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cInstituto E. S. Valle Inclán, Xunta de Galicia, 36001 Pontevedra, Spain

Abstract

The aim of this piece of work is to study some topics related to an Hermite interpolation problem on
the unit circle. We consider as nodal points the zeros of the para-orthogonal polynomials with respect
to a measure in the Baxter class and such that the sequence of the first derivative of the reciprocal of
the orthogonal polynomials is uniformly bounded on the unit circle. We study the convergence of the
Hermite-Fejér interpolants related to piecewise continuous functions and we describe the sets in which
the interpolants uniformly converge to the piecewise continuous function as well as the oscillatory
behavior of the interpolants near the discontinuities, where a Gibbs-Wilbraham phenomenon appears.
Finally we present some numerical experiments applying the main results and by considering nodal
systems of interest in the theory of orthogonal polynomials.

Keywords: Hermite-Fejér interpolation; approximation; Baxter class; para-orthogonal polynomials;
unit circle; Gibbs-Wilbraham phenomenon.
2000 MSC: 41A05, 65D05, 42C05.

1. Introduction

Hermite interpolation problems on the unit circle have been thoroughly studied in the last years.
In [1] it is given a method to determine the Laurent polynomials of Hermite interpolation in an efficient
way. There the nodes are equally spaced on the unit circle and the method is based on the use of
the FFT. Later on, in [3] the authors present two different ways of obtaining Laurent polynomials of
Hermite interpolation on the unit circle by taking as nodal system the n roots of a complex number
with modulus 1. One of them is based on a functional series whose coefficients can be computed
efficiently by means of the FFT and the other relies on a barycentric formulation.

In [4] it was obtained nice expressions for the so called fundamental polynomials of the first and
the second kind to express the Laurent polynomials of Hermite interpolation. There, the nodes are
arbitrary complex numbers with modulus 1 and in the same paper, it was considered the case when
the nodal polynomials are the para-orthogonal polynomials with respect to measures in the Szegő class
and having Szegő function with analytic extension outside the disk. Under these conditions it was
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proved that the Hermite-Fejér interpolants related to continuous functions uniformly converge to the
continuous functions.

When the nodal system is constituted by the n roots of a complex number with modulus 1 it
was also studied in [2], in the case of piecewise continuous functions, the behavior of the Hermite-
Fejér and Hermite interpolants near the discontinuities, including the description of Gibbs-Wilbraham
phenomenon and the determination of the height of the jump.

Now, in the present paper we study the behavior of the Hermite-Fejér interpolants related to
continuous and piecewise continuous functions on the unit circle taking as nodal systems the zeros
of the para-orthogonal polynomials with respect to measures in the Baxter class and satisfying an
additional condition. We highlight that our hypotheses are weaker than those considered in [4] and
our nodal systems are, by far, more general than those considered in [2] and [4]. In the case of piecewise
continuous functions we obtain that the Hermite-Fejér interpolants uniformly converge to the function
far away from the discontinuity points and we study the oscillatory behavior of the interpolants in a
neighborhood of the discontinuities. There we observe a Gibbs-Wilbraham phenomenon that can be
compared with the type of oscillation of other processes like Lagrange interpolation and Fourier series,
(see [7], [15]). Moreover, following the ideas of Krylov (see [9]) we could correct the perturbation
produced by the Gibbs-Wilbraham phenomenon in the Hermite-Fejér process applied to piecewise
continuous functions for a wide class of nodal systems.

The organization of the paper is the following. In section 2, after introducing the Laurent poly-
nomial of Hermite interpolation on the unit circle, we present some results related with the classical
theory of orthogonal polynomials when the measure of orthogonality belongs to the Baxter class. First
we recall a result concerning with the distribution of the zeros of para-orthogonal polynomials, (see
[13]), and by assuming an additional condition we obtain some useful bounds for the nodal polyno-
mial and its first derivative. Under our assumptions we obtain the convergence of the Hermite-Fejér
interpolants related to continuous functions on the unit circle. Section 3 is devoted to study the con-
vergence of the Hermite-Fejér interpolants related to piecewise continuous functions. For simplicity,
first it is considered the characteristic function of an arc and then we consider functions with jump
discontinuities. We describe the subsets of the unit circle in which the Hermite-Fejér interpolants
uniformly converge to the piecewise continuous function and we describe the error of interpolation
near the discontinuities, where a Gibbs-Wilbraham phenomenon appears.

In the last section first we give examples of measures in the Baxter class and satisfying our hy-
pothesis about the uniform boundedness of the first derivative of the reciprocal of the orthogonal
polynomials and such that their Szegő functions have not analytic extension outside the disk. Sec-
ondly we use these examples to present the first numerical experiment applying our main results.
We also show, in a second example, the similarity of the Gibbs-Wilbraham phenomenon for different
nodal systems according to our results. Finally we present some conclusions as well as some possible
extensions of our work.

2. Laurent polynomial of Hermite interpolation on the unit circle

Let {zj,n}nj=1 be a set of complex numbers with |zj,n| = 1, ∀j and zj,n 6= zi,n for j 6= i, and let
{uj,n}nj=1, {vj,n}nj=1 be two sets of arbitrary complex numbers. In what follows, for simplicity, we will
omit the subscript n and we will write zj , uj and vj.
The Hermite interpolation problem in the space of Laurent polynomials Λ = span{zk : k ∈ Z} with
nodal system {zj}nj=1 consists in determining the unique Laurent polynomial H−n,n−1 ∈ Λ−n,n−1 =
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span{zk : −n ≤ k ≤ n− 1} such that

H−n,n−1(zj) = uj and H′
−n,n−1(zj) = vj for j = 1, · · · , n. (1)

It is clear that the polynomial H−n,n−1 can be decomposed like H−n,n−1 = HF−n,n−1 +HD−n,n−1,
where the Hermite-Fejér polynomial HF−n,n−1 is characterized by satisfying

HF−n,n−1(zj) = uj and HF ′
−n,n−1(zj) = 0 for j = 1, · · · , n.

and the polynomial HD−n,n−1 satisfies

HD−n,n−1(zj) = 0 and HD′
−n,n−1(zj) = vj for j = 1, · · · , n.

If f is a complex function defined on the unit circle T := {z : |z| = 1}, we will denote by HF−n,n−1(f, )
the Hermite-Fejér interpolation polynomial satisfying the conditions

HF−n,n−1(f, zj) = f(zj) and HF ′
−n,n−1(f, zj) = 0 for j = 1, · · · , n.

If we denote by wn(z) any nodal polynomial, that is, a polynomial of degree n with zeros {zj}nj=1

then, from [4], we have the following expression for the interpolation polynomial defined above

HF−n,n−1(z) =
(wn(z))

2

zn

n∑

k=1

1

(w′
n(zk))

2

(

znk
(z − zk)2

+
zn−1
k

z − zk
(n− zkw

′′
n(zk)

w′
n(zk)

)

)

uk. (2)

In what follows we will take as nodal points the zeros of some kind of polynomials, the para-
orthogonal polynomials on the unit circle, (see [8], [12]). To introduce these polynomials we consider
a Borel finite and positive measure µ on [0, 2π] with infinite support. If {φn} is the sequence of monic
orthogonal polynomials with respect to the measure µ, we consider as nodal points the zeros of the
sequence of para-orthogonal polynomials defined by

wn(z; τ) = φn(z) + τφ∗
n(z), (3)

where τ is a complex number with |τ | = 1 and φ∗
n(z) is the reciprocal polynomial defined by φ∗

n(z) =
znφn(

1
z ). Recall that P ∗(z) = znP (1z ) if the degree of P (z) is n (see [14]). It is well known that the

zeros of the para-orthogonal polynomials wn(z; τ) are simple and they belong to the unit circle T, (see
[8], [12]). For simplicity, in what follows we will write wn(z) instead of wn(z; τ).

2.1. Some nodal systems on T

Our aim in this paper is to study an interpolation problem on the unit circle by using nodal
systems which are far from those constituted by the n roots of a complex number with modulus 1,
although the distribution of these points is near the equally spaced. However, the development of
the corresponding theory requires very elaborate calculus. Thus we consider some special Borel finite
and positive measures µ on [0, 2π] with infinite support and we take as nodal points the zeros of the
sequence of para-orthogonal polynomials wn(z) related to the measures µ.

First, in this subsection we present some results related with the classical theory of orthogonal
polynomials as well as some technical results that we will use throughout the paper.

We recall that a measure µ belongs to the Szegő class (µ ∈ S) if it satisfies the Szegő condition,
log µ′ ∈ L1[0, 2π], where µ′ denotes the Radon Nikodym derivative of the measure. Alternatively,
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these measures can be characterized by several equivalent conditions among which we highlight that
the Verblunsky coefficients {φn(0)} ∈ ℓ2. We also recall that every measure µ ∈ S has associated the
so called Szegő function πµ(z), defined by

πµ(z) = exp

(

− 1

4π

∫ 2π

0
log µ′(θ)

eiθ + z

eiθ − z
dθ

)

.

The Szegő function is analytic and nonvanishing in the open unit disk and it has boundary values such
that |πµ(eiθ)|2 = 1

µ′(θ) a.e. in [0, 2π], (see [12], [14]).
It is very well-known that the asymptotic behavior of the orthogonal polynomials and their reciprocals
can be described in terms of the Szegő function as follows. If we denote by Πµ(z) the normalized Szegő

function, that is, Πµ(z) =
πµ(z)
πµ(0)

, then the following asymptotic results hold:

(i) lim
n→∞

φ∗
n(z) = Πµ(z) uniformly on compact subsets of |z| < 1.

(ii) lim
n→∞

φn(z)

zn
= Πµ(

1

z
) uniformly on compact subsets of |z| > 1.

For obtaining a suitable distribution of the zeros of the nodal polynomials wn(z) we will assume
that the measure µ belongs to the Baxter class (µ ∈ B) characterized by satisfying that the Verblunsky
coefficients {φn(0)} ∈ ℓ1. Notice that it holds B ⊂ S. In this situation the following result holds (see
[13]):

Theorem 1. Let µ be a measure in the Baxter class and {zj,n}nj=1, with zj,n = eiθ
(n)
j , be the zeros

of the para-orthogonal polynomials wn(z) and 0 ≤ θ
(n)
j ≤ · · · ≤ θ

(n)
n ≤ 2π, (θ

(n)
n+1 = 2π + θ

(n)
1 ), then it

holds

lim
n→∞

sup
j=1,··· ,n

n|θ(n)j+1 − θ
(n)
j − 2π

n
| = 0.

Proof. For the proof one can see [13].

Thus for µ ∈ B it is easy to deduce that for ε > 0, ε as small as we want, n large enough and
j = 1, · · · , n, it holds that

2π − ε

n
< θ

(n)
j+1 − θ

(n)
j <

2π + ε

n
, (4)

and therefore the distribution of these zeros is near to the distribution of the equally spaced ones. In
what follows, for simplicity, we will omit the subscript n and we will write θj and zj .

When the measure µ ∈ B we can obtain the asymptotic behavior of wn(z) and |wn(z)| on T.
Moreover, if it also holds an additional condition, we can obtain useful bounds for the nodal polynomial
wn(z) and its two first derivatives.

Lemma 1. Let µ be a measure in the Baxter class B and assume that the sequence {(φ∗
n)

′} is uniformly
bounded on T. If m = min

z∈T
|Πµ(z)| and M = max

z∈T
|Πµ(z)| then for every z ∈ T it holds:

(i)

φ′
n(z) =

nφn(z)

z
− zn−2(φ∗

n)
′(z). (5)
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(ii)

|wn(z)|2 = 2|Πµ(z)|2(1 + ℜ(τznΠµ(z)

Πµ(z)
)) + o(1) and |wn(z)| < 2M + o(1). (6)

(iii)

m− o(1) <
|w′

n(z)|
n

< M + o(1), (7)

and there exists a constant C > 0 such that

|nw′
n(z)− zw′′

n(z)| < nC. (8)

(We denote by o(1) sequences which converge to 0 uniformly on z.)

Proof. (i) Taking derivatives in φ∗
n(z) = znφn(

1
z ) we have (φ∗

n)
′(z) = nzn−1φn(

1
z ) − zn−2φ′

n(z). So,

(φ∗
n)

′(z) = n
zn−1φn(z) − 1

zn−2φ
′
n(z) and finally (5). Notice that this property holds for arbitrary poly-

nomials of degree n.

(ii) Since µ ∈ B then φ∗
n(z) uniformly converges to Πµ(z) and

φn(z)
zn uniformly converges to Πµ(

1
z ) on

T, (see [13]). Therefore φ∗
n(z) = Πµ(z)+ εn(z) and φn(z) = znΠµ(z) + znεn(z), where εn(z) converges

to 0 uniformly on z ∈ T. Hence |wn(z)| = |φn(z)+ τφ∗
n(z)| = |znΠµ(z)+ znεn(z)+ τΠµ(z)+ τεn(z)| <

2M + δn(z), where δn(z) goes to zero uniformly on T.
In the same way we have |wn(z)|2 = |znΠµ(z)+znεn(z)+τΠµ(z)+τεn(z)|2 = 2|Πµ(z)|2+τzn(Πµ(z))

2+
τzn(Πµ(z))

2 + σn(z), where σn(z) goes to zero uniformly on T. Notice that in order to simplify the
notation we write o(1) to denote any sequence which converges to 0 uniformly on z.

(iii) As a consequence of (5) we have

w′
n(z) =

nφn(z)

z
− zn−2(φ∗

n)
′(z) + τ(φ∗

n)
′(z) =

nφn(z)

z
+

An(z)

z
, (9)

where An(z) is a sequence of polynomials of degree less or equal than n uniformly bounded on T, so
we have (7) . Moreover,

zw′′
n(z)− nw′

n(z) = z

(

−nφn(z)

z2
+

nφ′
n(z)

z
+

(
An(z)

z

)′)

− nφ′
n(z)− nτ(φ∗

n)
′(z) =

n

(

−φn(z)

z
+

z

n

(
An(z)

z

)′
− τ(φ∗

n)
′(z)

)

. (10)

As A′

n(z)
n is bounded due to Bernstein theorem, (see [10]), then (8) is a straightforward consequence

of (10).

Lemma 2. Let µ be a measure in the Baxter class and assume that the sequence {(φ∗
n)

′} is uniformly
bounded on T. Then there exists a positive constant K such that

|wn(z)|2
n2

n∑

k=1

1

|z − zk|2
< K for every z ∈ T.

5



Proof. From the proof of Lemma 2 in [4] we can write

|wn(z)|2
n∑

k=1

1

|z − zk|2
= |zwn(z)w

′
n(z) + z2(w′′

n(z)wn(z)− (w′
n(z))

2)|

and therefore

|wn(z)|2
n2

n∑

k=1

1

|z − zk|2
≤ |wn(z)|

n

|w′
n(z)|
n

+ |wn(z)|
|w′′

n(z)|
n2

+
|w′

n(z)|2
n2

for z ∈ T. From the preceding lemma we know that |wn(z)| and |w′

n(z)|
n are uniformly bounded on T

and it is easy to obtain that |w′′

n(z)|
n2 is bounded too. Indeed,

|w′′
n(z)|
n2

=
|zw′′

n(z)− nw′
n(z) + nw′

n(z)|
n2

≤ 1

n

|zw′′
n(z) − nw′

n(z)|
n

+
|w′

n(z)|
n

.

Remark 1. We can give a local version of (7) in the preceding Lemma 1 as follows. Since we know

that for a fixed number ε > 0 and n large enough it holds that m−ε < |w′

n(z)|
n < M+ε, then if z belongs

to a small arc γ ⊂ T and mγ = min
z∈γ

|Πµ(z)| and Mγ = max
z∈γ

|Πµ(z)|, in such a way that |Mγ −mγ | < ε,

then for n large enough it holds Mγ − 2ε <
|w′

n(z)|
n

< Mγ + ε.

Remark 2. Lemma 1 was proved in [4] by assuming the stronger hypotheses that the measure µ belongs
to the Szegő class and the Szegő function has analytic extension outside the unit disk ( µ ∈ SA).

Indeed if we assume that the measure µ ∈ SA, then the hypotheses of Lemma 1 hold. Take into
account that for every z ∈ T it holds that (φ∗

n)
′(z) = Π′(z) +O(n2rn), for some r < 1, from which it

follows the uniformly boundedness of (φ∗
n)

′ on T, (see [11]).
It seems more interesting to give an example of a measure satisfying the assumptions of Lemma 1

and not belonging to SA. The example is given in the last section where we also present some numerical
experiments about our results.

Another sufficient condition for the uniformly boundedness of (φ∗
n)

′ can be given in terms of the
coefficients of the monic orthogonal polynomial sequence related to the measure µ.

Proposition 1. If φn(z) =
∑n

k=0 αn−k,nz
k with α0,n = 1 and we assume that |αk,n| < E, for all k

and n, and there exist N,M natural numbers such that for k ≥ N and n ≥ M |αk,n| < 1
kc ,(c > 2)

then {(φ∗
n)

′} is uniformly bounded on T.

Proof. Indeed for z ∈ T it holds that there exists a positive constant F such that

|(φ∗
n)

′(z)| =
∣
∣
∣

n∑

k=0

kαk,nz
k−1

∣
∣
∣ =

∣
∣
∣

N∑

k=1

kαk,nz
k−1 +

n∑

k=N+1

kαk,nz
k−1

∣
∣
∣ ≤

E

N∑

k=1

k +

n∑

k=N+1

1

kc−1
≤ EN(N + 1)

2
+Hc−1 ≤ F,

where Hc−1 denotes the sum of the armonic series
∑∞

k=1
1

kc−1 .
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In [4] it was also proved the convergence of the Hermite-Fejér interpolants related to continuous
functions on T under the assumptions that the measure belongs to the Szegő class and its Szegő
function has analytic extension outside the unit disk and taking as nodal systems the zeros of the
para-orthogonal polynomials. Now we can obtain a similar result under weaker hypotheses.

Theorem 2. Let µ ∈ B and assume that the sequence {(φ∗
n)

′} is bounded uniformly on T. Let the
nodal polynomial wn(z) be the para-orthogonal polynomial related to the measure µ and let f be a
continuous function on T. Then HF−n,n−1(f, z) uniformly converges to f on T.

Proof. Due to the preceding lemmas, the hypotheses of Corollary 1 in [4] are satisfied and therefore
the result is true.

3. Hermite-Fejér interpolation polynomial for a piecewise continuous function on T.

Convergence.

Throughout this section we study the convergence of the Hermite-Fejér interpolation polynomials
related to piecewise continuous functions. Let A = (a1, a2) be an arc contained in T and let χA be
the characteristic function of the set A defined by χA(z) = 1 if z ∈ A and χA(z) = 0 if z /∈ A. If f is
a continuous function on T, we consider the product function fχA, which has two jump discontinuity
points, a1 and a2.

Theorem 3. Let µ ∈ B and assume that the sequence {(φ∗
n)

′} is bounded uniformly on T. Let the
nodal polynomial wn(z) be the para-orthogonal polynomial related to the measure µ, f be a continuous
function on T and A = (a1, a2) be an arc contained in T. If K is a compact subset of T such that
a1, a2 /∈ K, then HF−n,n−1(fχA, z) uniformly converges to fχA in K.

Proof. First we assume that K ⊂ A. Then, from (2) we get

HF−n,n−1(fχA, z) = HF−n,n−1(f, z)−
(wn(z))

2

zn

n∑

k=1

zk∈T\A

1

(w′
n(zk))

2

(

znk
(z − zk)2

+
zn−1
k

z − zk
(n− zkw

′′
n(zk)

w′
n(zk)

)

)

f(zk).

By using Theorem 2 we can state that HF−n,n−1(f, z) uniformly converges to f in T. Thus, it only
suffices to prove that the second sum uniformly converges to 0 in K.
Indeed, if z ∈ K ⊂ A, we apply the preceding Lemma 1 in the following way. For simplicity we can
write for all z ∈ T and every natural number n

|wn(z)| ≤ C1, 0 < C2 <
|w′

n(z)|
n

, |nw′
n(z) − zw′′

n(z)| < nC3,

where C1, C2 and C3 are appropriate positive constants. Then

|wn(z)|2
|zn|

∣
∣
∣

n∑

k=1

zk∈T\A

1

(w′
n(zk))

2

(

znk
(z − zk)2

+
zn−1
k

z − zk
(n − zkw

′′
n(zk)

w′
n(zk)

)

)

f(zk)
∣
∣
∣ ≤

C2
1 ‖ f ‖∞

n∑

k=1

zk∈T\A

1

C2
2n

2

(
1

|z − zk|2
+

C3

C2

1

|z − zk|

)

.
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If we denote by d the distance between K and T \ A, then

C2
1 ‖ f ‖∞

n∑

k=1

zk∈T\A

1

C2
2n

2

(
1

|z − zk|2
+

C3

C2

1

|z − zk|

)

≤

C2
1 ‖ f ‖∞

n∑

k=1

zk∈T\A

1

C2
2n

2
(
1

d2
+

C3

C2d
) ≤ C2

1 ‖ f ‖∞ (
1

d2
+

C3

C2d
)

1

C2
2n

,

which goes to zero when n tends to ∞.
When K ⊂ T \ A one can proceed in the same way.

Corollary 1. Let {Ai}pi=1 with Ai = (ai, ai+1) and ap+1 = a1 be a set of disjoint arcs on T such that
∪p
i=1Ai = T and let {fi}pi=1 be continuous functions on T. If K is a compact subset of T such that

ai /∈ K,∀i = 1, · · · , p and g =
∑p

i=1 fiχAi, then HF−n,n−1(g, z) uniformly converges to g in K.

Let us continue assuming A = (a1, a2) is an arc contained in T like the next Figure 1 shows.
Let us consider the characteristic function of A, χA, and the Hermite-Fejér interpolation polynomial
HF−n,n−1(χA, z). Since we have studied its behavior on compact subsets of the arc not including the
end points, now our aim is to study its behavior near the extreme points of the arc.

In the sequel we use the nodal system constituted by the zeros of the para-orthogonal polynomials
with respect to a measure µ satisfying the hypotheses of Lemma 1 and we consider a fixed positive
real number ε so that the distribution of the arguments of the zeros fulfills relation (4).

First we establish some notation. If n is large enough, it is clear that there are nodal points in the
arc A. We denote by z1 the nodal point in A which is closer to a2. The other nodes are numbered in
the clockwise sense from z1 in such a way that the last point zn is the nodal point in T \ A which is
closer to a2. We denote by ℓA the length of A and we consider the following subsets of T as Figure 1
shows. In order to describe these sets, it is useful to use the angular distance between z and z1 or zn
by using the parameters d or D.
If ε is a fixed positive real number we define

In,ε = {z ∈ T : z = z1e
−i 2π−ε

n
d, with d ∈ [−1

2
,
√
n]},

Jn,ε = {z ∈ A : z = z1e
−i 2π−ε

n
d, with d ∈ (

√
n, ℓA

n

2π − ε
−

√
n]},

I ′n,ε = {z ∈ T : z = zne
i 2π−ε

n
D, with D ∈ [−1

2
,
√
n]},

J ′
n,ε = {z ∈ T \A : z = zne

i 2π−ε
n

D, with D ∈ (
√
n, (2π − ℓA)

n

2π − ε
−

√
n]}.

Notice that we can define another two sets but we omit their description because they play the same
role of In,ε and I ′n,ε changing a2 by a1. In order to simplify the notation, in what follows we omit the
subscript ε.

It is clear that if
√
n /∈ N, we take the integer part E[

√
n], but for simplicity we continue writing

√
n.

In the next Lemmas we present some technical results concerning the distance between the points
in the unit circle and our nodal points {zj}nj=1. The information given in these lemmas (bounds
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Figure 1: Subsets of T with a1 = 1 and a2 = i

for several sums associated to the interpolation problem) will be used in the proofs of the two main

theorems. We continue assuming that ε is a fixed positive number and we denote by ̂(z − zj) the
length of the shortest arc joining z and zj.

Lemma 3. For z ∈ T it holds that

(i)
1

̂(z − zj)
2 ≤ 1

|z − zj|2 ≤ π2

4

1

̂(z − zj)
2 .

(ii) If ε1 is a positive number, n is large enough and ̂(z − zj) <
2(2π−ε)√

n
, then

1

̂(z − zj)
2 ≤ 1

|z − zj |2 ≤ (1 + ε1)
1

̂(z − zj)
2 .

Proof. It can be obtained following the ideas given in the proof of Lemma 2 in [2].

To establish our main results, we have to use the special function PolyGamma of order 1, ψ1(z),
which has the representation ψ1(z) =

∑∞
�=0

1
(z+�)2

, for z /∈ Z−, (see [6]). We recall that the PolyGamma

function of order k, ψk(z), is defined by ψk(z) =
dk+1

dzk+1 ln Γ(z), k ∈ N.

Lemma 4. If z ∈ Jn then

(i)

1

n2

n∑
k=1

zk∈T\A

1

|z − zk|2 ≤ π2

4(2π − ε)2
ψ1(

√
n),

and therefore
1

n2

n∑
k=1

zk∈T\A

1

|z − zk|2
converges to 0 uniformly on z.

9



(ii)

1

n2

n∑

k=1

zk∈T\A

1

|z − zk|
≤ π

2(2π − ε)

1

n
(H√

n+n,1 −H√
n−1,1),

where Hn,1 denotes the n-th partial sum of the harmonic series, that is, Hn,1 =
∑n

k=1
1
k . There-

fore
1

n2

n∑

k=1

zk∈T\A

1

|z − zk|
converges to 0 uniformly on z.

Proof. (i) We assume that zs is the first node in T \A in the clockwise sense from Jn. Then if z ∈ Jn

it holds ̂(z − zs) ≥ √
n2π−ε

n and by taking into account Lemma 3 we obtain 1
|z−zs| ≤ π

2
n√

n(2π−ε)
.

Proceeding in the same way we get 1
|z−zs+1| ≤

π
2

n
(
√
n+1)(2π−ε)

, · · · , 1
|z−zn| ≤

π
2

n
(
√
n+n−s)(2π−ε)

. Thus

1

n2

n∑

k=1

zk∈T\A

1

|z − zk|2
=

1

n2

n∑

k=s

1

|z − zk|2
=

1

n2

n−s∑

ℓ=0

1

|z − zs+ℓ|2
≤

π2

4(2π − ε)2

n−s∑

ℓ=0

1

(
√
n+ ℓ)2

≤ π2

4(2π − ε)2
ψ1(

√
n),

which goes to 0 when n tends to infinity.
(ii) For the other sum we proceed in a similar way obtaining

1

n2

n∑

k=1

zk∈T\A

1

|z − zk|
=

1

n2

n∑

k=s

1

|z − zk|
=

1

n2

n−s∑

ℓ=0

1

|z − zs+ℓ|
≤

π

2(2π − ε)

1

n

n−s∑

ℓ=0

1√
n+ ℓ

≤ π

2(2π − ε)

1

n

n∑

ℓ=0

1√
n+ ℓ

=

π

2(2π − ε)

1

n

√
n+n
∑

k=
√
n

1

k
=

π

2(2π − ε)

1

n
(H√

n+n,1 −H√
n−1,1).

(11)

Lemma 5. Let z ∈ In, z = z1e
−id( 2π−ε

n
), with d ∈ [−1

2 ,
√
n]. Then

1

(2π + 3ε)2
ψ1(1 + d)− o(1) ≤ 1

n2

n∑

k=1

zk∈T\A

1

|z − zk|2
≤ (1 + ε)

(2π − ε)2
ψ1(1 + d) + o(1),

where o(1) are sequences converging to 0 uniformly on z.

Proof. If we assume that zs is the first node in T \A in the clockwise sense from Jn then

1

n2

n∑

k=1

zk∈T\A

1

|z − zk|2
=

1

n2

n∑

k=s

1

|z − zk|2
. (12)
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We split the preceding sum in two parts as follows,

1

n2

n∑

k=s

1

|z − zk|2
=

1

n2

n∑

k=n−√
n

1

|z − zk|2
+

1

n2

n−√
n−1

∑

k=s

1

|z − zk|2
, (13)

where the first sum includes the nodes which are not far from 2
√
n arcs from z.

First, if we assume that z = z1e
−id( 2π−ε

n
), with d ∈ [0,

√
n], then

(2π − ε)

n
(d+ 1) ≤ ẑ − zn ≤ (2π + ε)

n
(d+ 1).

Secondly, if we assume that z = z1e
−id( 2π−ε

n
), with d ∈ [−1

2 , 0), then

(2π − ε)

n
(d+ 1) ≤ ẑ − zn ≤ (2π + ε)

n
+

(2π − ε)

n
d.

Thus, in both cases we can write that

(2π − ε)

n
(d+ 1) ≤ ẑ − zn ≤ (2π + 3ε)

n
(d+ 1).

Hence we have for k = 1, · · · , n− s

(2π − ε)

n
(d+ k + 1) ≤ ̂z − zn−k ≤ (2π + 3ε)

n
(d+ k + 1).

By applying Lemma 3 we get

1

|z − zn−k|2
≤ (1 + ε)

1

̂(z − zn−k)
2 ≤ (1 + ε)

n2

(2π − ε)2(d+ k + 1)2

and therefore

1

n2

n∑

k=n−√
n

1

|z − zk|2
=

1

n2

√
n

∑

k=0

1

|z − zn−k|2
≤ (1 + ε)

(2π − ε)2

√
n

∑

ℓ=0

1

(d+ 1 + ℓ)2
,

which converges to (1+ε)
(2π−ε)2ψ1(1 + d), when n tends to infinity.

For the second sum we use again Lemma 3 obtaining that

1

|z − zn−k|2
≤ π2

4(2π − ε)2
n2

(d+ k + 1)2

and therefore

1

n2

n−√
n−1

∑

k=s

1

|z − zk|2
≤ π2

4(2π − ε)2

n−s∑

ℓ=
√
n+1

1

(d+ 1 + ℓ)2
, (14)

which goes to 0 when n tends to infinity.
Hence for z ∈ In

1

n2

n∑

k=1

zk∈T\A

1

|z − zk|2

11



is bounded from above by (1+ε)
(2π−ǫ)2

ψ1(1 + d) + o(1).

To bound (12) from below we take into account that 1
|z−zn−k|2 ≥ 1

̂(z−zn−k)2
≥ n2

(2π+3ε)2(d+k+1)2
. Then

1

n2

n∑

k=n−√
n

1

|z − zk|2
≥ 1

(2π + 3ε)2

√
n

∑

ℓ=0

1

(d+ ℓ+ 1)2
,

where the last sequence converges to 1
(2π+3ε)2

ψ1(1 + d) and we also obtain

1

n2

n−√
n−1

∑

k=s

1

|z − zk|2
≥ 1

(2π + 3ε)2

n−s∑

ℓ=
√
n+1

1

(d+ ℓ+ 1)2
,

where the last sequence goes to zero. Hence

1

n2

n∑

k=1

zk∈T\A

1

|z − zk|2
≥ 1

(2π + 3ε)2

√
n

∑

ℓ=0

1

(d+ ℓ+ 1)2
+

1

(2π + 3ε)2

n−s∑

ℓ=
√
n+1

1

(d+ ℓ+ 1)2

and therefore the lemma is proved.

Lemma 6. Let z ∈ In, z = z1e
−id( 2π−ε

n
), with d ∈ [−1

2 ,
√
n]. Then

1

n2

n∑

k=1

zk∈T\A

1

|z − zk|
≤ π

2

1

(2π − ε)n
(Hn−s,1 −H√

n,1) +
1

n

√
1 + ε

(2π − ε)

√
n−1
∑

ℓ=0

1

(d+ ℓ+ 1)
,

and therefore
1

n2

n∑

k=1

zk∈T\A

1

|z − zk|
converges to 0 uniformly on z.

Proof. If we assume that zs is the first node in T \A in the clockwise sense fron Jn, then

1

n2

n∑

k=1

zk∈T\A

1

|z − zk|
=

1

n2

n∑

k=s

1

|z − zk|
=

1

n2

n−√
n−1

∑

k=s

1

|z − zk|
+

1

n2

n∑

k=n−√
n

1

|z − zk|
.

On the one hand, it is clear that

n−√
n−1

∑

k=s

1

|z − zk|
=

n−s∑

k=
√
n+1

1

|z − zn−k|
(15)

and by using (14) we get

1

n2

n−s∑

k=
√
n+1

1

|z − zn−k|
≤ π

2

1

(2π − ε)n

n−s∑

ℓ=
√
n+1

1

(d+ ℓ+ 1)
≤

π

2

1

(2π − ε)n

n−s∑

ℓ=
√
n+1

1

ℓ
=

π

2

1

(2π − ε)n
(Hn−s,1 −H√

n,1).
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On the other hand, as we have seen in the previous lemma

1

n2

n∑

k=n−√
n

1

|z − zk|
≤ 1

n

√
1 + ε

(2π − ε)

√
n

∑

ℓ=0

1

(d+ ℓ+ 1)
.

Hence the lemma is proved.

Lemma 7. If µ is a measure in the Baxter class B then for z ∈ In and n large enough

ℜ(τznΠµ(z)

Πµ(z)
) = − cos(2π − ε)d+ o(1),

where o(1) is a sequence which converges to 0 uniformly on z.

Proof. If z ∈ In then z = z1e
−i 2π−ε

n
d, with d ∈ [−1

2 ,
√
n]. Since µ ∈ B then φ∗

n(z) = Πµ(z) + εn(z) and

φn(z) = znΠµ(z) + znεn(z), where εn(z) converges to 0 uniformly on z ∈ T. Taking into account that
z1 is a zero of wn(z) then we can write

τ = −φn(z1)

φ∗
n(z1)

= −zn1Πµ(z1) + zn1 εn(z1)

Πµ(z1) + εn(z1)
= −zn1Πµ(z1)

Πµ(z1)
+ o(1),

where o(1) converges to 0 uniformly on z ∈ T.
Therefore due to the continuity of Πµ(z) we get for z ∈ In and n large enough

τzn
Πµ(z)

Πµ(z)
=

(

−zn1Πµ(z1)

Πµ(z1)
+ o(1)

)

1

zn
Πµ(z)

Πµ(z)
= −zn1

zn
Πµ(z1)

Πµ(z1)

Πµ(z)

Πµ(z)
+ o(1) = ei(2π−ε)d(−1 + o(1)),

from which it follows the result.

Now we are in conditions to describe the behavior of the Hermite-Fejér interpolants related to the
characteristic function χA near the discontinuities as well as the error of interpolation, that is, we can
describe the Gibbs-Wilbraham phenomenon that appears, (see [15]). These results are given in the
next theorem.

Theorem 4. Let µ be a measure in the Baxter class and assume that the sequence {(φ∗
n)

′} is uniformly
bounded on T. Let ε be a positive fixed number and let {zj}nj=1 be the zeros of the para-orthogonal

polynomial wn(z), with zj = eiθj and θj satisfying (4). If A is an arc A = (a1, a2) ⊂ T, then it holds

(i) HF−n,n−1(χA, z) uniformly converges to 1 in Jn ⊂ A.

(ii) If z ∈ In, z = z1e
−i (2π−ε)

n
d, with d ∈ [−1

2 ,
√
n], m = min

z∈T
|Πµ(z)| and M = max

z∈T
|Πµ(z)| then for

n large enough

2m2(1− cos(2π − ε)d)

(M + ε)2
1

(2π + 3ε)2
ψ1(1 + d)− o(1) ≤ 1−ℜ(HF−n,n−1(χA, z)) ≤

2M2(1− cos(2π − ε)d)

(m− ε)2
(1 + ε)

(2π − ε)2
ψ1(1 + d) + o(1)

(16)

and ℑ(HF−n,n−1(χA, z)) = o(1).
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(iii) HF−n,n−1(χA, z) uniformly converges to 0 in J ′
n ⊂ T \ A.

(iv) If z ∈ I ′n, z = zne
(2π−ε)

n
Di, with D ∈ [−1

2 ,
√
n], m = min

z∈T
|Πµ(z)| and M = max

z∈T
|Πµ(z)| then for

n large enough

2m2(1− cos(2π − ε)D)
1

(M + ε)2
1

(2π + 3ε)2
ψ1(1 +D)− o(1) ≤ ℜ(HF−n,n−1(χA, z)) ≤

2M2(1− cos(2π − ε)D)
1

(m− ε)2
(1 + ε)

(2π − ε)2
ψ1(1 +D) + o(1).

Proof. (i) First we obtain a more suitable expression of the Laurent polynomial of Hermite interpola-
tion given in (2), for which we rewrite this last expression as follows:

HF−n,n−1(z) =
(wn(z))

2

zn

n∑

k=1

1

(w′
n(zk))

2

(

znk
(z − zk)2

+
zn−1
k

z − zk

)

uk+

(wn(z))
2

zn

n∑

k=1

1

(w′
n(zk))

2

zn−1
k

z − zk
(n− 1− zkw

′′
n(zk)

w′
n(zk)

)uk.

(17)

After some computations we obtain some useful relations for simplifying the above expression. Since

for z ∈ T it holds wn(z) = τznwn(z), then we have that (wn(z))2

zn = τ |wn(z)|2 and

(w′
n(zk))

2 = −τzn−2
k |w′

n(zk)|2.

Moreover, if we also take into account for z ∈ T it holds that (z − zk)
2 = −zzk|z − zk|2, then (17) can

be written as

HF−n,n−1(z) = |wn(z)|2
n∑

k=1

1

|w′
n(zk)|2

1

|z − zk|2
uk−

|wn(z)|2
n∑

k=1

1

|w′
n(zk)|2

zk
z − zk

(n− 1− zkw
′′
n(zk)

w′
n(zk)

)uk.

(18)

Now by applying (18) we get

1 = |wn(z)|2
n∑

k=1

1

|w′
n(zk)|2

1

|z − zk|2
−

|wn(z)|2
n∑

k=1

1

|w′
n(zk)|2

zk
z − zk

(n− 1− zkw
′′
n(zk)

w′
n(zk)

),

and therefore

1−HF−n,n−1(χA, z) = |wn(z)|2
n∑

k=1

zk∈T\A

1

|w′
n(zk)|2

1

|z − zk|2
−

|wn(z)|2
n∑

k=1

zk∈T\A

1

|w′
n(zk)|2

zk
z − zk

(n − 1− zkw
′′
n(zk)

w′
n(zk)

),

(19)
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from which it follows

|1−HF−n,n−1(χA, z)| ≤ |wn(z)|2
n∑

k=1

zk∈T\A

1

|w′
n(zk)|2

1

|z − zk|2
+

|wn(z)|2
n∑

k=1

zk∈T\A

1

|z − zk|
|nw′

n(zk)− zkw
′′
n(zk)− w′

n(zk)|
|w′

n(zk)|3
.

If n is large enough and we apply Lemma 1 we get

|1−HF−n,n−1(χA, z)| ≤
|wn(z)|2

n2

( 1

(m− ε)2

n∑

k=1

zk∈T\A

1

|z − zk|2
+

C +M + ε

(m− ε)3

n∑

k=1

zk∈T\A

1

|z − zk|
)

≤

(2M + ε)2

n2

( 1

(m− ε)2

n∑

k=1

zk∈T\A

1

|z − zk|2
+

C +M + ε

(m− ε)3

n∑

k=1

zk∈T\A

1

|z − zk|
)

.

(20)

Since z ∈ Jn, by applying Lemma 4 it is immediate that (20) goes uniformly to 0 when n tends to
infinity.

(ii) Let z ∈ In. Proceeding like in (i) we arrive at equation (19) given before. By applying Lemma
1 to the second sum of (19) we get

|wn(z)|2
∣
∣
∣

n∑

k=1

zk∈T\A

1

|w′
n(zk)|2

zk
z − zk

(n− 1− zkw
′′
n(zk)

w′
n(zk)

)
∣
∣
∣ ≤

|wn(z)|2
n∑

k=1

zk∈T\A

1

|z − zk|
|nw′

n(zk)− zkw
′′
n(zk)− w′

n(zk)|
|w′

n(zk)|3
≤ (2M + ε)2

n2

(C +M + ε)

(m− ε)3

n∑

k=1

zk∈T\A

1

|z − zk|
,

and from Lemma 6 we conclude that the last sequence converges to 0 uniformly on z ∈ In. Therefore,
from (19), for n large enough and z ∈ In it holds that 1−HF−n,n−1(χA, z) behaves like

|wn(z)|2
n∑

k=1

zk∈T\A

1

|w′
n(zk)|2

1

|z − zk|2
. (21)

Indeed, 1 − ℜ(HF−n,n−1(χA, z)) − |wn(z)|2
∑n

k=1

zk∈T\A
1

|w′

n(zk)|2
1

|z−zk|2 converges to 0 uniformly on z ∈

In, which implies that 1 − ℜ(HF−n,n−1(χA, z)) behaves like |wn(z)|2
∑n

k=1

zk∈T\A
1

|w′

n(zk)|2
1

|z−zk|2 and

ℑ(HF−n,n−1(χA, z)) converges to 0 uniformly on z ∈ In.
Next our aim is to bound (21). First, on the one hand if we apply Lemmas 1, 5 and 7 we get for

15



z ∈ In

|wn(z)|2
n∑

k=1

zk∈T\A

1

|w′
n(zk)|2

1

|z − zk|2
≤ 2|Πµ(z)|2(1− cos(2π − ε)d) + o(1)

(m− ε)2
1

n2

n∑

k=1

zk∈T\A

1

|z − zk|2
≤

2|Πµ(z)|2(1− cos(2π − ε)d) + o(1)

(m− ε)2
×

( (1 + ε)

(2π − ε)2
ψ1(1 + d) + o(1)

)

≤

2|Πµ(z)|2(1− cos(2π − ε)d)

(m− ε)2
(1 + ε)

(2π − ε)2
ψ1(1 + d) + o(1).

On the other hand, by applying again Lemmas 1, 5 and 7 we have the following inequalities from
bellow

|wn(z)|2
n∑

k=1

zk∈T\A

1

|w′
n(zk)|2

1

|z − zk|2
≥ 2|Πµ(z)|2(1− cos(2π − ε)d) + o(1)

(M + ε)2
1

n2

n∑

k=1

zk∈T\A

1

|z − zk|2
≥

2|Πµ(z)|2(1− cos(2π − ε)d) + o(1)

(M + ε)2

( 1

(2π + 3ε)2
ψ1(1 + d)− o(1)

)

≥

2|Πµ(z)|2(1− cos(2π − ε)d)

(M + ε)2
1

(2π + 3ε)2
ψ1(1 + d)− o(1).

Therefore

2|Πµ(z)|2(1− cos(2π − ε)d)

(M + ε)2
1

(2π + 3ε)2
ψ1(1 + d)− o(1) ≤ |wn(z)|2

n∑

k=1

zk∈T\A

1

|w′
n(zk)|2

1

|z − zk|2
≤

2|Πµ(z)|2(1− cos(2π − ε)d)

(m− ε)2
(1 + ε)

(2π − ε)2
ψ1(1 + d) + o(1).

(22)

Hence

2|Πµ(z)|2(1− cos(2π − ε)d)

(M + ε)2
1

(2π + 3ε)2
ψ1(1 + d)− o(1) ≤ 1−ℜ(HF−n,n−1(χA, z)) ≤

2|Πµ(z)|2(1− cos(2π − ε)d)

(m− ε)2
(1 + ε)

(2π − ε)2
ψ1(1 + d) + o(1),

from which it follows our result. Notice that we denote by o(1) different sequences converging to 0
uniformly on z ∈ In.

(iii) If z ∈ J ′
n, by using (18), we get

|HF−n,n−1(χA, z)| ≤ |wn(z)|2
n∑

k=1
zk∈A

1

|w′
n(zk)|2

1

|z − zk|2
+

|wn(z)|2
n∑

k=1
zk∈A

1

|z − zk|
|nw′

n(zk)− zkw
′′
n(zk)− w′

n(zk)|
|w′

n(zk)|3
,

16



and for n is large enough, if we apply Lemma 1, we get

|HF−n,n−1(χA, z)| ≤
(2M + ε)2

n2

( 1

(m− ε)2

n∑

k=1
zk∈A

1

|z − zk|2
+

C +M + ε

(m− ε)3

n∑

k=1
zk∈A

1

|z − zk|
)

. (23)

To prove our thesis, next we study the two last sums. We continue assuming that zs is the first node
in T \A in the clockwise sense from Jn. Indeed, if z ∈ J ′

n, then
1

|z−z1| ≤
π
2

n√
n(2π−ε)

and by proceeding

in the same way we get 1
|z−z2| ≤

π
2

n
(
√
n+1)(2π−ε)

, · · · , 1
|z−zs−1| ≤

π
2

n
(
√
n+s−2)(2π−ε)

. Therefore

1

n2

n∑

k=1
zk∈A

1

|z − zk|2
=

1

n2

s−1∑

k=1

1

|z − zk|2
≤ π2

4(2π − ε)2

s−1∑

k=1

1

(
√
n+ k − 1)2

=

π2

4(2π − ε)2

s−2∑

k=0

1

(
√
n+ k)2

≤ π2

4(2π − ε)2
ψ1(

√
n),

which converges to 0. Proceeding in a similar way

1

n2

n∑

k=1
zk∈A

1

|z − zk|
=

1

n2

s−1∑

k=1

1

|z − zk|
≤ π

2(2π − ε)

1

n

s−1∑

k=1

1

(
√
n+ k − 1)

=

π

2(2π − ε)

1

n

s−2∑

k=0

1

(
√
n+ k)

≤ π

2(2π − ε)

1

n
(H√

n+s−2,1 −H√
n−1,1),

which converges to 0. Therefore (23) goes to 0 uniformly on z.
(iv) One has to proceed like in the proof of (ii).

Remark 3. In relation with (ii) in the preceding theorem we have to do some considerations. For n
large enough o(1) goes to zero uniformly on z and m and M can be substituted by mγ and Mγ, where
γ represents an small arc in which z moves in such a way as |Mγ −mγ | < ε. Since we can assume
that In is included in the small arc, then equation (16) can be rewritten like

2(Mγ − ε)2(1− cos(2π − ε)d)

(Mγ + ε)2
1

(2π + 3ε)2
ψ1(1 + d) ≤ 1− lim sup ℜ(HF−n,n−1(χA, z)) ≤

1− lim inf ℜ(HF−n,n−1(χA, z)) ≤
2M2

γ (1− cos(2π − ε)d)

(Mγ − 2ε)2
(1− ε)

(2π − ǫ)2
ψ1(1 + d).

Remark 4. The situation considered in [2] corresponds to the case in which the nodal points are the
n roots of a complex number λ of modulus 1. Then ε = 0, wn(z) = zn +λ,Πµ(z) = 1 and m = M = 1.
Now it is clear that in these conditions, if we rewrite Theorem 4, we obtain the result given in [2].

The preceding theorem can be generalized to the case of piecewise continuous functions on T as
follows.
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Theorem 5. Let µ be a measure in the Baxter class and assume that the sequence {(φ∗
n)

′} is uniformly
bounded on T. Let ε be a positive fixed number and let {zj}nj=1 be the zeros of the para-orthogonal

polynomial wn(z), with zj = eiθj and θj satisfying (4). Let f and g be continuous functions on T and
let us consider the piecewise continuous function F = fχA + gχT\A. If A is an arc A = (a1, a2) ⊂ T,
and we assume that ℓ1 = lim

z→a2
f(z) 6= lim

z→a2
g(z) = ℓ2 then it holds

(i) HF−n,n−1(F, z) uniformly converges to f in Jn ⊂ A.

(ii) If z ∈ In, z = z1e
−i (2π−ε)

n
d, with d ∈ [−1

2 ,
√
n], m = min

z∈T
|Πµ(z)| and M = max

z∈T
|Πµ(z)| then for

n large enough

2m2(1− cos(2π − ε)d)

(M + ε)2
|ℓ1 − ℓ2|

(2π + 3ε)2
ψ1(1 + d)− o(1) ≤ |f −HF−n,n−1(F, z)| ≤

2M2(1− cos(2π − ε)d)

(m− ε)2
(1 + ε)

(2π − ε)2
|ℓ1 − ℓ2|ψ1(1 + d) + o(1).

(24)

(iii) HF−n,n−1(F, z) uniformly converges to g in J ′
n ⊂ T \ A.

(iv) If z ∈ I ′n, z = zne
(2π−ε)

n
Di, with D ∈ [−1

2 ,
√
n], m = min

z∈T
|Πµ(z)| and M = max

z∈T
|Πµ(z)| then for

n large enough

2m2(1− cos(2π − ε)D)

(M + ε)2
|ℓ1 − ℓ2|

(2π + 3ε)2
ψ1(1 +D)− o(1) ≤ |g −HF−n,n−1(F, z)| ≤

2M2(1− cos(2π − ε)D)

(m− ε)2
(1 + ε)

(2π − ε)2
|ℓ1 − ℓ2|ψ1(1 +D) + o(1).

(25)

Proof. By applying (18) it is easy to obtain for every z ∈ T

HF−n,n−1(F, z) = HF−n,n−1(f, z)−

|wn(z)|2
∑

zk∈T\A

(f(zk)− g(zk))

|w′
n(z)|2

( 1

|z − zk|2
− zk

(z − zk)
(n− 1− zk

w′′
n(zk)

w′
n(zk)

)
)

︸ ︷︷ ︸

∗

. (26)

Since HF−n,n−1(f, z) converges uniformly to f on T, we have to study the behavior of (∗ ) depending
on where z belongs in order to obtain the behavior of HF−n,n−1(F, z).

(i) If z ∈ Jn and we take into account that |f(zk)− g(zk)| ≤‖ f − g ‖∞, then proceeding like in (i)
of the preceding Theorem 4, we get that (∗) converges to 0 and therefore we have the result.

(ii) We have to study the behavior of (∗ ) for z ∈ In. Thus, if we denote by h(z) = f(z)−g(z)−ℓ1+ℓ2
we have that limz→a2 h(z) = 0 and therefore, given ε1 > 0 it holds that |h(z)| < ε1 for z ∈ I ′n with n
large enough. For convenience we rewrite (∗) as follows

|wn(z)|2
∑

zk∈T\A

(ℓ1 − ℓ2)

|w′
n(z)|2

1

|z − zk|2
+ |wn(z)|2

∑

zk∈T\A

h(zk)

|w′
n(z)|2

1

|z − zk|2
−

|wn(z)|2(ℓ1 − ℓ2)
∑

zk∈T\A

zk
(z − zk)

1

|w′
n(z)|2

(n− 1− zk
w′′
n(zk)

w′
n(zk)

)−

|wn(z)|2
∑

zk∈T\A
h(zk)

zk
(z − zk)

1

|w′
n(z)|2

(n− 1− zk
w′′
n(zk)

w′
n(zk)

).

(27)
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The first sum in the previous expression has been studied in (ii) of Theorem 4 obtaining that it satisfies
the inequalities given in (22).
The second sum can be bounded as follows:

|wn(z)|2
∣
∣
∣

∑

zk∈T\A

h(zk)

|w′
n(z)|2

1

|z − zk|2
∣
∣
∣ ≤

|wn(z)|2
( ∑

zk∈I′n

|h(zk)|
|w′

n(z)|2
1

|z − zk|2
+

∑

zk∈(T\A)\I′n

|h(zk)|
|w′

n(z)|2
1

|z − zk|2
)

≤

|wn(z)|2ε1K
1

n2

∑

zk∈I′n

1

|z − zk|2
+ |wn(z)|2 ‖ h ‖∞

1

n2

∑

zk∈(T\A)\I′n

1

|z − zk|2
,

for some appropriate constant K and n large enough. Thus, if we proceed like in the preceding theorem
we can conclude that 1

n2

∑

zk∈I′n
1

|z−zk|2 is bounded and 1
n2

∑

zk∈(T\A)\I′n
1

|z−zk|2 goes to zero uniformly

for z ∈ In, which implies that the second sum in (27) converges to zero uniformly for z ∈ In.
Finally, taking into account that |h(z)| ≤‖ h ‖∞ and by applying Lemma 6 like in (ii) of the

previous theorem, we obtain the two last sums in (27) go to zero uniformly for z ∈ In. Hence, by
applying Lemmas 1 and 7 we obtain (ii).

(iii) By applying (18) it is easy to obtain for every z ∈ T

HF−n,n−1(F, z) = HF−n,n−1(g, z)−

|wn(z)|2
∑

zk∈A

(f(zk)− g(zk))

|w′
n(z)|2

( 1

|z − zk|2
− zk

(z − zk)
(n− 1− zk

w′′
n(zk)

w′
n(zk)

)
)

︸ ︷︷ ︸

∗∗

. (28)

Since HF−n,n−1(g, z) converges uniformly to g on T and |f(zk)−g(zk)| <‖ f−g ‖∞, if we proceed like
in (iii) of the preceding Theorem 4 we get that (∗∗) converges to 0 uniformly for z ∈ J ′

n and therefore
(iii) is proved.

(iv) It can be obtained proceeding like in (ii).

Remark 5. Wilbraham-Gibbs phenomenon is an important oscillation in a small region, which can be
described in a successful way when we use a dilatation of order n. Notice that we are not doing anything
new; this is well-known in Fourier theory, see [7]. Obviously different Wilbraham-Gibbs phenomena
have different oscillations and these must be well-known if we want to understand or correct them.

4. Examples and numerical experiments

In order to present some numerical experiments about our main results given in the preceding
theorems, first we give examples of monic orthogonal polynomial sequences {φn(z)} such that the
corresponding measures µ ∈ B, µ /∈ SA and the hypothesis in Lemma 1 is satisfied: {(φ∗

n)
′} is

uniformly bounded on T.
We consider the monic orthogonal polynomial sequences generated by the Verblunsky parameters

satisfying |φ1(0)| < 1, φ2(0) = 0, and for n ≥ 3

φn(0) =

{
1

(2k−1)c
, if n = 2k − 1,

0, if n 6= 2k − 1,
(29)
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for k ≥ 2, with c > 2.
The measures of orthogonality µ belong to the Baxter class but they have not analytic extension

outside the unit disk, that is, µ /∈ SA. Indeed it is clear that the following conditions hold

∞∑

n=2

|φn(0)| =
∞∑

k=2

1

(2k − 1)c
≤

∞∑

k=1

1

kc
< ∞,

and

lim sup
n→∞

n
√

|φn(0)| = lim sup
k→∞

2k−1

√

|φ2k−1(0)| = lim sup
k→∞

1

(2k − 1)c/(2
k−1)

= 1.

In what follows we prove that the sequences {φn(z)} generated by the Verblunsky parameters given
above satisfy the hypotheses of Lemma 1.

Lemma 8. Let {φn(z)} be a sequence given by (29). Then the coefficients of φn(z), which are different
of the leading coefficient, have modulus less than 1.

Proof. First we apply the well known recurrence relation φn(z) = zφn−1(z) + φn(0)φ
∗
n−1(z), with

φ−1(z) = 0, φ0(z) = 1, n ≥ 1, obtaining that the sequence is given by

φ1(z) = z + φ1(0), φ2(z) = zφ1(z),

and for k ≥ 2
φ2k−1+i(z) = ziφ2k−1(z), i = 1, · · · , 2k − 1.

Then it is immediate to conclude that φ∗
1(z) = φ∗

2(z) and for k ≥ 2 it holds

φ∗
2k−1+i(z) = φ∗

2k−1(z), i = 1, · · · , 2k − 1.

Since φ3(z) = z3 + φ1(0)z
2 + φ1(0)

3c z + 1
3c , then the coefficients of φ3(z), which are different of the

leading coefficient, have modulus less than 1.
Proceeding by induction, if we assume that the coefficients of φ2k−1(z), which are different of the
leading coefficient, have modulus less than 1, next we prove the property for φ2k+1−1(z).
Indeed, by using the properties satisfied by these sequences we have

φ2k+1−1(z) = zφ2k+1−2(z) + φ2k+1−1(0)φ
∗
2k+1−2(z) = z2

k
φ2k−1(z) + φ2k+1−1(0)φ

∗
2k−1(z).

Since the polynomials z2
k
φ2k−1(z) and φ∗

2k−1
(z) have no common monomials of the same degree and

their coefficients are those of φ2k−1(z) or their conjugates, the property is proved.

Lemma 9. Let {φn(z)} be a sequence given by (29). Then the sequence {(φ∗
n)

′} is bounded uniformly
on T.

Proof. We proceed by using induction. Firstly, (φ∗
1)

′(z) = (φ∗
2)

′(z) = φ1(0),
Since (φ∗

3)
′(z) = (φ∗

4)
′(z) = (φ∗

5)
′(z) = (φ∗

6)
′(z) = 3φ3(0)z

2 + 2φ1(0)φ3(0)z + φ1(0), then for z ∈ T

|(φ∗
3)

′(z)| ≤ 1 +
2

3c
+

3

3c
≤ 1 +

1

2c−1
+

1

3c−1
= H3,c−1 < Hc−1,
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where H3,c−1 is the 3rd partial sum and Hc−1 is the sum of the armonic series
∑∞

n=1
1

nc−1 .
Now if we assume that |(φ∗

2k−1
)′(z)| < H2k−1,c−1 then we prove that |(φ∗

2k+1−1
)′(z)| < H2k+1−1,c−1.

Since φ∗
2k+1−1

(z) = φ∗
2k+1−2

(z)+φ2k+1−1(0)z
2kφ2k−1(z), then by taking derivatives |(φ∗

2k+1−1
)′(z)| ≤

|(φ∗
2k+1−2

)′(z)| + |φ2k+1−1(0)||(z2
k
φ2k−1(z))

′|.
By the hypothesis of induction |(φ∗

2k+1−1
)′(z)| = |(φ∗

2k−1
)′(z)| ≤ H2k−1,c−1. Moreover, |φ2k+1−1(0)| =

1
(2k+1−1)c

and to bound (z2
k
φ2k−1(z))

′ we proceed as follows.

If φ2k−1(z) =
∑2k−2

j=0 ajz
j + z2

k−1 then (z2
k
φ2k−1(z))

′ =
∑2k−2

j=0 aj(2
k + j)z2

k+j−1 + (2k+1 − 1)z2
k+1−2.

Thus, for z ∈ T we have |(z2kφ2k−1(z))
′| ≤

∑2k−1
j=0 (2k + j). Therefore |(φ∗

2k+1−1
)′(z)| ≤ H2k−1,c−1 +

1
(2k+1−1)c

∑2k−1
j=0 (2k + j) ≤ H2k−1,c−1 +

∑2k+1−1
j=2k

1
jc−1 = H2k+1−1,c−1 < Hc−1.

4.1. Numerical experiments

We have designed some numerical experiments in order to observe our results in a graphical way.

Example 1. First we consider the Baxter measures presented at the beginning of this section. In
particular we use the measure associated to the sequence of orthogonal polynomials generated by the
Verblunsky coefficients given in (29) by taking c = 4 and φ1(0) = 0. By applying the recurrence
relations given in Lemma 8 we compute the orthogonal polynomials and we obtain the para-orthogonal
polynomials wn(z) defined in (3) with τ = −1. To obtain the Hermite-Fejér interpolants we take
n = 2k − 1 with k = 5, 7, 10, and we use the barycentric expression corresponding to (18). This type of
expressions are very interesting for their numerical stability and they are obtained in a standard way
as can be seen in [5]. In all the cases we compute the nodal points, which are the zeros of wn(z) with
n = 31, 127, 1023, as well as the coefficients of the corresponding barycentric formula.

We consider the test function F (z) defined by e
z+1/z

2 in the shortest arc between 1 and −i and by 0
in the complementary arc, that is, between −i and 1. Taking into account the previous lemmas, then
the hypotheses of Theorem 5 are satisfied. Notice that at the point a2 = 1 we have that |ℓ1 − ℓ2| = e.

In the next figures we have plotted the function, the interpolants and the approximants of the
interpolants stated in Theorem 5. For the sake of simplicity we only present the cases corresponding
to take three values of n and the key question is the evolution when n grows.

As we can see in Figure 2 the function F (z), in green, is interpolated by HF−31,30(F, z), in
red, and the approximants suggested in (24) and (25) given by e(1 − 1

π2 sin
2(πd)ψ1(1 + d)) and

e 1
π2 sin

2(πd)ψ1(1 + d), with d = −5, · · · , 5, are plotted in blue.

The second graphic (Figure 3) corresponds to n = 127 and the third one (Figure 4) is for n = 1023.
It is clear that in the last case the function is essentially constant in our region and in a very graphical
way the interpolant is indistinguishable with the approximation of the interpolant suggested in (24) and
(25). Thus, in this first example we highlight the relation between the function and the interpolants
in a neighborhood of the discontinuities and their evolution when n grows.
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Figure 2: F (z), HF−31,30(F, z) and its approximation
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Figure 3: F (z), HF−127,126(F, z) and its approximation
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Figure 4: F (z), HF−1023,1022(F, z) and its approximation

We have also done some others numerical experiments, which are in concordance with the previous
one and with the theoretical results.

Example 2. In this experiment we take as test function F (z) defined by 2+2(1−ℜ(z)) sin 1
1−ℜ(z) for

z belonging to the shortest arc between 1 and −i and 0 in the complementary arc. Moreover, we use
two different measures in order to obtain two different nodal systems of 511 nodes and to construct
their corresponding interpolants. The first interpolant is related to the measure used in the previous
example and the second one is related with a Roger-Szegő (RS) measure; we use τ = −1 in both para-
orthogonal polynomials. We recall that the RS measures (or wrapped Gaussian measures) are one of
the classical examples of measures on the unit circle. These type of measures are analytical weights on
the unit circle and satisfy the conditions of Lemma 1 because of Remark 2. A detailed description of
these measures, which depend on a parameter q, can be found in [12]. In particular we use q = 0.05
for this example.

We denote by HF−511,510(F, z) the Hermite-Fejér polynomial corresponding to the first measure
and by HFRS−511,510(F, z) the Hermite-Fejér polynomial related to the Roger-Szegő measure.

The graphic in Figure 5 shows the behaviour on T of the functions F (z), in green, HF−511,510(F, z),

in blue, andHFRS−511,510(F, z), in red. We use the relationship z = e−i 2πd
n , with −511

2 ≤ d ≤ 511
2 , n =

22



511, to obtain the representation as before. So, the shortest arc between 1 and −i corresponds to values
of d ∈ [0, 127.75].

On the one hand Theorem 5 states that our interpolants and the function must be quite similar
when we are far away the discontinuities. On the other hand Theorem 5 states that the interpolants
and the function must be quite different when we are close to the discontinuities. These two asserts
can be seen in the picture.

Figure 5: F (z), HF−511,510(F, z) and HFRS−511,510(F, z)

Notice that Theorem 5 establishes the shape of HF−511,510(F, z) and HFRS−511,510(F, z) near the
discontinuities. Their shapes must be similar to the shape of |ℓ1−ℓ2| 1

π2 sin
2(πd)ψ1(1+d) starting on the

node closest to the discontinuity. This phenomenon can be observed in the Figure 6 which represents
on the left hand side F (z), HF−511,510(F, z), HFRS−511,510(F, z) and the approximation given in
Theorem 5 near 1. On the right hand side of the same figure we have plotted F (z), HF−511,510(F, z)
and HFRS−511,510(F, z) near −i. In this last graphic it is clear that the initial nodes are different but
the shapes are essentially the same.

Figure 6: F (z), HF−511,510(F, z) and HFRS−511,510(F, z) near 1 and −i respectively
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Finally, Figure 7 is devoted to give some extra details of F (z), HF−511,510(F, z) andHFRS−511,510(F, z)
for d ∈ [0.8, 2.2] and also the difference between HF−511,510(F, z) and HFRS−511,510(F, z) near 1.

Figure 7: F (z), HF−511,510(F, z) and HFRS−511,510(F, z) and their difference near 1

4.2. Final considerations

In this piece of work we have studied the relevant aspects of the Hermite-Fejér interpolation when
we approximate piecewise continuous functions related to nodal systems with good properties. In this
case, the distribution of the nodal points is closely related to the measures. As a natural continuation
of this work our aim is to study similar problems for general nodal systems that could correspond to
the zeros of para-orthogonal polynomials with respect to measures with weaker properties. A quite
different point of view could be to establish sufficient conditions for choosing nodal systems with good
properties. In particular such type of distribution of points could be provided by some mechanic
models like the position of a mobile moving with constant velocity on T modified by an oscillatory
movement of high frecuency and low elongation. The position of this mobile on T during equal periods
of time would correspond to a distribution like the studied in this paper.

Other possible future lines of research could be the study of the convergence of the interpolants,
for piecewise continuous functions, by considering other interpolatory processes like Lagrange inter-
polation with the nodal systems considered in this paper. Finally, another possible extension could be
the study of the associated problems in [−1, 1] through the Szegő transformation.
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