ON THE DECOMPOSITION OF THE DE RHAM
COMPLEX ON FORMAL SCHEMES

LEOVIGILDO ALONSO TARRIO, ANA JEREMIAS LOPEZ,
AND MARTA PEREZ RODRIGUEZ

ABSTRACT. We show that if X is a pseudo-proper smooth noetherian
formal scheme over a positive characteristic p field k then its De Rham
complex Tgp(Fx/k*(AZ;/k) is decomposable. Along the way we establish
;<P)/g) IS Hi(Fx/m*SA?;/g)) associated to a
map f: X — 9 of positive characteristic p noetherian formal schemes
where %P denotes the base change of X along the Frobenius morphism
of 9 and Fk /g9 denotes the relative Frobenius of X over ).

the Cartier isomorphism Q
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INTRODUCTION

An important tool for understanding some of the fine properties of al-
gebraic varieties is the use of formal schemes. Over the field of complex
numbers, Hartshorne studied the hypercohomology of the De Rham com-
plex of the formal completion of a singular scheme on a non-singular ambient
scheme and showed that this gives back singular cohomology by purely al-
gebraic means.

In this paper we start exploring the properties of De Rham cohomology
of formal schemes over a characteristic p field. A motivation is to develop
tools to understand the cohomological properties of singular varieties. The
main technical issue is to have at hand basic results about the geometry of
formal schemes. Let X be a possibly singular variety over a field k. Suppose
there is a closed embedding X — P of X into a smooth k-scheme P. Its
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2 L. ALONSO, A. JEREMIAS, AND M. PEREZ

formal completion P,x is not adic over Spec(k). This leads us to consider
non-adic morphisms of formal schemes. Let f: X — 2 be a morphism of
formal schemes. As explained in 1.2 (ii) there is a system of morphisms of
usual schemes {f;: Xy — Yp}sen such that

f= lim fo.
=
It is a general principle that if f is adic, its properties can be studied through
the underlying maps f;, after all, the squares

XgLng

|
f

xX—9

can be taken Cartesian. This is not the case for non-adic morphisms. Thus,
one needs to redevelop most of the usual tools for non adic maps of formal
schemes. To give a specific example, if f is a smooth morphism of locally
noetherian formal schemes the morphisms f; may not be smooth (see [AJP2,
Example 5.3]), therefore one cannot use a limit argument to reduce the
arguments to ordinary schemes.

Here, we study the De Rham complex of a non necessarily adic formal
scheme of pseudo finite type over a field of positive characteristic p. We
show that under the usual condition of Wa-liftability the De Rham complex
is decomposed up to p. The argument does not give the degeneration of the
Hodge-De Rham spectral sequence because the finiteness of cohomology is
only established under adic hypothesis.

The strategy of the proof is similar to the classical method by Deligne and
Mlusie [DI] but all the results of smoothness, deformation and cohomology
are needed in the setting of pseudo-finite maps of formal schemes. The
basic theory of smoothness of formal schemes is developed in [AJP1] and
some more advanced properties in [AJP2]. Both papers are used intensively
along the paper. Another important ingredient is the deformation theory of
smooth morphisms as exposed in [P1]. A full-fledged theory of deformation
is developed in [P2], but this generality is not needed in the present situation.

It is worth remarking that decomposition up to p uses essentially the
results of the aforementioned papers but the extension of the result at the
dimension p, requires the full machinery of Grothendieck duality for formal
schemes [AJL]. Moreover, Sastry’s computation of the dualizing sheaf of a
pseudo-proper smooth noetherian formal scheme [S] is required to reach the
general result.

Let us now describe the contents of the paper. An initial section recalls
the basic definitions and notations that will be of use throughout the paper.
In particular we recall the definition of the module of differentials and the
associated De Rham complex. In the next section we discuss the basic
properties of the Frobenius morphism both in absolute and relative version.
It is noteworthy that the Frobenius morphism is an adic homeomorphism.
Moreover we show that it is a finite locally free morphism.
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In Section 3 we develop Cartier theory for noetherian formal schemes.
Specifically, in Theorem 3.4 we establish an analogous to the Cartier iso-
morphism in Sch [K, (7.2)] for relative differential forms associated to a
smooth morphism of locally noetherian formal schemes of characteristic p.

Once all this structure is up and running we prove the decomposition theo-
rem. We fix 9) a locally noetherian formal scheme of characteristic p together
with ), a flat lifting over Z/p?Z. Let f: X — 2) be a smooth morphism
of locally noetherian formal schemes, let us consider its relative Frobenius

mophism denoted by Fy/g: X — X®) . It holds that any smooth lifting fg;)
of X over QNJ yields a a decomposition of the complex 7<P(Fy /2 *Q% /@) in

D(x(®)). Moreover, much as in the case of schemes, the existence of a smooth

~

lifting is equivalent to the existence of a decomposition of 7<P(Fy /9 2% /@).
The proof relies on the theory of (non necessarily adic) smooth morphisms
of formal schemes, its basic deformation theory and the lifting of Frobenius
morphisms. Of course, a global lifting of Frobenius is not guaranteed to
exist, but only local liftings. The corresponding local decompositions are
glued by a procedure similar to the one employed in [DI].

Finally, in Section 6 we extend this result to degree p. For k a perfect
field of characteristic p and X a formal scheme of topological dimension less

~

or equal than p, we show that Fy ;0% Ik is decomposable. This is Theorem
6.6. Its proof requires establishing a pairing on differential forms

FayiQ% i R0, Fx/k*Qgﬁﬁ — Wxm) /i

where wy) ), = (AZ; that is dualizing for coherent coefficients by Sas-

(p) /1
try’s result [S, Theore/m 5.1.2]. On formal schemes there are basically two
dualities, one that refers to torsion coeflicients and another one for complete
coeflicients —this last one including the familiar coherent complexes. There
is a balance between them controlled by Greenlees-May duality. It is this
balance that provides an explicit description of the trace map as a Cartier
operator, thereby allowing to extend Deligne-Illusie’s idea to the present
context.

In future work we will intend to apply the Decomposition Theorem to
obtain vanishing theorems for formal schemes with an eye towards the coho-
mology of singular varieties. The main difficulty in this context is the lack
of general finiteness properties. We expect to extend the available results
in characteristic 0 to some situations in positive characteristic. With this
in hand, the degeneration of the Hodge-De Rham spectral sequence would
provide a path towards the desired results.

Acknowledgements. We thank useful conversation and pointers to the
literature to J. Lipman and K. Schwede. We give special thanks to P. Sastry
for his interest on our work and the useful suggestions he has given us to
improve this paper, especially the last section.

1. PRELIMINARIES

We denote by NFS the category of locally noetherian formal schemes
and by NFS,¢ the subcategory of locally noetherian affine formal schemes.
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We follow the conventions and notations in [EGA I, §10]. Except otherwise
indicated, every formal scheme will be in NFS and we will assume that every
ring is noetherian. We write Sch for the category of ordinary schemes.

1.1. Given X € NFS we denote by A(X) the category of Ox-Modules and
D(X) its corresponding derived category. We denote by Ac(X) C A(X) the
full subcategory of coherent Ox-Modules!' and by D.(X) the full subcategory
of D(X) of complexes whose homology sheaves lie in Ac(X).

Given f: X — 2 a map of formal schemes, f#: Oy — f+Ox will denote
the corresponding morphism of structure sheaves and, with a slight abuse
of notation, the ring homomorphisms it induces on sections and stalks.

1.2. Let us establish the following convenient notation (c¢f. [EGA 1, §10.6]):

(i) Given X € NFS and J C Oy an Ideal of definition, for each ¢ € N
we put Xy := (X, 0x/J1). In the category of formal schemes

X= lim X,
ﬁ ¢
and all the spaces X; and X have the same underlying topological
space.
(i1) If f: X — %) is a morphism in NFS, given an Ideal of definition I C
Oy there exists an Ideal of definition J C Ox such that f*(K)Ox C
J. For any such a pair of ideals setting X, := (¥,0x/J*t!) and

Y, = (ED,OQJ/IC"‘H) and fy: Xy — Y, the scheme morphism in-
duced by f for each £ € N, f can be expressed as

f= lim fo.
=
1.3. As in [AJP2, Definitions 1.6 and 1.7], given X € NFS, the topological

dimension of X is dimtop(X) := dim(Xy) and the algebraic dimension of X
is dim(X) := sup,ey dim Oy ,. Obviously,

dimtop(¥) < dim(X).

1.4. Let us recall some definitions from [EGA I, 10.13.3], [EGA 111, (4.8.2)],
[AJL, p.7], [AJP1, §2 and §3]. A morphism f: X — 2) in NFS is of pseudo
finite type (pseudo finite, pseudo proper, separated) if fy (equivalently any
fe) is of finite type (finite, proper, separated, respectively). Moreover, we
say that f is of finite type (finite, proper) if f is adic and of pseudo finite
type (pseudo finite, pseudo proper, respectively).

The morphism f is smooth (unramified, étale) if it is of pseudo finite type
and satisfies the following lifting condition: for any affine 2)-scheme Z and
for each closed subscheme T' — Z given by a square zero Ideal T C Oy the
induced map

Homgy (Z, X) — Homg) (T, X) (1.4.1)
is surjective (injective, bijective, respectively).

1We honor the capitalization conventions in EGA and write “Ideal” and “Module” for
sheaves of ideals and modules respectively.
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1.5. Given f: X — 2) a morphism in NFS, for all open sets {l = Spf(A4) C
X and U = Spf( ) C 9 such that f() C U the dzﬁeremfml pair of X

over %), (2 36/@,d%/@) is locally given by ((QA/B)A dA/B) where A [EGA T,
(10.10.1)] is the additive covariant functor
(=)2: A-mod — A(Spf(4))

iy N {72 (1.5.1)

The Ox-Module Q%/@ is called the Module of 1-differentials of X over %)

and the continuous )-derivation ‘/1\36 i Ox — ﬁ%g R is called the canonical

deriwation of X over Q).
If we express as in 1.2

f%—)@ = li fg Xg—)Yrg)
=a
we have the following identification
dae/a) dx, /v,
Ox =5 Qg = fim (Ox, = Vv,
€

From now on and whenever is clear, we will abbreviate d= c/i\x /9

1 6. For all i € Z, the sheaf of i-differentials of X over ) is the sheaf
x/@ =N\ Qx/gj Given open subsets 4 = Spf(A) C X and U = Spf(B) C

2 with f(Y) C T, Q%/@ is locally given by (A’ QA/B) as a sheaf on 4 C X.
Notice that me = Ox and me =0, for all 7 < 0.

If f is of pseudo finite type, then? for all 4, Q%/QJ € Ac(X) (see [LNS,
Proposition 2.6.1] keeping in mind [EGA I, (10.10.2.9)]).

From now on f will be a morphism of pseudo finite type.

1.7. We denote by ﬁ; R the sheaf of graded abelian groups that to an open
subset Ll C X associates the module

Yo DAL 0% ) = DTG )
qgeN

The sheaf Q;e 2 is a supercommutative Ox-Algebra (i.e. graded and al-
ternating in the terminology of [Bo2, Ch. III, §7.1, Definition 1 and §7.3,
Proposition 5]).

For a commutative diagram of morphisms in NFS,

¥ x

fi Jf (1.7.1)

Q‘j/#gj

21 f: X — Y is a morphism in Sch, then Qé(/y is a quasi-coherent Ox-module.
However, in the context of of formal schemes, to have a satisfactory description of the
sheaf of i-differentials we will restrict ourselves to the class of morphisms of pseudo finite

type.
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such that f and f’ are of pseudo finite type, there exists a morphism of
graded Oy/-Algebras
determined locallly in degree ¢ by

(day Adag A ... Ada;) @1~ dgf(a) Ad gt (az) A ... ANd g% (a;)

for any ai, ag,...,a; € T'(U4,Ox) with & C X an affine open set ([AJP1,
Proposition 3.7] and [Bo2, Ch. III, §7.1, Proposition 1]). Moreover, if the
diagram (1.7.1) is cartesian, the morphism (1.7.2) is an isomorphism.

1.8. Analogously to the case of schemes (see [EGA IV, (16.6.2)]), there
exists an unique graded morphism of degree 1

such that:
(i) & =d
(ii) d*tod? =0, for all i € N and ‘
(#ii) given i C X an open set, w; € I'(4, Qge/@) and w; € I'(4L, Qge/gj)’
C/l\i+j(wi VAN wj) = c?l(w,) ANwj + (—1)iwi AN Jj(wj)
for any i, j € N.
Then

~ ~o d =~ ql JEk-1 ~ ak
(Q%)9:d%): 0= Ox 5 Qg — - ——0Qf ) -
is a complex of coherent Ox-Modules; it is called De Rham complex of X
relative to ). We abbreviate it by Q5 " Notice that the differentials are
f _1(9@—linear but not Ox-linear.
Observe that if f: X — Y is a finite type morphism of usual schemes
then QB(/Y = Qk/y.
In the setting of the commutative diagram (1.7.1), the morphism of graded
Ox-Algebras Q3. P 9+82%/ /g adjoint to (1.7.2) respects the differential, i.e.

it is a map of complexes.

1.9. Suppose that f: X — 2) is smooth and such that, for all z € X,
dim, f := dim f~1(f(x)) = n [AJP2, Definition 1.14]. Then Qi/@ is a
locally free Ox-Module of rank n (see [LNS, Proposition 2.6.1] and [AJP2,

Corollary 5.10]) and therefore ﬁgg /9

is a locally free Ox-Module of constant
rank (?), for all 0 < ¢ < n. In particular, ﬁg 2 is an invertible Ox-Module

and ﬁgg = 0, for all ¢ > n. Therefore ﬁgg 2 is a bounded complex of

amplitude [0, 7] of locally free Ox-Modules.

Remark. Let f: X — Spec(C) be a smooth morphism of usual schemes,
Z C X a closed Subscheme/\and denote by X the Completi\on of X along Z.
The De Rham complex of X relative to C defined above, Q;A( e agrees with

the one given by Hartshorne in [H, I, §7].
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2. FROBENIUS MORPHISM ON FORMAL SCHEMES

Henceforth, p will denote a prime number and F, := Z/pZ the prime field.

2.1. A locally noetherian formal scheme X is of characteristic p if the
canonical morphism X — Spec(Z) factors through Spec(F,), that is, if
p - Ox = 0. Equivalently, given an ideal of definition J C Oy, the schemes
X = (X,0x/T1) are of characteristic p, for all £ € N.

2.2. Let X be a locally noetherian formal scheme of characteristic p. The
absolute Frobenius endomorphism of X, is the endomorphism Fy: X — X
that is the identity as a map of topological spaces and, given for all open

set U C X by

P, 0y = ey, 0x)
a ~ aP

The following holds:

(i) The morphism Fy is adic. Indeed, for a noetherian adic ring A
[EGA I, (10.4.6)], J C A an ideal of definition, and F4: A — A
its Frobenius endomorphism, the ideal J¢ = (F4(J)) defines the
J-adic topology in A.

(7) Given an Ideal of definition J C Oy if Fix,: X; — X is the absolute
Frobenius endomorphism of X, for all £ € N, then

Fy = lim Fy,.
=i

(ii1) Fx is a universal homeomorphism, that is, a homeomorphism such
that for each morphism of locally noetherian formal schemes 3 — X,
the morphism obtained by base-change X x 3 — 3 is a homeomor-
phism. Indeed, with the previous notation, as Fx, is a universal
homeomorphism (see [SGA 5, Exposé XV, §1]) in view of [EGA I,
(10.7.4)] we deduce that F is too, because (Fx)wop = (Fx, )top-

2.3. For f: X — 2 in NFS with Q) of characteristic p, we have the following
commutative diagram

Fx
X—x

| )

—>9

where the horizontal arrows are the absolute Frobenius endomorphisms of
X and ). Let us put X®) := X x Fy Y. Notice the dependence of the formal

scheme X on the base §). We omit it on the notation for clarity. There
exists an unique morphism
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that makes commutative the diagram

X o
Fx/o
) o (2.3.1)
f@)l l ;
F;

The morphism Fy g is called relative Frobenius morphism of X over ).
Given Ideals of definition J C Oy and K C Oy such that f*(K)Ox C J,

if Fx,/y,: Xe — Xép) is the relative Frobenius morphism from X, to Yy, by
2.2.(i1) and [EGA 1, (10.7.4)] we have that

x P
Fx/
xo) Sy = i RGN
f neN
ol |
Fy Fy,
) ———9 Yo — Y,

and, in particular, Fy 9 = h% Fx,/v,-
le

2.4. Let ¢: A — B be a homomorphism of noetherian adic rings of charac-
teristic p; let X = Spf(A), Y = Spf(B) and f: X — Q) such that f := Spf(yp)
is in NFS,¢. The diagram (2.3.1) corresponds through the equivalence of cat-
egories to the following diagram

Fp
B— B

(FB)A

A—"" AGp, B

Fa/p
Fy

A

%)

where F4 are Fp are the usual Frobenius homomorphisms (raise to the p-th
power), FA/B(a®b) = aP - p(b), denoting by a®b € A®p, B the image of
a®b€ A®p, B and (Fp)a(a) = a®1.
Proposition 2.5. Given f: X — 2) in NFS with Q) of characteristic p and
Fx 9 the relative Frobenius morphism of X over ) it holds that:

(i) Fyy is adic.
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(71) Fx/9 is a homeomorphism.

Proof. Let us consider the diagram (2.3.1).

(1) The morphisms Fx and Fy are adic (2.2.(i)). By base-change (see
[AJP1, 1.3]), we have that the morphism (Fy)x is adic. Therefore
Fy 9 also is adic (see [EGA 1, (10.12.1)]).

(i) It follows from 2.2.(iii). O

2.6. Given 2) = Spf(B) a noetherian affine formal scheme of characteristic
p,m > 0and 7 : Ay = Spf(B{T}) — 2 the canonical projection of the
affine formal space, it holds that:

(i) There exists an isomorphism of 9)-formal schemes

3
(AP)P) = Al xpy D = Ap
defined through the equivalence of categories by the morphism

B{T} —2 B{T}&p,B
ZVEN" b, T” ~ ZVEN" T"®b,
given by the universal property of the restricted formal power series
ring (c¢f. [Bol, Ch. III, §4.2, Proposition 4]). Let us check that ®
is an isomorphism. If B{T} N B{T} is the morphism induced by
Fp, applying the universal property of the complete tensor product
there exists an unique morphism ¥ : B{T}®p, B — B{T} such
that the following diagram commutes:

F
B b B

l (FB)B{T} l

B{T} ——— B{T}®p,B

4

¢ B{T}
Therefore U(>, cyn by TV®b) = 3, cpn b- 50T and &1 = 0.
(7) The morphisms F, ag/y and (Fy)ag are determined by:

B{T} -7 B{T}
ZVEN" bVTV ~ ZVEN" bV(TV)p

and
-

B{T} e B{T}
through the isomorphisms ¥ and ®, respectively.
(iit) The relative Frobenius morphism of Ay over ), F': Aj — (A%)(p),
is finite, flat and F*((’)A%) is a locally free (’)( AgL))(,))—Algebra of rank
p". In fact, through the morphism o, B{T} is a free B{T }-module
with base {[]}"; 7;",0 <m; <p—1}.
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If f: X — Y is an étale morphism of locally noetherian schemes of char-
acteristic p, then the relative Frobenius morphism of X over Y is an isomor-
phism [SGA 5, Expose XV, §1]. Next we generalize this result to the setting
of locally noetherian formal schemes.

Lemma 2.7. Given a locally noetherian formal scheme ) of characteristic
p, let f: X — 9 be an étale morphism in NFS. Then the relative Frobenius
morphism of X over ), Fyp: X — xP) =x Xy ), 15 an isomorphism.

Proof. Let us consider the commutative diagram (2.3.1). The morphism
f is étale and by base-change (see [AJP1, Proposition 2.9, (ii)]) it follows
that f’ is étale. Then [AJP1, Corollary 2.14] and Proposition 2.5 imply
that Fy /9 is étale adic. On the other hand, by 2.2.(iii), Fx is a universal
homeomorphism and, therefore, radical (see [AJP2, Definition 2.5]). From
the sorites of radical morphisms in Sch [EGA I, Corollaire (3.7.6)] we have
that Fy g is a radical morphism and applying [AJP2, Theorem 7.3] it follows
that Fy /g is an open inmersion. Last, by Proposition 2.5 we have that Fy
is a homeomorphism, so we conclude that it is an isomorphism. O

Remark. The last result does not follow straightforward from the analogous
result in the category of schemes, since given

f= lim fo
=
an étale morphism of locally noetherian formal schemes it may happen that

the corresponding morphisms of schemes f; in the system are not étale (see
[AJP2, Example 5.3]).

In Proposition 2.9 we generalize 2.6.(iii) for smooth morphisms of locally
noetherian formal schemes of constant relative dimension equal to n. First,
we need a previous result.

Proposition 2.8. Given a cartesian diagram in NFS

xl f 3 QJI

X—9

with f finite, if F € Ac(X) then the canonical morphism of Oy -Modules
L F = g foF (2.8.1)
18 an isomorphism.

Proof. By base-change we have that f’ is also a finite morphism (see [AJL,
Proposition 7.1]). Then by the Finiteness Theorem for finite morphisms in
NFS [EGA III;, (4.8.6)] it follows that f.(¢"*F) and ¢*(f.F) are coherent
Og-Modules. Since this is a local question on the base, we may suppose that
g: Y = Spf(B') — QY = Spf(B) is affine, and that ¢': X’ = Spf(4") - X =
Spf(A) is a morphism of affine formal schemes with A a B-module of finite
type and A’ = B’ ®g A a B’-module of finite type. Applying the category
equivalence given by the functor (—)* (see [EGA I, (10.10.5)]) we get that
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there exists a finitely generated A-module M such that F = M, with M a
B-module of finite type. The morphism (2.8.1) corresponds to the canonical
isomorphism of finitely generated B’-modules A’ ®4 M — B’ @p M. O

Proposition 2.9. Given a locally noetherian formal scheme Q) of charac-
teristic p, let f: X — 2 be a smooth morphism of relative dimension n.
Then the relative Frobenius endomorphism of X over ), Fy p: X — x®),
is finite, flat and Fy 9 ,Ox is a locally free Oy -Algebra of rank p".

Proof. By [AJP2, Proposition 5.9] we have that for each x € X, there exists
an open subset 4 C X with x € 4 such that f|y factors as

ui>Agl>@

where g is étale, 7 is the canonical projection and n = rk(ﬁ}?36 /Oy 1 )). We

may assume that 4 = X. Taking the diagram (2.3.1) for the morphisms g,
m and f we have the following commutative diagram of locally noetherian
formal schemes

X X
g X(p) g
01 O
Fuy g
Ay Ay
\ / (2.9.1)
Fan /9 (Fy)az,
™ ’ n)®) E
N 03
x®)
Fy
2 2
ldgy /
2

where:
e the horizontal arrows are the absolute Frobenius endomorphisms of
X, A% and 9);
o XP) = ¥ x Py 2 and {3 is a cartesian square (so Qg is a cartesian
square, t00).
Since g is étale, by Lemma 2.7 we have that [J; is a cartesian square and,

since {9 is a cartesian square we deduce that (i is a cartesian square. On
the other hand, in 2.6.(iii) we have shown that Fapyp is finite, flat and

that (FA%/@)*OA% is a locally free O(A%)(p)—Algebra\of rank p" with base
{IT, T™,0 < m; < p—1}. Then by base-change (see [AJL, Proposition
7.1]) we have that Fy gy is finite and flat. Moreover, from Proposition 2.8 it
results that:

Fx/9+Ox = Fx/9+9"Ongy = 9" Fiy O
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and, therefore, by 2.6(iii), F /9 .Ox is a locally free Oy(,)-Algebra of rank
p" with base {¢*([Tl, 7T7™),0 <m; < p—1}. O
Corollary 2.10. Let Q) be a locally noetherian formal scheme of charac-

teristic p angi\ f:X = 9 be a smooth morphism of relative dimension n.
Then Fx/@*Qg/QJ is a locally free Oy -Module of rank p™ - (7;), for all

ie€{0,1,...,n}.

Proof. Let 0 < i < n. From 1.9 we have that ﬁge 2 is a locally free Ox-

Module of rank (’Z) and therefore, the result is consequence of Proposition
2.9. O

3. CARTIER ISOMORPHISM

One of the technical tools more used for the differential study of schemes
of characteristic p is the Cartier isomorphism [C]. Our next task will be
to extend it to smooth morphisms of locally noetherian formal schemes of
characteristic p following [K, (7.2)].

3.1. Given %) a locally noetherian formal scheme of characteristic p let
f: X — Y be a morphism of locally noetherian formal schemes. For all
open set 4 C X and for all a € T'(4, Oy), it holds that

c/l\(ap) =p-aPt. c/l\(a) =0
Therefore the absolute Frobenius morphism of X and the relative Frobenius

morphism of X over ) induce zero morphisms

x)1 UNTe)! * Al 0. o1
Feyg — Qxpg FrypQrorm — Qayy
respectively (see 2.4). After all, the differentials are null being radical mor-

phisms.

3.2. Given a locally noetherian formal scheme %) of characteristic p and

~ ~ o~

f:X — % in NFS it holds that Fx/@*Q;/@ = (Fx/@*Qgg/@,Fx/@*d') is
a complex of Oy)-Modules. Indeed, given an open set 4 C X, a®b €
LU, Oxw) and ¢ € T'(4, Fx /g . Ox) there results that:
Frjp.d(a®b - ¢) = d(Fa/p(a®b)-c) =d(aP - b-c) =b-d(a? - ¢) =
=b-p-a’'-dla)-c+b-a’-dlc) =
= a®b - Fx/gj*&\(C).
It holds that the sheaves of abelian groups €, Zi(F%/@*(AZ;E /@) and
Dicz H' (Fx/9 2% /QJ) have structure of supercommutative Oy(,)-Algebras

determined by the exterior product so, the elements of degree 1 are of zero
square.

3.3. Let f: X — 2 be a smooth morphism of locally noetherian formal
schemes of characteristic p. In this setting, there exists a unique morphism
of graded Oy (y)-Algebras

v @ﬁgs(m/gj - @Hi(Fx/@*QSg/@) (3.3.1)
i€Z i€Z
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such that +° is the canonical morphism Oz — Fx/p«Ox and ! is locally
given by d(a) ® 1 ~ [aP~1d(a)).
Uniqueness follows from the fact that @, 7—[’(F*Q;€ /@) is a graded Oy)-

Algebra where the elements of degree 1 are of square zero (¢f. [Bo2, Ch. III,
§7.1, Proposition 1]).

For the existence, applying [Bo2, loc. cit.] it suffices to give 4* and 7! as
above. Consider the morphism D defined, for every open set U C X, by

(L D): T, Opm) — D H (Fy /p*ﬁ; )
a®1 ~o [aP~1d(a)]
It is well defined since:
Fyj.d(a?~1d(a)) = d(a™Y) Ad(a) = (p — 1)aP~2d(a) A d(a) = 0
and, therefore, a?~'d(a) € I’(L[,Zl(Fx/QJ*Q%/@)).

Let us show that D € Dercont@((’)x@),Hl(Fx/@*ﬁ;/Qﬂ)). It is easily
checked that D is a continuous morphism. First, we will prove that is a
morphism of sheaves of abelian groups. We take ${ C X an open subset and
ay, ag € T'(U, Ox). Applying formally d to the equality

— (-1
p_ P p . i, p—i
(a1 4+ a2)’ = aj + a5 +p (;_1 ] ay - ag )
we deduce that

o~

p- (a1 +a2)? td(ay + az) =
p—1

p- (a{’lc/Z\(al) + agflc/l\(ag) + E(Z % . ali . agi>>

from which it follows that D((a; 4 a2)®1) = D(a1®1) + D(as®1). Next,
D((ay - a2)®1) = [(ay - az)P~d(ay - as)]
= [a} - o} td(ar)] + [a} - af ' d(an))]
= (ag®1) - D(a1®1) + (a1 ®1) - D(ag®1)

and so we conclude that D is a continuous )-derivation.
By Corollary 2.10 Fy g) % ) is a complex of locally free O4()-Modules of

finite rank and, in particular, Hi(Fx/@ *Q%/gj) € A(xW), for all i. Applying
[AJP1, Theorem 3.5] it results that there exists an unique homomorphism
of Oy)-Modules

7 Qg — H Py Q%)
such that the following diagram is commutative:

7 ~
Oy ——

| A

1
x(® /Y
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Therefore, applying again [Bo2, loc. cit.] there exists an unique morphism
of graded Oy (y)-Algebras

v: @ Qggm)/g) — @Hi(Fx/@ A2%/9)
i€z i€
that in degrees 0 and 1 is defined by 7° and ~', respectively.

Theorem 3.4. With hypothesis as in 3.3, the morphism ~ depicted in
(3.8.1) is an isomorphism and it is called the Cartier isomorphism.

Proof. We will do it in three steps:

(1) If f: X — Y is a smooth morphism in Sch with Y of characteristic p,
7 is the Cartier isomorphism in Sch ([K, (7.2)]).

(2) Let us prove the result for the canonical projection g : A% — 9. Con-
sidering the diagram (2.3.1) for the morphisms my and m: Ay — Spec(Fp)
and, keeping in mind 2.6.(i) we have the following commutative diagram in

NFS:

Fagy /9 (Fp)ag,

A% (A%)(p) A%
I 0o, g O, g
03 Fun /r, 02 (F, )an 01
Ap —" (g )0 A
o)) ﬂ(@p) |:|2 b))
idy Iy

2
\ﬂ Np) \hJ T

Spec(FF,) Spec(F,) ———— Spec(F,)

idp, Fr,

The squares 0y, Oy and ;1 are cartesian, therefore the square (5 is also
cartesian. Since {3 is a cartesian square it results that {4 is also cartesian.
Applying (1), we have the Cartier isomorphism asociated to the scheme
morphism :

TnFp @ QEAE}}))(P)/FP — @ IHZ(FA&/]FP *QA]TFLP/]FP) (341)
1€EZL 1€EZ
51t 111 3 : Ol ~ ¥l
Proposition [AJP1, Proposition 3.7] implies that Q(A%)(m/@ =g Q(Afﬁp)(p)/ﬂ‘“p

and, from the fact that ¢’ is a flat morphism (by base-change) and from the
isomorphism (3.4.1) we deduce the isomorphism

X Y ~ i I% .
Y- @ QZ(A%)(:?)/QJ — @ H (g FA]}LP /Fp *QA]}LP /Fp)
1€Z 1€EZ
By 2.6.(iii) we have that F' is a finite morphism and then Proposition 2.8
: VES () ~Y *()® .
applies. Therefore g"*F, Ap JF, +$2 Ay JF, = F D /9«9 Q Az JF, and we obtain
the Cartier isomorphism asociated to my

Yn @ QzA%)(P)/QJ — @ H' (Fag *Qfxx%/@)
iez iez
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(3) In the general case, since it is a local question by [AJP2, Proposition
5.9] we may suppose that f factors in mo g: X — Aj — 2), where g is
étale and 7 is the canonical projection. Considering the diagram (2.3.1)
for the morphisms g, m and f we have a commutative diagram of locally
noetherian formal schemes (2.9.1) where {1, [0, 02 and O3 are cartesian
squares. Notice that we use that g is étale.

By (2), associated to the morphism 7y A% — %), we have the Cartier
isomorphism :

T D Dagyomyp — EB H (Eug /g j9) (3.4.2)

€L 1€Z
Since ¢ is étale and {3 is a cartesian square, by base-change ([AJP1, Proposi-
tion 2.9]) we have that ¢’ is étale and from [AJP1, Corollary 4.10] we deduce
that gl*Qz(Ag))(p)/gj = le(z))/gj
to the isomorphism (3.4.2) we have the following isomorphism

o, Qe g — &b H (9" Fag SUSYENE
€L 1EZ

for all 7 € Z. Since ¢ is flat and, applying ¢™*

On the other hand, g is étale and, from [AJP1, loc. cit] we deduce that
g*QiA% 2 = Qge 2 for all ¢ € Z. Last, applying Proposition 2.8 it results that
for all 4

N PO N
Fryp«Qxy = Faj 9" Qg j = 9" Fag /9Py /9
therefore Hl(Fx/@*QSg/g)) o Hi(g/*FA%/QJ *SA):M /@) as wanted. (]
2

4. DECOMPOSITION THEOREM UP TO p

4.1. Recall that a complex £ € D(X) is decomposable if it is isomorphic
to a complex in D(X) with zero differential. A decomposition of £ is an
isomorphism
&= HEl-i] in D(X) (4.1.1)
1€Z
that induces the identity between the homologies.

4.2. (cf. [P1, 3.1]) Let 20 be a locally noetherian formal scheme of charac-
teristic p, i: 20 < 3 a closed immersion given by a square zero ideal Z C O3
and g: 9 — W a flat (smooth) morphism. If there exists a flat (smooth)

morphism §: ) — 3 in NFS such that the diagram

P13
Y —— W

is cartesian we will say that @, or that the morphism %) — {Z:), or that g is
a flat (smooth) lifting of ) over 3.

Whenever 25 = Spec(F,) and 3 = Spec(Z/p?Z) we will say that 9) is flat
(smooth) lifting of Q) over Z/p*Z.
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The following is one of the main results of this paper. It extends to formal
schemes the classical Decomposition Theorem in [DI, Corollaire 3.7.(a)] (see
also [I, Théoreme 5.1]).

Theorem 4.3 (Decomposition Theorem). Let Q) be a locally noetherian

formal scheme of characteristic p and ) a flat lifting of Q) over Z/p*7Z. Let
f:X =9 be a smooth morphism of locally noetherian formal schemes. Any

smooth lifmj\zg x®) of XP) over QNJ provides a decomposition of the complex
T<p(Fx/@*Q;€/@) in D(XWP)), where Fyp: X — X(®) denotes the relative
Frobenius morphism of X over Q).

Remark. Mimicking the proof of [DI, Théoreme 3.5] we can show a converse

to the theorem, specifically, a decomposition of 7<P(Fj /QJ*Q.:{ /@) provides

a smooth lifting X®) of X over i}~] We leave the details to the interested
reader

We defer the proof of Theorem 4.3 to the next section. In the next few
paragraphs we will present some consequences. We will start establishing
some notations.

4.4. Let k be a perfect field of characteristic p and put Y = Spec(k). Then
there exists a flat lifting of Y over Z/p?Z given (up to isomorphism) by Y =
Spec(Wa(k)) where Wy(k) is the ring of Witt vectors of length 2 over k. On
the other hand, the absolute Frobenius endomorphism of Fj, = Fy: Y — Y
is an automorphism. So, given f: X — Y a smooth morphism in NFS from
the corresponding diagram (2.3.1) we deduce that (Fj)x: X — X is an
isomorphism. Then X(P) admits a smooth lifting over Y if, and only if, X
also does.

Corollary 4.5. Given k a perfect field of characteristic p, let f: X -Y =
Spec(k) be a smooth morphism in NFS. If there exists a smooth lifting of X

over Y = Spec(Ws(k)), then T<p(Fx/k*§§€/k) is decomposable in D(XP)).

Remark. This corollary generalizes [DI, Théoreme 2.1] to the context of
formal schemes.

Corollary 4.6. Given a perfect field k of characteristic p, let f: Z —Y =

Spec(k) be a morphism of finite type in Sch and suppose that Z is embeddable
in a smooth Y -scheme X. If there exists a smooth lifting of X := X, over

Y = Spec(Wa(k)), then T<p(F)?/k*§;?/k) is decomposable in D(X®).

Corollary 4.7. Given a perfect field k of characteristic p, let Z be a projec-
tive k-scheme embeddable in P := P} and let P :=P,z. Then T<p(F@/k*Q]%/k)
is decomposable in D(P®)).

Proof. Since E/)f‘;[/g(k;) = P xy, Spec(Wa(k)), Z is also a closed subscheme of
PnWQ(k)' If k: ngg(k) — PnWQ(k) is the completion morphism of PTVLVQ(k) along
Z, then by [AJP2, Proposition 3.10] it is immediate that the composition

ﬁ"WQ(k) = ing(k) — Spec(Ws(k))

is a smooth lifting of P over Spec(Wa(k)). O
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5. PROOF OF THE DECOMPOSITION THEOREM

The proof of Theorem 4.3 will be decomposed into several intermediate
steps. We will mostly follow the strategy of the proof of the Decomposition
Theorem for usual schemes in [I, §5].

~

5.1. Recall that a decomposition of 7<P(Fy /9«25 /@) is equivalent to give a
morphism in D(X®))

P H (Fyjy % 9[=1]) — Fr/9Q% 9
i<p
that induces the identity through the functor #¢ for all i < p. By Theorem
3.4 it is sufficient to give a morphism in D(X())
@Q;;(p)/g)[—i] — Fx/9.0% /9 (5.1.1)
i<p
that coincides in homology with the Cartier isomorphism. -
We will associate a morphism as (5.1.1) to each smooth lifting X(®) of X(?)
over ). The proof proceeds in two stages:

(i) First we show (in Proposition 5.7) that if there exists a global lifting
of Frobenius, i.e. a -morphism

ﬁ : % — .'%E’/)
that lifts /g (see 5.3), then the complex 7<P(Fy g *ﬁ% Jy) s de-
composable in D(:{(p)) by constructing a lifting of the Cartier op-
erator, see 5.5.

(i) Liftings of Frobenius only exist locally, this is discussed in 5.9.
With this, we see (in Proposition 5.11) that TSl(Fx/@ *Q;g/@) is
decomposable in D(:{(p)) by pasting these local liftings. Finally,
we extend this decomposition to the whole 7<P(Fy g Q5% /QJ) using
the multiplicative structure of the De Rham complex (Proposition
5.13).

We start by fixing some notations and definitions.

5.2. Two canonical isomorphisms. Let i: X < X be a smooth lifting
over ). From the short exact sequence of (Z/p*Z)-modules

0—p-Z/p°7 — Z/p*Z — F, — 0
we deduce that the sequence of Oz-modules
0—p-0z — O3 —1:(0x) — 0 (5.2.1)
is exact and therefore 7 is a closed embedding given by the ideal p-Oz C O3.

The isomorphism p-: F, — p - Z/p*Z of (Z/p*Z)-modules induces the
isomorphism of Oz-Modules

p’:i.(Ox) — p-Oz (5.2.2)
locally determined by a +p- Oz ~~ p - a. Since ﬁ; 5 is a locally free Oz-

Module (see [LNS, Proposition 2.6.1]) applying the functor — ®o. Q%@ to
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the sequence (5.2.1) and to the isomorphism (5.2.2) we obtain the short
exact sequence of Oz-Modules

1
0—p- Qx/@ﬁﬁx/@ﬁz*((’)x)@)@ Q/ —0 (5.2.3)

and the isomorphism of Oz-Modules

i.(Ox) ®og Ok o — p- Ok (5.2.4)

X/ /9

Observe that the isomorphism p! is locally defined by 1 ® (/1\(5) ~ e c/l\(s)

5.3. Liftings of Frobenius. From now on we will assume the set-up and
hypotheses of Theorem 4.3. Given Fy;9: X — x(®) the relative Frobe-
nius morphism of X over ) let us suppose that there exist i: X — X
and 7’: %ﬁf—) X(®) smooth liftings over @ We say that a @—morphism
F:X—5X® isa lifting® of Fy sy if the following diagram is commutative

P xw

[ (5.3.1)
%Fx/@ x(p)

H‘?(%Hﬁ

Observe that, since X = X X3 9) and X = f%z;) X3 ) we have that the
square (5.3.1) is cartesian.

Lemma 5.4. The image of the canonical morphism

() N O}
x(® /9

' tained i FOL -
is contained in p - ( /@)

Proof. Indeed, the morphism of (’) ;-Modules

./ ./ Ol
7,0 ®o_ QL 0O ®Ro — F.OQ% -
*~ x(p) OBE(P) x /9 * < x(p) (’)%(p) * /9

corresponds through the projection formula [EGA 1, 0, (5.4.8)] to
1 H1 . Ol ~ 70l
and this map is zero by 3.1. We conclude since 7, Oy = (9@ /p- (9@. U

5.5. A Cartier operator. Under the hypotheses and notations of 5.3,

e 1 1
applying i"* to the canonical morphism Q%(p)/@ — F.OL 35 W have that
there exists an unique morphism of Oy,)-Modules

3Accordmg to the terminology established in [P1, §2] we would say that Fisa lifting

fxﬂ»%(p) f_;}?(\;) over if)
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such that the following diagram is commutative

can. kT Al B
s p-d F*me

ZT l (5.5.2)
~ pl

1 F Ol
Qx<p>/@ — Fx/@*Qx/m

where the left vertical isomorphism is given by base-change (see [AJP1,
Proposition 3.7]), and the right vertical morphism corresponds to the iso-
morphism

LD B (10s g0, 0L ) 2 (Foi),@
Ly o R(1L0x ®op Ok 5) 2 (Foi).

p-EQ /9

1
X/
through the adjoint pair i* —4/. Let us call ¢ }5 the Cartier operator.

Let us give a local description of the morphism ¢ }17 For that, assume
that we are in NFS, and set 9 = Spf(B), 9 = Spf(B), X = Spf(A),
X = Spf(A), x® = Spf(A®)) and X») = Spf(AP) with A = A/pA and
A®P) = AP) /pA®P). Now, given a = a; —}—p-g with a; € A and ay € A® such
that a®1 = ag+p- AP, since F(a®1) = aP (see 2.4) from the conmutativity
of diagram (5.3.1) we deduce that

F(az) = a’f—l—p-cl
with ¢; € A. From this we deduce that %) Flv is locally given by

d(a) ®1 ~ a?'d(a) + d(c)

where c =c¢; +p - A.
Lemma 5.6. In the setting of 5.3, the Cartier operator <p1% defined in (5.5.1)

induces in homology the Cartier isomorphism in degree 1.
Proof. From the local description of ¢ I% just given, we deduce that Im(¢ I%) C
Z1FPy /9 *ﬁé 2 and that the composition of morphisms

1
o1 F, 21 e 1 e
Qi gy = 21 (Fryp Q8 jgy) — 7 (Fryp Q%)
is v!, the Cartier isomorphism (3.3.1) in degree 1. O

Proposition 5.7. Suppose that there exists a éj—morphz’sm F that lifts Fx g -
Then there exist a morphism in the category of complexes of objects in

A(x®)
vr: P Qég(m/@[—i] — Fr/9Q% /9
i<p
that induces the Cartier isomorphism (3.3.1) in H’, for all i < p, such that
cp% = Ffe/z) and the morphism cp% is the one defined in 5.5.
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Proof. By Lema 5.6 and Theorem 3.4, it suffices to take gp;;: the composition
of the morphisms

oi o1 Neg o o1 prod. o
Qew g = N g — NPy Qr gy — Fryp Ly,

for all 1 <1 <p. O
Corollary 5.8. If there exists a @—morphism F that lifts Fx g then there
is a decomposition of T<P(Fx y *ﬁé/@) in D(XP).

Proof. By 5.1 it is an immediate consequence of the proposition. O

5.9. Having dealt with the case in which there is a global lifting of Frobenius,
we treat now the general case of Theorem 4.3. We start by showing that the
complex Tgl(Fx/gj*ﬁ;/@) is decomposable in D(X()). For that, given an
arbitrary affine open covering {i,} of X, by [P1, Corollary 4.3] for each «
there exists a smooth lifting ﬁa of 41, over @ FurtherrAngre7 [AJP1, Corollary

2.5] implies that there exists a lifting Fy: ly, — X(®) of Fyjgly,: Yo —

x® — f%z;) over é‘v] We are going to “glue” in D(X(®)) the morphisms PF,
asociated to each lifting F, (¢f. Proposition 5.7) and we will check that does
not depend of the chosen covering of X. This construction is not trivial due
to the lack of the local nature of the derived category.

We need the following lemma in which we compare the morphisms ¢z
asociated to different liftings F' of F y.

Qemma 5.10. Suppose given ﬁlz 3~E1 — %\(/p) and ﬁg: %2 — E/E\(/p) a pair of
Q)-morphisms that lift Fxy, then there exists an homomorphism of Oy -

Modules ¢(Fy, Fy): Q — Fy9.Ox such that:

1
x® /9
o5, — ¥, = Fradoo(Fy, F) (5.10.1)

Moreover given ﬁg: %3 — % another @—morphism that lifts F', the cocycle
condition holds, namely

O(F, Fy) + o(F, F3) = ¢(F1, Fy) (5.10.2)

Proof. First, we are going to define qﬁ(ﬁl,ﬁg) whenever there is a @—iso—
morphism @: X; — X» that induces the identity on X (¢f. [P1, 3.4]). The
morphisms F; and F5 o 4 are two liftings over ) of the composed map

x 22, 300 4 300,

and by [P1, 2.2.(1)] there exists an unique homomorphism of O < -Modules

. 0l A . O~ i
U Q@@ — F1«(p - O3) such that the diagram

d ol
— s _
OX(P) _xe)/Y

-
-

-

L

Fi(p- Oz)

ﬁf—@oa)ﬁl \1/
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is commutative. Applying 7"* to the above dlagram we have that there exists
a homomorphism of Oy (,)-Modules ¢(1, Fl,Fg) Ol — Fx/9.Ox such

that the following diagram commutes:

x(p)/y

/* %Y1 1
—_— - %
Ox(w ¢ Q%(p)/@ QX(P)/Y
(¥ .
71 o(u, F1, F2)

" Fra(p - O%) T i1 Fy g« Ox — Fx /9 «Ox

where 7 = z’*(ﬁf — (Fyo@)%) and 75 := i"*F1.((p°)~1). Let us show that
¢(a, F1, Fy) does not depend on u. Indeed, given 0: X; — X3 another Q-

isomorphism that induces the identity on X, [P1, 2.2.(1)] implies that there
exists an unique homomorphism of O%Q—Modules

IR

(¥ Qx 5 Uy(p - Ox) = i2.0%
such that % — @f = ¢ o d being ig: X — X, the inclusion. Equivalently by
adjunction and, with an abuse of notation, there exists an unique homo-

morphism : ﬁl — Oy of Ox-Modules such that of — af = ¢ o d. On

the other hand, since Fyoi and F, 00 are two liftings of i’ o Fy p over 2]

by [P1, 2.2.(1)] there exists an unique morphism 7: Fx/@Q;(m/@ — Ox of

Ox-Modules such that (Fho0d)! — (Fy0@)! =no d'. By unicity n factors as

can.

x/ngx(p)/@ B— Q%/Qj R Ox

By 3.1 the canonical morphism F 0! — QL is zero and we conclude

/9% x®) /Y
that 7 = 0 and, therefore, F2 o = Fg o 9.
In general, given an affine open covering {,} of X, for all a, [P1, 3.3]

x/2

implies that there exists a )-isomorphism @, : X1y, — X2|y, that induces
the identity on 4,. Then it suffices to define for each «
O(F1, B)ly, = @lia, Filu,, Paly,)

To check the equalities (5.10.1) and (5.10.2) we may restrict to the affine
case. In this case X; and X9 are isomorphic (see [P1, 3.3]) and to simplify we
set X := X1 = Xo. With notations as in 5.5, we have that E(a(p)) =aP+p-q
with ¢; € A for i = 1,2, from where we deduce that

@Flvl - @%2 = /g «d o ¢(u, I, F»)

Last, if we suppose there exists yet another ij—morphisrn ﬁgl 1%3 — fg;)
that lifts F' and that 0: X9 — X3 is a )-isomorphism that induces the iden-
tity in X, the equality (5.10.2) holds by adding the relations corresponding
to the couples (Fy, Fy) and (Fy, F3). O

Proposition 5.11. There exists a morphism in D(X®))
pl: Q;(p)/@[—l] — Fx9.0% )
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that induces the Cartier isomorphism (3.3.1) in H!.

Proof. Let us fix an affine open covering {4} of X. By 5.9 there exists a
smooth lifting ﬁa of i, over Qj and a lifting ﬁa : ﬁa — X of Fx/gj lgg,, : Lo —
x®) — x® over @, that is, such that the following diagram is commutative:
uoa — ﬂa
Fx/plug l

x(p) N

[

X ——— 9

By Lemma 5.6 for each « there exists a homomorphism of complexes of
Oxm |y,-Modules

1 Al Al
YE.; Qgg(p)/@‘ila — F%/Qj *Qx/@‘ﬂa

that induces the Cartier isomorphism in H!'. By Lema 5.10 we have that,
for each pair of indexes «, 8 such that U,g := U, N g # & there exists a
homomorphism of Oy |y, s~Modules

ol
Pap: Qxw jlttas — Fr/9+Oxlutgg

such that: R
(pﬁlva ‘ﬂaﬁ o (‘Oﬁ‘lvﬁ‘ﬂaﬁ = F%/Q_J *d © ¢a5 (5111)

and such that, for all o, 8, § with HU,gs := s NUg N Us # O
¢Oéﬁ|uo¢[36 + ¢ﬁ6|uo¢,86 = ¢046|uo¢[35' (5112)

Data (5.11.1) and (5.11.2) allow to define a morphism of complexes

SO%ua,ﬁa): Q;e(p)/g[_l] — C({ha}, Fx *Qé/@)
of Oy)-Modules in degree 1, equivalently

(P1.90) 5 5 A
oF 2 =1 —70 CH({ta ), Fr/y «Ox) @CO({QL&},F%/@*QQ@)
that is locally given by:
PlW(ap) = Pap(Wls,,)  POW(a) = SD%Q (wly,)
We define ! as the composition of the morphisms in D(X®))

1
Pt Fa)

~ ~ 6_1 e
Qx(P)/Q_][ 1] C({ua}a F%/Q_J *Q}.j/g):j) — F%/Q) *Q%/Q:j’

where Fy g *Q%/@ 5 C({Ua}, Fy o *Q;E/@) is the Cech resolution. The mor-

phism ¢! does not depend of the election of {(ua,ﬁ )} Indeed, if {U} is

a refinement of {,} it is easy to see that SD(MQ,FQ) = gp(ﬂ Fuly)’ Then if

{23} is another covering of X and for all 3, Gg is a lifting of Fy /@]mﬁ, is
1

Fa) ~ (. Fa)u(05.85) LP(% Gp)'

simple exercise to check that ¢! («
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Last, let us see that ¢! induces the Cartier isomorphism in H!. Sinceit is a

local question, we may suppose that there exists a @—morphism F: X — x®
that lifts to Fy/g. Then ¢! is defined by the morphism ‘Plﬁ given in 5.5. 0

Corollary 5.12. There is a decomposition of Tgl(Fx/@ *5\2;/@) in D(XW)).

Proof. Indeed, the maps ¢° = Fjﬁ€ / and ¢! provide such isomorphism. [J

2
Proposition 5.13. There is a decomposition of T<P(Fy gy *Q;/@) in D(XP))
extending the previous one.

Proof. For all 1 < i < p we're going to find a morphism in D(X®))
@ Qix(p)/@ [—=i] — Fx/9Q%/y
that induces the Cartier isomorphism through the functor H’ .
For that, given o' the morphism defined in Proposition 5.11, for all ¢ > 1
we consider the morphism in D(X®)),

L L L

(1) Qg 1) — (Frjg o0 )™

L L L
defined, as usual, by (p!)® =o' @ @ pl.

By [LNS, Proposition 2.6.1] we have that Q;(m/@

Module of finite rank, then (Q, o [=1])%" = () ) [~] in D(x®).
On the other hand, Corollary 2.10 implies that Fy /Qj*ﬁjz 2 is a complex

is a locally free Oy -

of locally free Oy(;)-Modules of finite rank, from which it follows that, in
L

D(XP), (Fr/p .03 9)%" = (Fap Q)"
Take 1 <4 < p. The antisymmetrization morphism
Q;(p)/@ [—1] — QL

) &[]
x(®/9
w1 ANwg A -+ ANw; ~ % ZJES,' sg(a)w(,(l) ® We(2) QK- Q W ()

AN . A

is a section of the product map

AN ; . prod. . .
(Q;(p)/@)(gl[_z] B sz(p)/@ [_Z]
w1 QW X - Qw; ~ w1 Awg N -+ ANw;

and, then we define ¢’ as the composition of morphisms in D(%(p)):

~; 0
Qx(r)/@[ 7’] ””””” > (Fx/@ *Q%/@)
A prod
(Q;@)/@)@Z[_Z] (Fej 823 9)™"
{ {

(ﬁl )%z[_z] (01)®" (F ﬁo )éLG
x®) /9 — > x/9 )y
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From Proposition 5.11 and Theorem 3.4 we conclude that Hi(p') =+,
where ~* is the Cartier isomorphism in degree ¢, for all 0 < ¢ < p and with
this we end the proof of Theorem 4.3. U

6. DECOMPOSITION AT p

6.1. Some reminders on duality on formal schemes.

Let us recall the definition of some functors involved in the Torsion Duality
for formal schemes [AJL, §6]. Given X € NFS and J any Ideal of definition
of X, the functor I'y: A(X) — A(X) is defined by

% (F) = hﬂé Homo, (Ox/T", F).
n>

It is a left exact functor. The Ox-Modules invariant by I'y are called tor-
sion Ox-Modules and we denote by Dgct(X) C D(X) the full subcategory
of complexes such that the homologies are torsion quasi-coherent sheaves.
Dyc(%) := RI% ™! (Dget(X)) [AJL, Definition 5.2.9]

The functor RI’; has a right adjoint, the completion functor denoted by
Ax: D(X) — D(X). It is given by Ay := RHom(RI'zOx,—). See [AJL,
5.2.10.(3)]. The essential image of Dgct(X) through Ay is denoted I/j(i{)
Note that DI (%) ¢ D(X) [AJL, Proposition 6.2.1].

Let f: X — Q) be a separated map in NFS. The functor Rf,: Dgct(X) —
Dqt(9) — D(Q) has a right adjoint, namely f{: D(2) — Dgt(X) [AJL,
Theorem 6.1].

Put f* := Axf: D(Q) — 6qc(3€). The theory of torsion duality asso-
ciates to f an adjunction

Homy (G, f*F) — Homy (Rf.RI%G, F)

with G € Ich(%) and F € D(%)) induced by natural transformation (the
counit of the adjunction)

™ Rf,RI:f* — id
by [AJL, Corollary 6.1.4.(a)].

6.2. Duality for coherent coefficients in the adic case.

Assume that f is a proper morphism, therefore adic. The above duality is
described on the categories DI (X) and D (2)) as follows (see [AJL, Theorem
8.4]). The functor Rf,RI} takes values in Dgct(2)) but we may force it to
take image on [A)(@) by applying the completion functor Ag. The functor
AyRf,RI% has the right adjoint f*. Since f is adic, using the fact that

AyRf.RIy = Rf, AxRIy (by [AJL, Corollary 5.2.11.(c)])
= Rf.Ax (by [AJL, Remarks 6.3.1.(1)(c)])

we see that AyRf.RI} agrees with Rf, on D} (X) because the functor
Azx|p+(x) is the identity.

Moreover, by [AJL, Proposition 3.5.1, Proposition 8.3.2] Rf.(DZ (X)) C
D} () and f#(DF(Y)) € DI (X). Therefore the duality for proper mor-
phism establish that the functor f#: D} (2) — DI (X) is right-adjoint to
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Rf.: DI (X) — DI (9). We denote the counit of the adjunction as
™ Rf.f* — id.

This map is usually referred to as the trace map. If we need to specify the

map f we will denote it by 7/:? =7

6.3. Frobenius and a perfect pairing of differential Modules.
Let X denote a smooth pseudo proper formal scheme over a characteristic

p perfect field k. Let dim(X) = n. As before, put X?) = X x 5, Spec(k).
Recall from 1.7 the graded complex of coherent Ox-Modules €25 Ik As we

have already recalled (1.9), the sheaves @& /i are locally free for all ¢ and
thus we have perfect pairings

Qazs/lc Q0 Qx/k — Qx/k
where 0 < ¢ < n. This pairing induces the isomorphism in Dj(%):
3i€/k = RHOmx(QZ/,i’ Qx/k) (6.3.1)

Let us denote f: X — Spec(k) and f®: x®) — Spec(k) the structural
morphisms, and Fy/,: X — X®) the relative Frobenius. Notice that Fyy is
a finite map. Recall that f®) o Fy sk = J. We have the following string of
isomorphisms in DS (X()):

Fx/k*ﬁi/k = Fx/k« Rﬂomx(Qg/;} Qx/k)
= Fx /i« RHomzx(Q x/kawx/k)
= Fy/p« RHomx(Q%/k, x/kwx@)/k)
= RHomyw) (Fx/k*ﬁgﬁﬁ, W) k)
Where the first isomorphism comes from applying the functor Fy . to

6.3.1). The equality corresponds to the notation w = Q% : also, we
y X/k x/k

set Wy) /= Q; By [S, Theorem 5.1.2] these sheaves are dualizing

(p) /K
in D(X) and D(X(®), in other words, they arc identified with f*(k) and
f (p)#(k:), respectively. The second isomorphism is induced by the map

FR /@3 g — Wx/k
([AJL, Corollary 6.1.4.(b)]). The third isomorphism is [AJL, Theorem 8.4]
applied to F/, which is finite (Proposition 2.9), therefore proper.

Taking homology, we obtain the perfect pairing in A(X®))
FX/k*Qi/k ®03€(P) Fx/k*ngz — Wx®) /k (632)
Notice that the pairing is induced by the trace map 7*(wy ) /k).

6.4. The graded piece of the Cartier isomorphism is an isomorphism of
locally free sheaves

V' Qe — H (P8 1)

There is a natural map v: Fx/k*ﬁg/k — ’H"(Fx/k*ﬁse/k) that composed
with the inverse of v" yields a canonical morphism
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C: F%/k «Wx/k — w%(p)/k (6.4.1)
In other words, C = (y*)" 1o v.

Proposition 6.5. The map C in (6.4.1) agrees with ?#(wx(p)/k) for the
Frobenius map Fx, .

Proof. This comes down to a local computation. Let € X and & € X
the corresponding point by the bijection of underlying spaces. Denote by
7F the map ?}x/k(wx@) /). We have the following commutative diagram

n o (p) via 7%, " 7A’;(k) ~
R™ f Wxw g — 7 R™ fuwz k
can can resSg

HE (TE)

Hi(wxwr ) —— Hilwx/n)

with H? denoting local cohomology at z and similarly H2. The square
commutes by functoriality and the triangle defines the map res,. By pseudo-

functoriality the horizontal composition is ?]’f(p) (k) .

As a consequence, the lower composition is resz. Using the computation
in [L, (7.3.6)] it follows that H?(7F) = H2(y"). It holds also in our setting
because local cohomology only depends on the completion of the correspond-
ing stalks of the structure sheaves. Notice that in loc. cit. H(~™) is denoted
C;!. The claim follows now by the local description of 7. O

Remark. For another take on the relationship between the duality trace and
the Cartier map C, see [M, §1]. For an explicit computation of the trace
in the case of usual schemes and the absolute Frobenius, see [BlS, Theorem
3.2.1].

Theorem 6.6 (Decomposition at p). Let X be a smooth pseudo proper lo-
cally noetherian formal scheme over a perfect field k of characteristic p such
that dim(X) < p and that admits a smooth lifting over Wa(k). Then, the

complex Fx/k*ﬁ%/k is decomposable in D(XP)).
Proof. We have to show that there is an isomorphism in D(X®))
$ D[] = Fr /i Q3 1
1EZ
We may assume X connected. If dim(X) < p then the statement follows

from Corollary 4.5.
Let us assume from now on that dim(X) = p, in other words, n = p. By

Corollary 4.5, the complex T<p(Fx/k*§§€/k) is decomposed in D(X(®)). We
have a distinguished triangle

TP (Fryi 0% ) — Py, — HP (e Q%) [-p) = (6.6.1)

~

As 7<P(Fy k2% /@) is decomposed, we only need to check that the morphism

e: Hp(Fx/k*ﬁ.x/k)[_p] — (@Kp?'[i(Fx/k*Q;‘/k)[_i])[l]
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is zero. Denote by e; the components of e. They satisfy the following

e; € Hom(HP[—p], Hi[—i + 1]) = HP~ 4 (xP) Hom(HP, HY))

with H' = HZ(Fx/k*ﬁ%/k) Applying 72! to the triangle (6.6.1) we obtain

TP (Frynn %) — 77 (Fapi Q%) — HP Py Q%) [-p) =

By Proposition 6.5 the pairing (6.3.2) induces an isomorphism

RHOmx(p) (Fx/k *QI;:?;,Wx(P)/k) = F%/k *Q;ﬁ/k

Using this, we see that 721 (Fy /k*ﬁ% /k) is decomposed. Then e; = 0 for all

i # 0. Finally, eg € HP*(X®) Hom(HP, 1)) = 0 because dimtop(XP)) =
dimtop(¥X) < dim(X) = p. O

[AJL]

[AJP1]

[AJP2]

[Bol]
[Bo2]

(BIS]

(€]
(D]

[EGA 1]

[EGA IIL]

[EGA 1V4]

[SGA 5]
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