Algorithm 3: Stackelberg algorithm

Data: Initial arrays population β̃0 = {β0,n}Nn=1

Result: Stackelberg solution (α∗,β∗), and optimal functional values
J∆
T (α∗,β∗), J∆

P (α∗,β∗)
begin

set k = 0 and compute the adjoint gnh,k by Algorithm 3 of Vázquez-Méndez et

al. (2019);
while Error > tol do

for n = 1, ..., N do
set randomly α = {αi

0}
M
i=1 as multi-initial arrays set;

Input α and compute minJ∆
T (α,βk,n) by Algorithm 2, and get αβk,n ;

Compute J∆
P (αβk,n ,βk,n) by Algorithm 4 of Vázquez-Méndez et al.

(2019) ;
end

Generate the next population β̃k+1 by natural selection: Elite, Crossover

and Mutation;
Compute Error and set k = k + 1;

end
set β̄ as the array corresponding to the minimum from the functional values set
{JP (α,βk+1,n)}Nn=1;

switch to fmincon;

input β̄ and compute minJ∆
P (α,β) by fmincon, and get β∗;

from the last evaluation of J∆
P (α,β) get α∗;

Compute J∆
T (α∗,β∗) and J∆

P (α∗,β∗)
end

null traffic (ρ0i,s = 0, i = 1, ..., NR) and queues (q0y = 0, y = 1, 2, 10) were
assumed. Also, we have considered the following weights parameters: For the
road densities εi = 0.7, i = 1, 2, 3 and εi = 0.5 for the rest of avenues,
for queue lengths εqi = 0.45, i = 1, 2 and εq10 = 0.1, and for outflow rates
εoutz = 0.5, z = 13, 14, 15. This combination of weights values translates the
intention of increasing the follower cost by an excess of traffic densities and/or
queue lengths.

With respect to the pollution model (4) and its corresponding adjoint
state (10), typical values for NOx (µ = 3.5 10−8 km2/h,κ = 0.610−2h−1, γi =
106 kg/ number of cars/km, ηi = 3.1610−5 kg/number of cars/h) have been
taken. We also consider null pollution at initial time, not external pollution
sources and, due to the particular wind direction at S+ (see Fig. 3), parameters
λy = 0.

Regarding the discretization, we chose a time step of ∆t = 4 10−3 (mea-
sured in hours) and, for each road Ai, its spatial domain Ii has been di-
vided into cells large enough to guarantee the classical CFL condition (∆si ∈
(0.2, 0.21)). Finally the polygonal domain Ωh ⊂ R2 has been discretized with
a triangulation of 898 triangles and 491 vertices, satisfying standard regular-
ity hypothesis, to guarantee the numerical method convergence (Geuzaine and
Remacle (2009)). It is important to remark here that we have developed many
examples with different discretization strategies and different resolutions of
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14 N. Garćıa-Chan et al.

Fig. 3 Satellite photo of the GMA: The polygonal domain Ωh and the vectors represent
the wind field are drawn in black, the road network in red

time steps (finer or coarser), and the final results have been always qualita-
tively similar. So, it seems that these choices do not affect the achieved optimal
solutions.

With respect to the minimization algorithms, we consider an initial popu-
lation of 50 individuals for the ga and ga-hybrid solvers, and a set of 5 arrays
as initial input for the fmincon-multi-start solver. All solvers have been
executed in parallel in an AMD Threadripped 1920X CPU at 3.8 GHz with
12 cores and 24 threads desktop, 32 GB RAM, and Linux Mint OS.

5.2 Assessment experiences for solving the follower problem

In the follower problem (7) the restrictions array β = {βj
kl} must be fixed and,

in this particular experience, it will be chosen in such a manner that we can
predict the preferences array α = {αj

lk} and, consequently, can confirm the
reliability of our approach. Then, in this spirit, two different representative
cases are shown.

Case 1: In this first case, the restrictions β1,j
kl are taken such that the av-

enues A5, A6 and A7 remain blocked at intersections j = 3, 4 and 5 (that is,
β1,3
5 6 = β1,3

5 7 = β1,4
6 12 = β1,5

7 11 = 0). Then, it is expected that the drivers coming
from A3 and A10 take the avenues A4 and A8, respectively, avoiding the block
imposed by the leader. In this case it is also expected that drivers take their
respective outways by avenues A12 and A11. Thus, arrays β

1,j
kl were fixed satis-

fying above constraints (see Table 1) and then the follower problem was solved

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53



Bilevel optimal control of traffic-related air pollution by Stackelberg strategies 15

(a)

-15 -10 -5 0 5

0

5

10

15

(b)

-15 -10 -5 0 5

0

5

10

15

Fig. 4 Level curves of the mean concentrations of pollution for a simulation period of 24
hours with zero wind a Case 1 and b Case 2

using ga-hybrid, ga and fmincon-multi-start routines. These solvers were
addressed with a tolerance of 10−4 (although in the hybrid case an additional
tolerance of 10−10 was imposed), and the corresponding resulting preferences,
respectively denoted by αhyb,j

lk ,αga,j
lk and αfmin,j

lk , are shown in Table 1.

Here, the three solutions present in common the preferences α2
4 3 = 1,α6

8 10 =
1, which imply that all drivers from A3 and A10 take the avenues A4 and A8 at
junctions j = 2 and j = 6, avoiding the blocked avenuesA5, A6 and A7. To con-
firm this, in Figure 4a the isolines of pollution concentration (with zero wind
v = 0) are depicted, showing in a clear way in which avenues the pollutant
emissions are present (and consequently the traffic flow is high). Therefore,
the predicted behavior of drivers is fulfilled for this first case.

Case 2: For this second case we have chosen β2,j
kl such that we block the

avenues A4 and A8 at intersections j = 4, 5 (that is, β2,4
4 12 = β2,5

8 11 = 0), and
we let free pass of vehicles from A5 to A7 and also from A9 to A6 (that is,
β2,3
9 6 = β2,3

5 7 = 1). Then, it is expected that drivers from A3 and A10 will turn
on A5−A7 and A9−A6, respectively, avoiding the blocked avenues A8 and A4.
Also for this case, drivers should take their outways at avenues A12 and A11,
respectively. So, once fixed the arrays β2,j

kl in this manner (see full details in
Table 1), the follower problem was addressed again by using solvers ga-hybrid,
ga and fmincon-multi-start. The corresponding preferences resulting from
these solvers, denoted by αhyb,j

lk ,αga,j
lk and αfmin,j

lk , can be also found in Table
1.

In this case, the three solutions are equal in practice, and the key of this
fact relies on the achieved matrices of preferences at junction j = 3. In these
matrices, the values of preferences indicate that all drivers from A5 prefer
taking A7 (α3

7 5 = 1) and all drivers from A9 prefer taking A6 (α3
6 9 = 1),

avoiding in this way the blocked avenues A4 and A8. This could be checked in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53



16 N. Garćıa-Chan et al.

Table 1 Data for the two analyzed cases of the follower problem (7): The fixed leader

restrictions β1,j
kl and β2,j

kl correspond to Case 1 and Case 2, respectively. For each case, the

optimal preferences αsolver,j
lk for the three solvers (fmincon, hybrid, ga) are also displayed.

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9

Iin
j (k) {1, 2} {3} {5, 9} {4, 6} {7, 8} {10} {12} {11} {16, 17}

Iout
j (l) {3} {4, 5} {6, 7} {12} {11} {8, 9} {15, 17} {14, 16} {13}

β
1,j
kl

[

0.5
0.5

]

(1, 1)

[

0.00 0.00
1.00 1.00

] [

1.00
0.00

] [

0.00
1.00

]

(1, 1) (1, 1) (1, 1)

[

0.5
0.5

]

αhyb,j
lk (1, 1)

[

1.00
0.00

] [

0.40 0.16
0.60 0.84

]

(1, 1) (1, 1)

[

1.00
0.00

] [

1.00
0.00

] [

1.00
0.00

]

(1, 1)

α
ga,j
lk (1, 1)

[

1.00
0.00

] [

0.38 0.02
0.62 0.98

]

(1, 1) (1, 1)

[

1.00
0.00

] [

1.00
0.00

] [

1.00
0.00

]

(1, 1)

α
fmin,j
lk (1, 1)

[

0.99
0.01

] [

0.73 0.71
0.27 0.29

]

(1, 1) (1, 1)

[

1.00
0.00

] [

1.00
0.00

] [

1.00
0.00

]

(1, 1)

β
2,j
k,l

[

0.5
0.5

]

(1, 1)

[

0.00 1.00
1.00 0.00

] [

0.00
1.00

] [

1.00
0.00

]

(1, 1) (1, 1) (1, 1)

[

0.5
0.5

]

αhyb,j
lk (1, 1)

[

0.00
1.00

] [

0.00 1.00
1.00 0.00

]

(1, 1) (1, 1)

[

0.00
1.00

] [

1.00
0.00

] [

1.00
0.00

]

(1, 1)

αga,j
lk (1, 1)

[

0.00
1.00

] [

0.00 1.00
1.00 0.0

]

(1, 1) (1, 1)

[

0.00
1.00

] [

1.00
0.00

] [

1.00
0.00

]

(1, 1)

α
fmin,j
lk (1, 1)

[

0.00
1.00

] [

0.00 1.00
1.00 0.00

]

(1, 1) (1, 1)

[

0.00
1.00

] [

1.00
0.00

] [

1.00
0.00

]

(1, 1)

Table 2 Computational data of the different solvers for Case 2.

Solver J∆
T (αopt, β2) iterations evaluations time (min)

ga-hybrid 1.1300 104 98 4955 57.93
ga 1.1312 104 94 4750 47.84

fmincon 1.1349 104 10 75 17.48

the level curves of pollution shown in Figure 4b. As in the previous case, the
predicted behavior of drivers is also fulfilled for this new case. It is interesting
commenting here that in both cases (and in other instances developed by the
authors but not shown here) drivers did not take roads A13, A16 or A17 unless
they were forced to do it. This fact may mean that, in practice, transporta-
tion authorities could consider the option of removing them from the network
without any dramatic consequence for traffic.

Finally, the effectiveness and the computational cost (accuracy of the so-
lution, number of cost functional evaluations and computation time) of the
three options to solve the follower problem were evaluated, but for the sake of
conciseness, only the output from Case 2 is shown. So, in Table 2 the discrete
cost function J∆

T evaluated in the optimal solution, the number of functional
evaluations and the solver execution time is shown. As can be seen there, the
hybrid method and the genetic algorithm present better effectiveness but at a
much higher computational cost and execution time; in contrast, the fmincon

solver has slightly poorer effectiveness but with a significantly lower compu-
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Fig. 5 Level curves of the time-averaged adjoint discretized state employed for the opti-
mization process a, evolution of the number of iterations for the solver ga-hybrid, including
the fmincon solution b

tational cost, being consistent with the smallest dimension of its initial arrays
set.

5.3 A highly restrictive Stackelberg solution

As commented in the above sections, as a previous step in the evaluation
of J∆

P , the adjoint model needs to be solved (only once). The isolines of the
discretized adjoint state (averaged for a time interval of 24 hours) are shown in
Fig. 5a, with minimum values near the outflow boundary S− (except in a few
small zones), and it increases as we get closer to the inflow boundary S+. This
tendency indicates that to reduce the leader functional (which includes the
product of the adjoint evaluated on roads and their corresponding emissions),
the traffic must be concentrated in the roads located in the low zone of the
domain. Therefore, it is expected that the leader’s effort (using the restrictions
on network intersections) should be directed to block the access of drivers to
the top part of the domain.

The Stackelberg solution (α∗,β∗) is displayed in Table 3, and an analysis
of the computational effort of the optimization process can be found in Fig.
5b. In this Stackelberg solution, restrictions β∗,3

5 6 = β∗,3
5 7 = β∗,4

4 12 = 0 indicate
that the leader blocks the avenue A5 at junction j = 3, and avenue A4 at
junction j = 4; on the contrary, β∗,5

8 11 = 1 leaves free pass to cars from A8 at
junction j = 5. With this strategy, the leader leaves to the follower with only
an outway at A11−A14 avenues for those vehicles that enter by A10, meanwhile
vehicles that enter by A1 and A2 remains blocked in avenues A1, A2, A3, A4.
This allows the leader to reach the objective of prevent drivers to take A6, A12

and A15 which conduce to the upper part of the domain. With these blocked
avenues the follower takes the (only) outway left for the leader (α∗,6

8 10 = 1) and
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18 N. Garćıa-Chan et al.

prefers the blocked A4 instead of the blocked A5 (α∗,2
4 3 = 1). As a consequence

of this preferences and restrictions, (α∗,β∗) are bottlenecks at intersections
j = 1, 2, 4, with large queue lengths at A1, A2 that maximize the length queue
mean (Fig. 7c), with low presence of vehicles in upper domain avenues (Fig.
6c), but with a large mean density (Fig. 7a), and low outflow at exit-points
of the road network (Fig. 7d). Therefore, a lower pollution levels are expected
at most of the domain, and the higher levels are limited to specific zones close
to the inferior boundary, as confirmed in Fig. 8c. This situation is congruent
with the prediction deduced above using the solution of the adjoint model.

It is important remarking here that, in contrast, the follower solution in
above Case 2 (that will be taken here as a non-optimal case), do not present
any blocked avenue and all densities are below ρmax in the whole network.
Consequently, a better distribution of the density is reached (see Fig. 6a)
giving lower density, higher flow, fewer queues and finally more outflow with
respect to the Stackelberg solution, but at to expense of a more polluted
city (compare Figs. 8a and 8c). All previous results suggest a worse situation
for drivers in the Stackelberg solution, with large travel times to ensure low
pollution levels. This is confirmed by the values displayed in Table 4, where
the Stackelberg solution reduces the mean pollution by more than 112% but
increases dramatically the value of the traffic-related cost functional by four
times (mainly involving traffic flow and queue length).

Is clear that this Stackelberg solution is easy to explain, agrees with all the
methodology exposed and fulfills the predictions made. This strongly suggests
that the correct solution was obtained, but in a realistic local government
situation, it is not possible to apply this (so restrictive) strategy to prevent
the entry of vehicles in the city in order to reduce the urban pollution levels.
So, in the following subsection, we will present a Stackelberg solution with
relaxed restrictions.

5.4 A relaxed Stackelberg solution

In order to relax the traffic restrictions (avoiding the complete blockage of any
avenue), the constraints (3) for the leader problem are changed to 0.2 ≤ βj

kl ≤

0.8 and
∑

k∈Iin
j

βj
kl = 1. That is, the leader lets pass between 20% and 80% of

vehicles from avenue k ∈ Iin
j to avenue l ∈ Iout

j at junction j, avoiding fully
blocked avenues.

The relaxed Stackelberg solution (αr ,βr) is qualitatively similar to the
restrictive case: It allows passing a minimum of vehicles to the upper part of the
network, limits the traffic congestion to the inferior part of the city, and leaves
to the follower the same outway by avenue A14. This can be observed in Table
3, where the drivers’ preferences αr,2

4,3 = 0,αr,3
6 5 = 0.08,αr,3

6 9 = 0.34,αr,6
9 10 =

0.06 indicate that avenues A4, A6, A12 are not chosen by drivers, allowing
the leader to impose low restrictions βr,1

9 6 = βr,4
6 12 = 0.20. Meanwhile, the

restrictions βr,1
1 3 = 0.79,βr,3

57 = βr,5
11 7 = 0.80 give pass priority to the flows
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Table 3 Values of Stackelberg solutions for the bilevel problem (7)-(8): (α∗,β∗) stands for
the highly restrictive case, and (αr ,βr) for the relaxed one

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9

Iin
j (k) {1, 2} {3} {5, 9} {4, 6} {7, 8} {10} {12} {11} {16, 17}

Iout
j (l) {3} {4, 5} {6, 7} {12} {11} {8, 9} {15, 17} {14, 16} {13}

α∗,j
lk (1, 1)

[

1.00
0.00

] [

0.49 1.00
0.51 0.00

]

(1, 1) (1, 1)

[

1.00
0.00

] [

1.00
0.00

] [

1.00
0.00

]

(1, 1)

β
∗,j
kl

[

0.00
1.00

]

(1, 1)

[

0.00 0.00
1.00 1.00

] [

0.00
1.00

] [

0.00
1.00

]

(1, 1) (1, 1) (1, 1)

[

0.5
0.5

]

αr,j
lk (1, 1)

[

0.00
1.00

] [

0.08 0.34
0.92 0.66

]

(1, 1) (1, 1)

[

0.94
0.06

] [

1.00
0.00

] [

1.00
0.00

]

(1, 1)

β
r,j
kl

[

0.79
0.21

]

(1, 1)

[

0.79 0.79
0.21 0.21

] [

0.80
0.20

] [

0.80
0.20

]

(1, 1) (1, 1) (1, 1)

[

0.5
0.5

]

Table 4 Numerical values of objective functionals J∆
P and J∆

T for different strategies.

Case J∆
P (α,β) J∆

T (α,β)

Restrictive Stackelberg 1.0866 104 5.9695 104

Relaxed Stackelberg 1.9271 104 4.8625 104

Non-optimal (Case 2) 2.2938 104 1.1300 104

of vehicles in avenues A1, A3, A5, A7, A11, limiting the traffic congestion to
avenues A2, A8, A9 in the inferior part of the network (see Fig. 6b and Fig.8b).

These restrictions and preferences generate the functional costs values
given in Table 4, showing that this relaxed solution presents a decrease in
its effectiveness (respect to the non-optimal Case 2) reducing the mean pol-
lution in a 16%, but worsening traffic conditions (although less than in the
restrictive case). These results also suggest that the pollution levels increase
as the restrictions are more relaxed, making it harder for the leader to prevent
traffic flows on the upper part of the network.

6 Conclusions

In this work, a bilevel optimal control problem was addressed in the sense of
Stackelberg optimization. In the problem, the local government (leader) has as
objective dropping down the urban pollution levels using traffic restrictions,
meanwhile, the drivers (follower) have the objective of minimizing their travel-
time following their preferences. The optimal solution was obtained using a
combination of genetic and interior-point algorithms applied to previous nu-
merical simulations of the traffic on an urban road network, of its pollution
emissions and the pollutant transport over the whole urban domain.

To save computational efforts, adjoint techniques were used. However, the
impossibility of deriving an exact gradient of the objectives with respect to
the restrictions and preferences implied a large computational cost for getting
a Stackelberg solution.
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(a)

(b) (c)

Fig. 6 Time and spatial evolution of vehicle density at selected avenues for the three cases:
non-optimal a, relaxed Stackelberg b and restrictive Stackelberg c The Stackelberg solutions
generate congestion in some avenues (ρ close to ρmax = 120)

The numerical experiences showed that the effectiveness of the Stackelberg
solution is higher when the restrictions were such that a complete blockage
of traffic at road intersection is allowed, minimizing the pollution levels and
increasing the travel time. This effectiveness presents a significant drop down
when the restrictions are relaxed. This fact agrees, in a roughly way, with the
above referenced empirical studies where data showed a progressive increase
of pollution levels from non-traffic zones to traffic ones.

Finally, future research work could be related to modifications in the ob-
jectives for both, the leader and the follower. So, the queue length could be
considered as an additional leader objective, removing it from the follower
cost. Also, future work could consider more sophisticated improvements in the
traffic model, making it more complex and realistic for urban domains. The
macroscopic models with dynamic velocity and the LWR model with diffu-
sion and different forcing (traffic-lights, multiple lanes, in-out ramps. . . ) are
options available in the specialized literature (Treiber and Kesting (2013)).
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Fig. 7 Mean values of traffic variables throughout the whole network density a, flow b,
queue length c and out flow d corresponding to the highly restrictive Stackelberg (solid
lines), the relaxed Stackelberg (dash-point lines), and the non-optimal (dashed lines)
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