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Abstract

We establish a compactness interpolation result for bilinear operators of the type
proved by Janson for bounded bilinear operators. We also give an application
to compactness of convolution operators.
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1. Introduction

Bilinear (and multilinear) interpolation results for the real method [24] and
for the complex method [6] have found interesting applications in analysis and
operator theory. The results for the real method are not so satisfactory as for the
complex method. Namely, if (A0, A1), (B0, B1), (E0, E1) are Banach couples
and the bilinear operator T satisfies that T : Aj × Bj −→ Ej is bounded,
j = 0, 1, then the complex bilinear interpolation theorem yields that

T : [A0, A1]θ × [B0, B1]θ −→ [E0, E1]θ boundedly

for any 0 < θ < 1. The corresponding result for the real method reads that

T : (A0, A1)θ,q1 × (B0, B1)θ,q2 −→ (E0, E1)θ,q boundedly

∗Corresponding author.
Email addresses: cobos@mat.ucm.es (Fernando Cobos ), luz_fernandez-c@mat.ucm.es

(Luz M. Fernández-Cabrera ), antonmar@uvigo.es (Antón Mart́ınez )
1The authors have been supported in part by MTM2017-84058-P (AEI/FEDER, UE).

Preprint submitted to Elsevier November 4, 2020



provided that 0 < θ < 1, 1 ≤ q1, q2, q ≤ ∞ and

(1.1) 1/q ≤ 1/q1 + 1/q2 − 1.

See the papers by Calderón [6] and Lions and Peetre [24] or the books by
Bergh and Löfström [4, Theorem 4.4.1 and Exercise 3.13.5] and Triebel [31,
Section 1.19.5]. The result for the real method is also valid for couples of quasi-
Banach spaces (see the papers by Karadzhov [20] and König [21]).

However, working with convolution operators among Lorentz spaces, it was
shown by O’Neil [26] that condition (1.1) can be improved to

(1.2) 1/q ≤ 1/q1 + 1/q2.

An abstract result in this direction was established by Janson [19] with the effect
that under additional information on the bilinear operator T (which is the case
of convolution operators) then the bilinear interpolation theorem for the real
method holds if (1.2) is satisfied. Janson’s theorem works not only for Banach
couples but also for quasi-Banach couples.

Compactness is another important property that a bilinear operator may
have. Recently, in the papers by Bényi and Torres [3], Bényi and Oh [2], Hu
[17] and other authors, it has been shown that this kind of operators arise rather
naturally in harmonic analysis. This fact has been a motivation for the research
on the interpolation properties of compact bilinear operators. In fact, Calderón
[6] already considered this problem in his foundational paper on the complex
method.

Results for the real method have appeared in the last few years. See, for ex-
ample, the papers by Fernandez and Silva [14], Fernández-Cabrera and Mart́ınez
[12, 13], and Cobos, Fernández-Cabrera and Mart́ınez [7, 8]. Quantitative re-
sults for the real method in terms of the measure of non-compactness have been
established by Masty lo and Silva [25] and Besoy and Cobos [5].

In this paper we establish a compactness result for bilinear operators of the
kind of the theorem of Janson. Furthermore, as an application of the result,
we improve a compactness result of Fernández-Cabrera and Mart́ınez [13] on
convolution operators among Lorentz spaces.

In contrast to the majority of the papers on compact bilinear operators and
real interpolation, which are based on the ideas developed by Cobos and Peetre
[9] and Cobos, Kühn and Schonbek [10] to deal with compact linear operators,
our approach here is different. We work assuming an approximation condition
on the couple in the target and combining the ideas of Janson [19] with some
others of our previous papers.

2. Preliminaries

Let (A, ‖ · ‖A) be a quasi-Banach space and let c = cA ≥ 1 be the constant
in the quasi-triangle inequality. Let 0 < p ≤ 1 such that c = 21/p−1. Then it is
known that there is another quasi-norm ‖| · |‖ on A which is equivalent to ‖ · ‖A
and satisfies that

‖|a1 + a2|‖p ≤ ‖|a1|‖p + ‖|a2|‖p , a1, a2 ∈ A
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(see [23, §5.10] or [22, Proposition 1.c.5]). The function ‖| · |‖ is said to be a
p-norm and (A, ‖| · |‖) is called a p-Banach space. Note that if A is p-Banach
then it is also r-Banach for any 0 < r < p.

Let Ā = (A0, A1) be a (p-Banach) quasi-Banach couple, that is to say , two
(p-Banach) quasi-Banach spaces A0, A1 which are continuously embedded in
the same Hausdorff topological vector space.

We put A◦j for the closure of A0 ∩ A1 in the norm of Aj . It is clear that
(A◦0, A

◦
1) is also a quasi-Banach couple.

Given t > 0, Peetre’s K- and J-functional are defined by

K(t, a) = K(t, a;A0, A1) = inf{‖a0‖A0
+ t‖a1‖A1

: a = a0 + a1, aj ∈ Aj}

where a ∈ A0 +A1 and

J(t, a) = J(t, a;A0, A1) = max{‖a‖A0
, t‖a‖A1

}, a ∈ A0 ∩A1.

The function K(1, ·) coincides with the quasi-norm of A0 +A1 and J(1, ·) with
the quasi-norm of A0 ∩A1.

If ‖ · ‖Aj is a p-norm for j = 0, 1, then J(t, ·) is a p-norm on A0 ∩A1 and the
functional

Kp(t, a) = inf
{(
‖a0‖pA0

+ tp‖a1‖pA1

)1/p
: a = a0 + a1, aj ∈ Aj

}
is a p-norm on A0 +A1 which is equivalent to K(t, ·)

K(t, a) ≤ Kp(t, a) ≤ 21/p−1K(t, a), a ∈ A0 +A1, t > 0.

Let 0 < θ < 1 and 0 < q ≤ ∞. The real interpolation space Āθ,q =
(A0, A1)θ,q realized by means of the K-functional is formed by all a ∈ A0 +A1

having a finite quasi-norm

‖a‖Āθ,q =


( ∞∑
m=−∞

(
2−θmK(2m, a)

)q)1/q

if 0 < q <∞,

sup
m∈Z
{2−θmK(2m, a)} if q =∞.

If we replace the number 2 by any other positive number ρ 6= 1, then the space
Āθ,q does not change and the new quasi-norm is equivalent to ‖ · ‖Āθ,q .

For our later considerations we also define Āθ,q for θ = 0 or 1 by putting
Ā0,q = A0 and Ā1,q = A1 for any 0 < q ≤ ∞.

Subsequently, `q stands for the usual space of q-summable sequences with Z
as index set.

The space Āθ,q realized by means of the J-functional is formed by all sums

a =
∞∑

m=−∞
um (convergence in A0 +A1) where (um) ⊆ A0 ∩A1 and

(2−θm J(2m, um)) ∈ `q. The quasi-norm

‖a‖JĀθ,q = inf

{
‖(2−θm J(2m, um))‖`q : a =

∞∑
m=−∞

um

}
is equivalent to ‖ ·‖Āθ,q . Again, replacing 2 by any other positive number ρ 6= 1,
we get the same space with an equivalent quasi-norm. This fact will be of some
use later.
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We refer to the books by Bergh and Löfström [4], Triebel [31] and Bennet
and Sharpley [1] for other properties of the real interpolation spaces.

Let A,B,E be quasi-Banach spaces and let T : A × B −→ E be a bilinear
operator. We say that T is bounded if

‖T‖A×B,E = sup
{
‖T (a, b)‖E : ‖a‖A ≤ 1 , ‖b‖B ≤ 1

}
<∞.

We write L(A×B,E) for the space of all bounded bilinear operators from A×B
into E. We say that the operator T is compact if for any bounded sets V ⊆ A
and W ⊆ B, the closure of T (V,W ) = {T (a, b) : a ∈ V, b ∈W} is compact in E.
This is equivalent to ask that T (UA, UB) is precompact in E. Here UA stands
for the closed unit ball of A and UB for the closed unit ball of B. Compactness is
also equivalent to the fact that for any bounded sequences (an) ⊆ A, (bn) ⊆ B,
the sequence (T (an, bn)) has a convergent subsequence. We write K(A×B,E)
for the collection of all compact bilinear operators from A×B into E.

Let T ∈ K(A × B,E), let Y be a quasi-Banach space and R ∈ L(E, Y ),
then clearly RT = R ◦ T belongs to K(A × B, Y ). On the other hand, if
T ∈ L(A×B,E) and S ∈ L(E, Y ) is compact, then ST ∈ K(A×B, Y ).

Another useful property of compact bilinear operators is that if (Tn) ⊆
K(A × B,E) is a convergent sequence in L(A × B,E) to the operator T , then
T ∈ K(A×B,E).

Let Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1) be quasi-Banach couples. By
B(Ā× B̄, Ē) we designate the collection of all bilinear operators T defined from
(A0 ∩A1)× (B0 ∩B1) into E0 ∩E1 such that there are constants Mj > 0 such
that

‖T (a, b)‖Ej ≤Mj‖a‖Aj‖b‖Bj , a ∈ A0 ∩A1, b ∈ B0 ∩B1, j = 0, 1.

If T ∈ B(Ā× B̄, Ē) it is not hard to check that T may be uniquely extended
to a bounded bilinear operator Tj : A◦j ×B◦j −→ Ej with

‖T‖j := ‖Tj‖A◦j×B◦j ,Ej = Mj j = 0, 1.

We say that T : A◦j ×B◦j −→ Ej is compact if Tj does it.

Definition 2.1. Let Ā, B̄, Ē be quasi-Banach couples, let T be a bilinear
operator and let α0, α1, α2 ∈ R with α1 6= 0 and α2 6= 0. The set Ω =
Ω(Ā, B̄, Ē, T, α0, α1, α2) consists of all couples θ̄ = (θ1, θ2) ∈ [0, 1]2 satisfying
that

(2.1) the number θ := α0 + α1θ1 + α2θ2 belongs to [0, 1]
and

(2.2) there is a triple r̄ = (r1, r2, r) ∈ (0,∞]3 and a positive constant M > 0
such that ‖T (a, b)‖Ēθ,r ≤ M‖a‖Āθ1,r1 ‖b‖B̄θ2,r2 for any a ∈ A0 ∩ A1, b ∈
B0 ∩B1.

Note that in Definition 2.1 the parameters θ1, θ2, θ may take the limit values
0 and 1. As we have defined before, in these limit cases we put Āθ,q = Aθ and
similarly for B̄ and Ē.

Janson has shown in [19, Theorem 1] that the set Ω is convex.
If θ̄ ∈ Ω and r̄ satisfies (2.2) with θ̄, there may be other triples that also

satisfy (2.2) with θ̄. For example, if Ēθ,∞ is p-Banach then it follows from [19,
Lemma 2] that (p, p,∞) satisfies (2.2) with θ̄.
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Janson has proved in [19, Theorem 2] that if θ̄ belongs to the interior of Ω,
0 < q, q1, q2 ≤ ∞ and 1/q = 1/q1 +1/q2, then there is a positive constant M > 0
such that

‖T (a, b)‖Ēθ,q ≤M‖a‖Āθ1,q1 ‖b‖B̄θ2,q2 for any a ∈ A0 ∩A1, b ∈ B0 ∩B1.

In the next section we establish a compactness result of this type.

3. The compactness theorem

In what follows we assume that Ē satisfies the following approximation condi-
tion (see the papers by Fernández-Cabrera and Mart́ınez [13, p. 1196], Calderón
[6, §10.4], Persson [27, p. 216] and Edmunds and Teixeira [29, p. 133]).

Definition 3.1. We say that a quasi-Banach couple Ē = (E0, E1) satisfies
condition (H) if there is a family of operators {Pλ}λ∈Λ ⊆ L (E0 + E1, E0 ∩ E1)
and a constant C > 0 such that

(3.1) Pλ : E0 + E1 −→ E0 ∩ E1 is compact, λ ∈ Λ.

(3.2) ‖Pλ‖Ej ,Ej ≤ C , j = 0, 1 , λ ∈ Λ.

(3.3) For every compact subset K ⊆ E0 and every ε > 0 ,

there is λ0 ∈ Λ such that ‖x− Pλ0x‖E0 ≤ ε for every x ∈ K.

Next we give examples of quasi-Banach couples satisfying (H). Let (Ω, µ) be
a σ-finite measure space. For 0 < p <∞ and 0 < q ≤ ∞, recall that the Lorentz
space Lp,q(Ω) is formed by all (equivalent classes of) measurable functions which
have a finite quasi-norm

‖f‖Lp,q(Ω) =
(∫ ∞

0

(
t1/pf∗(t)

)q dt
t

)1/q

(the integral should be replaced by the supremum if q = ∞). Here f∗ is the
non-increasing rearrangement of f

f∗(t) = inf{s > 0 : µ{x ∈ Ω : |f(x)| > s} ≤ t}.

See [18, 1, 11]. If p = q then we recover the Lebesgue space Lp(Ω).
For 1 < p < ∞, 0 < q ≤ ∞ and θ = 1 − 1/p, it follows from [4, Theorem

5.2.1] that we have with equivalent quasi-norms

(3.4)
(
L1(Ω), L∞(Ω)

)
θ,q

= Lp,q(Ω).

We also recall that for 0 < p <∞ and 0 < q ≤ r ≤ ∞, the space Lp,q(Ω) is
continuously embedded in Lp,r(Ω).

Example 3.2. Let (Ω, µ) be a σ-finite measure space and let 1 < p0, p1 < ∞,
0 < q0 < ∞ and 0 < q1 ≤ ∞. Then

(
Lp0,q0(Ω), Lp1,q1(Ω)

)
satisfy (H). Indeed,

according to (3.4), spaces Lpj ,qj (Ω) are interpolation spaces with respect to
the couple

(
L1(Ω), L∞(Ω)

)
. Moreover, simple functions are dense in Lp0,q0(Ω)
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because q0 < ∞ (see [18, (2.4), p. 258]). Whence, the arguments given in [13,
Proposition 4.5] are still valid in this case. The family of operators is

(3.5) Pf =
L∑
k=1

(
µ(Ok)−1

∫
Ω

fχ
Ok
dµ
)
χ
Ok

where O1, . . . , OL is any finite collection of pairwise disjoint measurable sets of
finite measure.

Example 3.3. Let E0 be a quasi-Banach space and let (xm) be a basis of E0,
that is, for any x ∈ E0 there is a unique sequence of scalars (λm) such that

x =
∞∑
m=1

λmxm. Put fm(x) = λm. It turns out that the functionals fm are

bounded on E0 (see [33, Proposition 6.35]). Hence, (xm, fm) is a Schauder basis
on E0. Consider the projections associated to the basis

Pmx =
m∑
j=1

fj(x)xj , m ∈ N.

It follows from Banach-Steinhaus theorem [23, p. 169] that

sup{‖Pm‖E0,E0 : m ∈ N} <∞.

Now let E1 be another quasi-Banach space such that (E0, E1) is a quasi-
Banach couple and (xm) is also a basis on E1. Then, for the couple (E0, E1),
the sequence (Pm) satisfies properties (3.1) to (3.3) in Definition 3.1. Indeed,
it is not hard to check that Pm ∈ L(E0 + E1, E0 ∩ E1) and they are compact
because the dimension of the range of Pm is finite. Furthermore, given any
compact subset K ⊆ E0 and any ε > 0, there is a finite set {z1, · · · , zr} ⊆ E0

such that

K ⊆
r⋃
j=1

{zj +
ε

3L
UE0}

with L = cE0
+ c2E0

C, where cE0
is the constant in the quasi-triangle inequality

in E0 and C is the constant in (3.2). Since the set {zj}rj=1 is finite, we can take
N ∈ N such that

‖zj − PNzj‖E0
≤ ε

3c2E0

, j = 1, 2, · · · , r.

Given any x ∈ K, we can find j with ‖z − zj‖ ≤ ε/3L and so

‖x− PNx‖E0
≤ cE0

‖x− zj‖E0
+ c2E0

‖zj − PNzj‖E0
+ c2E0

‖PNzj − PNx‖E0

≤ cE0

ε

3L
+
ε

3
+
c2E0

Cε

3L
≤ ε.

In particular, if 0 < p0, p1 < ∞ then the couple (`p0 , `p1) satisfies (H).
Other concrete examples are couples of Triebel-Lizorkin spaces F sp,q(Rn) and
couples of Besov spaces Bsp,q(Rn) (see [31, 32]). Since these spaces have a com-
mon basis formed by wavelets (see [32, Theorem 3.5]), we obtain that for 0 <
p0, p1, q0, q1 < ∞ and −∞ < s0, s1 < ∞, the couples

(
F s0p0,q0(Rn), F s1p1,q1(Rn)

)
and

(
Bs0p0,q0(Ω), Bs1p1,q1(Ω)

)
satisfy (H).
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Now suppose thatH0 andH1 are separable Hilbert spaces and let Sp,q(H0, H1)
be the space of all bounded linear operators T ∈ L(H0, H1) whose singular num-
bers belong to the Lorentz sequence space `p,q (see [30, 16, 22, 28]). If 1 < p <∞
and 0 < q <∞, then spaces Sp,q(H0, H1) have a common basis. This was proved
in [15, Proposition 3.1] for the Banach case 1 ≤ q < ∞. The same arguments
work also for 0 < q < 1. Consequently, if 1 < p0, p1 < ∞ and 0 < q0, q1 < ∞,
the couple

(
Sp0,q0(H0, H1), Sp1,q1(H0, H1)

)
satisfies (H).

Next we show that condition (H) allows to approximate certain bilinear
operators T by operators PλT .

Proposition 3.4. Let Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1) be quasi-
Banach couples and let T ∈ B(Ā × B̄, Ē) with T : A◦0 × B◦0 −→ E0 compactly.
Assume that Ē satisfies condition (H). Let 0 < θ < 1 ,1 ≤ p, q < ∞ and
1 ≤ r ≤ ∞ with 1/p+ 1/q = 1 + 1/r. Then for any ε > 0 , there is λ ∈ Λ such
that

‖(T − PλT )(a, b)‖Ēθ,r ≤ ε‖a‖Āθ,p‖b‖B̄θ,q for any a ∈ A0 ∩A1, b ∈ B0 ∩B1.

Proof. Proceeding as in the proof of [13, Theorem 4.1], we get that there is
a constant c1 independent of T such that for any λ ∈ Λ, a ∈ A0 ∩ A1 and
b ∈ B0 ∩B1 we have that

‖(T − PλT )(a, b)‖Ēθ,r ≤ c1‖T − PλT‖1−θ0 ‖T − PλT‖θ1‖a‖Āθ,p‖b‖B̄θ,q .

By (3.2), we obtain

‖T − PλT‖1 ≤ ‖I − Pλ‖E1,E1‖T‖1
≤ cE1(1 + ‖Pλ‖E1,E1)‖T‖1
≤ cE1(1 + C)‖T‖1 = c2.

Moreover, using compactness of T : A◦0 × B◦0 −→ E0 and (3.3), we can choose
λ ∈ Λ such that

(3.6) ‖T − PλT‖0 ≤
(

ε

c1cθ2

)1/1−θ

.

Combining these three facts the result follows.

Our next step is to connect (H) with a given operator T and the set Ω.

Definition 3.5. Let Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1) be quasi-
Banach couples, let T be a bilinear operator and let α0, α1, α2 ∈ R, with α1 6= 0,
α2 6= 0. Consider the set Ω = Ω(Ā, B̄, Ē, T, α0, α1, α2) given in Definition 2.1.

We say that Ē, T and Ω satisfy the condition (H) if Ē satisfy (H) with
a family of operators {Pλ}λ∈Λ such that in addition to (3.1), (3.2) and (3.3),
operators {Pλ}λ∈Λ satisfy

(3.7) For any ε > 0 and for any finite subset
{
θ̄k = (θ1,k, θ2,k)

}m
k=1

in the interior

of Ω, there exist a set of triples {r̄k = (r1,k, r2,k, rk}mk=1 where r̄k and θ̄k
satisfy (2.2) with θk = α0 + α1θ1,k + α2θ2,k and there is λ ∈ Λ such that

‖(T − PλT )(a, b)‖Ēθk,rk ≤ ε‖a‖Āθ1,k,r1,k ‖b‖B̄θ2,k,r2,k
for any a ∈ A0 ∩A1, b ∈ B0 ∩B1 and 1 ≤ k ≤ m.
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Next we establish the main result of the paper.

Theorem 3.6. Let Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1) be quasi-Banach
couples, let T be a bilinear operator and let α0, α1, α2 ∈ R, with α1 6= 0 and
α2 6= 0. Consider the set Ω = Ω(Ā, B̄, Ē, T, α0, α1, α2) given in Definition
2.1 and assume that Ē, T and Ω satisfy the condition (H) with the family of
operators {Pλ}λ∈Λ.

If θ̄ = (θ1, θ2) belongs to the interior of Ω and θ = α0 + α1θ1 + α2θ2, then
for any 0 < q1, q2, q ≤ ∞ with 1/q = 1/q1 +1/q2, there is a constant L > 0 such
that for any ε > 0 there is λ ∈ Λ such that

‖(T −PλT )(a, b)‖Ēθ,q ≤ Lε‖a‖Āθ1,q1 ‖b‖B̄θ2,q2 for any a ∈ A0∩A1, b ∈ B0∩B1.

Proof. Our arguments use some ideas introduced by Janson [19]. Since θ̄ =
(θ1, θ2) belongs to the interior of Ω, taking δ > 0 sufficiently small, the four
couples

(θ1 + δ/α1, θ2 + δ/α2), (θ1 − δ/α1, θ2 + δ/α2)(3.8)

(θ1 + δ/α1, θ2 − δ/α2), (θ1 − δ/α1, θ2 − δ/α2)

belong to the interior of Ω. Let η̄ = (η1, η2) be any of these four couples and
η = α0 + α1η1 + α2η2. Given any ε > 0, by (3.7), there is a triple s̄ = s̄(η̄) =
(s1, s2, s) satisfying (2.2) for η̄ and there is λ ∈ Λ such that for Sλ := T − PλT
we have

(3.9) ‖Sλ(a, b)‖Ēη,s ≤ ε‖a‖Āη1,s1 ‖b‖B̄η2,s2 , for any a ∈ A0 ∩A1, b ∈ B0 ∩B1.

The same λ satisfying (3.9) for any of the four couples η̄.
The space Ēη,s is continuously embedded in Ēη,∞. Besides, there are positive

constants d1, d2 > 0 such that

‖a‖Āη1,s1 ≤ d1‖a‖1−η1A0
‖a‖η1A1

, a ∈ A0 ∩A1

and
‖b‖B̄η2,s2 ≤ d2‖b‖1−η2B0

‖b‖η2B1
, b ∈ B0 ∩B1

(see [4, Theorem 3.11.2]). Combining these facts with (3.9) we obtain that there
is a positive constant c1 > 0 such that for any t > 0 we have

(3.10) K(t, Sλ(a, b)) ≤ c1εtη‖a‖1−η1A0
‖a‖η1A1

‖b‖1−η2B0
‖b‖η2B1

.

In what follows we think that the spaces Āθ1,q1 and B̄θ2,q2 are realized by
the J-method where the basis is not 2 but 2α1 and 2α2 , respectively. Take
any a ∈ A0 ∩ A1, b ∈ B0 ∩ B1. According to [19, Lemma 1] we can find J-

representations a =
N∑

j=−N
aj , b =

N∑
k=−N

bk with only a finite number of elements

such that for

xj = 2−θ1α1jJ(2α1j , aj) and yk = 2−θ2α2kJ(2α2k, bk)

we have

(3.11) ‖(xj)‖`q1 ≤ c2‖a‖Āθ1,q1 and ‖(yk)‖`q2 ≤ c2‖b‖B̄θ2,q2
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where the constant c2 > 0 is independent of a and b. Take any (j, k) ∈ Z2. By
(3.10) we have that

t−θK(t, Sλ(aj , bk)) ≤ c1εtη−θ‖aj‖1−η1A0
‖aj‖η1A1

‖bk‖1−η2B0
‖bk‖η2B1

≤ c1εtη−θ2−η1α1jJ(2α1j , aj)2
−η2α2kJ(2α2k, bk)

≤ c1εtα1(η1−θ1)2(θ1−η1)α1jxjt
α2(η2−θ2)2(θ2−η2)α2kyk.

Let m ∈ Z and put t = 2m. We derive that

2−mθK(2m, Sλ(aj , bk)) ≤ c1ε2(θ1−η1)α1(j−m)xj2
(θ2−η2)α2(k−m)yk.

Since this holds for any of the four couples η̄ in (3.8), given any m ∈ Z we
can choose η̄ such that

2−mθK(2m, Sλ(aj , bk)) ≤ c1ε2−δ|j−m|−δ|k−m|xjyk.

Now applying Hölder’s inequality we get

‖
(
2−mθK(2m, Sλ(aj+m, bk+m))

)
m
‖`q ≤ c1ε2−δ|j|−δ|k|‖(xj+myk+m)m‖`q

(3.12)

≤ c1ε2−δ|j|−δ|k|‖(xj+m)m‖`q1 ‖(yj+m)m‖`q2
≤ c1c22ε2−δ|j|−δ|k|‖a‖Āθ1,q1 ‖b‖B̄θ2,q2 .

where we have used (3.11) in the last inequality. Choose 0 < p ≤ 1 such that
E0 and E1 are p-Banach spaces and p ≤ q. According to Minkowski’s inequality
and (3.12), we derive

‖Sλ(a, b)‖Ēθ,q =
∥∥(2−θmpK(2m, Sλ(a, b))p)1/p

∥∥
`q

≤ c3
∥∥∥(2−θmp ∑

(j,k)∈Z2

K(2m, Sλ(aj+m, bk+m))p
)∥∥∥1/p

`q/p

≤ c3
( ∑

(j,k)∈Z2

∥∥(2−θmK(2m, Sλ(aj+m, bk+m)))
∥∥p
`q

)1/p

≤ c4ε
( ∑

(j,k)∈Z2

2(−δ|j|−δ|k|)p)1/p‖a‖Āθ1,q1 ‖b‖B̄θ2,q2
= Lε‖a‖Āθ1,q1 ‖b‖B̄θ2,q2 .

This completes the proof.

Theorem 3.7. Let Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1) be quasi-Banach
couples, let T be a bilinear operator and let α0, α1, α2 ∈ R, with α1 6= 0 and
α2 6= 0. Consider the set Ω = Ω(Ā, B̄, Ē, T, α0, α1, α2) and assume that Ē, T ,
Ω satisfy (H).

If θ̄ = (θ1, θ2) belongs to the interior of Ω and θ = α0 +α1θ1 +α2θ2, then for
any 0 < q1, q2, q < ∞ with 1/q = 1/q1 + 1/q2, the operator T may be uniquely
extended to a compact bilinear operator from Āθ1,q1 × B̄θ2,q2 to Ēθ,q.

Proof. Since q1 < ∞ and q2 < ∞, A0 ∩ A1 is dense in Āθ1,q1 and B0 ∩ B1

in B̄θ2,q2 . It follows from [19, Theorem 2] that T may be uniquely extended to
a bounded bilinear operator T : Āθ1,q1 × B̄θ2,q2 −→ Ēθ,q. The same happens
with PλT for any λ ∈ Λ. Furthermore, by (3.1), operators PλT are compact.
Theorem 3.6 yields that T is the limit of a sequence of operators PλT , therefore
T : Āθ1,q1 × B̄θ2,q2 −→ Ēθ,q compactly.
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4. Compactness of convolution operators

Fernández-Cabrera and Mart́ınez [13, Theorem 5.3], established a compact-
ness theorem for convolution operators among Lorentz spaces. With the help
of the previous results we are going to improve it. The improvement is in the
second indices of the Lorentz spaces, replacing the condition 1/α+1/β = 1+1/γ
used in [13] by 1/α+ 1/β = 1/γ.

Subsequently, (Γk, µk) is a σ-finite measure space for k = 0, 1, 2, and T is a
bilinear operator satisfying

(4.1)


‖T (f, g)‖L1(Γ2) ≤ ‖f‖L1(Γ0)‖g‖L1(Γ1),

‖T (f, g)‖L∞(Γ2) ≤ ‖f‖L∞(Γ0)‖g‖L1(Γ1),

‖T (f, g)‖L∞(Γ2) ≤ ‖f‖L1(Γ0)‖g‖L∞(Γ1).

This kind of operators are called convolution operators in [26, 1].

Theorem 4.1. Suppose 1 < p, q, r < ∞, 0 < α, β, γ < ∞, with 1/p + 1/q =
1 + 1/r and 1/α+ 1/β = 1/γ. Let T be a bilinear operator satisfying (4.1) and
such that T : L1(Γ0)× L1(Γ1) −→ L1(Γ2) is compact. Then T may be uniquely
extended to a compact bilinear operator from Lp,α(Γ0)× Lq,β(Γ1) to Lr,γ(Γ2).

Proof. Choose Ā = (L1(Γ0), L∞(Γ0)), B̄ = (L1(Γ1), L∞(Γ1)),
Ē = (L1(Γ2), L∞(Γ2)), α0 = 0, α1 = α2 = 1 and consider the set Ω =
Ω(Ā, B̄, Ē, T, α0, α1, α2) given in Definition 2.1. By (4.1), the points (0, 0),
(1, 0) and (0, 1) belong to Ω. Moreover, given any θ̄ = (θ1, θ2) ∈ Ω, we have
that 0 ≤ θ1, θ2 ≤ 1 and θ = α0 + α1θ1 + α2θ2 = θ1 + θ2 ≤ 1. This shows that Ω
is equal to the triangle in the plain with vertices (0, 0), (1, 0), (0, 1).

According to [12, Proposition 4.1], the couple Ē satisfies condition (H) with
the family of operators (3.5). Next we check that (3.7) also holds. We start
with the case when the set has only one element.

Let θ̄ = (θ1, θ2) be in the interior of Ω and let θ = θ1 + θ2. Put 1/u = 1− θ1,
1/v = 1− θ2, 1/w = 1− θ. So 1 < u, v, w <∞ and 1/u+ 1/v = 1 + 1/w. Take
any 1 ≤ η1, η2 < ∞ and 1 ≤ η ≤ ∞ with 1/η1 + 1/η2 = 1 + 1/η. By (3.4), we
have

(4.2)


Āθ1,η1 = (L1(Γ0), L∞(Γ0))θ1,η1 = Lu,η1(Γ0),

B̄θ2,η2 = (L1(Γ1), L∞(Γ1))θ2,η2 = Lv,η2(Γ1),

Ēθ,η = (L1(Γ2), L∞(Γ2))θ,η = Lw,η(Γ2).

Take any ε > 0, we are going to show that there is λ ∈ Λ such that T − PλT
can be uniquely extended to a bounded operator from Lu,η1(Γ0)× Lv,η2(Γ1) to
Lw,η(Γ2) with

(4.3) ‖T − PλT‖Lu,η1 (Γ0)×Lv,η2 (Γ1),Lw,η(Γ2) ≤ ε.

With this aim, put Ã = (L∞(Γ0), L1(Γ0)), and Ê = (L∞(Γ2), L∞(Γ2)). By

(4.1), we know that T ∈ B(Ã×B̄, Ê). Put ω = 1−1/w and s = ω(1/u−1/w)−1.
So 1/u = 1− ω+ ω/s. Applying the complex bilinear interpolation theorem [4,
Theorem 4.4.1], with τ = 1/s we obtain that T may be uniquely extended to a
bounded bilinear operator from Ls(Γ0)×Ls′(Γ1) to L∞(Γ2). Here 1/s+1/s′ = 1.
Therefore

T ∈ B
((
L1(Γ0), Ls(Γ0)

)
×
(
L1(Γ1), Ls′(Γ1)

)
,
(
L1(Γ2), L∞(Γ2)

))
.
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The target couple is again Ē, so it satisfies (H). Moreover,
T : L1(Γ0)×L1(Γ1) −→ L1(Γ2) is compact and interpolating by the real method
we get (L1(Γ0), Ls(Γ0))ω,η1 = Lu,η1(Γ0), (L1(Γ1), Ls′(Γ1))ω,η2 = Lv,η2(Γ1),
(L1(Γ2), L∞(Γ2))ω,η = Lw,η(Γ2), which are the same spaces as in (4.2). Now
applying Proposition 3.4 with ω and η1, η2, η, we derive (4.3).

Observe that the λ given by Proposition 3.4 depends on (3.6), that is , on ω
and on the constants c1, c2 of the proof of the proposition, constants which only
depend on T , Ē and C in (3.2). Whence, if instead of one point we have any
finite subset {θ̄k}mk=1 in the interior of Ω, then we can still proceed as before
and select a λ which works for all θ̄k with 1 ≤ k ≤ m. This yields that Ē, T
and Ω satisfy the condition (H).

To complete the proof, let 1 < p, q, r < ∞, with 1/p + 1/q = 1 + 1/r. Put
θ1 = 1 − 1/p, θ2 = 1 − 1/q and θ = 1 − 1/r. Then 0 < θ1, θ2, θ < 1 and
θ = θ1 + θ2. Let again 1 ≤ η1, η2 <∞, 1 ≤ η ≤ ∞ with 1/η1 + 1/η2 = 1 + 1/η.
According to [13, Theorem 5.3], we have

T ∈ B (Lp,η1(Γ0)× Lq,η2(Γ1), Lr,η(Γ2)) .

and, by (3.4), we know that

Āθ1,η1 = Lp,η1(Γ0) , B̄θ2,η2 = Lq,η2(Γ1) , Ēθ,η = Lr,η(Γ2).

Hence, θ̄ = (θ1, θ2) and η̄ = (η1, η2, η) satisfy (2.2). This yields that θ̄ belongs to
the interior of Ω. Consequently, applying Theorem 3.7 with θ̄ and 1/α+ 1/β =
1/γ, we derive that T : Lp,α(Γ0)× Lq,β(Γ1) −→ Lr,γ(Γ2) is compact.

Corollary 4.2. Suppose 1 < p, q, r <∞, 1/2 < s <∞, with 1/p+1/q = 1+1/r
and 1/s = 1/p+ 1/q. Let T be a bilinear operator satisfying (4.1) and such that
T : L1(Γ0)× L1(Γ1) −→ L1(Γ2) is compact. Then T may be uniquely extended
to a compact bilinear operator from Lp(Γ0)× Lq(Γ1) to Lr,s(Γ2).

Proof. The result follows by applying Theorem 4.1 with α = p, β = q and
γ = (1/α+ 1β)−1 = (1/p+ 1/q)−1 = s.
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