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Abstract
Thisworkpresents a novel approach for simulating elastic beamelements inDualSPHysics leveraging functionsmade available
by the coupling with the Project Chrono library. Such numerical frameworks, belonging to the Meshfree Particle Methods
family, stand out for several features, like complex multiphase phenomena, moving boundaries, and high deformations which
are handled with relative ease and reasonable numerical stability and reliability. Based on a co-rotating rigid element structure
and lumped elasticity, a cogent mathematical formulation, relying on the Euler–Bernoulli beam theory for the structural
discretization, is presented and applied to simulating two-dimensional flexible beams with the discrete elements method
(DEM) formulation. Three test cases are presented to validate the smoothed particle hydrodynamics-based (SPH) structure
model in both accuracy and stability, starting from an equilibrium test, to the dynamic response, and closing with a fluid–
structure interaction simulation. This work proves that the developed theory can be used within a Lagrangian framework,
using the features provided by a DEM solver, overtaking the initial limitations, and hence applying the results of static theories
to complex dynamic problems.
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1 Introduction

Dynamics impacts between fluid flows and structures con-
stitute a serious threat to the safety of marine and coastal
structures, and a challenging task for numerical simulations;
these phenomena can exert extreme forces on structures, fol-
lowed by likewise extreme deformations, and, thus, serious
structural damages. Fluid–structure interaction (FSI) prob-
lems have been traditionally addressed through mesh-based
methods [1–3], considering a partitioned approach and using
an appropriate finite element method (FEM) to treat the
fluid and the structure separately. However, the fluid mesh
must follow the movement of the solid, thus making the
use of re-meshing tools essential. Computational costs and
convergence issues led to exploring alternative mesh-less
approaches. Lagrangian methods, in which particles consti-
tute the physical system andmove according to the field laws
in the local frame of reference, are naturally structured to
avoid the common drawbacks of grid-based methods, pro-
viding a robust computational tool to enhance the fluid phase
simulation in FSI problems. These methods, in fact, can eas-
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ily address large deformation and track complex and moving
interfaces between solid and fluid phases.

One of the Lagrangian approaches, which has been gain-
ing interest in recent years, is the smoothed particle hydro-
dynamics (SPH) method [4], especially regarding coastal
engineering applications [5], but in general in all fluid-related
fields [6,7]. The SPH approach has been used for solving FSI,
where both fluids and solids are modeled within the same
SPH framework, however employing different techniques.
For example, the coupled enhanced ISPH-SPH method pre-
sented in Khayyer et al. [8], which provides full validation
for the SPH-based solid solver. Another fully Lagrangian
FSI solver has been proposed by Sun et al. [9], by coupling a
multi-phase delta-SPH solver for fluid and a total Lagrangian
SPH as a solid solver; an improved version of the code is pre-
sented in Sun et al. [10]; a weakly compressible SPH solver
for fluid dynamics with kernel correction and an hourglass
suppression algorithm implemented in SPH as well for struc-
tural dynamics is presented in O’Connor and Rogers [11].
Another piece of research by Khayyer et al. [12] reports on
an ISPHsystemcoupled to aHamiltonianSPH(HSPH) struc-
ture model resulting in ISPH-HSPH FSI solver, applied for
the simulation of laminated, composite structures.

Due to their flexibility, meshfree methods can embed
framework with different nature. One such example is the
use of the SPH technique for meshless-to-mesh-based cou-
plings, where the Lagrangian solver is mainly used to deal
with fluids. A recent research dealing with an SPH-FEM for
FSI can be found in Li et al. [13]: the newly formed hybrid
framework benefits from the strengths of both. Some appli-
cations of this methodology are presented in Fourey et al.
[14]. Another interesting strategy is to couple a Lagrangian
discrete element method (DEM) to an SPH solver. It is either
used to studying the dynamics ofmulti-body systems [15–17,
see] or to simulating flexible objects by composing mass-
spring elements to form complex geometries [18–20, see].
The mathematical structure of the proposed method follows
a partitioned approach with two different solvers operating
in co-simulation.

At the basis of the present model lies the discrete element
method, developed to simulate the behavior of interacting
discrete bodies. DEM is becoming widely accepted as an
effective method for addressing problems in civil engineer-
ing, even though FEM-based codes remain unrivaled when
dealing with small elastic deformations or vibrations. The
DEM approach, nevertheless, being based on the interacting
force computation between rigid bodies, is suitable for phe-
nomena involving breakage, rupture and large deformations,
together with contacts of multiple bodies [21]. Its features
perfectly fit the lumped elasticity model here proposed that
relies on a set of rigid bodies, and allow the straightforward
computation of both interactions within the rigid elements
set and with the fluid phase for simulating FSI.

DualSPHysics is an open-source computer software avail-
able at http://www.dual.sphysics.org, released under the
GNU Lesser General Public License (LGPL), based on the
SPHmethod [22]. The capability ofDualSPHysics to address
complex multiphysics applications has been enhanced by the
coupling with other numerical models. These include cou-
pling with wave propagation models, such as SWASH and
OceanWave3D [23,24], coupling with the MoorDyn moor-
ing library [25], coupling with distributed-contact discrete
element method (DCDEM)[26] and coupling with Project
Chrono library [15]. Thanks to the latter coupling to the
Project Chrono multiphysics library [27], the DualSPHysics
framework can simulate complex mechanical systems and
multi-body problems. Canelas et al. [15] showed a complete
coupling validation for the multibody dynamics simulator
[25,28]; Brito et al. [29] presented a set of mechanical con-
straints and thenvalidated their use contrasting numerical and
experimental results for an oscillating wave surge converter
device.Within the field of renewable energy,many successful
applications have been presented over the last years [30–34].

A novel approach for simulating flexible elements is here
presented, built upon the preliminary research study pre-
sented in [35]. The model leverages Lagrangian features
and relies on the effectiveness of the DualSPHysics–Project
Chrono fluid–solid interactive solver. Starting from the
Euler–Bernoulli beam theory [36], a robust lumped elasticity
formulation is developed, calibrated, and successively imple-
mented in the software; the procedure is finally validatedwith
several test cases proving a thorough assessment of the accu-
racy of the SPH-DEM-based numerical framework.

This work is structured as follows: in Sect. 2, the SPH
formulation for the governing equations implemented in
DualSPHysics is presented, together with the coupling to
the Project Chrono library; in Sect. 3, the mathematical
formulation is reported, from the starting assumptions to
the numerical discretization; in Sect. 4, several validation
benchmark cases provide the performance of the model in
simulating FSI phenomena; Sect. 5 summarizes the main
results for this research.

2 DualSPHysics solver

The SPH numerical method is based on the use of a kernel
function which is suitable for representing the derivatives
of continuous fields in a discrete form. The resulting equa-
tions then consist of discrete mechanical systems, in which
the interactions between particles are expressed by fluxes
which depend, in particular, on their mutual distances and
their mechanical and thermodynamic features. The discrete
treatment of time makes SPH a fully conservative method
[37].
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2.1 SPH formulation

The strategy in SPH is to discretize the physical domain (fluid
and/or solid objects) into a set of particles, where the phys-
ical quantities (position, velocity, density and pressure) are
obtained as an interpolation of the corresponding quantities
of the surrounding particles. The contribution of those par-
ticles is weighted using a kernel function, with an area of
influence that is defined using a characteristic smoothing
length. This discretization process is divided into two key
steps [38].

The first step is the integral representation or the so-called
kernel approximation of field functions, consisting in the
integration of a multiplication of an arbitrary function and
a smoothing kernel function. The integral representation of
a generic spatial function f (r) within an integral volume Ω

is given by:

< f (r) >=
∫

Ω

f (r′)W (r − r′, h)dr′, (1)

where W is the so-called smoothing kernel function or kernel.
In the smoothing function, h is the smoothing length defining
the influence area of W (Fig. 1).

Then, the second step follows, in which the integral rep-
resentation is approximated by summing up the values of the
nearest neighbor particles, which yields the particle approx-
imation of the function at a discrete point (particle). The
position rb is defined as the position of a particle having a
fixed mass mb and a finite volume Vb, related by:

Vb = mb

ρb
, (2)

where ρb is the density of particle b = 1, . . . , Np in which
Np is the total number of particles within the support domain
of particle a. The integral representation can be rewritten in
a discrete form for a particle a, being b part of its support
domain:

< f (ra) >=
Np∑

b=1

mb

ρb
f (rb)Wab, (3)

where:

Wab = W (ra − rb, h). (4)

The kernel function, hence, plays a fundamental role in the
SPH method. In DualSPHysics, the Wendland [39] quintic
kernel function is utilized:

W (r , h) = αD,n

⎧⎨
⎩

(
1 − q

2

)4
(1 + 2q) 0 ≤ q ≤ 2

0 2 < q,

(5)

a
b

κh

rab

W(|ra-rb|,h)

Ω

Fig. 1 Representation of smoothing kernel function for two-
dimensional frameworks

where

q = r

h
= |r − r′|

h
, (6)

and αD,n is a constant depending on the spatial dimension of
the problem.

2.2 Governing equations

The governing equations for a fluid domain in Lagrangian
formulation and the relative SPH discretization are herein
presented. The equations of fluid dynamics are based on the
fundamental physical laws of conservation: the conservation
of mass and momentum. These laws yield, respectively, to
the continuity equation:

Dρ

Dt
= −ρ∇ · u, (7)

and the momentum equation:

Du
Dt

= − 1

ρ
∇ p + g + Γ , (8)

where ρ is the density, u is the velocity vector, g the gravita-
tional acceleration, p is the pressure, and Γ is the divergence
of the deviatoric stress tensor. In the weakly compressible
SPH (WCSPH), the governing equation formulation imple-
mented in DualSPHysics becomes:

Dρa

Dt
=

Np∑
b=1

mbuab · ∇a Wab + δΦhc0

Np∑
b=1

Ψab · ∇a Wab
mb

ρb
, (9)

Dua

Dt
= −

Np∑
b=1

mb

(
pb + pa

ρaρb
+ Πab

)
· ∇a Wab + g. (10)
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The SPH continuity equation (Eq. (9)) is enhanced by
adding a density diffusion term (DDT) governed by δΦ ,
which is a parameter usually set equal to 0.10, and by the
term

Ψab = 2
(
ρD

b − ρD
a )

) rab

|rab| , (11)

where the superscript D indicates the dynamic pressure (i.e.,
the difference between the total and the hydrostatic pressure).
Originally introduced by Molteni and Colagrossi [40] and
further developed by Fourtakas et al. [41] by improving the
efficiency of the diffusive term near to the boundaries, this
formulation helps reduce density fluctuations in the pres-
sure field, which often occur using a weakly compressible
approach.

In Eq. (10), the term:

Πab = αD,n

⎧⎨
⎩

−αcabμab

ρab
uab · rab < 0,

0 uab · rab > 0,
(12)

where:

μab = huab · rab

|rab|2 + η2
,

cab = 1

2
(ca + cb),

ρab = 1

2
(ρa + ρb), and

η2 = 0.01h2, (13)

is added to the physical pressure term to help diffuse sharp
variation in the flow and dissipate the energy of high-
frequency terms. This artificial viscosity term numerically
reproduces, as a form of viscous dissipation, particular phe-
nomena of hydrodynamics problems, like shock waves, in
which sudden transformation of kinetic energy into heat
energy occurs [38].

In Eq. (13), cab and ρab are the mean speed of sound and
mean pressure value respectively, while α is a constant that
needs to be tuned in order to introduce the proper dissipation.
The fluid, in the SPH formalism defined in DualSPHysics,
is treated as weakly compressible [42] due to an equation of
state (Eq. (14)) that is used to determine fluid pressure based
on particles density. The fluid compressibility is adjusted so
that the speed of sound can be artificially lowered; this means
that the size of the time steps taken at any onemoment (which
is determined according to aCourant–Friedrich–Lewy (CFL)
condition, and based on the currently maximum speed for
all particles) can be maintained at a reasonable value. Such
adjustment, however, restricts the sound speed to be at least
ten times faster than the maximum fluid velocity, keeping

density variations to be within less than 1%, and therefore
not introducing major deviations from an incompressible
approach [38]. The state equation [42]:

p = c20ρ0
γ

[(
ρ

ρ0

)γ

− 1

]
, (14)

where γ = 7, ρ0 = 1000 [kg/m3], c0 = c(ρ0), c being
the numerical speed of sound, along with Eqs. (9) and (10)
completes the set of governing equations for the fluid domain
implemented in DualSPHysics [22].

2.3 Modified dynamic boundary conditions

DualSPHysics implements the dynamic boundary condition
(DBC), proposed by Crespo et al. [43], as a standard method
for the definition of the boundary conditions. The DBC treat-
ment has demonstrated to work properly when applied to
cases of wave propagation, wave run-up of armor block
breakwaters with complex geometries [44], and also simulat-
ing violent collisions with coastal structures [45]. However,
a novel formulation was proposed [46] in order to improve
the initial DBC formulation, solving the over dissipation of
the former approach when the transition from non-wet to wet
bound takes place. The modification of DBCs (the so-called
mDBCs) works with the same particle arrangement defined
for its parent version, but the interacting boundary surface
is located away from the outermost layer of particles. This
latter location is used to mirror ghost nodes into the fluid
domain and hence evaluating the fluid properties at that vir-
tual position; eventually, these properties are used to correct
the SPH approximation when a fluid particle interacts with a
mDBC particle, as it was already performed in [47]. mDBCs
are validated in the reference paper of English et al. [46], and
an application is presented in Capasso et al. [48].

2.4 Rigid body dynamics and SPH

A full SPH model can deal with rigid bodies by computing
the total force contributions of the surrounding fluid parti-
cles. In DualSPHysics, the motion of objects interacting with
fluid particles is handled by the basic equations of rigid body
dynamics. By assuming that a body is rigid, the net force on
each boundary particle is computed according to the desig-
nated kernel function and smoothing length. Each boundary
particle k experiences a force per unit mass given by:

f k =
∑

b∈ f luid

f kb, (15)

where f kb is the force per unit mass exerted by the fluid
particle b on the boundary particle k. For the motion of rigid
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bodies, the basic equations of rigid body dynamics can then
be used:

M
dV
dt

=
∑

k∈body

mk f k, and (16)

I
dΩ

dt
=

∑
k∈body

mk(rk − r0) ∧ f k, (17)

where M is the mass of the object, I is the moment of inertia,
V is the linear velocity, Ω the angular velocity, rk position
of the particle k, and r0 the center of mass; ∧ indicates the
cross-product. Equations (16) and (17) are integrated in time
to predict the values of V and Ω at the beginning of the
next time step. Each boundary particle within the body has a
velocity given by:

vk = V + Ω ∧ (rk − r0). (18)

Finally, the boundary particles within the rigid body are
moved by integrating Eq. (18) in time. The presented for-
mulation for the dynamics of rigid bodies was proposed and
validated inMonaghan et al. [49],which shows that linear and
angular momentum are conservative properties. Validations
about buoyancy-driven motion are performed in Domínguez
et al., [25].

2.5 Coupling with Project Chrono Library

The DualSPHysics framework handles mechanical laws
among rigid bodies via the solvers provided by Project
Chrono (PC) [50]. The Project Chrono library has been
implemented into the original framework, creating an inte-
grated interface for simulating structure–structure interaction
as well, using various contact tracing features [51]. The
library is primarily developed to handle very large systems
of 3D rigid bodies [15]. The coupling allows for arbitrarily
shaped bodies to be considered, and the solver can inte-
grate externally applied forces and torques, and the effects
of kinematic-type restrictions, dynamic-type restrictions and
internal collisions.

Figure 2 summarizes the implementation strategy; Dual-
SPHysics computes the linear and angular acceleration of
floating objects following the interaction with fluid parti-
cles, passing the information { dVdt ; dΩ

dt } to theChronomodule
that integrates in time (using smaller time steps ΔtC H R),
the active (FA) and reactive (FR) forces exerted on bodies,
according to the Chrono scheme presented in Fig. 4. The
position R, angular Ω and linear velocity V computed by
Chrono are used by DualSPHysics to update the data of the
floating particles belonging to each floating object.

Fig. 2 Schematic flowchart of the coupled DualSPHysics–Project
Chrono code

The coupled DualSPHysics–Chrono code is employed in
this work to implement the DEM approach that is devel-
oped in Sect. 3. The connection between the two following
rigid bodies (trunks) is managed by a rotational hinge, which
applies a bending moment according to:

M(t) = ζ θ̇(t) + kθ(t), (19)

where ζ is the rotational damping, θ is the relative rotation
between two points, k is the rotational stiffness.

3 Co-rotating rigid beam

The widely used structural static theories compute deforma-
tion according to the internal stress of beams [52] solving
ordinary differential equations (ODE). These equations are
derived for thin beams according to the Euler–Bernoulli (EB)
hypotheses, combining kinematics and linear elasticity. The
former parameters can be resumed by the generalized func-
tions:

v = v(z),

ϕ(z) = −dv(z)

dz
; (20)

which represent the vertical displacement and rotation func-
tion of each cross section along the beam axis z, respectively.
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The linear elasticity theory, rather, links the kinematics to the
internal stress with the so-called constitutive bonds, among
which we consider only the flexural one:

dϕ(z)

dz
= M

E I
, (21)

with M being the bending moment, E the Young’s Modulus,
ans I the second moment of inertia of the cross section.

In this work, to numerically implement this formulation,
an equilibrium-based approach is followed, which allows the
direct extension of the model to the dynamic framework of
DualSPHysics. The approach is formulated on the dynamics
of rigid bodies, with suitably tuned reciprocal rotational con-
straints to reproduce the behavior of one-dimensional elastic
elements. The flexible beam is composed of several trunks
connected by rotational hinges, whose motion is defined by
the rotation values in each of the relative constraints [35,53].

3.1 Numerical discretization

Being the focus of this study on elastic beams in an
SPH-based framework, the numerical discretization of the
governing equation for bending beams is purposely devel-
oped to allow its use for simulating dynamic phenomena.
The EB formulation is well-established and widely used in
the statical structural analysis; by only considering the flex-
ural behavior of the beam costs a limited error in most of
engineering applications.

To beginwith, the vertical displacement function v = v(z)
can be discretized, with the finite element representation,
as a series of local defined low-order functions ψi which
interpolates between the vi = v(i) values:

v(z) ≈
∑

i

ψivi , with i = 1, . . . , N + 1. (22)

In the case that ψi is a first-order polynomial, the approx-
imation is linear, which can be materially represented by
rigid elements, hereafter referred as trunks. The numerical
properties of the interpolation polynomials are physically the
position and length of the trunks, whose terminal cross sec-
tions locate rotational hinges. The positions of the hinges
related to the j-th trunk, identified, respectively, as i and
i + 1, can be given by a single rotational parameter, namely
ϕi (Fig. 3). The displacement u of the point i + 1 is known
once the angle ϕi (rotation in i) is defined; from the rigid
body kinematics:

ui+1 = ϕi × ri,i+1, (23)

where ri,i+1 = ri+1 − ri
.= Δz j , and assuming ϕ =

{ϕi , 0, 0}. In the two-dimensional EB framework, it becomes:

vi+1 = sin ϕiΔz j , with j = 1, . . . , N . (24)

The generic hinge abscissa z(i)
.= zi , with respect to a

rectilinear beam of length L and thickness hb, the z-axis
being axis of symmetry in the plane {x2, z} is identified as
the beam is divided in N trunks of dimensions:

Δz = L

N
, (25)

if the discretization step is constant. The dimension of the
beam along x1 is considered unitary. It is clear that to repro-
duce the displacement function, the value of the rotation of
each trunk is needed, together with simple rigid dynamics
considerations.

3.1.1 Discrete constitutive bond

In order to use this numerical discretization in a dynamic
framework, a further consideration is needed: the unknown
of the problem, ϕi , can be calculated directly from an equi-
librium equation if a finite version of the flexural constitutive
bond is provided, considering that the bendingmoment in two
consecutive sections is proportional to their relative rotation.
When the length of the trunk is small enough, it is possible
to assume that Δz � dz, and thus this rotation value can
be considered finite. The passage from infinitesimal to finite
quantities,

dϕ � Δϕ = Δz

E I
M, (26)

obviously comes at a cost: the approximation error, and it
depends on the number of trunks, as for N → ∞, Δz → 0.
The obtained finite value of rotationΔϕ, being the j-th trunk
rigid, can be lumped in one of its points, namely the rotational
hinge i placed on the initial section:

ϕi
E I

Δz j=i
= Mi , (27)

where ϕi is the local rotation and Mi is the total reactive
moment.Once the length of the trunk is assigned, the constant
quantities can be isolated and named rotational stiffness of
the generic hinge:

Kϕ,i
.= E I

Δz j=i
. (28)

Equation (27) describes the rotation of every trunk that
composes the beam; knowing itsmechanical and geometrical
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Fig. 3 General discretization
scheme of one-dimensional
beams: the significant quantities
are displayed

Δzj=ii i+1

φi
vi+1

Δzj+1Δzj-1

i+2i-1

Hinges 

Rigid trunks

approximated displacement function

i

Fj

i+1 i+2i-1

bij=Gj-zi

L

1 N+1
hb

Mi

v(z)

x1 x2

z

characteristics, and the moment applied at the generic hinge,
it yields:

Mi
.=

N∑
k= j

Mik =
N∑

k= j

bik Fk, (29)

where Fj is the resultant of the forces applied on Δz j , and
bi j is the lever arm, defined as the distance between the i-th
hinge of coordinate zi and the center of gravity of the j-th
trunk of coordinate G j .

3.1.2 Co-rotating cantilevered beam

The proposed numerical model is developed for a can-
tilevered beam, and this static scheme will be utilized for
validations.
Boundary conditionsTheBCs for the aforementioned scheme
need to be imposed. The first trunk presents one fixed cross
section, so its rotation is null, while the remaining sections
can rotate; the displacement and rotation values in the left-
most cross section (z = 0) follow:

v|z=0 = 0, and

v′|z=0 = 0 = 0. (30)

However, this condition is not fully utilized: a hinge is
used in its stead, which fulfills the condition on the linear dis-
placement, but not on the rotation. To motivate this choice,
let us consider the second hinge: this point has abscissa
z = Δz with a nonzero vertical displacement, provided by
Eq. (27). The equation’s dependence is given by only ϕi=1,
which is null only when M1 = 0. Having the first trunk
a finite dimension and by considering it entirely fixed may
cause the numerical solution to have an initial, unrecoverable
error, due to the BC on the v′. This last geometrically corre-

sponds to a point with horizontal tangent. Since the number
of trunks N is also a computational parameter, the dimension
of Δz is usually large to be used as a finite representation of
the tangent in z = 0. Thus, ϕi=1 can be evaluated considering
the bending deformation of a semi-fixed trunk.

The flexural constitutive bond provides that the bending
moments acting on both cross sections Σ(z) and Σ(z + dz)
are equal, and, as a first approximation, it can be consid-
ered constant along Δz too. Therefore, the bending moment,
being the only nonzero component of the generalized ten-
sion, leads to assume that the rotations of the ending sections
of each trunk are symmetrical. When one of these sections is
fixed, the resulting rotation belongs to the deformable section
only. Thus, the rotation is halved, and it can be considered as
belonging to a trunk with length Δz

2 . The rotational stiffness
of the first trunk, hence, is:

Kϕ,i=1
.= 2E I

Δz j=i
. (31)

Displacement function Thanks to the rigid body kinematics,
the vertical displacement function can be built by solving the
N equilibrium equations for the N hinges. Let

ϕi =
i∑

k=1

ϕk (32)

be the total rotation of the i-th hinge; thus,

vi+1 = Δz j=i sin ϕi (33)

is the local vertical displacement of the section zi+1, and

vi =
i∑

k=1

vk (34)
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Fig. 4 Scheme of the flexible
element composed of rigid
bodies (floating objects) and
rotational hinges

T

trunk
mass=hbΔzρ

particles per section 
dp=T/pps

rotational hinge
Kφ=EI/Δz

Δz=L/N

G

L

is the total vertical displacement. This numerical approach,
being based on equilibrium (Eq. (27)), can be naturally
extended in the dynamic framework of DualSPHysics and
Project Chrono, once the governing free parameters N and
the stiffness related to each hinge Kφ are assigned.

4 Validation

The proposed procedure for modeling flexible objects in
DualSPHysics uses the DEM module implemented in the
Project Chrono Library. The flexible elements are modeled
according toFig. 4,with rigid objectsmutually linkedbyelas-
tic hinges, characterized by a preimposed value of rotational
stiffness. The sensitivity analysis is carried out considering
the free parameters:

– N—number of rigid trunks composing the flexible ele-
ment;

– pps—defined as the number of particles per straight cross
section, given as:

pps
.= T

dp
, (35)

where T is the thickness of the beam, and dp the initial
inter-particle distance.

4.1 Equilibrium of a cantilever elastic plate under
gravity

The performance of the developedDEM-SPHmodel is firstly
verified by reproducing the static displacement function of
a cantilevered elastic beam under gravity. The structural
scheme for this test resembles the set of trunks and hinges
shown in Fig. 4, in which the axis of the beam can be con-
sidered perpendicular to the gravity direction. The results,
with respect to resolution and number of trunks, are vali-
dated against the elastic line equation (static), which for a
cantilevered beam under an uniformly distributed vertical
load gives:

van(z) = q L2z2

4E I
− q Lz3

6E I
+ qz4

24E I
, (36)

Table 1 Physical parameters for the static test from Antoci et al. [55]

Parameter Plate Unit

Length (L) 0.079 m

Thickness (T ) 0.005 m

Density (ρs ) 1100 kg/m3

Young’s modulus (Es ) 12.00 MPa

Force per unit of mass (g) 9.81 ms−2

Table 2 Physical parameters for the case proposed in Khayyer et al.
[8]

Parameter Plate Unit

Length (L) 0.200 m

Thickness (T ) 0.020 m

Density (ρs ) 1000 kg/m3

Young’s modulus (Es ) 2.00 MPa

Poisson ratio (ν) 0.40 –

Force per unit of mass (g) 0.0 ms−2

where q is the distributed load accounting the effects of grav-
ity, E is the Young’s modulus, I is the second moment of
inertia of the cross section.

The geometrical and mechanics characteristics here uti-
lized are reported in Table 1, which are taken from [54]. The
length-to-thickness ratio classifies this cantilevered beam
into the class of long beams, making it suitable for being
described by the EB theory, despite the high deformability
due to the low Young’s modulus. It is altogether necessary
to validate the model with rubber-like materials since all the
following benchmarks involve such material. The relative
displacement of the cantilever free-end, v(L)/L , is of the
order of the 3%, stating the validity of the analytical solution
proposed as reference (Eq. 36).

The equilibrium in the DualSPHysics framework is
reached thanks to a mild value of damping assigned into
Eq. (19) (term ζ ), which does not affect the beam final
deformed shape. As shown in Fig. 5a, b, the DEM-SPH
solver delivers increasing agreement as the number of springs
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Fig. 5 Displacement function with different number of trunks: pps = 4 (a) and pps = 10 (b)

and trunks increases, regardless of pps. The numerical out-
come is contrasted against the analytical solution (dashed
black line) provided by Eq. (36) by using the mechani-
cal and geometric properties in Table 1. The maximum
agreement is achieved when N = 20 is used; it shows
proper reproduction of the displacement function , with
an L1 error smaller than 0.1% and an L∞ smaller than
0.2%.

The influence of resolution can be appreciated in the
zooms in Fig. 5b, where a perfect match (L1 < 0.01%)
is shown when the initial particle spacing dp is 1/10 of the
beam thickness T , whereas in Fig. 5a, with a mean value
of resolution, the gap around the centerline of the cantilever
appears sensible.

4.2 Free oscillating cantilever elastic beam

In this section, the co-rotating beam is tested under dynamic
conditions. The benchmark herein considered is the case first
used by Monaghan [56], and more recently in [8], built upon
the solution provided in standard text books. The theory
of a cantilevered thin oscillating plate with one edge fixed
and the other edges free can be found in Landau and Lifšic
[36]. A two-dimensional solution of the middle plane line
of the system is considered. The geometry of the plate is
described by its length L along the z axis, and its thickness
T : these dimensions, along with the mechanical properties,
are listed in Table 2. It is subjected to an initial veloc-
ity distribution, perpendicular to the axis, according to the
function:

vz = ξcs
f (z)

f (L)
, (37)

Fig. 6 Discretization scheme of the oscillating cantilever with N = 10,
and the initial velocity distribution related to each trunk center of gravity

where

f (z) = (cos kw L + cosh kw L)

(cosh kwz − cos kwz)

+(sin kw L − sinh kw L)

(sinh kwz − sin kwz).

(38)

In Eq. (37), ξ is equal to 0.01 and cs is the speed of sound
within the body, whereas kw is the wave number (kw L =
1.875 for the first mode of vibration). The frequency of the
oscillation is given by:

ω1 = (kw L)2
1

L2

√
E I

ρ A
, (39)

with the corresponding period being

T1 = 2π

ω1
. (40)
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Fig. 7 Time histories of the
deflections at the free-end of the
oscillating cantilever elastic
plate, with pps = 4 (a) and
pps = 10 (b)
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The generic free oscillation analytic function, with respect
to the k − th modal form, is given by:

uk(z, t) = [Ak cos(ωk t) + Bk sin(ωk t)]
(
sin

ωk

H
z
)

, (41)

with H =
√

E
ρ
; considering the fundamental mode of vibra-

tion, it becomes:

u1(z, t) = ξc

ω1
sin(ω1t). (42)

Before discussing the results, it is important to under-
line that the initial velocity function, obviously defined as
continuous (Eq. (37)), is translated in the model applying
a numerical velocity value at each trunk’s center of gravity
depending on their position, as shown in Fig. 6. It follows that
not only does the discretization (i.e., the number of elements
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Table 3 Period and amplitude error of the free-oscillating cantilever
plate benchmark

N Period error [%] Amplitude error [%]
pps = 4 pps = 10 pps = 4 pps = 10

5 6.99 0.29 3.23 1.39

10 0.29 0.29 0.91 0.82

20 0.29 0.29 0.69 0.61

30 0.29 0.29 0.58 0.60

N ) influence the accuracy within the computation process,
but also in assigning the initial conditions (IC). Figure 7a,
b present the results of the DualSPHysics simulations with
two different resolutions. As highlighted in the static test, the
agreement increases as the number of trunks and hinges does,
and the accuracy is enhanced by higher values of resolution.
This may be due to the way the coupling works; the Chrono
module evaluates the bodies dynamics using the geometri-
cal properties computed according to the SPH discretization.
Thus, a higher resolution guarantees a better reproduction
of the geometry. The inset zoom in Fig. 7b highlights the
minimum loss of precision after three complete oscillations.

Table 3 presents the period and amplitude errors (L∞)
of the free-oscillating cantilevered plate for the cases shown
in Fig. 7, including another case with N = 5, which is not
reported in the charts for the sake of clarity. Note that the
period error remains unchanged, and very limited, over the
different N values and for the two resolutions, except for the
first simulation. The model correctly addresses the physics
of the phenomenon regardless of the number of trunks and
of the initial particle spacing. These parameters become rele-

Table 4 Physical parameters for the case proposed in Liao et al. [54]

Parameter Plate Unit

Length (L) 0.090 m

Thickness (T) 0.004 m

Density (ρs ) 1114 kg/m3

Young’s modulus (Es ) 3.50 MPa

Poisson ratio (ν) 0.50 –

Force per unit of mass (g) –9.81 ms−2

vant when evaluating the amplitude error that decreases with
a high number of trunks, and further lowered by finer reso-
lution; the displacement magnitude of the reference point is
clearly affected by the discretization parameters.

4.3 FSI validation: Dambreak flow impacting a
flexible obstacle

The benchmark proposed by Liao et al. [54] is used to assess
the fluid–structure interaction capability of the presented
model. The case reproduces a breakingwater column impact-
ing a rubber plate in a pseudo two-dimensional confined
environment, in which multi-phase effects become relevant
for the correct simulation of the obstacle displacement. How-
ever, the impact of the water column and the ensuing flow
over the flexible obstacle can be accurately simulated for the
first 0.80 s of test.

Figure 8 illustrates a lateral view of the simulation set-
up, which was designed such that if the dynamics of the
fluid and the plate is described by two-dimensional variables,

Fig. 8 Geometrical
configuration of the dambreak
test, with a detailed view of the
geometry of the rubber plate
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Fig. 9 a Horizontal
displacement of the three
markers with N = 10 and
pps = 10; b comparison
between the present model and
other numerical references
[9,54] for the marker #1
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the error will be minimized. The water column of 0.20-m
height is kept in place by a gate till time t = 0 s, when the
gate starts moving upward following a gravity-accelerated
motion, the law of which was reconstructed by [10] from the
original data given in [54]. The geometrical and mechanical
characteristics of the flexible obstacle are reported in Table
4; it was equipped, during the experimental campaign, with
three markers placed at different heights (highlighted in the
zoomed view in Fig. 8), the motion of which is regarded as
the main reference parameter to validate the present model.

Prior to the full validation of the proposed FSI simulation
procedure, it is convenient to introduce the following cor-
rective procedure. The Young’s modulus that is reported in
[54] must be corrected to account for the different theories
that describe the dynamics of beams and plates. Plate flexu-
ral rigidity follows from a different constitutive law, and in

order to reproduce the same physics, the following corrected
Young’s modulus is considered:

Ês = Es

1 − ν2
, (43)

where ν = 0.50 would be the optimum choice for reproduc-
ing rubber-like material behavior. The value of the Young’s
modulus used to compute the parameters Kϕ,i in Eq. (28) is
Ês = 4.67 MPa.

The SPH particle boundary conditions treatment used for
this model is exposed in Sect. 2.3: the use of the mDBCs on
every surface, including the flexible obstacle, enhances the
simulation as the fluid-phase approaches dry walls, avoid-
ing the small gap observed with the traditional DBCs. This
improvementwill also provide amore efficient pressure com-
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Fig. 10 Dambreak numerical test: comparison between photos from experiment [54] (left column) and the proposed numerical results (right) at
different instants of time
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putation in further investigations, allowing to deepen the
study of this FSI phenomenon.

In Fig. 9a, the horizontal displacement of the threemarkers
is displayed, with N = 10 and pps = 10: it is possible to
notice a small phase delay between the DualSPHysics and
experimental results (shifted by 0.04 s), likely due to the gate
motion, which also influences the stage of the first impact
between the fluid flow and the obstacle (Fig. 10). It results in
a slightly different deformed shape when the impact occurs
(approximately at t = 0.32 s, displayed in Fig. 10), and in
the lack of initial negative motion of the first marker, better
understandable from Fig. 9b.

After this stage, the results appear in good agreement with
the reference, reproducing properly the displacement of the
three markers and, hence, the deformed shape of the flexible
element. In Fig. 9b, the results for the marker placed near to
the free-end are pairedwith the FEMmodel from [54] and the
multi-phase SPH model from [9]: the proposed DEM-SPH
model better reproduces the maximummagnitude of the dis-
placement, while pays in assessing some slight oscillations
that may come from higher modes of vibration of the beam.
This is due to two reasons: the first, and most important, is
that the motion of the obstacle consists in a composition of
rotations, being the considered behavior only flexural, and
thus it is not possible to reproduce high modes of vibration
that include sudden effects from elastic waves propagation.
Secondly, the simulations in DualSPHysics are performed in
single phase. This specific aspect plays a secondary role in
the distribution of forces on to the obstacle — more regular
if there were not air cavities within the fluid flow — but it
results in amajor issue when considering the stage of the sec-
ond impact; the complex multi-phase flow motion occurring
after the impact of the fluidmasswith the right-hand sidewall
is not reproduced in the present simulation, resulting in an
accentuated negative motion of the markers (approximately
at (t = 0.85) s, Fig. 9(b)).

This difference between the models justifies the lack of
agreement in the second part of the simulation, where the
proposed model is not able to trace the reference results.
The SPH-DEM, nevertheless, shows accuracy in addressing
such complex applications, being able to properly reproduce
the time history of the deformation of the obstacle until the
multiphase-related effects remain secondary, as shown in
Fig. 10 that reports several screenshots of the first simulation
instants. The discretization parameter N does not evidently
affects the results, while the resolution dp mainly governs
the accuracy of the fluid phase and the fidelity of the forces
transferred to the Chronomodule. To keep the computational
cost at a reasonable level, the simulations were performed
with N = 10, being the stand-alone beam behavior already
validated in Sects. 4.1 and 4.2 with a similar configuration.

5 Conclusions

A novel method based on a lumped elasticity formulation
has been developed and implemented within the SPH-based
framework of DualSPHysics, augmented with the multibody
solver Project Chrono library. The former is able to com-
pute the interaction between fluids and the solid objects that
make up flexible elements, whereas the latter provides the
solution of the equation of the motion for each object accord-
ing to active and reactive forces. The behavior of this set of
elements is governed by mutual rotational hinges, the stiff-
ness of which is tuned to mimic the flexural behavior of thin
one-dimensional elements. This approach makes the most
out of the fluid–solid interaction computation capability of
the DualSPHysics solver, in which the mutual exchange of
forces, pressure, viscous stress between fluid and structure
plays a fundamental, and not negligible, role.

Despite the restrictive assumptions of the EB beam theory,
whichmakes it suitable for structures that have limited defor-
mation, it is widely used in nearly all the stages of structural
analysis. The presentedmodel relies on the same hypotheses,
but has been shown to have a broader application range; in the
proposed validations, the flexibility of the rubber-like mate-
rials is clearly out of the limitations imposed by the beam
theory, but anyway properly reproduced and simulated. This
is due to the fact that once the flexible elements relying on
the classical two-dimensional elasticity theory are modeled,
the deformations of such entities consist of a set of rigid
bodies moving in accordance with Newton’s equations, par-
ticularized with respect to themutual constraints. High-order
effects, necessary when tackling the study of extreme defor-
mations with a theoretical approach, are inherently included
into the simulation because of the Lagrangian nature of the
environment the elements live in.

In the inherent dynamic framework of DualSPHysics and
Project Chrono, the potentialities of the proposed model
remarkably raise; the meshfree nature of the SPH method
allows extreme deformation with ease, keeping clearly rec-
ognizable the interface between fluids and structures without
time-costing and laborious re-meshing procedures, aside of
a very efficient body force computation, which occurs simul-
taneously to solid and fluid sets of particles, within the
homogeneous simulation domain. Themotion of solid bodies
computedby theChronomodule, using the forces transmitted
by DualSPHysics, completes and defines, with all the afore-
mentioned characteristics, the DEM-SPH numerical model.

The proposed mathematical procedure and the relative
numerical approach have been proved to be:

– robust and reliable, in spite of its simplified formulation
that omits effects not due to bending moments;

– able to reproduce deformations of elements well out of
the limits of the EB theory;
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– relatively easy to implement, not requiring modifications
in the source codes;

– suitable for reproduce hydroelastic phenomena which
involve beam-like structures (e.g., dynamic impacts,
time-variant load conditions).

The model has exhibited satisfying agreement in simu-
lating the heterogeneous benchmarks, ensuring good perfor-
mance in various physical situations, and it motivates to pro-
mote enhancing models following the presented approach.
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