HARMONIC MEAN CORDIAL LABELING OF SOME GRAPHS

J. PAREJIYA ${ }^{1 *}$, D. JANI^{2}, Y. HATHI^{3}, §

Abstract

All the graphs considered in this article are simple and undirected. Let $G=(V(G), E(G))$ be a simple undirected Graph. A function $f: V(G) \rightarrow\{1,2\}$ is called Harmonic Mean Cordial if the induced function $f^{*}: E(G) \rightarrow\{1,2\}$ defined by $f^{*}(u v)=\left\lfloor\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rfloor$ satisfies the condition $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for any $i, j \in\{1,2\}$, where $v_{f}(x)$ and $e_{f}(x)$ denotes the number of vertices and number of edges with label x respectively and $\lfloor x\rfloor$ denotes the greatest integer less than or equals to x. A Graph G is called Harmonic Mean Cordial graph if it admits Harmonic Mean Cordial labeling. In this article, we have provided some graphs which are not Harmonic Mean Cordial and also we have provided some graphs which are Harmonic Mean Cordial.

Keywords: Harmonic Mean Cordial, cycle, complete bipartite graph, join of two graphs.
AMS Subject Classification: 05C78.

1. Introduction

We begin with simple, finite, connected and undirected graph $G=(V(G), E(G))$. The concept of cordial labeling was introduced by Cahit in [2] the year 1987. Recall from [5] that function $f: V(G) \rightarrow\{1,2\}$ is called Harmonic Mean Cordial if the induced function $f^{*}: E(G) \rightarrow\{1,2\}$ defined by $f^{*}(u v)=\left\lfloor\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rfloor$ satisfies the condition $\left|v_{f}(i)-v_{f}(j)\right| \leq$ 1 and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for any $i, j \in\{1,2\}$, where $v_{f}(x)$ and $e_{f}(x)$ denotes the number of vertices and number of edges with label x respectively and $\lfloor x\rfloor$ denotes the greatest integer less than or equals to x. A Graph G is called Harmonic Mean Cordial if it admits Harmonic Mean Cordial labeling. Let $G=(V(G), E(G))$ be a simple, undirected graph and $\left\{v_{1}, v_{2}, \cdots v_{n}\right\} \subseteq V(G)$, we call $v_{1}, v_{2}, \cdots v_{n}$ are in sequence if it forms a path. For the sake of convenience of the reader we use $H M C$ for harmonic mean cordial labeling. Motivated by the Results proved in [5] and [4], in this article, we have provided some

[^0]examples of non $H M C$ graphs and also we have provided some $H M C$ graphs. It is useful to recall some useful definitions of graph theory to make this article self-contained.

Definition 1.1. [1] A simple graph G is said to be complete if every pair of distinct vertices of G are adjacent in G. It is denoted by K_{n}.
Definition 1.2. [1] A walk in a graph G is a finite alternating sequence of vertices and edges. A walk is called a trail if all the edges are distinct. Cycle is a closed trail in which all the vertices are distinct. It is denoted by C_{n}.
Definition 1.3. [1] Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. Then union of G_{1} and G_{2} is denoted by $G_{1} \cup G_{2}$ is the graphs whose vertex set is $V_{1} \cup V_{2}$ and egde set is $E_{1} \cup E_{2}$. When G_{1} and G_{2} are vertex disjoint $G_{1} \cup G_{2}$ is called sum of G_{1} and G_{2} and it is denoted by $G_{1}+G_{2}$.
Definition 1.4. [1] Let G_{1} and G_{2} be two vertex disjoint graphs. Then the join $G_{1} \vee G_{2}$ of G_{1} and G_{2} is the supergraph of $G_{1}+G_{2}$ in which each vertex of G_{1} is also adjacent to every vertex of G_{2}.

Definition 1.5. [1] A graph is bipartite if is its vertex set can be partitioned into two non empty subsets V_{1} and V_{2} such that each edge of G has one end in V_{1} and other in V_{2}. The pair $\left(V_{1}, V_{2}\right)$ is called bipartition of a bipartite graph. It is denoted by $G\left(V_{1}, V_{2}\right)$. A simple bipartite graph $G\left(V_{1}, V_{2}\right)$ is complete if each vertex of V_{1} is adjacent to all the vertices of V_{2}. If $G\left(V_{1}, V_{2}\right)$ is complete with $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$ then $G\left(V_{1}, V_{2}\right)$ is denoted by $K_{m, n}$.

Definition 1.6. [6] Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. Then the Corona of G_{1} and G_{2} is denoted as $G_{1} \odot G_{2}$ is a graph obtained by taking one copy of G_{1} (which has p_{1} vertices) and p_{1} copies of G_{2} and then joining the $i^{t} h$ vertex of G_{1} to every point in the $i^{t} h$ copy of G_{2}.

Definition 1.7. [1] The Helm graph H_{n} is the graph obtained from a wheel W_{n} by attaching a pendent edge at each vertex of the cycle.

Definition 1.8. [3] A Closed helm is the graph obtained from a helm by joining each pendent vertex to form a cycle. It is denoted by CH_{n}.

Definition 1.9. [3] The direct (tensor) product $G \times H$ of two graphs $G=(V(G), E(G))$ and $H=(V(H), E(H))$ is a graph with the vertex set $V(G \times H)=V(G) \times V(H)$ and edge set $E(G \times H)=\left\{(x, y)\left(x^{\prime}, y^{\prime}\right) \mid x x^{\prime} \in E(G)\right.$ and $\left.y y^{\prime} \in E(H)\right\}$.

Here, we mention the results proved in the Section 2. In Theorem 2.1, we have proved that the $C H_{n} \odot K_{1}$ is $H M C$. We have shown in Theroem 2.2 that the tensor Product $P_{m} \times P_{n}$ is $H M C$. The Complete bipartite graph $K_{m, n}$ is not $H M C$ is proved in theorem 2.3. We have discussed harmonic mean cordial labelling of $K_{n} \vee C_{m}$ and we have proved that it is not $H M C$ in Corollary 2.1 for any $n \geq 2, m \geq 3$ and $n, m \in N$. In Corollary 2.2, we have proved that $C_{m} \vee C_{n}$ is not $H M C$ for any $n, m \geq 3$ and $n, m \in N$.

2. Main Results

Theorem 2.1. $\mathrm{CH}_{n} \odot K_{1}$ is $H M C$.
Proof. Note that $\left|V\left(C H_{n} \odot K_{1}\right)\right|=4 n+2$ and $\left|E\left(C H_{n} \odot K_{1}\right)\right|=6 n+1$. Let $V\left(C H_{n}\right)=$ $\left\{x_{1}, x_{2}, \ldots, x_{n+1}\right\}$ be the vertex set of $C H_{n}$ with x_{1} as an apex vertex and y_{i} be the pendent vertex, adjacent to x_{i} in $C H_{n} \odot K_{1}$ for $1 \leq i \leq 2 n+1$ as shown in the following figure.

Let us define the labeling function $f: V\left(C H_{n} \odot K_{1}\right) \rightarrow\{1,2\}$ as follows
$f\left(x_{i}\right)=2,1 \leq i \leq n+1$
$f\left(x_{i}\right)=1, n+1 \leq i \leq 2 n+1$
$f\left(y_{i}\right)=2,1 \leq i \leq n$
$f\left(x_{i}\right)=1, n+1 \leq i \leq 2 n+1$
Note that, $v_{f}(1)=2 n+1=v_{f}(2)$ and $e_{f}(1)=3 n+1, e_{f}(2)=3 n$. Therefore, $C H_{n} \odot K_{1}$ is $H M C$.

Example 2.1. HMC labeling of $\mathrm{CH}_{4} \odot K_{1}$ is shown in the following figure

Theorem 2.2. The $P_{m} \times P_{n}$ is $H M C \forall m, n \in \mathbb{N}$.
Proof. Let $G=(V, E)$ be the $P_{m} \times P_{n}$. Note that $|V|=m n$ and $|E|=2 m n-2 m-2 n+2$. Let $V=\left\{x_{1,1}, x_{1,2}, \ldots, x_{1, n}, x_{2,1}, x_{2,2}, \ldots, x_{2, n}, \ldots, x_{m, 1}, x_{m, 2}, \ldots, x_{m, n}\right\}$ be a vertex set of G as shown in the following figure

$$
P_{m} \times P_{n}
$$

Case 1: $m n$ is even
Define a labeling function $f: V\left(P_{m} \times P_{n}\right) \rightarrow\{1,2\}$ as follows,
$f\left(x_{i, j}\right)= \begin{cases}1 & \text { if } 1 \leq i \equiv 1(\bmod 2) \leq m \text { and } 1 \leq j \equiv 1(\bmod 2) \leq n \\ 1 & \text { if } 1 \leq i \equiv 0(\bmod 2) \leq m \text { and } 1 \leq j \equiv 0(\bmod 2) \leq n \\ 2 & \text { if } 1 \leq i \equiv 1(\bmod 2) \leq m \text { and } 1 \leq j \equiv 0(\bmod 2) \leq n \\ 2 & \text { if } 1 \leq i \equiv 0(\bmod 2) \leq m \text { and } 1 \leq j \equiv 1(\bmod 2) \leq n\end{cases}$
Then $v_{f}(1)=v_{f}(2)=\frac{m n}{2}$ and $e_{f}(1)=e_{f}(2)=\frac{2 m n-2 m-2 n+2}{2}$. So, we have $\left|v_{f}(1)-v_{f}(2)\right|=$ 0 and $\left|e_{f}(1)-e_{f}(2)\right|=0$.
Case 2: $m n$ is odd
Define a labeling function $f: V\left(P_{m} \times P_{n}\right) \rightarrow\{1,2\}$ as follows,
$f\left(x_{i, j}\right)= \begin{cases}1 & \text { if } 1 \leq i \equiv 1(\bmod 2) \leq m \text { and } 1 \leq j \equiv 1(\bmod 2) \leq n \\ 1 & \text { if } 1 \leq i \equiv 0(\bmod 2) \leq m \text { and } 1 \leq j \equiv 0(\bmod 2) \leq n \\ 2 & \text { if } 1 \leq i \equiv 1(\bmod 2) \leq m \text { and } 1 \leq j \equiv 0(\bmod 2) \leq n \\ 2 & \text { if } 1 \leq i \equiv 0(\bmod 2) \leq m \text { and } 1 \leq j \equiv 1(\bmod 2) \leq n\end{cases}$
Then $v_{f}(1)=\frac{m n+1}{2}, v_{f}(2)=\frac{m n-1}{2}$ and $e_{f}(1)=e_{f}(2)=\frac{2 m n-2 m-2 n+2}{2}$. So, we have $\left|v_{f}(1)-v_{f}(2)\right|=1$ and $\left|e_{f}(1)-e_{f}(2)\right|=0$.
Hence, The $P_{m} \times P_{n}$ is $H M C$.

Example 2.2. HMC labeling of $P_{4} \times P_{5}$ and $P_{5} \times P_{5}$ is shown in the following figure.

$P_{4} \times P_{5}$

$P_{5} \times P_{5}$

Theorem 2.3. Complete bipartite graph $K_{m, n}$ is not HMC, where $m, n \geq 2$.
Proof. Without loss of generality, we may assume $m \geq n$. Let $V\left(K_{m, n}\right)=V_{1} \cup V_{2}$. Where, $\left|V_{1}\right|=n$ and $\left|V_{2}\right|=m$. Suppose that $K_{m, n}$ is HMC.
Case 1: $n+m$ is even
Since $K_{m, n}$ is $H M C$, we have $v_{f}(1)=\frac{n+m}{2}=v_{f}(2)$. Suppose that there exist t vertices with label 1 in V_{1}. So, we have $n-t$ vertices with label 2 in V_{1}. Hence, there exists $\left(\frac{m+n}{2}-t\right)$ vertices with label 1 in V_{2} and $m-\left(\frac{m+n}{2}-t\right)=\left(\frac{m-n}{2}+t\right)$ vertices with label 2 in V_{2}. Note that, $e_{f}(1)=m t+(n-t)\left(\frac{m+n}{2}-t\right)$ and $e_{f}(2)=(n-t)\left(m-\frac{m+n}{2}+t\right)$. Now, $e_{f}(1)-e_{f}(2)=m t+(n-t)\left(\frac{m+n}{2}-t\right)-(n-t)\left(m-\frac{m+n}{2}+t\right)=m t+(n-t)^{2}-n t+t^{2}>2$.

Case 2: $n+m$ is odd

In this Case we have two possibilities
(i) $v_{f}(1)=\frac{n+m+1}{2}$ and $v_{f}(2)=\frac{n+m-1}{2}$
(ii) $v_{f}(1)=\frac{n+m-1}{2}$ and $v_{f}(2)=\frac{n+m+1}{2}$

So, we consider the following Cases.
Subase 2.1: $v_{f}(1)=\frac{n+m+1}{2}$ and $v_{f}(2)=\frac{n+m-1}{2}$
Suppose that there exist t vertices with label 1 in V_{1}. So, we have, $(n-t)$ vertices with label 2 in V_{1}. Hence, there exists $\left(\frac{m+n+1}{2}-t\right)$ vertices with label 1 in V_{2} and $\left[m-\left(\frac{m+n+1}{2}-t\right)\right]=$ $\left(\frac{m-n-1}{2}+t\right)$ vertices with label 2 in V_{2}. Note that, $e_{f}(1)=m t+(n-t)\left(\frac{m+n+1}{2}-t\right)$ and $e_{f}(2)=(n-t)\left(\frac{m-n-1}{2}+t\right)$. Now, $e_{f}(1)-e_{f}(2)=m t+(n-t)\left(\frac{m+n+1}{2}-t\right)-(n-t)\left(\frac{m-n-1}{2}+\right.$ $t)=m t+(n-t)^{2}+n-n t+t^{2}-t>2$.
Subase 2.2: $v_{f}(1)=\frac{n+m-1}{2}$ and $v_{f}(2)=\frac{n+m+1}{2}$
Suppose that there exist t vertices with label $1{ }^{2}$ in V_{1}. So, we have, $(n-t)$ vertices with label 2 in V_{1}. Hence, there exists $\left(\frac{m+n-1}{2}-t\right)$ vertices with label 1 in V_{2} and $\left[m-\left(\frac{m+n-1}{2}-t\right)\right]=$ $\left(\frac{m-n+1}{2}+t\right)$ vertices with label 2 in V_{2}. Note that, $e_{f}(1)=m t+(n-t)\left(\frac{m+n-1}{2}-t\right)$ and $e_{f}(2)=(n-t)\left(\frac{m-n+1}{2}+t\right)$. Now, $e_{f}(1)-e_{f}(2)=m t+(n-t)\left(\frac{m+n+1}{2}-t\right)-(n-t)\left(\frac{m-n+1}{2}+\right.$ $t)=m t+(n-t)^{2^{2}}-n+n t>2$. Hence, $K_{m, n}$ is not $H M C$, where $m, n \geq 2$.

Theorem 2.4. $K_{n} \vee C_{n}$ is not $H M C$, where $n \geq 3$.
Proof. Suppose that $K_{n} \vee C_{n}$ is $H M C$. Note that, $\left|V\left(K_{n} \vee C_{n}\right)\right|=2 n$ and $\left|E\left(K_{n} \vee C_{n}\right)\right|=$ $n \frac{(n-1)}{2}+n+n^{2}$. Since, $\left|V\left(K_{n} \vee C_{n}\right)\right|=2 n$ and we have assume that $K_{n} \vee C_{n}$ is HMC. We have $v_{f}(1)=v_{f}(2)=n$.
Case 1: All the vertices of label 1 and label 2 are in sequence in C_{n}
Suppose that we have t no. of vertices with label 1 in K_{n}. So, we have $(n-t)$ vertices of of label 1 in C_{n}. Hence, we have $(n-t)$ vertices of label 2 in K_{n} and t vertices of label 2 in C_{n}. Note that, $e_{f}(1)=(n-t) t+t \frac{(t-1)}{2}+(n-t)^{2}+(n-t+1)+n t$ and $e_{f}(2)=\frac{(n-t)(n-t-1)}{2}+t(n-t)+(t-1)$. Now, $e_{f}(1)-e_{f}(2)=\frac{n^{2}}{2}+t^{2}+\frac{3 n}{2}-3 t+2$. If $t \geq 3$ then as $n \geq 2$, we have $e_{f}(1)-e_{f}(2)>1$.
If $t=1$ then $e_{f}(1)-e_{f}(2)=\frac{n^{2}}{2}+\frac{3 n}{2}>1$.
If $t=2$ then $e_{f}(1)-e_{f}(2)=\frac{n^{2}}{2}+\frac{3 n}{2}>1$.
So, $e_{f}(1)-e_{f}(2)>1$.
Case 2: Some of the vertices of label 2 are not in sequence in C_{n}
Suppose that we have t no. of vertices with label 1 in K_{n}. So, we have $(n-t)$ vertices of label 1 in C_{n}. Hence, we have $(n-t)$ vertices of label 2 in K_{n} and t vertices of label 2 in C_{n}. Suppose that there exist i no. of vertices with label 2 are not in sequence in C_{n}. Then, we have $e_{f}(1)=\frac{t(t-1)}{2}+t(n-t)+t n+(n-t)^{2}+(n-t+i+1)$ and $e_{f}(2)=(t-i-1)+\frac{(n-t-1)(n-t)}{2}+t(n-t)$ Now, $e_{f}(2)$ in Case $2 \leq e_{f}(2)$ in Case 1 and $e_{f}(1)$ in Case $2 \geq e_{f}(1)$ in Case 1. So, $e_{f}(1)-e_{f}(2)$ in this Case $\geq e_{f}(1)-e_{f}(2)$ in Case 1. Now, we have already proved in Case 1 that $e_{f}(1)-e_{f}(2)>1$. Hence, in this Case $e_{f}(1)-e_{f}(2)>1$.
Case 3: We have n no. of vertices with label 1 in K_{n} and no. of vertices with label 2 in C_{n}
Then, we have $e_{f}(1)=\frac{n(n-1)}{2}+n^{2}$ and $e_{f}(2)=n$. Then, $e_{f}(1)-e_{f}(2)=\frac{n(n-1)}{2}+n^{2}-n=$ $\frac{3 n^{2}}{2}-\frac{3 n}{2}>1$ as $n^{2}>n$.
Case 4: We have n no. of vertices with label 2 in K_{n} and no. of vertices with label 1 in C_{n}
Then we have, $e_{f}(1)=n^{2}+n$ and $e_{f}(2)=\frac{n(n-1)}{2}$. Then, $e_{f}(1)-e_{f}(2)=n^{2}+n-\frac{n(n-1)}{2}=$ $\frac{n^{2}}{2}+\frac{3 n}{2}>1$.
Hence, $K_{n} \vee C_{n}$ is not $H M C$ where, $n \geq 3$.
Theorem 2.5. $K_{n} \vee C_{m}$ is not $H M C$, where $m+n$ is even and $n \geq 2, m \geq 3$.
Proof. Note that, $\left|V\left(K_{n} \vee C_{m}\right)\right|=m+n$. Suppose that $K_{n} \vee C_{m}$ is HMC. Then we have, $\left|v_{f}(1)\right|=\frac{m+n}{2}=\left|v_{f}(2)\right|$.
Case 1: All the vertices with label 1 and label 2 are in sequence in C_{m}
Suppose that we have t no. of vertices with label 1 in K_{n}. So, we have $\left(\frac{m+n}{2}-t\right)$ vertices with label 1 in C_{m}. Hence, we have $(n-t)$ vertices with label 2 in K_{n} and $m-\left(\frac{m+n}{2}-t\right)=$ $\left(\frac{m-n}{2}+t\right)$ vertices with label 2 in c_{m}. Then we have, $e_{f}(1)=\frac{t(t-1)}{2}+t m+(n-t)\left(\frac{m+n}{2}-\right.$ $t)+\left(\frac{m+n}{2}-t+1\right)+t(n-t)$ and $e_{f}(2)=\frac{(n-t)(n-t-1)}{2}+(n-t)\left(\frac{m-n}{2}+t\right)+\left(\frac{m-n}{2}+t-1\right)$. Then, $e_{f}(1)-e_{f}(2)=m t+\frac{n^{2}}{2}-n t+\frac{3 n}{2}+t^{2}-3 t+2=(t-n)^{2}\left(\frac{1}{2}\right)+\frac{t^{2}}{2}+\frac{3 n}{2}+2+t(m-3)$. If $m \geq 3$, then $e_{f}(1)-e_{f}(2)>1$.
If $m=2$, then $e_{f}(1)-e_{f}(2)=(t-n)^{2}\left(\frac{1}{2}\right)+\frac{t^{2}}{2}+\frac{n}{2}+(n-t)+2$.
Now, $n>t$. So, $e_{f}(1)-e_{f}(2)>1$.
Case 2: Some of the vertices with label 2 are not in sequence in C_{m}
Suppose that we have t no. of vertices with label 1 in K_{n}. So, we have $\left(\frac{m+n}{2}-t\right)$
vertices with label 1 in C_{m}. Hence, we have $(n-t)$ vertices with label 2 in K_{n} and $m-\left(\frac{m+n}{2}-t\right)=\left(\frac{m-n}{2}+t\right)$ vertices with label 2 in C_{m}. Suppose that there exist i no. of vertices from $\left(\frac{m-n}{2}+t\right)$ with label 2 are not in sequence in C_{m}. Then we have, $e_{f}(1)=\frac{t(t-1)}{2}+t(n-t)+t m+(n-t)\left(\frac{m+n}{2}-t\right)+\left(\frac{m+n}{2}-t+i+1\right)$ and $e_{f}(2)=$ $\frac{(n-t)(n-t-1)}{2}+(n-t)\left(\frac{m-n}{2}+t\right)+\left(\frac{m-n}{2}+t-i-1\right)$. Now, $e_{f}(2)$ in Case $2 \leq e_{f}(2)$ in Case 1 and $e_{f}(1)$ in Case $2 \geq e_{f}(1)$ in Case 1. So, $e_{f}(1)-e_{f}(2)$ in this Case $\geq e_{f}(1)-e_{f}(2)$ in Case 1. Now, we have already proved in Case 1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this Case.
Case 3: $m<n$
Subcase 3.1: All the vertices in C_{m} are with label 1.
Suppose that we have t no. of vertices with label 1 in K_{n}. So, we have $(n-t)$ vertices with label 2 in K_{n}. Then we have, $e_{f}(1)=\frac{t(t-1)}{2}+m n+m+t(n-t)$ and $\frac{(n-t)(n-t-1)}{2}$. Then, $e_{f}(1)-e_{f}(2)=m n+m+2 n t+\frac{n}{2}-t^{2}-t-\frac{n^{2}}{2}$. We know that, $t=\frac{m+n}{2}$. Then, $e_{f}(1)-e_{f}(2)=\frac{3 m n}{2}+\frac{m}{2}+\left(\frac{n^{2}}{4}-\frac{m^{2}}{4}\right)$. We know that $n>m$. So, $e_{f}(1)-e_{f}(2)>1$.
Subcase 3.2: All the vertices in C_{m} are with label 2.
Suppose that we have t no. of vertices with label 1 in K_{n}. So, we have $(n-t)$ vertices with label 2 in K_{n}. Then we have, $e_{f}(1)=\frac{t(t-1)}{2}+t m+t(n-t)$ and $e_{f}(2)=\frac{(n-t)(n-t-1)}{2}+$ $m(n-t)+m$. Then, $e_{f}(1)-e_{f}(2)=-m(n-t)+m t-m-\frac{n^{2}}{2}+2 n t+\frac{n}{2}-t^{2}-t$. We know that, $t=\frac{m+n}{2}$. Then, $e_{f}(1)-e_{f}(2)=\frac{m n}{2}+\frac{3 m^{2}}{4}+\frac{n^{2}}{4}-\frac{3 m}{2}$. As $m \geq 2$. So, $e_{f}(1)-e_{f}(2)>1$.
Case 4: $m>n$
Subcase 4.1: All the vertices in K_{n} are with label 1.
Suppose that we have t no. of vertices with label 1 in C_{m}. So, we have $(m-t)$ vertices with label 2 in C_{m}.
Subsubcase 4.1.1: All the vertices with label 2 are in sequence in C_{m}.
Then we have, $e_{f}(1)=\frac{n(n-1)}{2}+(t+1)+n m$ and $e_{f}(2)=m-t-1$. Then, $e_{f}(1)-e_{f}(2)=$ $\frac{n(n-1)}{2}+(t+1)+n m-m+t+1$. We know that, $n m>m$. So, $e_{f}(1)-e_{f}(2)>1$.
Subsubcase 4.1.2: Some of the vertices with label 2 are not in sequence in C_{m}.
Suppose that we have i no. of vertices with label 2 are not in sequence in C_{m}. Suppose that i no. of vertices are not i sequence. Then we have, $e_{f}(1)=\frac{n(n-1)}{2}+n m+(m+i+1)$ and $e_{f}(2)=m-t-i-1$. Now, $e_{f}(2)$ in Subsubcase 4.1.2 $\leq e_{f}(2)$ in Subsubcase 4.1.1 and $e_{f}(1)$ in Subsubcase 4.1.2 $\geq e_{f}(1)$ in Subsubcase 4.1.1. So, $e_{f}(1)-e_{f}(2)$ in this Case $\geq e_{f}(1)-e_{f}(2)$ in Subsubcase 4.1.1. Now, we have already proved in Subsubcase 4.1.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this Case.
Subcase 4.2: All the vertices in K_{n} are with label 2.
Suppose that we have t no. of vertices with label 1 in C_{m}. So, we have $(m-t)$ vertices with label 2 in C_{m}.
Subsubcase 4.2.1: All the vertices with label 2 are in sequence in C_{m}.
Then we have, $e_{f}(1)=(t+1)+n t$ and $e_{f}(2)=\frac{n(n-1)}{2}+(m-t-1)+n(m-t)$. Then, $e_{f}(1)-e_{f}(2)=(t+1)+t n-\frac{n(n-1)}{2}-m+t+1-m n+t n$. We know that, $t=\frac{m+n}{2}$. Then, $e_{f}(1)-e_{f}(2)=\frac{n^{2}}{2}+\frac{3 n}{2}+2>1$.
Subsubcase 4.2.2: Some of the vertices with label 2 are not in sequence in C_{m}.
Suppose that i no. of vertices are not i sequence. Then we have, $e_{f}(1)=t n$ and $e_{f}(1)=$ $\frac{n(n-1)}{2}+(m-t-i-1)+n(m-t)$. Now, $e_{f}(2)$ in Subsubcase $4.2 .2 \leq e_{f}(2)$ in Subsubcase 4.2.1 and $e_{f}(1)$ in Subsubcase $4.2 .2 \geq e_{f}(1)$ in Subsubcase 4.2.1. So, $e_{f}(1)-e_{f}(2)$ in this Case is $\geq e_{f}(1)-e_{f}(2)$ in Subsubcase 4.2.1. Now, we have already proved in Subsubcase
4.2.1 that $e_{f}(2)-e_{f}(2)>1$. Hence, $e_{f}(2)-e_{f}(2)>1$ in this Case.

Hence, $K_{n} \vee C_{m}$ is not $H M C$, where $m+n$ is even and $n \geq 2, m \geq 3$.
Theorem 2.6. $K_{n} \vee C_{m}$ is not $H M C$, where $m+n$ is odd and $n \geq 2, m \geq 3$.
Proof. Note that, $\left|V\left(K_{n} \vee C_{m}\right)\right|=m+n$. Suppose that $K_{n} \vee C_{m}$ is HMC.
Case 1: All the vertices with label 1 and label 2 in C_{m} are in sequence in C_{m} In this Case we have two possibilities
(i) $v_{f}(1)=\frac{m+n+1}{2}$ and $v_{f}(2)=\frac{m+n-1}{2}$
(ii) $v_{f}(1)=\frac{m+n-1}{2}$ and $v_{f}(2)=\frac{m+n+1}{2}$

So, we consider the following cases.
Subcase 1.1: $v_{f}(1)=\frac{m+n+1}{2}$ and $v_{f}(2)=\frac{m+n-1}{2}$
Suppose that we have t no. of vertices with label 1 in K_{n}. So, we have $\left(\frac{m+n+1}{2}-t\right)$ vertices of label 1 in C_{m}. Hence, we have $(n-t)$ vertices with label 2 in K_{n} and $m-\left(\frac{m+n+1}{2}-t\right)=$ $\left(\frac{m-n-1}{2}+t\right)$ vertices with label 2 in C_{m}. Then we have, $e_{f}(1)=\frac{t(t-1)}{2}+t n+t(n-t)+$ $\frac{m+n+1}{2}-t+1+(n-t)\left(\frac{m+n+1}{2}-t\right)$ and $e_{f}(2)=\frac{(n-t)(n-t-1)}{2}+(n-t)\left(\frac{m-n-1}{2}+t\right)+\frac{m-n-1}{2}+t-1$. Then, $e_{f}(1)-e_{f}(2)=\frac{n^{2}}{2}+\frac{5 n}{2}+t^{2}-4 t+3=(t-1)^{2}+\frac{n^{2}}{2}+2+\frac{n}{2}+2(n-t)>1$ as $n>t$.
Subcase 1.2: $v_{f}(1)=\frac{m+n-1}{2}$ and $v_{f}(2)=\frac{m+n+1}{2}$
Suppose that we have t no. of vertices with label 1 in K_{n}. So, we have $\left(\frac{m+n-1}{2}-t\right)$ vertices of label 1 in C_{m}. Hence, we have $(n-t)$ vertices with label 2 in K_{n} and $m-\left(\frac{m+n-1}{2}-t\right)=$ $\left(\frac{m-n+1}{2}+t\right)$ vertices with label 2 in C_{m}. Then we have, $e_{f}(1)=\frac{t(t-1)}{2}+t m+t(n-t)+$ $\frac{m+n-1}{2}-t+1+(n-t)\left(\frac{m+n-1}{2}-t\right)$ and $e_{f}(2)=\frac{(n-t)(n-t-1)}{2}+(n-t)\left(\frac{m-n+1}{2}+t\right)+\frac{m-n+1}{2}+t-1$.
Then, $e_{f}(1)-e_{f}(2)=t^{2}+\frac{n^{2}}{2}+\frac{n}{2}+m t+1-2 t-n t=\frac{(n-1)^{2}}{2}+(t-1)^{2}+m t+\frac{n}{2}-\frac{1}{2}>1$ as $n \geq 2$.

Case 2: Some of the vertices with label 2 are not in sequence in C_{m}

Subcase 2.1: Suppose that $v_{f}(1)=\frac{m+n+1}{2}$ and $v_{f}(2)=\frac{m+n-1}{2}$
Suppose that we have t no. of vertices with label 1 in K_{n}. So, we have $\left(\frac{m+n+1}{2}-\right.$ $t)$ vertices of label 1 in C_{m}. Hence, we have $(n-t)$ vertices with label 2 in K_{n} and $m-\left(\frac{m+n+1}{2}-t\right)=\left(\frac{m-n-1}{2}+t\right)$ vertices with label 2 in C_{m}. Suppose that there exist i no. of vertices from $\left(\frac{m-n-1}{2}+t\right)$ with label 2 are not in sequence in C_{m}. Then we have, $e_{f}(1)=\frac{t(t-1)}{2}+t m+t(n-t)+\left(\frac{m+n+1}{2}-t+i+1\right)+(n-t)\left(\frac{m+n+1}{2}-t\right)$ and $e_{f}(2)=\left(\frac{m-n-t}{2}-t-i-1\right)+\frac{(n-t)(n-t-1)}{2}+(n-t)\left(\frac{m-n-1}{2}+t\right)$. Now, $e_{f}(2)$ in Subcase 2.1 $\leq e_{f}(2)$ in Subcase 1.1 and $e_{f}(1)$ Subcase $2.1 \geq e_{f}(1)$ in Subcase 1.1. So, $e_{f}(1)-e_{f}(2)$ in this Case $\geq e_{f}(1)-e_{f}(2)$ in Subcase 1.1. Now, we have already proved in Subcase 1.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this Case.
Subcase 2.2: $v_{f}(1)=\frac{m+n-1}{2}$ and $v_{f}(2)=\frac{m+n+1}{2}$
Suppose that we have t no. of vertices with label 1 in K_{n}. So, we have $\left(\frac{m+n-1}{2}-\right.$ t) vertices of label 1 in C_{m}. Hence, we have $(n-t)$ vertices with label 2 in K_{n} and $m-\left(\frac{m+n-1}{2}-t\right)=\left(\frac{m-n+1}{2}+t\right)$ vertices with label 2 in C_{m}. Suppose that there exist i no. of vertices from $\left(\frac{m-n+1}{2}+t\right)$ with label 2 are not in sequence in C_{m}. Then we have, $e_{f}(1)=\frac{t(t-1)}{2}+t m+t(n-t)+\left(\frac{m+n-1}{2}-t+i+1\right)+(n-t)\left(\frac{m+n-1}{2}-t\right)$ and $e_{f}(2)=\left(\frac{m-n+1}{2}+t-i-1\right)+\frac{(n-t)(n-t-1)}{2}+(n-t)\left(\frac{m-n+1}{2}+t\right)$. Now, $e_{f}(2)$ in Subcase 2.2 $\leq e_{f}(2)$ in Subcase 1.2. and $e_{f}(1)$ Subcase $2.2 \geq e_{f}(1)$ in Subcase 1.2. So, $e_{f}(1)-e_{f}(2)$ in this Case $\geq e_{f}(1)-e_{f}(2)$ in Subcase 2.1. Now, we have already proved in Subcase 2.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this Case.
Case 3: $m<n$
Subcase 3.1: All the vertices in C_{m} are with label 1 and some vertices with label 1 are
in K_{n}.
Suppose that there exist t no. of vertices with label 1 in K_{n}. So, there exists $(n-t)$ vertices with label 2 in K_{n}. Suppose that we have m no. of vertices with label 1 in C_{m}. Then we have, $e_{f}(1)=\frac{t(t-1)}{2}+t(n-t)+m n+m$ and $e_{f}(2)=\frac{(n-t)(n-t-1)}{2}$. Then, $e_{f}(1)-e_{f}(2)=m n+m+2 n t+\frac{n}{2}-t-t^{2}-\frac{n^{2}}{2}$.
In this Case we have two possibilities
(i) $m+t=\frac{m+n+1}{2}$
(ii) $m+t=\frac{m+n-1}{2}$

So, we consider the following cases.
Subsubcase 3.1.1: $m+t=\frac{m+n+1}{2}$.
Therefore, $t=\frac{n-m+1}{2}$. Then, $e_{f}(1)-e_{f}(2)=\frac{m n}{2}+\left(2 m-\frac{3}{4}\right)+\left(\frac{n^{2}}{4}-\frac{m^{2}}{4}\right)+\frac{n}{2}>1$ as $m<n$ and $2 m>\frac{3}{4}$ as $m \geq 2$.
Subsubcase 3.1.2: $m+t=\frac{m+n-1}{2}$.
Therefore, $t=\frac{n-m-1}{2}$. Then, $e_{f}(1)-e_{f}(2)=\left(\frac{m n}{2}-\frac{n}{2}\right)+m+\left(\frac{n^{2}}{4}-\frac{m^{2}}{4}\right)+\frac{1}{4}>1$ as $n>m$.
Subcase 3.2: All the vertices in C_{m} are with label 2 and some vertices with label 2 are in K_{n}.
Suppose that there exist t no. of vertices with label 1 in K_{n}. So, there exists $(n-t)$ vertices with label 2 in K_{n}. Suppose that we have m no. of vertices with label 2 in C_{m}. Then we have, $e_{f}(1)=\frac{t(t-1)}{2}+t(n-t)+t m$ and $e_{f}(2)=\frac{(n-t)(n-t-1)}{2}+m(n-t)+m$. Then, $e_{f}(1)-e_{f}(2)=2 m t-m n-\frac{n^{2}}{2}+2 n t+\frac{n}{2}-t^{2}-t-m$.
Subsubcase 3.2.1: $t=\frac{m+n+1}{2}$.
Then, $e_{f}(1)-e_{f}(2)=\frac{3 m^{2}}{4}+\left(\frac{m n}{2}-m\right)+\left(\frac{n^{2}}{4}-\frac{3}{4}\right)+\frac{n}{2}>1$ as $m, n \geq 2$.
Subsubcase 3.2.2: $t=\frac{m+n-1}{2}$.
Then, $e_{f}(1)-e_{f}(2)=\frac{3 m^{2}}{4}+\frac{m n}{2}-2 m+\frac{n^{2}}{4}+\frac{1}{4}-\frac{n}{2}=\left(\frac{n^{2}}{4}-\frac{n}{2}\right)+m\left(\frac{3 m}{4}+\frac{n}{2}-2\right)+\frac{1}{4}>1$ as $m, n \geq 2$.
Case 4: $m>n$ and all the vertices with label 2 are in sequence in C_{m}
Subcase 4.1: All the vertices in K_{n} are with label 1 and some vertices with label 1 are in C_{m}.
Suppose that there exist t no. of vertices with label 1 in C_{m}. So, there exists $(m-t)$ vertices with label 2 in C_{m}. Suppose that we have n no. of vertices with label 1 in K_{n}. Then we have, $e_{f}(1)=m n+(t+1)+n \frac{(n-1)}{2}$ and $e_{f}(2)=m-t-1$. Then, $e_{f}(1)-e_{f}(2)=(m n-m)+2+2 t+\left(\frac{n^{2}}{2}-\frac{n}{2}\right)>1$ as $m n>m$ and $\frac{n^{2}}{2}>\frac{n}{2}$, where, $m, n \geq 2$. Subcase 4.2: All the vertices in K_{n} are with label 2 and some vertices with label 2 are in C_{m}.
Suppose that there exist t no. of vertices with label 1 in C_{m}. So, there exists $(m-t)$ vertices with label 2 in C_{m}. Suppose that we have n no. of vertices with label 2 in K_{n}. Then we have, $e_{f}(1)=t n+(t+1)$ and $e_{f}(2)=\frac{n(n-1)}{2}+n(m-t)+(m-t-1)$. Then, $e_{f}(1)-e_{f}(2)=2 t+2+2 n t-\frac{n^{2}}{2}+\frac{n}{2}-m n-m$.
Subsubcase 4.2.1: $t=\frac{m+n+1}{2}$.
Then, $e_{f}(1)-e_{f}(2)=\frac{5 n}{2}+\frac{n^{2}}{2}+3>1$.
Subsubcase 4.2.2: $t=\frac{m+n-1}{2}$.
Then, $e_{f}(1)-e_{f}(2)=\frac{n^{2}}{2}+\frac{n}{2}+1>1$.
Case 5: $m>n$ and Suppose that some of the vertices with label 2 are not in sequence in C_{m}
Subcase 5.1: All the vertices in K_{n} are with label 1 and some vertices with label 1 are in C_{m}.

Suppose that there exist t no. of vertices with label 1 in C_{m}. So, there exists $(m-t)$ vertices with label 2 in C_{m}. Suppose that we have n no. of vertices with label 1 in K_{n}. Suppose that we have i no. of vertices with label 2 are not in sequence in C_{m}. Then, $e_{f}(1)=\frac{n(n-1)}{2}+m n+(t+i+1)$ and $e_{f}(2)=m-t-i-1$. Now, $e_{f}(2)$ in Subcase $5.1 \leq e_{f}(2)$ in Subcase 4.1 and $e_{f}(1)$ in Subsubcase $5.1 \geq e_{f}(1)$ in Subsubcase 4.1. So, $e_{f}(1)-e_{f}(2)$ in this Case is $\geq e_{f}(1)-e_{f}(2)$ in Subcase 4.1. Now, we have already proved in Subcase 4.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this Case.
Subcase 5.2: All the vertices in K_{n} are with label 2 and some vertices with label 2 are in C_{m}.
Suppose that there exist t no. of vertices with label 1 in C_{m}. So, there exists $(m-t)$ vertices with label 2 in C_{m}. Suppose that we have n no. of vertices with label 2 in K_{n}. Suppose that we have i no. of vertices with label 2 are not in sequence in C_{m}. Then $e_{f}(1)=n t+(t+i+1)$ and $e_{f}(2)=\frac{n(n-1)}{2}+(m-t-i-1)$. Now, $e_{f}(2)$ in Subcase $5.2 \leq e_{f}(2)$ in Subcase 4.2 and $e_{f}(1)$ in Subsubcase $5.2 \geq e_{f}(1)$ in Subsubcase 4.2. So, $e_{f}(1)-e_{f}(2)$ in this Case is $\geq e_{f}(1)-e_{f}(2)$ in Subcase 4.2. Now, we have already proved in Subcase 4.2 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this Case. Hence, $K_{n} \vee C_{m}$ is not $H M C$, where $m+n$ is odd and $n \geq 2, m \geq 3$.
Corollary 2.1. $K_{n} \vee C_{m}$ is not $H M C$, where $n \geq 2, m \geq 3, m, n \in \mathbf{N}$
Proof. Proof follows from Theorems 2.4, 2.5 and 2.6.
Theorem 2.7. $C_{m} \vee C_{n}$ is not $H M C$, where $m=n$ and $m \geq 3$.
Proof. Suppose that $C_{m} \vee C_{n}$ is $H M C$ for $m=n$. Note that, $\left|V\left(C_{m} \vee C_{n}\right)\right|=2 n$ and $\left|E\left(C_{m}+C_{n}\right)\right|=n+m+n m=2 n+n^{2}$ as $n=m$. Since, $\left|V\left(C_{m} \vee C_{n}\right)\right|=m+n=2 n$ as $n=m$. We have assume that $C_{m} \vee C_{n}$ is $H M C$ for $n=m$. We have $v_{f}(1)=v_{f}(2)=n$.
Case 1: All the vertices of label 1 are in sequence in C_{m} and C_{n}
Then, it is clear that all the vertices of label 2 are in sequence in C_{m} and C_{n}. Suppose that we have t no. of vertices with label 1 in C_{m}. So, we have $(n-t)$ vertices of of label 1 in C_{n}. Hence, we have $(m-t)$ vertices of label 2 in C_{m} and t vertices of label 2 in C_{n}. Note that, $e_{f}(1)=(t+1)+(n-t+1)+t n+(n-t) n$ and $e_{f}(2)=(n-t-1)+(t-1)+t(n-t)$. Then, $e_{f}(1)-e_{f}(2)=2 n+2+t n+n^{2}-t^{2}$. We know that, $n>t$. So, $e_{f}(1)-e_{f}(2)>1$. Case 2: Some of the vertices of label 2 are not in sequence in C_{m} and C_{n}
Suppose that we have t no. of vertices with label 1 in C_{m}. So, we have $(n-t)$ vertices of label 1 in C_{n}. Hence, we have $(m-t)$ vertices of label 2 in C_{m} and t vertices of label 2 in C_{n}. Suppose that there exist i no. of vertices with label 2 are not in sequence in C_{m} and j no. of vertices with label 2 are not in sequence in C_{n}. Note that, $e_{f}(1)=$ $(t+i+1)+(n-t+j+1)+t n+(n-t) m$ and $e_{f}(2)=(n-t-i-1)+(t-j-1)+t(n-t)$. Now, $e_{f}(2)$ in Case $2 \leq e_{f}(2)$ in Case 1 and $e_{f}(1)$ in Case $2 \geq e_{f}(1)$ in Case 1. So, $e_{f}(1)-e_{f}(2)$ in this Case is $\geq e_{f}(1)-e_{f}(2)$ We have already proved in Case 1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this Case.
Case 3: We have m no. of vertices with label 1 in C_{m} and n no. of vertices with label 2 in C_{n}
Note that, $e_{f}(1)=m n+m$ and $e_{f}(2)=n$. Then, $e_{f}(1)-e_{f}(2)=m n+m-n=m n>1$ as $n=m$.
Case 4: We have m no. of vertices with label 2 in C_{m} and n no. of vertices with label 1 in C_{n}
Note that, $e_{f}(1)=m n+n$ and $e_{f}(2)=m$. Then, $e_{f}(1)-e_{f}(2)=m n+n-m>1$ as $n=m$. Hence, $C_{m} \vee C_{n}$ is not $H M C$, where $m=n$ and $m \geq 3$.

Theorem 2.8. $C_{m} \vee C_{n}$ is not HMC, where $m+n$ is even and $m, n \geq 3$.
Proof. Note that, $\left|V\left(C_{n} \vee C_{m}\right)\right|=n+m$. Suppose that $C_{n} \vee C_{m}$ is $H M C$. Since we have $v_{f}(1)=\frac{n+m}{2}=v_{f}(2)$.
Case 1: All the vertices of label 1 and 2 are in sequence in C_{n} and C_{m}
Suppose that we have t no. of vertices with label 1 in C_{n}. So, we have $(n-t)$ vertices of of label 2 in C_{n}. Hence, we have $\frac{n+m}{2}-t$ vertices of label 1 in C_{m} and $m-\frac{n+m}{2}+t$ vertices of label 2 in C_{m}. Note that, $e_{f}(1)=(t+1)+\left(\frac{n+m}{2}-t+1\right)+t m+\left(\frac{n+m}{2}-t\right)(n-t)$ and $e_{f}(2)=(n-t-1)+\left(m-\frac{n+m}{2}+t-1\right)+(n-t)\left(m-\frac{n+m}{2}+t\right)$. Then, $e_{f}(1)-e_{f}(2)=$ $m t+4+n^{2}-3 n t+2 t^{2}$. We know that $t=\frac{m+n}{2}$, So, we have $e_{f}(1)-e_{f}(2)=m^{2}+4>1$.
Case 2: Some of the vertices of label 2 are not in sequence in C_{n} and C_{m}
Suppose that we have t no. of vertices with label 1 in C_{n}. So, we have $\frac{n+m}{2}-t$ vertices of label 1 in C_{m}. Hence, we have $(n-t)$ vertices of label 2 in C_{n} and $\left(m-\frac{n+m}{2}+t\right)$ vertices of label 2 in C_{m}. Suppose that there exist i no. of vertices with label 2 are not in sequence in C_{n} and j no. of vertices with label 2 are not in sequence in C_{m}. Note that, $e_{f}(1)=(t+i+1)+\left(\frac{n+m}{2}-t+j+1\right)+t m+(n-t)\left(\frac{n+m}{2}-t\right)$ and $e_{f}(2)=$ $(n-t-i-1)+\left(m-\frac{n+m}{2}+t-j-1\right)+(n-t)\left(m-\frac{n+m}{2}+t\right)$. Now, $e_{f}(2)$ in Case 2 $\leq e_{f}(2)$ in Case 1 and $e_{f}(1)$ in Case $2 \geq e_{f}(1)$ in Case 1. So, $e_{f}(1)-e_{f}(2)$ in this Case is $\geq e_{f}(1)-e_{f}(2)$ in Case 1. Now, we have already proved in Case 1 that $e_{f}(1)-e_{f}(2)>1$. Hence, in this Case $e_{f}(1)-e_{f}(2)>1$.
Case 3: $m>n$
Subcase 3.1: All the vertices in C_{n} are with label 1.
So, we have n no. of vertices with label 1 in C_{n}. Suppose that we have t no. of vertices with label 1 in C_{m}. So, there exist $m-t$ no. of vertices with label 2 in C_{m}.
Subsubcase 3.1.1: All the vertices in c_{m} are in sequence.
Then, $e_{f}(1)=n+(t+1)+m n+t n$ and $e_{f}(2)=m-t-1$. Then, $e_{f}(1)-e_{f}(2)=$ $(m n-m)+n+2 t+t n+2>1$ as $m n>m$.
Subsubcase 3.1.2: All the vertices with label 2 are not in sequence in c_{m}.
Suppose that we have i no. of vertices from $(m-t)$ no. of vertices are not in sequence in c_{m}. Then, $e_{f}(1)=n+(t+i+1)+m n$ and $e_{f}(2)=m-t-i-1$. Now, $e_{f}(2)$ in Subsubcase 3.1.2 $\leq e_{f}(2)$ in Subsubcase 3.1.1 and $e_{f}(1)$ in Subsubcase 3.1.2 $\geq e_{f}(1)$ in Subsubcase 3.1.1. So, $e_{f}(1)-e_{f}(2)$ in this Case $\geq e_{f}(1)-e_{f}(2)$ in Subsubcase 3.1.1. Now, we have already proved in Subsubcase 3.1.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this Case.
Subcase 3.2: All the vertices in C_{n} are with label 2.
So, we have n no. of vertices with label 2 in C_{n}. Suppose that we have t no. of vertices with label 1 in C_{m}. So, there exist $m-t$ no. of vertices with label 2 in C_{m}.
Subsubcase 3.2.1: All the vertices in c_{n} are in sequence.
Then, $e_{f}(1)=t+1+t n$ and $e_{f}(2)=n+m-t-1$. Then, $e_{f}(1)-e_{f}(2)=n t-n-m+2 t+2$. We know that $t=\frac{n+m}{2}$. So, $e_{f}(1)-e_{f}(2)=\frac{m n}{2}+\frac{n^{2}}{2}+2>1$.
Subsubcase 3.2.2: All the vertices in c_{n} are not in sequence.
Suppose that we have i no. of vertices from $(n-t)$ no. of vertices are not in sequence in c_{m}. Then, $e_{f}(1)=t+i+1+t n$ and $e_{f}(2)=m-t-i-1+n+n(m-t)$. Now, $e_{f}(2)$ in Subsubcase $3.2 .2 \leq e_{f}(2)$ in Subsubcase 3.2 .1 and $e_{f}(1)$ in Subsubcase 3.2.2 $\geq e_{f}(1)$ in Subsubcase 3.2.1. so, $e_{f}(1)-e_{f}(2)$ in this Case $\geq e_{f}(1)-e_{f}(2)$ in Subsubcase 3.2.1. Now, we have already proved in Subsubcase 3.2 .1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this Case. Hence, $C_{m} \vee C_{n}$ is not $H M C$, where $n+m$ is even and $m, n \geq 3$.

Theorem 2.9. $C_{m} \vee C_{n}$ is not $H M C$, where $m+n$ is odd and $m, n \geq 3$.

Proof. Note that, $\left|V\left(C_{n} \vee C_{m}\right)\right|=n+m=2 k+1$. Suppose that $C_{n} \vee C_{m}$ is $H M C$. Without loss of generality we may assume that $m>n$.
In this Case we have two possibilities.
(i) $v_{f}(1)=\frac{m+n+1}{2}$ and $v_{f}(2)=\frac{m+n-1}{2}$
(ii) $v_{f}(1)=\frac{m+n-1}{2}$ and $v_{f}(2)=\frac{m+n+1}{2}$

So, we consider the following cases.
Case 1: $v_{f}(1)=\frac{n+m+1}{2}=k+1$ and $v_{f}(2)=\frac{n+m-1}{2}=k$
Subcase 1.1: All the vertices of label 1 are in sequence in C_{n} and C_{m}
Then, it is clear that all the vertices of label 2 are in sequence in C_{n} and C_{m}. Suppose that we have t no. of vertices with label 1 in C_{n}. So, we have $(n-t)$ vertices of of label 2 in C_{n}. Hence, we have $(k+1-t)$ vertices of label 1 in C_{m} and $(k-n+t)$ vertices of label 2 in C_{m}. Note that, $e_{f}(1)=(t+1)+(k+2-t)+t m+(k+1-t)(n-t)$ and $e_{f}(2)=(n-t-1)+(k-n+t-1)+(n-t)(k-n+t)$. Then, $e_{f}(1)-e_{f}(2)=$ $(n-t)^{2}+5+t m+(n-t)(1-t)=(n-t)(n+1-2 t)+t m+5$. Now, $e_{f}(1)-e_{f}(2)>1$ if $n+1 \geq 2 t$. If $n+1<2 t$, then $\frac{(n+1)}{2}<t$. Now, $t+k=\frac{m+n+1}{2}>\frac{(n+t)}{2}+k$. Therefore, $m>k$. Suppose that $t=\frac{(n+1)}{2}+l$. Then, $e_{f}(1)-e_{f}(2)=2 l^{2}+2 l+\frac{1}{2}+l m+5>1$.
Subcase 1.2: Some of the vertices of label 2 are not in sequence in C_{n} and C_{m}
Suppose that we have t no. of vertices with label 1 in C_{n}. So, we have $(n-t)$ vertices of label 2 in C_{n}. Hence, we have $(k-t)$ vertices of label 1 in C_{m} and $(k+1-n+t)$ vertices of label 2 in C_{m}. Suppose that there exist i no. of vertices with label 2 are not in sequence in C_{n} and j no. of vertices with label 2 are not in sequence in C_{m}. Note that, $e_{f}(1)=(t+i+1)+(k-t+j+2)+t m+(n-t)(k+1-t)$ and $e_{f}(2)=$ $(n-t-i-1)+(k-n+t-j-1)+(n-t)(k-n+t)$. Now, $e_{f}(2)$ in Subcase $1.2 \leq e_{f}(2)$ in Subcase 1.1 and $e_{f}(1)$ in Subcase $1.2 \geq e_{f}(1)$ in Subcase 1.1. So, $e_{f}(1)-e_{f}(2)$ in this Case is $\geq e_{f}(1)-e_{f}(2)$ in Subcase 1.1. Now, we have already proved in Subcase 1.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this Case .
Case 2: $v_{f}(1)=\frac{n+m-1}{2}=k$ and $v_{f}(2)=\frac{n+m+1}{2}=k+1$
Subcase 2.1: All the vertices of label 1 are in sequence in C_{n} and C_{m}
Then, it is clear that all the vertices of label 2 are in sequence in C_{n} and C_{m}. Suppose that we have t no. of vertices with label 1 in C_{n}. So, we have $(n-t)$ vertices of label 2 in C_{n}. Hence, we have $(k+1-t)$ vertices of label 1 in C_{m} and $(k-n+t)$ vertices of label 2 in C_{m}. Note that, $e_{f}(1)=(t+1)+(k+1-t)+t m+(k-t)(n-t)$ and $e_{f}(2)=(n-t-1)+(k-n+t)+(n-t)(k-n+t+1)$. Then, $e_{f}(1)-e_{f}(2)=$ $(n-t)^{2}+3+t m+(t-n)(1+t)=(n-t)(n-1-2 t)+t m+3$. Now, $e_{f}(1)-e_{f}(2)>1$ if $n \geq 1+2 t$. If $n<1+2 t$, then $\frac{(n-1)}{2}<t$. Now, $t+k=\frac{m+n-1}{2}>\frac{(n-t)}{2}+k$. Therefore, $m>k$. Suppose that $t=\frac{(n-1)}{2}+l$. Then, $e_{f}(1)-e_{f}(2)=\left(\frac{m n}{2}-\frac{m}{2}\right)+3+l(m-n-1)>1$, if $m \geq n+1$. Suppose that $m \leq n+1$. Then since, $m \geq n$, we have $m=n+1$. So, we have $e_{f}(1)-e_{f}(2)=\left(\frac{m n}{2}-\frac{m}{2}\right)+3+l(m-n-1)=\left(\frac{m n}{2}-\frac{m}{2}\right)+3>1$.
Subcase 2.2: Some of the vertices of label 2 are not in sequence in C_{n} and C_{m}
Suppose that we have t no. of vertices with label 1 in C_{n}. So, we have $(n-t)$ vertices of label 2 in C_{n}. Hence, we have $(k-t)$ vertices of label 1 in C_{m} and $(k+1-n+t)$ vertices of label 2 in C_{m}. Suppose that there exist i no. of vertices with label 2 are not in sequence in C_{n} and j no. of vertices with label 2 are not in sequence in C_{m}. Note that, $e_{f}(1)=(t+i+1)+(k-t+j+1)+t m+(n-t)(k-t)$ and $e_{f}(2)=$ $(n-t-i-1)+(k-n+t-j)+(n-t)(k-n+t+1)$. Now, $e_{f}(2)$ in Subcase $2.2 \leq e_{f}(2)$ in Subcase 2.1 and $e_{f}(1)$ in Subcase $2.2 \geq e_{f}(1)$ in Subcase 2.1. So, $e_{f}(1)-e_{f}(2)$ in this

Case is $\geq e_{f}(1)-e_{f}(2)$ in Subcase 2.1. Now, we have already proved in Subcase 2.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this Case.
Case 3: $m>n$
Subcase 3.1: All the vertices in C_{n} are with label 1.
So, we have n no. of vertices with label 1 in C_{n}. Suppose that we have t no. of vertices with label 1 in C_{m}. So, there exist $m-t$ no. of vertices with label 2 in C_{m}.
Subsubcase 3.1.1: All the vertices in C_{m} are in sequence.
Then, $e_{f}(1)=n+(t+1)+m n+t n$ and $e_{f}(2)=m-t-1$. Then, $e_{f}(1)-e_{f}(2)=$ $(m n-m)+n+2 t+t n+2>1$ as $m n>m$.
Subsubcase 3.1.2: All the vertices with label 2 are not in sequence in C_{m}.
Suppose that we have i no. of vertices from $(m-t)$ no. of vertices are not in sequence in C_{m}. Then, $e_{f}(1)=n+(t+i+1)+m n$ and $e_{f}(2)=m-t-i-1$. Now, $e_{f}(2)$ in Subsubcase 3.1.2 $\leq e_{f}(2)$ in subsubcase 3.1.1 and $e_{f}(1)$ in Subsubcase 3.1.2 $\geq e_{f}(1)$ in Subsubcase 3.1.1. So, $e_{f}(1)-e_{f}(2)$ in this case is $\geq e_{f}(1)-e_{f}(2)$ in Subsubcase 3.1.1. Now, we have already proved in Subsubcase 3.1.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this Case.
Subcase 3.2: All the vertices in C_{n} are with label 2.
So, we have n no. of vertices with label 2 in C_{n}. Suppose that we have t no. of vertices with label 1 in C_{m}. So, there exist $m-t$ no. of vertices with label 2 in C_{m}.
Subsubcase 3.2.1: All the vertices in C_{n} are in sequence.
Then, $e_{f}(1)=t+1+t n$ and $e_{f}(2)=n+m-t-1$. Then, $e_{f}(1)-e_{f}(2)=n t-n-m+2 t+2$. In this Case we have two possibilities.
(i) $t=\frac{n+m+1}{2}$. So, $e_{f}(1)-e_{f}(2)=\frac{m n}{2}+\frac{n^{2}}{2}+\frac{n}{2}+3>1$
(ii) $t=\frac{n+m-1}{2}$. So, $e_{f}(1)-e_{f}(2)=\frac{m n}{2}+\left(\frac{n^{2}}{2}-\frac{n}{2}\right)+3>1$.

Subsubcase 3.2.2: All the vertices in C_{n} are not in sequence.
Suppose that we have i no. of vertices from $(n-t)$ no. of vertices are not in sequence in C_{m}. Then, $e_{f}(1)=t+i+1+t n$ and $e_{f}(2)=m-t-i-1+n+n(m-t)$. Now, $e_{f}(2)$ in Subsubcase 3.2.2 $\leq e_{f}(2)$ in Subsubcase 3.2.1 and $e_{f}(1)$ in Subsubcase $3.2 .2 \geq e_{f}(1)$ in Subsubcase 3.2.1. So, $e_{f}(1)-e_{f}(2)$ in this case is $\geq e_{f}(1)-e_{f}(2)$ in Subsubcase 3.2.1. Now, we have already proved in Subsubcase 3.2.1 that $e_{f}(1)-e_{f}(2)>1$. Hence, $e_{f}(1)-e_{f}(2)>1$ in this case. Hence, $C_{m} \vee C_{n}$ is not HMC, where $n+m$ is odd and $m, n \geq 3$.

Corollary 2.2. $C_{m} \vee C_{n}$ is not $H M C$, where $n, m \in \mathbf{N}, m, n \geq 3$.
Proof. Proof follows from Theorems 2.7, 2.8 and 2.9.

3. Conclusion

In this article we have proved that $C H_{n} \odot K_{1}$ and the tensor product $P_{m} \times P_{n}$ are $H M C$. Also we have proved that Complete bipartite graphs $K_{m, n}, K_{n} \vee C_{m}$ and $C_{n} \vee C_{m}$ are not HMC graphs.

Acknowledgement. The authors are very much thankful to the anonymous reviewers for their valuable and motivating suggestions and in-depth review.

References

[1] Balakrishnan R., Ranganathan K., (2012), A Textbok of Graph Theory, New York: Springer-Verlag.
[2] Cahit I, (1987), Cordial graphs: A weaker version of Graceful and Harmonious Graphs, Ars Combinatorial, 23(3), 201-207.
[3] Gallian J. A., (2020), A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19.
[4] Gandhi H., Parejiya J., Jariya M., Solanki R., (2022), Harmonic Mean Cordial Labeling of Some Cycle Related Graphs, Turkish Journal of Computer and Mathematics Education (TURCOMAT), 13(2), 708-716.
[5] Gowri J., Jayapriya J., (2021), Hmc Labeling Of Certain Types Of Graph, 12(10), 3913-3915.
[6] Harary F., (1969), Graph Theory, Addison wisely, New Delhi.

Jaydeep Parejiya is presently working as a lecturer in Mathematics in Government Polytechnic, Rajkot, Gujarat, India. He has completed his Ph.D. at Saurashtra University, Rajkot under the guidance of Dr. S. Visweswaran on Commutative Ring Theory.

Daxa B. Jani is presently working as an Assistant Professor at Darshan University, Rajkot, Gujarat, India. She obtained her B.Sc. Degree in Mathematics from Shree M. and N. Virani Science College, Saurashtra University, Rajkot, Gujarat in 2010 and her M. Sc. Degree in Applied Mathematics and in pure mathematics from the Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Gujarat in 2015. Her fields of interest include Graph Theory, Numerical Analysis and Complex Analysis.

Yesha M. Hathi is a research scholar at Children's University, Gandhinagar, Gujarat, doing her research work under the guidance of Dr. M.M. Jariya. She completed her B.Sc. at M. N. Virani Science College, Saurashtra University, Rajkot, Gujarat with distinction in 2016 and her M.Sc. from Shree M. and N. Virani Science College, Saurashtra University, Rajkot, Gujarat in 2018.

[^0]: ${ }^{1}$ Governement Polytechnic, Rajkot, Gujarat, 360003, India.
 e-mail: parejiyajay@gmail.com; ORCID: https://orcid.org/0000-0002-2072-2719.

 * Corresponding author.
 ${ }^{2}$ Darshan University, Rajkot, Gujarat, 363650, India.
 e-mail: daxajani24@gmail.com; ORCID: https://orcid.org/0000-0002-1412-8270.
 ${ }^{3}$ Children's Univesity, Gandhinagar, 382020, India.
 e-mail: hathiyesha57@gmail.com; ORCID: https://orcid.org/0000-0003-0196-0495.
 § Manuscript received: February 12, 2022; accepted: May 07, 2022.
 TWMS Journal of Applied and Engineering Mathematics, Vol.14, No. 1 © Işık University, Department of Mathematics, 2024; all rights reserved.

