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Facultad de Estudios Estad́ısticos, Universidad Complutense de Madrid, 28040 Madrid,

Spain.

Antón Mart́ınez
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Abstract

We complete the range of the parameters in the interpolation formula estab-
lished by Masty lo and Silva for the measure of non-compactness of a bilinear
operator interpolated by the real method.
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1. Introduction

One of the questions considered by Calderón [4] in his seminal paper on
the complex method was the interpolation of compact bilinear operators. The
counterpart for the real method of Lions and Peetre [18] has been done recently,
starting with the papers by Fernandez and Silva [11] and Fernández-Cabrera
and Mart́ınez [12, 13]. A motivation for the research has been the fact that
compact bilinear operators arise rather naturally in harmonic analysis. Namely,
commutators of bilinear Calderón-Zygmund operators and multiplication by
functions in the subspace CMO of BMO are compact (see the papers by Bényi
and Torres [1], Cobos, Fernández-Cabrera and Mart́ınez [6] and Torres, Xue and
Yan [26]). Other results on interpolation of compact bilinear operators can be
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found in the papers by Masty lo and Silva [22] and Cobos, Fernández-Cabrera
and Mart́ınez [7, 8].

Quantitative versions in terms of the measure of non-compactness of some
of these qualitative results have been established by Masty lo and Silva [21] and
Besoy and Cobos [3]. Both papers refer to the real method but they work with
different assumptions on the operator. Masty lo and Silva assume that T is
defined from (A0 ∩A1)× (B0 ∩B1) into E0 ∩ E1 with

‖T (a, b)‖Ej ≤Mj‖a‖Aj‖b‖Bj , a ∈ A0 ∩A1, b ∈ B0 ∩B1, j = 0, 1,

and establish the following log-convexity inequality for the measure of non-
compactness

(1.1) β(T : Āθ,p × B̄θ,q −→ Ēθ,r)

≤ C β(T : A◦0 ×B◦0 −→ E◦0 )1−θβ(T : A◦1 ×B◦1 −→ E◦1 )θ,

where 1 ≤ p, q <∞, 1 < r <∞ and 1/p+1/q = 1+1/r (see [21, Theorem 3.2]).
Besoy and Cobos ask a stronger assumption on T . Namely, they suppose that
T is bounded from (A0 +A1)× (B0 +B1) into E0 +E1 and that the restrictions
T : Aj × Bj −→ Ej are also bounded for j = 0, 1. In this case, they show
that the log-convexity inequality holds for operators acting among couples of
quasi-Banach spaces and for the whole range of the parameters p, q, r (see [3,
Theorem 3.5]). More precisely, if (E0, E1) is a couple of s-Banach spaces, then
the conditions on the parameters are

(1.2) 0 < p, q, r ≤ ∞ with 1/r =

{
1/p+ 1/q − 1/s if p, q ≥ s,
1/max(p, q) if p < s or q < s.

Approaches followed in [21] and [3] are completely different.
In applications, the weaker assumption on T is more handy. For this reason,

it is important to extend inequality (1.1) to the remaining range of parame-
ters. For couples of Banach spaces, this means the values of (1.2) with s = 1.
Accordingly, we prove in this paper such a result.

Our techniques are a refinement of those used by Masty lo and Silva [21]
based on duality results for bilinear operators introduced by Ramanujan and
Schock [24] and the corresponding results established by Cobos, Fernández-
Mart́ınez and Mart́ınez [9] and Fernández-Mart́ınez [14] for the measure of non-
compactness in the linear case (see also the paper by Edmunds and Teixeira
[25]). Duality is the reason why we work with Banach couples.

We start by reviewing in Section 2 the basic results on the real interpolation
method. We also establish there the variant of the bilinear interpolation theorem
that we will need later. In Section 3 we study the connections between the
measure of non-compactness of a bilinear operator and the measure of non-
compactness of its adjoint operator, which is a linear operator. Finally, in
Section 4, we establish the log-convexity inequality.

2. Preliminaries

By a Banach couple Ā = (A0, A1) we mean two Banach spaces A0, A1

which are continuously embedded in some Hausdorff topological vector space.
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We endow A0 + A1 = Σ(Ā) and A0 ∩ A1 = ∆(Ā) with the norms K(1, ·) and
J(1, ·), respectively, where for t > 0

K(t, a) = inf{‖a0‖A0
+ t‖a1‖A1

: a = a0 + a1, aj ∈ Aj}, a ∈ Σ(Ā),

and
J(t, a) = max{‖a‖A0

, t‖a‖A1
}, a ∈ ∆(Ā),

are the Peetre’s functionals.
Let 0 < θ < 1 and 0 < q ≤ ∞. The real interpolation space (A0, A1)θ,q =

Āθ,q is formed by all a ∈ A0 +A1 such that

‖a‖Āθ,q =

(∫ ∞
0

[
t−θK(t, a)

]q dt
t

)1/q

<∞,

(the integral should be replaced by the supremum when q = ∞). The space
(A0, A1)θ,q is a Banach space if 1 ≤ q ≤ ∞ and a quasi-Banach space if 0 < q < 1
(see [2, 27]).

The real interpolation method has the interpolation property for linear op-
erators: Let B̄ = (B0, B1) be another Banach couple and let R be a linear
operator from A0 + A1 into B0 + B1 whose restrictions R : Aj −→ Bj are
bounded for j = 0, 1. Then R : Āθ,q −→ B̄θ,q is bounded with

‖R‖Āθ,q,B̄θ,q ≤ ‖R‖
1−θ
A0,B0

‖R‖θA1,B1
.

The space (A0, A1)θ,q can also be introduced using series instead of integrals
because the functional

‖a‖θ,q =
( ∞∑
m=−∞

[
2−θmK(2m, a)

]q)1/q

,

(the sum should be replaced by the supremum if q =∞) is an equivalent norm
(respectively, quasi-norm) to ‖ · ‖Āθ,q if 1 ≤ q ≤ ∞ (respectively, if 0 < q < 1).

The real interpolation space can be equivalently described by means of the
J-functional. Indeed, (A0, A1)θ,q consists of all a ∈ A0 + A1 for which there is
(um) ⊆ A0 ∩A1 such that

a =
∞∑

m=−∞
um (convergence in A0 +A1)

and ( ∞∑
m=−∞

[
2−θmJ(2m, um)

]q)1/q

<∞.

Moreover, the functional

‖a‖Jθ,q = inf

{( ∞∑
m=−∞

[
2−θmJ(2m, um)

]q)1/q

: a =
∞∑

m=−∞
um, (um) ⊆ A0∩A1

}

is equivalent to ‖ · ‖Āθ,q .
Subsequently, if A is a quasi-Banach space, we put A∗ for its dual space. If

A0 ∩ A1 ⊆ A, we write A◦ for the closure of A0 ∩ A1 in A. Since A0 ∩ A1 =
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A◦0 ∩ A◦1, it follows from the J-description of the real interpolation space that
(A0, A1)θ,q = (A◦0, A

◦
1)θ,q. The J-description also gives that A0 ∩A1 is dense in

Āθ,q if q <∞. Therefore, Ā◦θ,q = Āθ,q if 0 < q <∞.

We say that the Banach couple Ā is regular if A0 ∩ A1 is dense in A0 and
in A1. If this is the case, then A∗ = (A∗0, A

∗
1) is also a Banach couple and the

following duality formulae hold with equivalence of norms:

(2.1) If 1 ≤ q <∞, 1/q + 1/q′ = 1 and 0 < θ < 1, then

(A0, A1)∗θ,q = (A∗0, A
∗
1)θ,q′ .

(2.2) If q =∞ and 0 < θ < 1, then

((A0, A1)◦θ,∞)∗ = (A∗0, A
∗
1)θ,1.

(2.3) If 0 < q < 1 and 0 < θ < 1, then

(A0, A1)∗θ,q = (A∗0, A
∗
1)θ,∞.

See [2, Theorem 3.7.1 and Remark in p. 55] and [23, (0.5) in p. 124].
Let A,B,E be Banach spaces and let T : A×B −→ E be a bilinear operator.

We say that T is bounded if

‖T‖A×B,E = sup
{
‖T (a, b)‖E : ‖a‖A ≤ 1 , ‖b‖B ≤ 1

}
<∞.

We write L(A×B,E) for the space of all bounded bilinear operators from A×B
into E.

Let Ē = (E0, E1) be another Banach couple. By T ∈ B(Ā× B̄, Ē) we mean
that T is a bilinear operator defined on (A0 ∩ A1) × (B0 ∩ B1) with values in
E0 ∩ E1 such that there are constants Mj > 0 with

(2.4) ‖T (a, b)‖Ej ≤Mj‖a‖Aj‖b‖Bj , a ∈ ∆(Ā), b ∈ ∆(B̄), j = 0, 1.

Using (2.4), it is not hard to check that T may be uniquely extended to a bilinear
operator T : A◦j ×B◦j −→ E◦j with ‖T‖A◦j×B◦j ,E◦j ≤Mj .

The behaviour of bounded linear operators under real interpolation was al-
ready considered by Lions and Peetre [18] in their foundational paper on the real
method. Their result was extended by Karadzhov [16] to the full range for the
parameters (see also the paper by König [17] for a proof). In our later consid-
erations we are going to need the following variant of the bilinear interpolation
theorem.

Theorem 2.1. Let Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1) be Banach
couples and let T be a bilinear operator from (A0∩A1)× (B0 +B1) into E0 +E1

such that there are positive constants Mj with

‖T (a, b)‖Ej ≤Mj ‖a‖Aj‖b‖Bj , a ∈ A0 ∩A1, b ∈ Bj , j = 0, 1.

Let 0 < θ < 1 and 0 < p, q, r ≤ ∞ be positive numbers satisfying

1

r
=

{
1
p + 1

q − 1 if p, q ≥ 1,
1

max(p,q) if p < 1 or q < 1.
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Then there is a constant C > 0 independent of T such that

‖T (a, b)‖Ēθ,r ≤ CM
1−θ
0 Mθ

1 ‖a‖Āθ,p‖b‖B̄θ,q , a ∈ ∆(Ā), b ∈ B̄θ,q.

Moreover, T may be uniquely extended to a bounded bilinear operator

T : Ā◦θ,p × B̄θ,q −→ Ēθ,r.

Proof. Take n ∈ Z such that 2n ≤ M1/M0 < 2n+1. Given any a ∈ A0 ∩ A1,
u ∈ B0 ∩B1 and m, k ∈ Z, if a = a0 + a1 with aj ∈ Aj , we obtain

K(2m, T (a, u)) ≤ ‖T (a0, u)‖E0
+ 2m‖T (a1, u)‖E1

≤M0‖a0‖A0
‖u‖B0

+ 2mM1‖a1‖A1
‖u‖B1

≤ max(M0, 2
−nM1)(‖a0‖A0

+ 2m−k‖a1‖A1
)J(2k+n, u).

Hence,

(2.5) K(2m, T (a, u)) ≤ 2M0K(2m−k, a)J(2k+n, u).

Now take any b ∈ B̄θ,q and let b =
∞∑

k=−∞

uk be any J-representation of b. Since

∞∑
k=−∞

‖uk‖B0+B1
<∞, we also have that b =

∞∑
k=−∞

uk+n in B0 +B1.

Suppose that p < 1 and p ≤ q, so r = q. We have

K(2m, T (a, b)) ≤
∞∑

k=−∞

K(2m, T (a, uk+n)) ≤
( ∞∑
k=−∞

K(2m, T (a, uk+n))p
)1/p

.

Combining this inequality with (2.5) and using Young’s inequality with param-
eters p/q = 1 + p/q − 1, we derive

‖T (a, b)‖Ēθ,q ≤ 2M0

∥∥∥( ∞∑
k=−∞

2−θ(m−k)pK(2m−k, a)p2−θkpJ(2k+n, uk+n)p
)∥∥∥1/p

`q/p

≤ 2M0

∥∥(2−θmK(2m, a))p
∥∥1/p

`1

∥∥(2−θkJ(2k+n, uk+n))
∥∥
`q

≤ 2M02θn‖a‖θ,p
∥∥(2−θkJ(2k, uk))

∥∥
`q
.

Taking the infimum over all J-representations of b, we derive that

‖T (a, b)‖Ēθ,q ≤ CM
1−θ
0 Mθ

1 ‖a‖Āθ,p‖b‖B̄θ,q , a ∈ ∆(Ā), b ∈ B̄θ,q.

Finally, since A0∩A1 is dense in Āθ,p, the operator T may be uniquely extended
to a bounded bilinear operator T : Āθ,p × B̄θ,q −→ Ēθ,q.

If q < p ≤ 1, then r = p and we can proceed as before but using now that

K(2m, T (a, b)) ≤
( ∞∑
k=−∞

K(2m, T (a, uk+n))q
)1/q

and Young’s inequality with parameters q/p = q/p+ 1−1. The cases q < 1 and
q ≤ p, and p < q ≤ 1 are similar. Finally, if 1 ≤ p, q then 1/r = 1/p + 1/q − 1
and we can proceed directly with Young’s inequality.

Others results on interpolation of bilinear operators can be found, for exam-
ple, in the papers by Janson [15], Masty lo [19, 20] and Cobos, Fernández-Cabrera
and Mart́ınez [6] .
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3. Measure of non-compactness

Let A, B be Banach spaces. We write UA for the closed unit ball of A
and define UB similarly. Given any bounded linear operator R ∈ L(A,B), the
(ball) measure of non-compactness β(R) = β(R : A −→ B) is defined to be the
infimum of the set of all σ > 0 for which there is a finite subset {b1, · · · , bs} ⊆ B
such that

R(UA) ⊆
s⋃

k=1

{bk + σUB},

(see [5, 10]).
Clearly, the operator R is compact if and only if β(R) = 0.
Let R∗ ∈ L(B∗, A∗) be the adjoint operator of R. A well-known result of

Schauder says that R is compact if and only if R∗ is compact. If the operator
R is not compact, then the following inequalities hold for the measure of non-
compactness

(3.1)
1

2
β(R : A −→ B) ≤ β(R∗ : B∗ −→ A∗) ≤ 2β(R : A −→ B),

(see [10, Corollary 2.10, p. 12]).
Let E be another Banach spaces and let T : A × B −→ E be a bounded

bilinear operator. The (ball) measure of non-compactness β(T ) = β(T : A ×
B −→ E) of T is the infimum of all σ > 0 for which there exists a finite subset
{z1, · · · , zs} ⊆ E such that

T (UA, UB) =
{
T (a, b) : a ∈ UA, b ∈ UB

}
⊆

s⋃
k=1

{zk + σUE}.

The operator T is said to be compact if for any bounded sets V ⊆ A, W ⊆ B
we have that the closure of T (V,W ) is compact in E. Again, the operator T is
compact if and only if its measure of non-compactness is 0.

Following Ramanujan and Schock [24], the adjoint operator T× of T is the
linear map

T× : E∗ −→ L(A×B,K)

defined by (T×f)(a, b) = f [T (a, b)]. Here K is the scalar field.
It turns out that ‖T‖A×B,E = ‖T×‖E∗,L(A×B,K). Moreover, T is compact if

and only if T× is compact (see [24, Theorem 2.6]).
Next we study inequalities of the type (3.1) in the bilinear setting. For

operators acting among Banach couples, this question has been studied in [21,
Lemma 3.1],

Theorem 3.1. Let A, B, E be Banach spaces and let T ∈ L(A×B,E). Then
we have

β(T× : E∗ −→ L(A×B,K)) ≤ 4β(T : A×B −→ E).

Proof. Given any ε > 0, we can find finite subsets {a1, · · · , as} ⊆ UA and
{b1, · · · , bs} ⊆ UB such that for any (a, b) ∈ UA×UB there exits 1 ≤ k ≤ s with

(3.2) ‖T (a, b)− T (ak, bk)‖ ≤ 2β(T ) + ε.

Let S : E∗ −→ Ks be the linear operator assigning to each f ∈ E∗ the s-tuple
Sf = (f [T (a1, b1)], · · · , f [T (as, bs)]). Since S has finite rank, S is compact.
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Therefore, there exits a finite subset of functionals {f1, · · · , fm} ⊆ UE∗ such
that for any f ∈ UE∗ there is 1 ≤ n ≤ m with ‖Sf − Sfn‖Ks ≤ ε. Whence,

(3.3) |f [T (ak, bk)]− fn[T (ak, bk)]| ≤ ε for any 1 ≤ k ≤ s.

Then, given any f ∈ UE∗ if we take n satisfying (3.3), and for any (a, b) ∈
UA × UB we choose k satisfying (3.2), we obtain

|(T×f − T×fn)(a, b)| = |f [T (a, b)]− fn[T (a, b)]|
≤ |f [T (a, b)]− f [T (ak, bk)]|+ |f [T (ak, bk)]− fn[T (ak, bk)]|

+ |fn[T (ak, bk)]− fn[T (a, b)]|
≤ ‖T (a, b)− T (ak, bk)‖E + ε+ ‖T (ak, bk)− T (a, b)‖E ≤ 4β(T ) + 3 ε.

This yields that ‖T×f − T×fn‖A×B,K ≤ 4β(T ) + 3 ε. Consequently,

β(T× : E∗ −→ L(A×B,K)) ≤ 4β(T : A×B −→ E).

Theorem 3.2. Let A, B, E be Banach spaces and let T ∈ L(A×B,E). Then
we have

β(T : A×B −→ E) ≤ 8β(T× : E∗ −→ L(A×B,K)).

Proof. Put W = T×(E∗) which is a Banach space with the induced norm from
L(A×B,K). Let {R1, . . . , Rs} ⊆ L(A×B,K) and σ > 0 satisfy that

T×(UE∗) ⊆
s⋃

k=1

{Rk + σUL(A×B,K)}.

We may assume that W ∩ {Rk + σUL(A×B,K)} 6= ∅ for k = 1, . . . , s. Pick
Sk ∈W ∩ {Rk + σUL(A×B,K)}. Then

T×(UE∗) ⊆
s⋃

k=1

{Sk + 2σUW }.

This yields that

β(T× : E∗ −→W ) ≤ 2β(T× : E∗ −→ L(A×B,K)).

Now consider the adjoint operator (T×)∗ : W ∗ −→ E∗∗ and let R : A× B −→
W ∗ the operator defined by R(a, b) = g(a,b) where

g(a,b)(T
×f) = f [T (a, b)].

The operator R is bilinear and has norm less than or equal to 1 because

‖R(a, b)‖W∗ = sup{|g(a,b)(T
×f)| : ‖T×f‖A×B,K ≤ 1}

= sup{|f [T (a, b)]| : ‖T×f‖A×B,K ≤ 1}
= sup{|(T×f)(a, b)| : ‖T×f‖A×B,K ≤ 1} ≤ ‖a‖A‖b‖B .
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The following diagram is useful

A×B T //

R ##

E
π // E∗∗

W ∗
(T×)∗

<<

where π(w) = ŵ is the natural embedding from E into its bidual E∗∗. Note
that the diagram commutes because

(
(T×)∗R(a, b)

)
(f) = R(a, b)(T×f) = g(a,b)(T

×f)

= f [T (a, b)] = T̂ (a, b)(f) = π(T (a, b))(f).

Consequently, using the diagram and (3.1), we obtain

β(T : A×B −→ E) ≤ 2β(πT : A×B −→ E∗∗)

≤ 2 ‖R‖A×B,W∗β((T×)∗ : W ∗ −→ E∗∗)

≤ 4β(T× : E∗ −→W )

≤ 8β(T× : E∗ −→ L(A×B,K)).

4. Interpolation of the measure of non-compactness

We start with an auxiliary result which complements an embedding of [7, p.
5] (see also [21, Theorem 2.1]).

Subsequently, for 0 < r ≤ ∞ we put

r̃ =

{
∞ if 0 < r ≤ 1,

r′ , 1/r + 1/r′ = 1 if 1 < r ≤ ∞.

Lemma 4.1. Let Ā = (A0, A1), B̄ = (B0, B1) be regular Banach couples. For
j = 0, 1, put Xj = L(Aj × Bj ,K) and let 0 < θ < 1 and 0 < p, q, r ≤ ∞ such
that

1

r
=

{
1
p + 1

q − 1 if p, q ≥ 1,
1

max(p,q) if p < 1 or q < 1.

Then the following continuous embedding holds

(X0, X1)θ,r̃ ↪→ L(Ā◦θ,p × B̄◦θ,q,K).

Proof. The pair X̄ = (X0, X1) is a Banach couple because
Xj ↪→ L(∆(Ā)×∆(B̄),K), j = 0, 1. Let

Φ : ∆(Ā)× L(∆(Ā)×∆(B̄),K) −→ ∆(B̄)∗

be the bilinear operator defined by Φ(a,R)(b) = R(a, b). Since

|R(a, b)| ≤ ‖R‖∆(Ā)×∆(B̄),K‖a‖∆(Ā)‖b‖∆(B̄),
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the operator Φ has norm less than or equal to 1. Moreover, if a ∈ ∆(Ā) and
R ∈ Xj , we get

|R(a, b)| ≤ ‖R‖Xj‖a‖Aj‖b‖Bj .

So
Φ : (∆(Ā), ‖ · ‖Aj )×Xj −→ B∗j , j = 0, 1,

is also bounded, with norm less than or equal to 1.
By the duality formulae (2.1), (2.2), (2.3), we know that

((B0, B1)◦θ,q)
∗ = (B∗0 , B

∗
1)θ,q̃ = B∗θ,q̃.

Moreover, we have

1

q̃
=

{
1
p + 1

r̃ − 1 if p ≥ 1,
1
r̃ if p < 1.

Whence, applying Theorem 2.1, we get that Φ may be uniquely extended to a
bounded bilinear operator

Φ : Ā◦θ,p × X̄θ,r̃ −→ B∗θ,q̃ = ((B0, B1)◦θ,q)
∗.

Consequently, there is a constant C > 0 such that for any R ∈ X̄θ,r̃ and any
a ∈ ∆(Ā), b ∈ ∆(B̄), we have

|R(a, b)| = |Φ(a,R)(b)| ≤ ‖Φ(a,R)‖B∗θ,q̃‖b‖B̄θ,q ≤ C ‖R‖X̄θ,r̃‖a‖Āθ,p‖b‖B̄θ,q .

This yields that R ∈ L(Ā◦θ,p × B̄◦θ,q,K) and that the embedding

X̄θ,r̃ ↪→ L(Ā◦θ,p × B̄◦θ,q,K)

is bounded with norm less than or equal to C.

Now we are ready to establish the announced result on interpolation of the
measure of non-compactness of bilinear operators.

Theorem 4.2. Let Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1) be Banach
couples and let T ∈ B(Ā× B̄, Ē). Let 0 < θ < 1 and 0 < p, q, r ≤ ∞ such that

1

r
=

{
1
p + 1

q − 1 if p, q ≥ 1,
1

max(p,q) if p < 1 or q < 1.

Then

β(T : Ā◦θ,p × B̄◦θ,q −→ Ē◦θ,r)

≤ C β(T : A◦0 ×B◦0 −→ E◦0 )1−θβ(T : A◦1 ×B◦1 −→ E◦1 )θ,

Here C is a constant independent of T .

Proof. According to the bilinear interpolation theorem (see, for example [13,
Theorem 4.1]), we know that T may be uniquely extend to a bounded bilinear
operator T : Ā◦θ,p × B̄◦θ,q −→ Ē◦θ,r. Hence, by Theorem 3.2, we have

(4.1) β(T : Ā◦θ,p × B̄◦θ,q −→ Ē◦θ,r) ≤ 8β(T× : (Ē◦θ,r)
∗ −→ L(Ā◦θ,p × B̄◦θ,q,K)).
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Let Xj = L(A◦j × B◦j ,K), j = 0, 1. Since T : A◦j × B◦j −→ E◦j , is bounded, the
restrictions T× : (E◦j )∗ −→ Xj are also bounded and, by Theorem 3.1, we have

(4.2) β(T× : (E◦j )∗ −→ Xj) ≤ 4β(T : A◦j ×B◦j −→ E◦j ), j = 0, 1.

Using the formula for the measure of non-compactness of a linear operator
interpolated by the real method of Cobos, Fernández-Mart́ınez and Mart́ınez [9,
Theorem 1.2] (Banach case) and Fernández-Mart́ınez [14, Theorem 3.1] (quasi-
Banach case) and (4.2) we derive that

(4.3) β
(
T× : ((E◦0 )∗, (E◦1 )∗)θ,r̃ −→ (X0, X1)θ,r̃

)
≤ C1 β(T× : (E◦0 )∗ −→ X0)1−θβ(T× : (E◦1 )∗ −→ X1)θ

≤ 4C1 β(T : A◦0 ×B◦0 −→ E◦0 )1−θβ(T : A◦1 ×B◦1 −→ E◦1 )θ.

The duality formulae (2.1), (2.2), (2.3) imply that

((E◦0 )∗, (E◦1 )∗)θ,r̃ = (E◦0 , E
◦
1 )∗θ,r.

Hence, it follows from Lemma 4.1 and (4.3) that

β
(
T× : (E◦0 , E

◦
1 )∗θ,r −→ L(Ā◦θ,p × B̄◦θ,q,K)

)
≤ C2 β

(
T× : (E◦0 , E

◦
1 )∗θ,r −→ (X0, X1)θ,r̃

)
≤ C3 β(T : A◦0 ×B◦0 −→ E◦0 )1−θβ(T : A◦1 ×B◦1 −→ E◦1 )θ.

This estimate combined with (4.1) complete the proof.

As a direct consequence of Theorem 4.2 we derive the following compactness
result:

Theorem 4.3. Let Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1) be Banach
couples and let T ∈ B(Ā × B̄, Ē) such that T : A◦j × B◦j −→ E◦j compactly for
j = 0 or j = 1. Let 0 < θ < 1 and 0 < p, q, r ≤ ∞ such that

1

r
=

{
1
p + 1

q − 1 if p, q ≥ 1,
1

max(p,q) if p < 1 or q < 1.

Then T may be uniquely extended to a compact bilinear operator from
(A0, A1)◦θ,p × (B0, B1)◦θ,q to (E0, E1)◦θ,r.
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