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A B S T R A C T

Eucalyptus constitutes one of the most common tree genera used in forest plantations worldwide. In Europe, 
Eucalyptus trees are especially common in the Northwest of the Iberian Peninsula, E. nitens and E. globulus being 
the most commonly cultivated species. Each species presents particularities that lend to different exploitation 
strategies and industrial usages. Therefore, updated knowledge about the abundance and spatial distribution of 
the different species is important for forest planning. This is a special challenge for areas where forest land is 
highly fragmented. Remote sensing has been used to efficiently monitor the distribution of the Eucalyptus genera, 
however little research has been able to map specific Eucalyptus species. This study evaluates the efficiency of 
Sentinel-2 data, Worldview-3 images, and Airborne LiDAR data in the differentiation of E. nitens and E. globulus. 
Supervised classifications were performed using neural networks for these data sets both individually and in 
combination. The highest accuracies were obtained when using Sentinel-2 data in combination with LiDAR point 
clouds and when using Sentinel-2 data in a multitemporal approach. The best time of year to differentiate be
tween the two species is during the emergence of spring shoots. Worldview-3 images have a moderate capacity to 
differentiate between the two species, although this is increased when textural metrics are included. This study 
can serve as the basis for generating Eucalyptus species distribution maps, which will allow for improved forest 
management and planning.   

1. Introduction

Knowledge about the distribution of tree species is essential for
sustainable forest management and planning (Santopuoli et al., 2021; 
Barrio-Anta et al., 2021). One of the tree genera that is essential to 
monitor is Eucalyptus, since it plays a key role in the forest sector 
worldwide. Eucalyptus trees are planted all over the world, from the 
tropics (Messier et al., 2021) to temperate forests (Tomé et al., 2021), 
and they have multiple industrial usages, such as in the pulp and paper 
industry and in the bioenergy industries as well as for producing 
different engineered-wood products (Tomé et al., 2021). According to 
Harwood (2011), of the 700 different naturally-occurring Eucalyptus 
species (Coppen, 2002), the most cultivated Eucalyptus species are 
E. camaldulensis, E. grandis, E. tereticornis, E. globulus, E. nitens,
E. urophylla, E. saligna, E. dunnii, E. pellita and some of their hybrids.
Different species lend themselves to different applications and industrial
usages (Ramnath et al., 2018; Acuña et al., 2020; Domingues et al.,
2011; Seng Hua et al., 2022; Pérez-Cruzado et al., 2011). Additionally,

different species have different characteristics that condition their 
growth in different environments (Ngugi et al., 2015; Pérez-Cruzado 
et al., 2011). Furthermore, it has been observed that certain Eucalyptus 
species in specific environments and management conditions have the 
potential to become invasive and may have multiple impacts on the 
environment, thus compromising the conservation of natural forests 
(Forsyth et al., 2004; Calviño-Cancela and van Etten, 2018; MITECO, 
2017; Tomé et al., 2021). Therefore, being able to effectively map 
different Eucalyptus species is essential for forest and nature conserva
tion stakeholders. 

In Europe, Eucalyptus is most commonly cultivated in Northwest of 
the Iberian Peninsula (Brus et al., 2011). In Portugal around 26% of the 
continental forest area is covered by Eucalyptus (ICNF, 2015), and the 
most recent Spanish NFI (National Forest Inventory) reported that in 
Galicia (A region in northwestern Spain), approximately 20% of the total 
forested area is covered by Eucalyptus as well (MITECO, 2011a). 
Therefore, Eucalyptus plantations represent an important commodity for 
the forest industries in these regions (Xunta de Galicia, 2023). 

* Corresponding author at: Universidade de Vigo, Escola de Enxeñaría Forestal, 36005 Pontevedra, Spain.
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Additionally, concerns have arisen among nature conservation stake
holders about the distribution and abundance of these plantations 
(Pérez-Cruzado et al., 2011; MITECO, 2017; Calviño-Cancela and van 
Etten, 2018; Tomé et al., 2021). In these regions, the most commonly 
cultivated species are Eucalyptus globulus and Eucalyptus nitens (MITECO, 
2011a). These two species present particularities that imply different 
growth strategies and lend themselves to different applications. For 
example, it has been reported that they present differences in their 
growth rates and frost tolerances (Pérez-Cruzado et al., 2011; Close 
et al., 2000; Davidson et al., 2004). Similarly, their responses to growth 
stress, wounds, pruning and pathogens are also different (Beadle et al., 
2001; Deflorio et al., 2007; Wiseman et al., 2009, Gonçalves et al., 2019; 
Smith et al. 2007). Disparities have also been identified in the carbon 
litter accumulation of each species (Pérez-Cruzado et al., 2011). 
Regarding their applications, E. globulus has proven to be more relevant 
for the pulp industry (Antes & Joutsimo, 2015; Pérez et al., 2006; Pérez- 
Cruzado et al., 2011) because of its better pulp yield and quality (Kib
blewhite et al 2000). Despite these differences, the distribution of the 
two species in Europe has hardly been assessed. In Spain, the most recent 
data available on the distribution of Eucalyptus species dates from 2011 
(MITECO, 2011a). Considering that the rotation cycles for both species 
are between 12 and 15 years (Tolosana et al., 2017; Arenas et al., 2019), 
and the perceived recent trend in forest owners replacing E. globulus for 
E. nitens, this distribution data might be outdated. In the case of 
Portugal, the Portuguese NFI does not disaggregate the different Euca
lyptus species (ICNF, 2015). An additional drawback is that this infor
mation is currently acquired through field work, making it difficult to 
update more frequently or increase the level of detail. It is therefore 
beneficial to develop new methods that yield updated information about 
the distribution of Eucalyptus species in these regions. 

Remote sensing has been widely used to monitor Eucalyptus distri
bution around the globe (Sibanda et al., 2021; da Costa et al., 2022; 
Deng et al., 2020) and also in the Northwest of the Iberian Peninsula in 
particular (Forstmaier et al., 2020; Alonso et al., 2021a; Alonso et al., 
2021b; Oliveira et al., 2021). The most commonly implemented remote 
sensing tool used to identify Eucalyptus plantations and forests is passive 
remote sensing (this is the case in the studies mentioned above), how
ever some studies have also incorporated LiDAR data (Novo-Gomez 
et al., 2022; Wu and Zhang, 2020). Despite the great amount of research 
focused on identifying Eucalyptus stands, there has thus far been little 
research aimed at distinguishing between Eucalyptus species. In the case 
of passive remote sensing, the distribution of Eucalyptus species has been 
studied using hyperspectral images and very high-resolution multi
spectral images. For example, the Peerbhay et al. (2013) study compiles 
the results of several studies on the ability of hyperspectral imagery to 
distinguish between Eucalyptus species. Many of these studies high
lighted the difficulty of this task, especially when dealing with certain 
combinations of species. However, the Shang and Chisholm (2014) 
study demonstrates the ability of hyperspectral data to differentiate 
between Eucalyptus species in an Australian native forest. Peerbhay et al. 
(2013) also assess the possibility of using hyperspectral imagery to 
distinguishing between the Eucalyptus species that commonly grow in 
South Africa, showing that the most important wavebands for this task 
are located in the visible spectrum, and providing evidence that attests 
to the capability of very-high resolution multispectral data. However, 
few studies have addressed the possibility of using very-high resolution 
multispectral images for distinguishing between Euclayptus species. One 
example is the subsequent study of Peerbhay et al. (2014) that obtained 
user’s and producer’s accuracies of between 80 and 100 percent for 
E. grandis, E. nitens and E. smithii using Worldview-2 in South Africa. In 
the same sense, Alonso et al. (2021b) have explored the capacity of 
Worldview-3 to distinguish between E. globulus and E. nitens in a pilot 
area in Spain, obtaining lower user’s and producer’s accuracies (of be
tween 45% and 84%) for this particular combination of Eucalyptus 
species. They remark that further research in different locations and 
using different remote sensing data may be necessary to improve 

accuracy results. One option could be to incorporate LiDAR data, as was 
done by Verma et al. (2019), who explored the capacity of LiDAR data 
and multispectral images to classify five different species of Eucalyptus in 
a native forest and found that the most accurate results were obtained 
when using LiDAR and multispectral images combined. A similar 
conclusion was reached in the study of Yadav et al. (2021), which also 
highlight the advantages of including LiDAR data in the classification of 
Eucalyptus species in native forests. 

Given the importance of mapping the distribution of different 
Eucalyptus species, this study evaluates the utility of different remote 
sensing data sources for mapping E. globulus and E. nitens. The sensors 
analyzed were very high-resolution Worldview-3 images with spectral 
and textural metrics, open-access Sentinel-2 images, and airborne LiDAR 
data. The study area is located on the Iberian Peninsula, in a region with 
one of the highest abundances of these two Eucalyptus species in all of 
Europe. 

2. Case study 

2.1. Study area 

The study was conducted in the region of Galicia, in the northwest of 
Spain. The study area, which can be seen in Fig. 1C on dark green, was 
an area where very high-resolution multispectral imagery and recent 
LiDAR data were available. It covers a total area of 3611 km2. Fig. 1C 
shows the distribution of Eucalyptus in Galicia according to the 2020 
Sentinel-2 forest-oriented land cover map of Galicia (Alonso et al., 
2022). On Fig. 1B is possible to see that currently Eucalyptus is mostly 
present on coastal areas. According to the latest forest inventory 
E. globulus and E. nitens are present in Galicia (Miteco, 2011b). 

2.2. Species studied 

Eucalyptus tree plantations began to appear in Galicia in the middle 
of the 19th century when an afforestation process began in the region. 
Eucalyptus globulus was the first species to be planted (Barrio-Anta et al., 
2021). Eucalyptus nitens was not introduced in this afforestation process 
and has only appeared in the last two decades; plantations of this species 
started to appear due to its greater resistance to E. globulus pests and its 
greater frost tolerance (Neilan and Thompson, 2008, Aguín et al., 2013; 
Ayuga-Téllez et al., 2022; Tomé et al., 2021) Therefore, the most 
abundant species, according to the latest records, is E. globulus (Miteco, 
2011b). Eucalyptus plantations in this region are mostly owned by small 
non-industrial private owners (Tomé et al., 2021). Therefore, few 
management practices are applied (Tomé et al., 2021, González-Gómez 
et al., 2011). There is also evidence, especially in the case of E. globulus, 
of unmanaged and abandoned plantations due to recurring wildfires or 
to the plantations being in unsuitable areas (Tomé et al., 2021). All of 
these factors may lead to greater heterogeneity in terms of age, height, 
diameter and structure of E. globulus stands in comparison with E. nitens 
stands. Plantation densities for both species in Galicia are the same, they 
are usually planted using a range of 1000–1600 trees per hectare (DOG, 
2021). 

At a glance, the two species are similar. The main characteristics that 
help to differentiate between them are their flowers and fruit (Orwa 
et al. 2009, López, 2002). However, other characteristics have been 
described that can help to differentiate between the two when these 
elements are not present. E. globulus is prone to coppice regeneration 
while this hardly ever occurs in E. nitens stands (Gutiérrez, 1976; Neilan 
and Thompson, 2008). Additionally, persistence of dead branches is 
more typical of E. nitens stands (Pinkard, 2002; Pérez-Cruzado and 
Rodríguez-Soalleiro, 2011). In addition, field practice has identified 
different coloration during peak budding as a distinguishing character
istic. Thus, as stated by the BASOA Foundation (2017), spring shoots in 
E. globulus tend to exhibit a greenish coloration, while those of E. nitens 
tend to show reddish tones. Understory species that tend to be associated 
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to both Eucalyptus species are the same. Images of typical stands of each 
of the two species are shown in Fig. 2, both images being captured in 
planted stands with a high-growth age and heights of greater than 15 m. 

Few studies about the phenological behaviors of the Eucalyptus 
species under study have been accomplished. Some studies on this topic 
have been accomplished in Tasmania and South America. According to 

Fig. 1. Study area. C: representation of the Eucalyptus distribution which corresponds to the land cover map by Alonso et al. (2022).  

Fig. 2. Examples of stands of the two Eucalyptus species present in the study area. Left E. nitens and right E. globulus. Both images were captured in planted stands 
with a high-growth age and heights greater than 15 m. 
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Downes et al. (1999) study performed over Eucalyptus plantations in 
Tasmania, E. nitens tended to have longer increment phases in spring and 
autumn, and faster phase rates in autumn than E. globulus. Battaglia et al. 
(1996) developed their study over Tasmanian plantations and concluded 
that the photosynthetic temperature response curve of E. nitens may be 
wider compared to E. globulus. For a different geographic region (Chile) 
Watt et al. (2014) stated that the air temperature modifier 
for E. nitens for a process-based model exhibited dual peaks during late 
spring/early summer and then again in early autumn when air tem
peratures were closest to the optimum air temperature for growing. 

According to the own experience of the authors and their knowledge 
of the study area, the spring months (March to May) are associated with 
the main peak budding for both species in the study area, although buds 
can occur during the whole year. The flowering in Eucalyptus nitens is 
infrequent and light (Moncur and Hasan, 1994). The flowering of 
Eucalytpus globulus takes places in Galicia from autumn to early summer 
according to Calviño-Cancela and Rubido-Bará (2013). 

3. Materials 

3.1. Worldview-3 images 

Worldview-3 is a commercial satellite launched in 2014. One of the 
products acquired from this instrument is comprised of eight multi
spectral bands each with a spatial resolution of 1.2 m. Detailed infor
mation about the spectral ranges is presented in Table 1. 

The WorldView-3 images that were used in this study were gathered 
in two blocks acquired at different dates. The first block was acquired 
between May and June of 2021 and a second block was acquired be
tween August and October of 2021. It was not possible to acquire all the 
study area at the same date due to the cloud cover, according to the 
image provider. The specific date of the images and the acquisition 
parameters are shown in Table 2. Varying dates involve different sun 
elevation angles, and consequently different projected shadows; but also 
they usually involve different phenological stages and subsequent var
iations in the digital values of land covers. The images of these two 
blocks also differ in the preprocessing procedure. The digital values of 
the images are the result of applying atmospheric, radiometric and 
geometric corrections to the original scenes. According to the image 
provider, the algorithms that were used to correct the images were 
different for the two blocks. As a result, the digital values of analogous 
land covers are significantly different in both blocks. Because of these 
differences the two blocks were processed separately. 

3.2. Sentinel-2 images 

Images of the constellation of satellites Sentinel-2 were used on this 
study. These images have information on 13 spectral bands with a 
spatial resolution ranging from 10 m to 60 m, depending on the band 
(ESA, 2015). The specifications of the spectral bands are shown in 
Table 3. 

The Sentinel-2 mission has a high revisit time: 10 days at the equator 
with one satellite, and 5 days with 2 satellites under cloud-free condi
tions which results in 2–3 days at mid-latitudes. One image per month 

was used in this study to cover the different phenological stages of 
Eucalyptus. For the study area, the least cloudy image available from 
each month was selected. Images were downloaded from the Copernicus 
Open Hub (ESA, n.d.). The product downloaded was the Level 2A since it 
has geometric, radiometric, and atmospheric corrections (ESA, n.d.b). 
The Sentinel-2 bands used in this study were the 10 m and 20 m ones. 
Appendix A presents the dates of the images used for each month and 
Sentinel-2 tile. 

3.3. LiDAR data 

LiDAR data for the whole study area was obtained using an airborne 
laser scanner (ALS). All the LiDAR data was acquired during November 
of 2019. The LiDAR acquisition density was >3 points/m2. This data was 
provided by the Administration of Rural Areas of the Government of 
Galicia. 

4. Methodology 

4.1. Reference data collection 

Reference data for the two species was obtained through field work 
in the year 2021. In order to define enough reference data for both 
Eucalyptus species, a first set of sample plots was established using the 
most recent Spanish Forest Map, MFE25 (Miteco, 2011b), which con
tains species information. This step was aided by photointerpretation of 
the Worldview-3 images to discard any plots that clearly did not match 
the MFE25 map indications (i.e., due to land use changes or harvesting). 
The sample plots for each species encompassed different topographical 
orientations and slopes. 

The field plots must represent homogeneous monospecific stands 

Table 1 
Spectral characteristics of Worldview-3 images.  

Band name Wavelength ranges (nm) 

Coastal Blue 400–450 
Blue 450–510 
Green 510–580 
Yellow 585–625 
Red 630–690 
Red Edge 705–745 
NIR-1 770–895 
NIR-2 860–1040  

Table 2 
Acquisition dates and acquisition parameters of Worldview-3 images.  

Block DATE Sensor azimuth Sun azimuth Sun elevation 

1 2021-05-03 53 148 60 
1 2021-05-03 100 148 60 
1 2021-05-03 98 148 60 
1 2021-05-29 245 148 67 
1 2021-05-29 313 151 66 
1 2021-05-29 291 149 67 
1 2021-06-04 355 145 67 
1 2021-07-18 343 144 64 
2 2021-08-25 351 154 55 
2 2021-08-25 242 154 55 
2 2021-08-25 349 153 55 
2 2021-10-07 72 161 39 
2 2021-10-14 358 166 37 
2 2021-10-14 193 165 37 
2 2021-10-26 73 164 33 
2 2021-10-26 73 164 33  

Table 3 
Sentinel-2 bands.  

Band name Central wavelength (nm) Resolution (m) 

B01-Coastal aerosol 443 60 
B02-Blue 490 10 
B03-Green 560 10 
B04-Red 665 10 
B05-Red Edge 1 705 20 
B06-Red Edge 2 740 20 
B07-Red Edge 3 783 20 
B08-NIR 1 842 10 
B8A-NIR 2 865 20 
B09-Water vapor 945 60 
B10-SWIR - Cirrus 1375 60 
B11-SWIR 1 1610 20 
B12-SWIR 2 2190 20  
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with dense canopy closure. Within the provided sample plots, the center 
point of a circular plot, with a minimum radius of 10 m, was established 
and the main tree species was recorded. Considering that the forestry 
sector is quite active in the study area and that in several locations the 
tree species appearing on the MFE25 don’t correspond with the ground 
truth, field crews were permitted to move the position of the proposed 
sample points to different nearby positions. This was done so as to 
maintain a roughly equal balance between the numbers of plots corre
sponding to each of the two species. The central coordinates of each plot 
that was ultimately established were recorded using a GPS device with 
centimetric precision. 

Upon the collection of field data, polygons around the field plots 
were manually delineated using the Worldview-3 images as the refer
ence. These polygons were used as reference data. A total of 395 poly
gons were defined: 215 for E. globulus and 180 for E. nitens. This 
reference dataset was randomly divided into two subsets: 70% for 
training and 30% for verification. Fig. 3 presents the distribution of the 
reference data, both training and test polygons. 

4.2. Data processing 

4.2.1. Shadow removal in Worldview images 
The dataset of Worldview-3 images was visually reviewed to eval

uate the influence of the heterogeneity of observation angles. It was 
observed that most of the images contained a great deal of projected 
shadows derived from the observation angle, which can greatly differ 
among the images. Therefore, the first step in data processing consisted 
of applying a shadow detection index (SDI) to every image that would 
allow for the removal of these shadows. The algorithm described by 
Shahi et al. (2014) was used. This index, which uses the blue band and 
the two NIR bands, was specifically designed for Worldview images. The 
following Eq. (1) is implemented to calculate the SDI. 

SDI = ((NIR2 − Blue)/(NIR2 + Blue) − NIR1 (1)  

where NIR2, Blue and NIR1 are Worldview-3 bands. 
Once the SDI was calculated for each pixel and each image, a his

togram of the SDI frequencies was obtained for each image. A specific 

SDI threshold value for each image was defined to identify areas that 
corresponded to shadows. After several tests, the 95th percentile value, 
of each image, was selected as the optimum shadow threshold. Any 
values above this percentile were considered shadows and changed to 
NULL values. 

4.2.2. Worldview texture analysis 
A texture analysis was performed since, in very high-resolution im

ages, textures can significantly differ between land covers (Feng et al., 
2015). The first step consisted of defining the size of a moving window; 
all of the pixels within that window were used to obtain texture metrics. 
Several window sizes were tested. The results were visually inspected to 
select the appropriate window size. The final window size selected was 
3x3 m. Afterwards, a histogram was computed for each window to 
determine the frequency of occurrence of each of the digital numbers 
(DN) present within the window and a vector with these occurrence 
values was created. The occurrence values were then normalized by 
dividing them by the total number of values in the defined moving 
window. These values were deemed probabilities, P(i). Finally, the 
following texture metrics were calculated from these probabilities by 
applying different equations: mean (2), variance (3), entropy (4), 
skewness (5). On this equations P(i) is the probability value of each 
pixel, Ng the number of distinct grey levels in the quantized image and 
M the mean. 

Mean (M) =
∑Ng−1

i=0
iP(i) (2)  

Variance =
∑Ng−1

i=0
(i − M)

2P(i) (3)  

Entropy = −
∑Ng−1

i=0
P(i)*lnP(i) (4)  

Skewness =
∑Ng−1

i=0
(i − M)

3P(i) (5) 

Fig. 3. Reference data distribution obtained through fieldwork. It was divided randomly into training data (TRAIN, 70%) and verification data (TEST, 30%).  
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The resulting value of each equation was assigned to the central pixel 
of the moving window. This procedure was performed for all the bands 
present in the image. 

4.2.3. Sentinel-2 images 
The Sentinel-2 images were pre-processed to remove any clouds that 

may be present. Clouds were masked using the cloud mask available 
from the Sentinel-2 Level 2A product. Since the bands used in this study 
were the 10 m and 20 m bands, the 20 m bands were resampled at 10 m. 
This procedure was done using nearest neighborhood interpolation. 

Additionally several Sentinel-2 spectral indices were calculated since 
including them can improve the classification performance when map
ping tree species using Sentinel-2 images (Immitzer et al. 2019). Some 
indices that are commonly used to analyze vegetation have been 
calculated. The Normalized Difference Vegetation Index (NDVI) (Kogan, 
1995; Tarpley et al., 1984) was selected since it is the most commonly 
used index in phenological research (Misra et al. 2020). The Normalized 
Difference Moisture Index (NDMI) was used because according to pre
vious studies it can track seasonal changes in vegetation moisture con
tent (Gao, 1996; Sentinelhub, 2023a). Additionally, some indices that 
allow to optimize the Red-Edge bands of Sentinel-2 images were used. 
This band can be key to distinguish between vegetation species ac
cording to Misra et al. (2020). Particularly, the Normalized Difference 
Red Edge Index 1 (NDRE1) (Sentinelhub, 2023b) and the Sentinel- 
derived Red-Edge Spectral Indice RESI (Xiao et al. 2020) were used. 
Formulas to calculate them are presented below from (6)–(9) 
respectively. 

NDVI = (NIR1 − RED)/(NIR1 + RED) (6)  

NDMI = (NIR1 − SWIR1)/(NIR1 + SWIR1) (7)  

NDRE1 = (RE2 − RE1)/(RE2 + RE1) (8)  

RESI = (RE3 + RE2 − RE1)/(RE3 + RE2 + RE1) (9)  

where NIR1, RED and SWIR correspond to the Sentinel-2 bands with 
equal names and RE1, RE2 and RE3 to the Sentinel-2 bands named Red- 
Edge 1, Red-Edge 2 and Red-Edge 3 respectively. 

4.2.4. LiDAR data 
Since the species in question can present different distribution pat

terns in terms of branches, sprouts, and the mix of different aged in
dividuals, statistics were obtained from the LiDAR point clouds to derive 
information about the geometric structure of the stands. The first step 
was the normalization of the point clouds. This consisted of trans
forming the z coordinate value for each point from its altitude with 
respect to the Earth’s surface to its height above the ground. To perform 
this transformation, ground points had to be identified. This step was 
performed with the lasground tool in the LAStools software (Rapidlasso, 
2023). Then, the height of the rest of the points was estimated with 
respect to these ground points; this algorithm was implemented using 
the lidR package in the R software (Roussel et al., 2020). 

The normalized LiDAR point cloud was used to estimate several 
statistical metrics representing the structure of the point clouds. The 
metrics computed are presented in Table 5; detailed mathematical in
formation about each can be found in Roussel and Auty (2021). This step 
was performed using the cloud metrics function in the lidR package 
(Roussel et al., 2020). The set of metrics was calculated twice, once at a 
1.2 m resolution (the Worldview-3 resolution) and once at a 10 m res
olution (the Sentinel-2 resolution). The output of this process is nine 
raster layers, one layer per statistical metric. 

4.3. Analysis of species separability 

In this section, the separability of the two considered Eucalyptus 
species is analyzed separately for the three data sources. Boxplots of 

values for each species were built for Worldview spectral bands, 
Worldview textures and LiDAR statistics. The boxplots represent the 
mean values and central quartiles; they were built using the digital 
values for each feature of the pixels inside the reference polygons. 
Worldview separability was studied separately for each block given their 
divergences in the digital values as a result of the implementation of 
different pre-processing algorithms. 

In the case of the Sentinel-2 data the separability between the species 
was analyzed through a temporal analysis of seasonal changes. This 
analysis was performed by analyzing the evolution of the monthly NDVI 
values along the considered year (2019) for both species; in particular 
the seasonal tendency was evaluated through the mean and standard 
deviation of the digital values in the reference polygons obtained for the 
monthly images. 

Additionally the Jeffries-Matusita distance (JM) between the two 
species was calculated for all the data sources and variables. JM has been 
proven to be useful for measuring the separability of thematic classes 
obtained through remote sensing data (Sen et al. 2019). JM takes values 
between 0 and 2. Higher values indicate a higher separability between 
classes. JM was calculated using the R function JMdist from the R 
package varSel (Dalponte and Oerka, 2021). 

4.4. Species classification 

The detection and mapping of E. globulus and E. nitens in the study 
area was accomplished through supervised classifications of the data 
from the different sources, which were treated both individually and 
combined. 

Since the dates of the different phenological stages differ from one 
target species to the other, the temporal resolution of the Sentinel-2 data 
was used to design the tests used to differentiate between the two spe
cies. One image per month was selected and classified individually using 
the Sentinel-2 spectral bands (this was deemed the single-date 
approach). A multitemporal approach was also evaluated; it consisted 
of using decision-criteria to aggregate all the maps resulting from the 
single-date approach. The decision-criteria used was plurality voting 
(Lewiński et al., 2017). Following this criterion, the most frequently 
occurring class for a pixel (the mode) throughout the time-series was the 
class that was ultimately assigned to that pixel in the multitemporal 
map. 

Regarding Worldview-3, three tests were performed: the classifica
tion of the images individually, the classification of textures, and the 
classification of the two together. In the first case, the classification was 
performed separately for the two blocks of images. This was because, 
due to differences in the corrections applied within the blocks, the 
blocks presented quite different radiometric ranges (see Section 3.1.). 
The separation of blocks was not necessary in the case of the textures 
since these were obtained from normalized values. 

Finally, the LiDAR metrics were analyzed individually and combined 

Table 5 
LiDAR metrics obtained.  

Metric Description 

zmax Maximum height 
zmean Mean height 
zsd Standard deviation of height distribution 
zskew Skewness of height distribution 
zentropy Entropy of height distribution, calculated as the normalized 

Shannon diversity index (Pretzsch, 2008; Shannon, 1948) 
pzabovezmean Percentage of returns above mean height 
pzabove2 Percentage of returns above 2 m 
zqx xth percentile of height distribution 
zpcumx Cumulative percentage of returns in the xth layer. In order to obtain 

this layer, the maximum height of the LiDAR data in each cell was 
divided into 10 intervals. The cumulative percentage of the 9 layers 
was thus obtained.   
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with the Sentinel-2 and Worldview-3 images. Table 6 is a description of 
all the different data combinations used. 

Supervised classifications were performed using the training data 
described in Section 4.1. These were performed using a neural network 
architecture. The architecture used was implemented using the Keras 
interface (Team, 2022) from the TensorFlow library (Abadi et al., 2016) 
of the Python language (Van Rossum and Drake, 1995). Several neural 
network architectures were tested. The one that was ultimately used 
consisted of an input flatten layer, three dense hidden layers, and an 
output layer. The hidden layers were activated with the ReLU (Rectified 
Linear Units) activation function (Agarap, 2018). This activation func
tion is one of the most efficient functions for this step (Ramachandran 
et al., 2017). The output function used was Softmax (Agarap, 2018) since 
it was a matter of multiclass classification (Wu et al., 2016). As a result 
of this process, a map with the geospatial distribution of Eucalyptus 
globulus and Eucalyptus nitens was obtained from each of the data sources 
evaluated. 

The final step was to evaluate all the obtained maps using the veri
fication dataset. Confusion matrixes were built for each of the maps to 
estimate the following accuracy metrics: Overall Accuracy (OA), User’s 
Accuracy (UA), Producer’s Accuracy (PA) and F-Score. 

5. Results 

5.1. Analysis of species separability 

5.1.1. Worldview images 
The boxplots showing the separability of the species according to the 

Worldview bands are shown in Figs. 4 and 5, block 1 and 2 respectively. 
The Figures incorporate the JM values obtained for each band. Ac
cording to these results, the digital values in the Worldview images 
overlap for the analyzed species whatever the spectral band or block is 
considered. Accordingly, JM values are always below 0.5. However JM 
values within blocks are completely different. The highest JM value 
obtained for these images corresponds to the NIR-2 band in block 1 (JM 
0.41). 

5.1.2. Textural analysis 
The boxplots and the JM distances showing the species separability 

considering the textural raster layers derived from the Worldview bands 
are shown in Fig. 6 for block 1 and on Fig. 7 for block 2. For the block 1 
the highest JM values were obtained for the skewness and mean tex
tures; particularly the Yellow and the NIR-1 bands presented the highest 
values: 0.98 and 0.76 respectively. The results are different in the block 
2. In this case the skewness presented the best performance, corre
sponding the highest values to the Red and Coastal bands: 0.86 and 0.72 

respectively. 

5.1.3. Sentinel-2 images 
The result of the seasonal changes tendency is presented in Fig. 8. 

According to this Figure NDVI mean values of both species are very 
similar from January to March. From April to November the mean NDVI 
is higher for E. nitens. However, the standard deviation of the NDVI 
values result in overlapped confidence intervals across the whole year. 

The resulting values of the JM distance obtained for the Sentinel-2 
bands and spectral indices are presented on Fig. 9 and Fig. 10. In all 
the cases, the JM value is below 0.8. The highest values correspond to 
the RGB bands; they overtake the value 0.6 at least once in the year. The 
months for which JM values are above 0.6 are May and November. 
Among the spectral indices used, the ones that presents higher JM values 
are NDVI, the NDRE1 and the RESI for September. Regarding the NDMI, 
generally it presents lower values than the other indices for all months 
except in February and March. 

5.1.4. LiDAR data 
The boxplots showing the separability of the species through the 

LiDAR metrics are shown in Fig. 11. According to this figure, there are 
several LiDAR metrics whose values differ noticeably between the two 
species: “zmax”, the higher height percentiles and “zsd”. For example, in 
the study area, according to “zmax”, E. globulus stands tend to be taller 
than E. nitens stands: for E. globulus, “zmax” has an average value of 21.3 
m, with a standard deviation of 6.20 m, while for E.nitens “zmax” has an 
average value of 15.2 m with a standard deviation of 4.87 m. The var
iables “zmax”, “p75” to “p95” and “zsd” have the highest JM values; 
they range between 0.49 and 0.55. 

5.2. Species classification 

The accuracy metrics of the maps obtained using the different data 
sources and the various combinations of them are shown in Figs. 12 and 
13. The Fig. 12 shows the Overall Accuracy obtained for each classifi
cation. The highest values, as in the previous case, were obtained with 
for the March Sentinel-2 image combined with LiDAR (with an OA of 
94%) followed by Sentinel-2 multitemporal (with an OA of 92%). 
Furthermore, the OA index also revealed that Sentinel-2 images pro
vided more accurate results when they were combined with LiDAR data. 
It should be highlighted that the months that allowed for the highest 
accuracy values were in the spring months of March and May. The ac
curacy was lower in summer and winter months. Finally, among the 
high-resolution combinations, Worldview-3 image with textures and 
LiDAR data provided the highest OA, with a value of 90%. 

Fig. 13 presents the F-Score obtained for each of the classifications of 
the two species. It is worth noting that although Worldview-3 with 
textures and LiDAR data has a high OA, there is an imbalance between 
the F-Score of the two classes. It seems that the E. globulus class tends to 
be more accurately predicted than the E. nitens class. This disparity is 
observed in most of the combinations that include Worldview data or 
data at Worldview resolution. Producer’s and User’s accuracies are 
presented on Appendixes A and B respectively. 

Finally, Fig. 14 shows the distribution of both species in the study 
area according to the classification that allowed to obtain a higher OA, 
Sentinel-2 March image combined with LiDAR data. 

6. Discussion 

6.1. Analysis of species separability 

6.1.1. Worldview images 
The separability of the analyzed species considering the Worldview-3 

spectral bands seems to be low since most JM values are below 0.5. The 
most remarkable observation is that the JM values highly differed be
tween blocks. This difference might be related to the phenology of the 

Table 6 
Data sources and their combinations.  

Name Description of the data source 

LiDAR_1.2m LiDAR metrics derived at a 1.2 m resolution. 
LiDAR_10m LiDAR metrics derived at a 10 m resolution. 
WV3 Worldview bands. 
TEXTURES Textural metrics from Worldview. 
WV3_LiDAR Worldview bands and LiDAR metrics derived at a 1.2 m 

resolution. 
WV3_TEXTURES Worldview bands and textural information. 
LiDAR_TEXTURES LiDAR metrics derived at a 1.2 m resolution and textural 

metrics. 
WV_LiDAR_TEXTURES Worldview bands, LiDAR metrics derived at a 1.2 m 

resolution and textural metrics. 
S2_MULTI Sentinel-2 bands, multitemporal aggregation. 
S2_MONTH Sentinel-2 bands, for each of the 12 months. 
S2_LiDAR_MULTI Sentinel-2 bands and LiDAR metrics derived at a 10 m 

resolution, multitemporal aggregation. 
S2_LiDAR_MONTH Sentinel-2 bands and LiDAR metrics derived at a 10 m 

resolution, for each of the 12 months.  
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Fig. 4. Boxplot of Worldview-3 band values reflected by E. globulus and E. nitens for Block 1. JM indicates Jeffries-Matusita distance values obtained for 
each variable. 

Fig. 5. Boxplot of Worldview-3 band values reflected by E. globulus and E. nitens for Block 2. JM indicates Jeffries-Matusita distance values obtained for 
each variable. 

L. Alonso et al.                                                                                                                                                                                                                                  



ISPRS Journal of Photogrammetry and Remote Sensing 207 (2024) 264–281

272

species, since the block with the best performance includes those months 
when the emergence of shoots occurs (spring). Considering this result, 
the training data collection for further classifications should not 
combine different dates since it might difficult the construction of the 
model. 

Regarding Worldview-3, it also might be pointed out that the 
radiometric inconsistency among blocks might difficult obtaining full 
conclusions regarding the application of Worldview-3 images to large 
areas.. Further studies to disentangle this problematic might be essential 
to fully address the potential of Worldview-3 images at large scales. 

6.1.2. Textural analysis 
The best separability results for the analyzed species was obtained 

for the Worldview-3 texture metrics with JM values close to 1. The best 
performance corresponded to the skewness of the yellow band in block 1 
(JM 0.98) and the skewness of the red band in block 2 (JM 0.86). 
Skewness is one of the texture metrics more sensitive to the presence of 
extreme values. Therefore, it will be a metric sensitive to small canopy 
gaps, brighter or darker pixels in the middle of the canopy. This might 
indicate that one species is more prone to have canopy gaps, due to its 
crown structure or plantation pattern, than the other. Nevertheless, it 
might be also considered that this metric is also really affected by the 
presence of outliers derived from, for example, edge pixels or unre
moved shadows. 

Textural analysis results contrast with Chen et al. (2021); they ob
tained that the mean texture was the most valuable one to differentiate 
Eucalyptus plantations from other tree covers. This variation between 
studies might derive from the differences on structure of the specific 
species of each study, since different crown structures tend to lead to 

different key textural metrics (Ouma and Tateishi, 2007). For example, 
Franklin and Ahmed (2018) found relevant different textural features to 
classify each one of the four broadleaves species that composed their 
study. Considering this, results might highly differ among the species 
studied as well as between interspecific or intraspecific studies. 

6.1.3. Sentinel-2 images 
The separability between E. globulus and E. nitens through the 

Sentinel-2 bands and indices can be considered low considering that JM 
distances are under 1 for them all whatever the month is analyzed. This 
value is the threshold to consider that a dataset show potential for 
classes differentiation according to Sen et al. (2019). It highlights that 
the highest JM values were obtained for the blue, green and red bands 
(RGB) in November. Analyzing this result in detail it was observed that 
RGB values on November present outliers which correspond to cloud 
shadows. Hence, to improve the results, the outliers might be filtered 
prior the JM distances calculation. 

It might be pointed that Sentinel-2 bands allow to obtain JM dis
tances above 0.5, whereas spectral indices tend to be below 0.5. This 
result contrasts with other studies as Immitzer et al. (2019) or Xiao et al. 
(2020) which indicate that including spectral indices to species classi
fication studies aggregates separability potential. The highest JM dis
tances for spectral indices correspond to September while for spectral 
bands to May and November. The indices that present highest values in 
most months are the NDRE1 and the RESI, what agrees with previous 
studies as Misra et al. (2020) or Xiao et al. (2020) which highlights the 
potential of Red-Edge bands of Sentinel-2 images to distinguish among 
vegetation types. The NDMI only present high values in February and 
March which can indicate that in this period one of the two species 

Fig. 6. Boxplot of Worldview-3 textural metrics of E. globulus and E. nitens for block 1. JM indicates Jeffries-Matusita distance values obtained for each variable.  
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Fig. 7. Boxplot of Worldview-3 textural metrics of E. globulus and E. nitens for block 2. JM indicates Jeffries-Matusita distance values obtained for each variable.  

Fig. 8. Evolution of the NDVI for E. globulus and E. nitens along the year 2019. It is calculated from Sentinel-2 monthly images.  
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Fig. 9. Jeffries-Matusita distances (JM) for each Sentinel-2 band and spectral index, and for every month, to measure the separability between E. globulus 
and E. nitens. 

Fig. 10. Boxplot of Sentinel-2 bands of E. globulus and E. nitens for every month. JM indicates Jeffries-Matusita distance values obtained for each variable.  
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maintains a higher water content than the other, since this index is 
focused on the moisture of the vegetation (Gao, 1996). Further studies 
should be done to better understand the winter-spring strategy of both 
species. 

The analysis of the evolution of the NDVI through time has shown 
that the mean values for both species mostly differ in May and June, but 
the confidence intervals are overlapped along the whole year. An 
important observation is that months with similar NDVI mean values 
presented high overall accuracy in the final classification. Considering 
these results this index seems not to be efficient to capture key spectral 

differences related to the phenology of the analyzed species; conse
quently future studies should be done to find another feature that reflect 
the seasonal changes of these species. Nevertheless, NDVI values de
creases from January to April and they start to recover again from May 
onwards. This might be due to the appearance of new buds since spring 
months are associated with the peak budding for both species. Also, 
according to NDVI values it seems that E. globulus has lower photosyn
thetic activity than E. nitens (lower NDVI values in E. globulus). However, 
the current knowledge about the phenology of both species (i.e. 
response to temperature) is too scarce to allow the authors explaining 

Fig. 11. Boxplot of LiDAR metrics calculated at 10 m for E. globulus and E. nitens. JM indicates Jeffries-Matusita distance values obtained for each variable.  
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conclusively this behavior. Field work should be done to better under
stand the relation of the monthly NDVI values with the phenology of 
both species on the study area. An improvement of the knowledge of the 
phenological behaviour of both species might help to improve their 
monitoring. 

6.1.4. LiDAR data 
The LiDAR metrics that seem to have the greatest capability to 

discern between the analyzed species are “zmax”, “p75” and “p95”. It 
might be noted that they are clearly related to height of the trees, but not 
to their structure (i.e. natural pruning). Yadav et al. (2021) and Verma 
et al. (2019) have also pointed that tree height can help to distinguish 
between Eucalyptus species. However, as Verma et al. (2019) pointed out 
the importance of height related variables can be related to the maturity 
stage of the studied stands, which are circumstantial conditions. 
Consequently every site and stand might be evaluated specifically. In 
this specific study case, the height of the E. globulus stands could tend to 
be higher than the height of E. nitens stands considering that most 
plantations of E. nitens date from the last two decades (Pérez-Cruzado 
and Rodríguez-Soalleiro, 2011) while E. globulus was previously intro
duced, and that there are records in numerous locations that point that 
E. globulus stands fell in abandonment for decades (Tomé et al., 2021). 

Hence, the utility of LiDAR data in differentiation and mapping of this 
two Eucalyptus species may change in the upcoming years. Therefore, a 
study similar to this one might be done again selecting for the analysis 
stands with equal ages. 

6.2. Species classification 

Despite the modest results of the separability analysis, according to 
the obtained results E. globulus and E. nitens can be satisfactorily 
differentiated in the study area through supervised classification. The 
data source that provided the highest accuracy metrics was Sentinel-2 
combined with LiDAR data (OA 94%) followed by the multitemporal 
approach of Sentinel-2 (OA 92%). This is fortunate since Sentinel-2 is an 
open-access source, and its availability is guaranteed in the coming 
years (Toulemont et al., 2021). An important finding regarding this 
source is that the date of the image analyzed is a key parameter in 
determining the final accuracy of the map, and consequently, in the 
capability of Sentinel-2 images to differentiate between Eucalyptus spe
cies. In the study area, the spring months, March and May in particular, 
provided the highest accuracy metrics (OA 89% for both months). These 
months might correspond with a key phenologic stage of the species 
analyzed, emergence of spring shoots, since according to BASOA 

OA

Fig. 12. Overall Accuracy obtained for the classifications performed.  

Fig. 13. F-Score obtained for the classifications performed.  
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Foundation (2017), spring shoots in E. globulus tend to exhibit a greenish 
coloration, while those of E. nitens tend to show reddish tones. Having 
this in mind it would be of great interest to increase the knowledge of 
both species phenology in the region as well as to go deep on how to take 
advantage of this behavioral differences using remote sensing. 

It might also be remarked that the multitemporal approach provided 
better results than almost all the single-date images both when they 
were processed alone and combined with LiDAR. This is in accordance 
with the previous studies on tree species classification as for example 
Immitzer et al. 2019 or Persson et al. 2018 that indicate that multi
temporal classifications provide higher accuracy than single dates ones. 
In fact, some previous studies had already analyzed the phenological 
behavior of Eucalyptus through remote sensing with the aim of classi
fying the genera (Qiao et al., 2016; Forstmaier et al., 2020). Future 
studies could explore the possibility of applying plurality voting using 
only the months with the highest accuracy values, for example by 
combining the results from only March, April, and May. This approach 
would strengthen the phenology-based differentiation, since phenology 
may vary within these months depending on the geographical area (i.e., 
they may be different in coastal areas versus inland areas) as it happens 
with other tree species in the study region (Rodríguez-Rajo et al. 2011). 

The low accuracy results obtained with Worldview-3 images when 
they were processed alone are similar to the results obtained in Alonso 
et al. (2022). They also reported disparities in accuracy metrics between 
species when using a Worldview-3 image dating from July. For example, 
in their study, the UA for E. nitens was 65% while it was 70% for 
E. globulus. They pointed out that this may be due to an imbalance in 
species distribution, and in training data in their study area. In the 
current study there is no imbalance between species in the training data, 
however the accuracy remains low: the UA for E. nitens and E. globulus in 

this study was 61% and 87% respectively and the PA was 62% and 86%. 
Hence E. nitens was more underestimated than E. globulus when using 
Worldview-3, as well as E. globulus was more commonly misclassified.. 
Some other studies were able to efficiently differentiate between Euca
lyptus species. This is the case of Peerbhay et al. (2014), that focused in 
the differentiation and mapping of E. grandis, E. nitens and E. smithii in 
South Africa using Worldview images. Therefore, the efficiency of this 
data source could depend greatly on the species in question, since, as 
previously studied, some Eucalyptus species present very similar spectral 
reflectance (Kumar, 2007; Datt, 1999). E. globulus and E. nitens are closer 
from a phylogenetic point of view than for example E. nitens and 
E. grandis (Bayly, 2016). 

It should be highlighted that the combination of Worldview-3 spec
tral information and LiDAR data with Worldview-3 textural metrics 
yielded more accurate results. This result is in accordance with Verma 
et al. (2019), who observed that textural information helped to differ
entiate between some Eucalyptus species in their native environment. 
Enhancements observed when including Worldview-3 textural infor
mation were related, on other trees species classification studies, with 
the possibility that texture offer to capture species-specific differences in 
crown-structure (Pinheiro Ferreira et al., 2019). In view of this result, it 
might be possible that a slight difference on structures of both species 
not previously recorded exists. Other possible is that textural differences 
derive from different stand structures driven from the higher abandon
ment rate of E. globulus stands (Tomé et al., 2021). 

The comparison of Sentinel-2 and Worldview-3 has brought to light 
certain issues regarding the efficiency of the two sources in the E. 
globulus and E. nitens mapping. In general, Sentinel-2 images provided 
higher accuracy metrics solely (OA 92% in the best case) than 
Worldview-3 (OA 80% in the best case). This better performance could 

Fig. 14. Eucalyptus species classification result for Sentinel-2 March image combined with LiDAR data.  
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be due to that Sentinel-2 images have higher radiometric and temporal 
resolutions. It should be noted that not all the Worldview-3 images date 
from months that correspond with the emergence of spring shoots. These 
results could be substantiated if the Worldview-3 images could be ac
quired for the whole study area during the optimum phenological 
period; it would also allow to decipher if the higher accuracy obtained 
with Sentinel-2 is driven by the multitemporality or by the higher 
spectral resolution. However, nowadays the operational constraints of 
Worldview-3 satellite hinder its capacity to cover large areas in a narrow 
time frame, consequently the availability of Worldview-3 images in the 
required period with a low cloud threshold is currently difficult. 

Regarding the LiDAR data, it was observed that LiDAR data alone can 
be useful to distinguish between the two species when it is used at 
medium resolutions (a 10 m resolution yields more accurate results than 
a 1.2 m resolution). This may indicate that using LiDAR with low res
olutions involve the inclusion in training and test areas of noisy pixels 
that correspond to areas not covered by the tree canopy. As a conse
quence, the LiDAR statistics of those pixels would correspond to shrubs 
instead of to Eucalyptus trees. This feature would greatly interfere with 
the results. The review on tree species classification of Fassnacht et al. 
(2016), indicates that low density discrete return LiDAR alone has a 
limited potential for tree species classification. This contrast with the 
result of this study. This discrepancy might be due to the values of height 
related parameters in both species in the study area. This reinforces the 
need of evaluating every site specifically. 

The combination of LiDAR data with multispectral data facilitated 
the differentiation between the two Eucalyptus species. This is in 
accordance with Verma et al. (2019) and Yadav et al. (2021) who found 
that LiDAR leveraged the potential of multispectral images to classify 
Eucalyptus species in their native environment. 

7. Conclusion 

This study reveals that Sentinel-2 images have a great potential to 
efficiently differentiate between E. globulus and E. nitens and map their 
distribution. The date of the images analyzed is a key parameter in 
determining the final accuracy of the map; in particular, the emergence 
of spring shoots period is the best phenological stage to capture in 
Sentinel-2 images in order to differentiate between these two species. 
The classification following a multitemporal approach can optimize the 
accuracies obtained. LiDAR metrics can also be used to complement the 
models and improve results. However, the LiDAR derived metrics can be 
greatly influenced by the local and circumstantial conditions of the 
stands of both species in the study region. LiDAR data alone may have 

the potential to differentiate between the two species but when it is used 
at medium resolutions. Worldview-3 images alone have a low potential 
to differentiate between the two species. Including textural information 
leverages their potential but their prediction capabilities remain low. 
Furthermore, this study details the difficulties that working with 
Worldview-3 data at large scales might entail. 

This study represents a step forward in terms of obtaining updated 
Eucalyptus species distribution maps for Europe, a feat which will add to 
the current knowledge base and allow for forest and conservation 
stakeholders to plan better and make more informed decisions. In line 
with the results obtained in this study, and due to the easy accessibility 
of Sentinel-2 images, future studies should focus on upscaling this study 
using Sentinel-2 images to obtain a definitive map for this region. 
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Appendix A. . Sentinel-2 images used in the study. The heading of each column indicates the Sentinel-2 tile. Below each heading, the 
dates of the images are shown   

TILES  

TMH TNH TPJ TNG TNJ 

DATES 2019-01-03 2019-01-08 2019-01-05 2019-01-10 2019-01-05 
2019-02-12 2019-02-12 2019-02-14 2019-02-14 2019-02-12 
2019-03-29 2019-03-29 2019-03-26 2019-03-21 2019-03-24 
2019-05-03 2019-04-28 2019-04-20 20190–4-30 2019-04-28 
2019-05-13 2019-05-13 2019-05-30 2019-05-05 2019-05-13 
2019-05-28 2019-05-28 2019-07-19 2019-05-30 2019-07-12 
2019-07-22 2019-07-12 2019-07-24 2019-07-19 2019-07-24 
2019-08-21 2019-08-16 2019-08-23 2019-08-13 2019-08-16 
2019-09-15 2019-09-15 2019-09-12 2019-09-12 2019-09-15 
2019-10-10 2019-10-10 2019-10-07 2019-10-07 2019-10-10 
2019-12-04 2019-12-04 2019-11-21 2019-10-22 2019-11-29 
2019-12-29 2019-12-29 2019-12-26 2019-12-29 2019-12-04   
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Calviño-Cancela, M., Rubido-Bará, M., 2013, Invasive potential of Eucalyptus globulus: 
Seed dispersal, seedling recruitment and survival in habitats surrounding 
plantations, Forest Ecology and Management, 305, 129-137, <https://doi.org/ 
10.1016/j.foreco.2013.05.037>. 

Calviño-Cancela, M., van Etten, E.J., 2018. Invasive potential of Eucalyptus globulus and 
Pinus radiata into native eucalypt forests in Western Australia. For. Ecol. Manag. 
424, 246–258. 

Chen, Y., Peng, Z., Ye, Y., Jiang, X., Lu, D., Chen, E., 2021. Exploring a uniform 
procedure to map Eucalyptus plantations based on fused medium–high spatial 
resolution satellite images. Int. J. Appl. Earth Observ. Geoinform. 103, 102462 
https://doi.org/10.1016/j.jag.2021.102462. 

Close, D.C., Beadle, C.L., Brown, P.H., Holz, G.K., 2000. Cold-induced photoinhibition 
affects establishment of Eucalyptus nitens (deane and maiden) maiden and 
Eucalyptus globulus Labill. Trees - Struct. Funct. 15, 32–41. 

Coppen, J.J.W. (Ed.)., 2002. Eucalyptus. CRC Press. <https://doi.org/10.1201/ 
9780203219430>. 

da Costa, L.B., de Carvalho, O.L.F., de Albuquerque, A.O., Gomes, R.A.T., Guimarães, R. 
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Lewiński, S., Nowakowski, A., Malinowski, R., Rybicki, M., Kukawska, E., Krupiński, M., 
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