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NOVEL CONCEPTS IN VAGUE INCIDENCE GRAPHS WITH

APPLICATION

N. FARHANG1, Y. TALEBI1∗, §

Abstract. Fuzzy graph (FG) models enjoy the ubiquity of being in natural and human-
made structures, namely dynamic process in physical, biological, and social systems. As
a result of inconsistent and indeterminate information inherent in real-life problems,
which are often uncertain, it is highly difficult for an expert to model those problems
based on an FG. Vague incidence graph (VIG) can deal with the uncertainty associated
with the inconsistent and determinate information of any real-world problem, where FGs
may fail to reveal satisfactory results. Also, VIGs are outstandingly practical tools for
analyzing different computer science domains such as networking, clustering, capturing
the image, and also other issues such as medical sciences, and traffic planning. Hence, in
this research, we introduce new operations on VIGs, namely, maximal product, rejection,
and residue product with several examples. Likewise, some results related to operations
have been described.
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1. Introduction

Vague sets are denoted as a higher-order fuzzy sets which develop the solution procedure
which are more complex to obtain the more accurate results than fuzzy sets but not
affecting the complexity on computation time/volume and memory space. FG-models
are beneficial mathematical tools for addressing the combinatorial problems in various
fields involving research, optimization, algebra, computing, environmental science and
topology. Fuzzy graphical models are obviously better than graphical models because
of the natural existence of vagueness and ambiguity. In 1965 [30], the fuzzy set theory
was first proposed by Zadeh. Fuzzy set theory is a very powerful mathematical tool for
solving approximate reasoning related problems. By presenting the VS notion through
changing the value of an element in a set with a sub-interval of [0, 1], Gau and Buehrer
[11] introduced and structured the vague set theory. Specifically, a true membership
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function of tv(x) and false membership function of fv(x) are used to define the boundaries
of the membership degree. An immediate result of a rise of popularity of fuzzy set theory
initiated by Rosenfeld [18] who introduced the concept of a fuzzy graph. The concept of a
domination in an FG was introduced by Somasundaram [26]. Many researchers, notably
Talebi and Rashmanlou [29], studied new application of the concept of domination in
vague graphs (VGs). Akram et al. [1, 2, 3] described several concepts and results of
FGs. Samanta et al. [27, 28] represented fuzzy competition graphs, and some remarks
on bipolar fuzzy graphs. Borzooei et al. [4, 5, 6, 7] investigated new concepts of VGs.
Rashmanlou et al. [19, 20, 21, 22, 23, 24, 25] analyzed new results in vague graphs. The
incidence graphs can generally be represented as a triple (V,E, I), where V is a finite set
of vertices and E is a finite set of edges, and I ⊆ V × E is an incidence function which
indicates its end vertices for each edge whether the edge is directed (1) or not (0). If
an edge e is directed, then, the first element and the second element of I(e) denote the
origin vertex and the destination vertex, respectively. The origins of the concept of an
incidence graph is often attributed to Brualdi and Massey [8] who have been dealing with
the incidence and incidence chromatic number. The fuzzification of the incidence graphs
was proposed by Dinesh [9, 10] and among later contributions, a special place belongs to
the works by Mordeson and his colleagues, notably Mathew, Mordeson and Malik [12], or
Mordeson and Mathew [13, 14, 15, 16].

A VIG is referred to as a generalized structure of an FG that delivers more exactness,
adaptability, and compatibility to a system when matched with systems running on FGs.
Also, a VIG is able to concentrate on determining the uncertainity coupled with the
inconsistent and indeterminate information of any real-world problem, where FGs may
not lead to adequate results. Hence, in this paper, we introduced new operations on VIG,
namely, maximal product, rejection, and residue product with several examples.

2. Preliminaries

A graph is a pair of G = (V,E) which satisfies E ⊆ V × V . The elements of V (G) and
E(G) are the nodes and edges of the graph G, respectively.

An FG is of the from G = (σ, µ) which is a pair of mapping σ : V → [0, 1] and
µ : V × V → [0, 1] as defined as µ(x, y) ≤ σ(x) ∧ σ(y), ∀x, y ∈ V and µ is a symmetric
fuzzy relation on σ and ∧ denotes the minimum.

A (VS) A is a pair (tA, fA) on the set V where tA and fA are taken as real valued
functions which can be defined on V → [0, 1], so that tA(x)+fA(x) ≤ 1, for all x belonging
to V . The interval [tA(x), 1 − fA(x)] is known as the vague value of x in A. tA(x), in
this definition, is taken for the degree of membership as the lower bound when x in A and
fA(x) is the lower bound for the membership negative of x in A.

Definition 2.1. [17] A pair of G = (A,B) is said to be a VG on a crisp graph G = (V,E),
where A = (tA, fA) is a VS on V and B = (tB, fB) is a VS on E ⊆ V × V so that
tB(xy) ≤ min(tA(x), tA(y)) and fB(xy) ≥ max(fA(x), fA(y)), for each edge of xy ∈ E.
A VG G is called strong if tB(xy) = min(tA(x), tA(y)) and fB(xy) = max(fA(x), fA(y)),
for each edge of xy ∈ E. A VG G is called complete if tB(xy) = min(tA(x), tA(y)) and
fB(xy) = max(fA(x), fA(y)), for every vertex of x, y ∈ V

Definition 2.2. [5] A vague graph G is said to be connected if t∞B (mimj) > 0, f∞B (mimj) <
1, for all mi,mj ∈ V . Also, we have:

t∞B (mn) = sup{tB(mn1)∧tB(n1n2)∧tB(n2n3)∧· · ·∧tB(nk−1n)|m,n1, n2, · · · , nk−1, n ∈ V },
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and

f∞B (mn) = inf{fB(mn1)∨fB(n1n2)∨fB(n2n3)∨· · ·∨fB(nk−1n)|m,n1, n2, · · · , nk−1, n ∈ V }.

Definition 2.3. [8] Let G = (V,E) be a graph. Then, G∗ = (V,E, I) is called an incidence
graph, so that I ⊆ V × E. If V = {m,n}, E = {mn} and I = {(m,mn)}, then, (V,E, I)
is an incidence graph even though (n,mn) /∈ I. The pair (m,mn) is called an incidence
pair or simply a pair. If (m,mn), (n,mn), (n, nz), (z, nz) ∈ I, then, mn or nz are called
adjacent edges.

Definition 2.4. [10] Let G∗ = (V,E, I) be an incidence graph and σ be a fuzzy subset of
V and µ a fuzzy subset of E. Let φ be a fuzzy subset of I. If φ(v, xy) ≤ σ(v)∧ µ(x, y) for
all v ∈ V and xy ∈ E, then, φ is called a fuzzy incidence of graph G∗ and G = (σ, µ, φ) is
called an FIG of G∗.

Example 2.1. Consider a VG G so that V = {x, y, z} and E = {xy, xz, yz}, as shown
in Figure 1. By a simple calculation, it is easy to see that G is a vague graph.
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Figure 1. Vague graph of G

3. Vague incidence graph

A natural follow-up to the concept of VG, outlined in the previous section, is the concept
of a VIG which will now be presented with its main properties. Also, we will discuss a
very important concept of domination on VIG.

Definition 3.1. ψ = (A,B,C) is called a VIG of underlying crisp incidence graph G∗ =
(V,E, I) if:

A = {(tA(v), fA(v))|v ∈ V },
B = {(tB(xy), fB(xy))|xy ∈ E},
C = {(tC(v, xy), fC(v, xy))|(v, xy) ∈ I},

so that

tB(xy) ≤ tA(x) ∧ tA(y),

fB(xy) ≥ fA(x) ∨ fA(y),

tC(v, xy) ≤ tA(v) ∧ tB(xy),

fC(v, xy) ≥ fA(v) ∨ fB(xy), v ∈ V, xy ∈ E,
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and

0 ≤ tA(v) + fA(v) ≤ 1,

0 ≤ tB(xy) + fB(xy) ≤ 1,

0 ≤ tC(v, xy) + fC(v, xy) ≤ 1.

A vague incidence graph ψ is called strong if tB(xy) = tA(x)∧ tA(y), fB(xy) = fA(x)∨
fA(y), tC(v, xy) = tA(v) ∧ tB(xy), and fC(v, xy) = fA(v) ∨ fB(xy), for all xy ∈ E.

Example 3.1. Consider an incidence graph G∗ = (V,E, I) so that V = {m,n, k, t},
E = {mn, nk, kt,mt} and I = {(m,mn), (n, nm), (n, nk), (k, kn), (n, nt), (t, tn), (k, kt),
(t, tk), (t, tm), (m,mt)} as shown in Figure 2.

It is easy to show that G = (A,B,C) is a VIG of G∗ as shown in Figure 3 where
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Figure 2. Incidence of graph G∗
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Definition 3.2. If ψ = (A,B,C) is a VIG, then, H = (A′, B′, C ′) is a VI-subgraph of
ψ whenever A′ ⊂ A, B′ ⊂ B and C ′ ⊂ C. A vague incidence graph ψ is called complete
if tB(xy) = tA(x) ∧ tA(y), fB(xy) = fA(x) ∨ fA(y), tC(v, xy) = tA(v) ∧ tB(xy), and
fC(v, xy) = fA(v) ∨ fB(xy), for all x, y ∈ V .

Definition 3.3. Let G1 = (A1, B1, C1) and G2 = (A2, B2, C2) be two vague incidence
graph with underlying crisp incidence of graph G∗1 = (V1, E1, I1) and G∗2 = (V2, E2, I2),
respectively. G1 ∗G2 = (A,B,C) is called maximal vague incidence graph G∗ = (V,E, I)
where V = V1×V2 and E1 = {(m1, n1)(m2, n2)|m1 = m2, n1n2 ∈ E2 or n1 = n2, m1m2 ∈
E1}.

Vague vertex set of A and vague relation of B and vague incidence of C in maximal
product G1 ∗G2 = (A,B,C) are defined as: A = A1 ∗A2

1)

 (tA1 ∗ tA2)(m,n) = max{tA1(m), tA2(n)}
(fA1 ∗ fA2)(m,n) = min{fA1(m), fA2(n)},

for all (m,n) ∈ V = V1 × V2

2)

 (tB1 ∗ tB2)((m1, n1)(m2, n2)) = max{tA1(m1), tB2(n1n2)}
(fB1 ∗ fB2)((m1, n1)(m2, n2)) = min{fA1(m1), fB2(n1n2)},

m1 = m2, n1n2 ∈ E2,

3)

 (tB1 ∗ tB2)((m1, n1)(m2, n2)) = max{tA2(n1), tB1(m1m2)}
(fB1 ∗ fB2)((m1, n1)(m2, n2)) = min{fA2(n1), fB1(m1m2)},

m1m2 ∈ E1, n1 = n2,

4)

 (tC1 ∗ tC2)((m1,m1n1)(m2,m2n2)) = max{tA1(m1), tB2(n1n2)}
(fC1 ∗ fC2)((m1,m1n1)(m2,m2n2)) = min{fA1(m1), fB2(n1n2)},

m1 = m2, n1n2 ∈ E2,

5)

 (tC1 ∗ tC2)((m1,m1n1)(m2,m2n2)) = max{tA2(n1), tB1(m1m2)}
(fC1 ∗ fC2)((m1,m1n1)(m2,m2n2)) = min{fA2(n1), fB1(m1m2)},

m1m2 ∈ E1, n1 = n2.

Example 3.2. Consider two VIG of G1 and G2 as shown in Figure 4. Their maximal
product of G1 ∗G2 is shown in Figure 5.
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Figure 4. VIG G1 and G2.
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Figure 5. G1 ∗G2 maximal product of G1 and G2.

Theorem 3.1. The maximal product of two VIG of G1 and G2 is a VIG, too.

Proof. Let G1 = (A1, B1, C1) and G2 = (A2, B2, C2) be two VIG and ((m1,m2)(n1, n2)) ∈
E1 × E2. Then, by Definition 3.3, we have two cases.
(i) m1 = n1 = m

(tB1 ∗ tB2)((m,m2)(m,n2)) = max{tA1(m), tB2(m2n2)}
≤ max{tA1(m),min{tA2(m2), tA2(n2)}}
= min{max{tA1(m), tA2(m2)},max{tA1(m), tA2(n2)}}
= min{(tA1 ∗ tA2)(m,m2), (tA1 ∗ tA2)(m,n2)},

(fB1 ∗ fB2)((m,m2)(m,n2)) = min{fA1(m), fB2(m2n2)}
≥ min{fA1(m),max{fA2(m2), fA2(n2)}}
= max{min{fA1(m), fA2(m2)},min{fA1(m), fA2(n2)}}
= max{(fA1 ∗ fA2)(m,m2), (fA1 ∗ fA2)(m,n2)},

(tC1 ∗ tC2)((m,m1n1)(m,n2m2)) = max{tA1(m), tB2(m2n2)}
≤ max{tA1(m),min{tA2(m2), tA2(n2)}}
= min{max{tA1(m), tA2(m2)},max{tA1(m), tA2(n2)}}
= min{(tA1 ∗ tA2)(m1,m1m2), (tA1 ∗ tA2)(m2,m1n2)},

(fC1 ∗ fC2)((m,m1n1)(m,n2m2)) = min{fA1(m), fB2(m2n2)}
≥ min{fA1(m),max{fA2(m2), fA2(n2)}}
= max{min{fA1(m), fA2(m2)},min{fA1(m), fA2(n2)}}
= max{(fA1 ∗ fA2)(m1,m1m2), (fA1 ∗ fA2)(m2,m1n2)}.
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(ii) If m2 = n2 = z

(tB1 ∗ tB2)((m1, z)(n1, z)) = max{tB1(m1n1), tA2(z)}
≤ max{min{tA1(m1), tA1(n1)}, tA2(z)}
= min{max{tA1(m1), tA2(z)},max{tA1(n1), tA2(z)}}
= min{(tA1 ∗ tA2)(m1, z), (tA1 ∗ tA2)(n1, z)},

(fB1 ∗ fB2)((m1, z)(n1, z)) = min{fB1(m1n1), fA2(z)}
≥ min{max{fA1(m1), fA1(n1)}, fA2(z)}
= max{min{fA1(m1), fA2(z)},min{fA1(n1), fA2(z)}}
= max{(fA1 ∗ fA2)(m1, z), (fA1 ∗ fA2)(n1, z)},

(tC1 ∗ tC2)((m1,m1n1)(m2,m2n2)) = max{tB1(m1n1), tA2(z)}
≤ max{min{tA1(m1), tA1(n1)}, tA2(z)}
= min{max{tA1(m1), tA2(z)},max{tA1(n1), tA2(z)}}
= min{(tA1 ∗ tA2)(m1, z), (tA1 ∗ tA2)(n1, z)},

(fC1 ∗ fC2)((m1,m1n1)(m2,m2n2)) = min{fB1(m1n1), fA2(z)}
≥ min{max{fA1(m1), fA1(n1)}, fA2(z)}
= max{min{fA1(m1), fA2(z)},min{fA1(n1), fA2(z)}}
= max{(fA1 ∗ fA2)(m1, z), (fA1 ∗ fA2)(n1, z)}.

�

Theorem 3.2. The maximal product of two strong VIGs of G1 and G2 is a strong VIG.

Proof. LetG1 = (A1, B1, C1) andG2 = (A2, B2, C2) be two strong VIGs and ((m1,m2)(n1, n2)) ∈
E1 × E2. Then, by Theorem 3.1, G1 ∗G2 is a VIG. Now, we have two cases:
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Case (i). If m1 = n1 = m

(tB1 ∗ tB2)((m1,m2)(m,n2)) = max{tA1(m), tB2(m2n2)}
= max{tA1(m),min{tA2(m2), tA2(n2)}}
= min{max{tA1(m), tA2(m2)},max{tA1(m), tA2(n2)}}
= min{(tA1 ∗ tA2)(m,m2), (tA1 ∗ tA2)(m,n2)},

(fB1 ∗ fB2)((m,m2)(m,n2)) = min{fA1(m), fB2(m2n2)}
= min{fA1(m),max{fA2(m2), fA2(n2)}}
= max{min{fA1(m), fA2(m2)},min{fA1(m), fA2(n2)}}
= max{(fA1 ∗ fA2)(m,m2), (fA1 ∗ fA2)(m,n2)},

(tC1 ∗ tC2)((m,m1n1)(m,n2m2)) = max{tA1(m), tB2(m2n2)}
= max{tA1(m),min{tA2(m2), tA2(n2)}}
= min{max{tA1(m), tA2(m2)},max{tA1(m), tA2(n2)}}
= min{(tA1 ∗ tA2)(m1,m1m2), (tA1 ∗ tA2)(m2,m1n2)},

(fC1 ∗ fC2)((m,m1n1)(m,n2m2)) = min{fA1(m), fB2(m2n2)}
= min{fA1(m),max{fA2(m2), fA2(n2)}}
= max{min{fA1(m), fA2(m2)},min{fA1(m), fA2(n2)}}
= max{(fA1 ∗ fA2)(m1,m1m2), (fA1 ∗ fA2)(m2,m1n2)}.

Case (ii). If m2 = n2 = z

(tB1 ∗ tB2)((m1, z)(n1, z)) = max{tB1(m1n1), tA2(z)}
= max{min{tA1(m1), tA1(n1)}, tA2(z)}
= min{max{tA1(m), tA2(z)},max{tA1(n1), tA2(z)}}
= min{(tA1 ∗ tA2)(m1, z), (tA1 ∗ tA2)(n1, z)},

(fB1 ∗ fB2)((m1, z)(n1, z)) = min{fB1(m1n1), fA2(z)}
= min{max{fA1(m1), fA1(n1)}, fA2(z)}
= max{min{fA1(m1), fA2(z)},min{fA1(n1), fA2(z)}}
= max{(fA1 ∗ fA2)(m1, z), (fA1 ∗ fA2)(n1, z)},

(tC1 ∗ tC2)((m1,m1n1)(m2,m2n2)) = max{tB1(m1n1), tA2(z)}
= max{min{tA1(m1), tA1(n1)}, tA2(z)}
= min{max{tA1(m1), tA2(z)},max{tA1(n1), tA2(z)}}
= min{(tA1 ∗ tA2)(m1, z), (tA1 ∗ tA2)(n1, z)},

(fC1 ∗ fC2)((m1,m1n1)(m2,m2n2)) = min{fB1(m1n1), fA2(z)}
= min{max{fA1(m1), fA1(n1)}, fA2(z)}
= max{min{fA1(m1), fA2(z)},min{fA1(n1), fA2(z)}}
= max{(fA1 ∗ fA2)(m1, z), (fA1 ∗ fA2)(n1, z)}.

Therefore, G1 ∗G2 is a strong VIG. �

Example 3.3. Consider the strong VIGs of G1 and G2 as Figure 6.
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A(0.2, 0.3)y

B(0.1, 0.4)

x

(0.1, 0.4)

(0.1, 0.4)

(0.1, 0.4)

(a) G1

C(0.1, 0.2)y

D(0.2, 0.4)

x

(0.1, 0.4)

(0.1, 0.4)

(0.1, 0.4)

(b) G2

AC(0.2, 0.2) AD(0.2, 0.3)

BC(0.1, 0.2) BD(0.2, 0.4)

(0.1, 0.2)

(0.1, 0.2)←
−

(0.1, 0.2)−→

(0.2, 0.3)

(0.2, 0.3)
−→

(0.2, 0.3)
←−

(0.1, 0.4)

(0.1, 0.4)−→ (0.1, 0.4)←−

(0.2, 0.4)

(0.2, 0.4) ←
−

(0.2, 0.4) −→

(c) G1 ∗G2

Figure 6. Vague incidence graphs of G1, G2 and G1 ∗G2.

It is easy to see that G1 ∗G2 is a strong VIG, too.

Remark 3.1. If the maximal product of two VIGs of G1 and G2 is a strong, then, G1

and G2 need not to be strong, in general.

Example 3.4. Consider the VIGs G1 and G2 as Figure 7. We can see that the maximal
product of two VIGs G1 and G2 is G1 ∗G2 in Figure 8.

A(0.2, 0.6) B(0.3, 0.5)(0.2, 0.6)

(0.2, 0.6)−→ (0.2, 0.6)←−

(a) G1

C(0.2, 0.6) D(0.2, 0.7)(0.1, 0.7)

(0.1, 0.7)−→ (0.1, 0.7)←−

(b) G2

Figure 7. VIGs of G1 and G2.

AC(0.2, 0.6) AD(0.2, 0.6)

BC(0.3, 0.5) BD(0.3, 0.5)

(0.2, 0.6)

(0.2, 0.6) ←
−

(0.2, 0.6) −→

(0.2, 0.6)

(0.2, 0.6)−→ (0.2, 0.6)←−

(0.3, 0.5)

(0.3, 0.5)
−→

(0.3, 0.5)
←−

(0.2, 0.6)

(0.2, 0.6)←
−

(0.2, 0.6)−→

Figure 8. G1 ∗G2.

Clearly, G1 and G1 ∗G2 are strong VIGs, but G2 is not strong.
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Remark 3.2. The maximal product of two complete VIGs is not a complete vague inci-
dence graph, in general. Because we do not include the case (m1,m2) ∈ E1 and (n1, n2) ∈
E2 in the definition of the maximal product of two vague incidence graphs.

Remark 3.3. The maximal product of two complete VIGs is a strong vague incidence
graph.

Example 3.5. Consider the complete VIGs G1 and G2 as in Figure 6. A simple calcula-
tion concludes that G1 ∗G2 is a strong VIG.

Theorem 3.3. The maximal product of two connected VIGs is a connected vague incidence
graph.

Proof. Let G1 and G2 be two connected VIGs where V1 = {m1,m2, . . . ,mk} and V2 =
{n1, n2, . . . , nk}. Then, t∞B1

(mimj) > 0, for all mi,mj ∈ V1 and t∞B2
(ninj) > 0, for all

ninj ∈ V2 or f∞B1
(mimj) < 1, for all mi,mj ∈ V1 and f∞B2

(ninj) < 1, for all ninj ∈ V2. The
maximal product of G1 and G2 can be taken as G = (A,B). Now, consider the ‘k’ as the
subgraphs of G with the vertex set of {(mi, n1), (mi, n2), . . . , (mi, ns)}, for i = 1, 2, . . . , k.
Each of these subgraphs of G is connected, since the mi’s are the same and since G2

is connected, each ni is adjacent to at least one of the vertices in V2. Also, since G1

is connected, each xi is adjacent to at least one of the vertices in V1. Hence, there
exists at least one edge between any pair of the above ‘k’ subgraphs. Thus, we have
t∞B ((mi, nj)(mm, nn)) > 0 (or f∞B ((mi, nj)(mm, nn)) < 1), for all ((mi, nj)(mm, nn)) ∈ E.
Hence, G is a connected vague incidence graph. �

Definition 3.4. The rejection of G1|G2 of the two VIG G1 = (A1, B1, C1) and G2 =
(A2, B2, C2) is defined as:

1)

{
(tA1 |tA2)((m,n)) = min{tA1(m), tA2(n)}
(fA1 |fA2)((m,n)) = max{fA1(m), fA2(n)}, for all (m,n) ∈ V1 × V2,

2)

 (tB1 |tB2)((m,m2)(m,n2)) = min{tA1(m), tA2(m2), tA2(n2)}
(fB1 |fB2)((m,m2)(m,n2)) = max{fA1(m), fA2(m2), fA2(n2)}
for all m ∈ V1 and m2n2 /∈ E2,

3)

 (tB1 |tB2)((m1,m)(n1,m)) = min{tA1(m1), tA1(n1), tA2(m)}
(fB1 |fB2)((m1,m)(n1,m)) = max{fA1(m1), fA1(n1), fA2(m)}
for all m ∈ V2 and m1n1 /∈ E1,

4)

 (tB1 |tB2)((m1,m2)(n1, n2)) = min{tA1(m1), tA1(n1), tA2(m2), tA2(n2)}
(fB1 |fB2)((m1,m2)(n1, n2)) = max{fA1(m1), fA1(n1), fA2(m2), fA2(n2)}
for all m1n1 /∈ E1 and m2n2 /∈ E2,

5)

 (tC1 |tC2)((m,m1m2)(m,n1n2)) = min{tA1(m), tA1(m1m2), tA2(n1n2)}
(fC1 |fC2)((m,m1m2)(m,n1n2)) = max{fA1(m), fA1(m1m2), fA2(n1n2)}
for all m ∈ V1 and m1m2 /∈ E1,

6)

 (tC1 |tC2)((m1m2,m)(n1n2,m)) = min{tA1(m1m2), tA2(m), tA2(n1n2)}
(fC1 |fC2)((m1m2,m)(n1n2,m)) = max{fA1(m1m2), fA2(m), fA2(n1n2)}
for all m ∈ V2 and n1n2 /∈ E2,

7)

 (tC1 |tC2)((m1,m1m2)(n1, n1n2)) = min{tA1(m1), tA1(m1m2), tA2(n1), tA2(n1n2)}
(fC1 |fC2)((m1,m1m2)(n1, n1n2)) = max{fA1(m1), fA1(m1m2), fA2(n1), fA2(n1n2)}
for all m1m2 /∈ E1 and n1n2 /∈ E2.

Proposition 3.1. The rejection of the two VIGs is not a VIG in general.
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Example 3.6. Consider two vague incidence graphs of G1 and G2 as Figure 9. It is easy
to show that the rejection of G1 and G2 is not vague incidence graph.

A(0.1, 0.2)

B(0.2, 0.4) C(0.3, 0.5)

(0
.1
, 0
.5

)
←−(0
.1
, 0
.6
)

−→(0
.1
, 0
.7
)

−→
(0.1, 0.8)

←−
(0.1, 0.9)

(0.1, 0.8)

(a) G1

D(0.1, 0.3)

F (0.4, 0.5)

E(0.2, 0.6)

(0
.1
, 0
.6

) ←−
(0
.1
, 0
.7
)

−→
(0
.1
, 0
.8
)

−→(0.1, 0.9)

←−
(0.1, 0.7)

(0.1, 0.7)

(b) G2

Figure 9. Vague incidence graph (VIG) of G1 and G2.

AD(0.1, 0.3)

CD(0.1, 0.5)

CF (0.3, 0.5)

CE(0.2, 0.6)

BF (0.2, 0.5)

BE(0.2, 0.6)

BD(0.1, 0.4)

AF (0.1, 0.5)

AE(0.1, 0.6)

(0.1, 0.6)

(0.1, 0.5)

(0.1, 0.6)(0.2, 0.5)

(0.1, 0.6)

(0.2, 0.6)

(0
.1
, 0
.6
)

Figure 10. Rejection of two VIG.
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Definition 3.5. The residue product of G1 •G2of two VIG G1 = (A1, B1, C1) and G2 =
(A2, B2, C2) is defined as:

1)(tA1 • tA2)((m1,m2)) = max{tA1(m1), tA2(m2)}
(fA1 • fA2)((m1,m2)) = min{fA1(m1), fA2(m2)}, forall (m1,m2) ∈ V1 × V2,

2)(tB1 • tB2)((m1,m2)(n1, n2)) = tB1(m1n1)

(fB1 • fB2)((m1,m2)(n1, n2)) = fB1(m1n1), for all m1n1 ∈ E1, m2 6= n2,

3)(tC1 • tC2)((m1,m1m2)(n1, n1n2)) = tC1(m1n1)

(fC1 • fC2)((m1,m1m2)(n1, n1n2)) = fC1(m1n1), for all m1n1 ∈ E1, m2 6= n2,

Example 3.7. Consider VIGs of G1 and G2 in Figure 11. The residue product of G1 and
G2 (G1 ∗G2) is shown in Figure 12.

A(0.1, 0.3) B(0.2, 0.4)

C(0.3, 0.5)

←
−

−→
(0

.1
,
0
.8
)

(0.1, 0.7)

(0
.1
,
0
.9
)

−→ ←−(0.1, 0.8)

(0.1, 0.6)

(0.1, 0.7)

(a) G1

E(0.2, 0.6)

F (0.1, 0.5)

←
−

−→

(0.1, 0.8)

(0.1, 0.7)

(0.1, 0.9)

(b) G2

Figure 11. VIGs of G1 and G2.

AE(0.2, 0.3) AF (0.1, 0.3)

CF (0.3, 0.5) BE(0.2, 0.4)

CE(0.3, 0.5) BF (0.2, 0.4)

(0
.1
, 0
.7
)

←−(0
.1
, 0
.9
)

−→(0
.1
, 0
.8
)

(0.1, 0.6)

−→
(0.1, 0.8)

←−
(0.1, 0.7)(0

.1
, 0
.7

)
←−(0
.1
, 0
.9
)

−→(0
.1
, 0
.8
)

(0.1, 0.6)

−→
(0.1, 0.8)

←−
(0.1, 0.7)

Figure 12. Residue product of VIGs.

Proposition 3.2. The residue product of two VIG of G1 and G2 is a VIG.
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Proof. Let G1 = (A1, B1, C1) and G2 = (A2, B2, C2) be two VIG and ((m1,m2)(n1, n2)) ∈
E1 × E2. If m1n1 ∈ E1 and m2 6= n2, then, we have

(tB1 • tB2)((m1,m2)(n1, n2)) = tB1(m1n1) ≤ min{tA1(m1), tA1(n1)}
≤ max{min{tA1(m1), tA1(n1)},min{tA2(m2), tA2(n2)}}
= min{max{tA1(m1), tA1(n1)},max{tA2(m2), tA2(n2)}}
= min{(tA1 • tA2)(m1,m2), (tA1 • tA2)(n1, n2)},

(fB1 • fB2)((m1,m2)(n1, n2)) = fB1(m1n1) ≥ max{fA1(m1), fA1(n1)}
≥ min{max{fA1(m1), fA1(n1)},max{fA2(m2), fA2(n2)}}
= max{min{fA1(m1), fA1(n1)},min{fA2(m2), fA2(n2)}}
= max{(fA1 • fA2)(m1,m2), (fA1•A2)(n1, n2)},

(tC1 • tC2)((m1,m1m2)(n1, n1n2)) = tC1(m1n1) ≤ min{tC1(m1), tC1(n1)}
≤ max{min{tC1(m1), tC1(n1)},min{tC2(m1m2), tC2(n1n2)}}
= min{max{tC1(m1), tC1(n1)},max{tC2(m1m2), tC2(n1n2)}}
= min{(tC1 • tC2)(m1, n1), (tC1 • tC2)(m1m2, n1n2)},

(fC1 • fC2)((m1,m1m2)(n1, n1n2)) = fC1(m1n1) ≥ max{fC1(m1), fC1(n1)}
≥ min{max{fC1(m1), fC1(n1)},max{fC2(m1m2), fC2(n1n2)}}
= max{min{fC1(m1), fC1(n1)},min{fC2(m1m2), fC2(n1n2)}}
= max{(fC1 • fC2)(m1, n1), (fC1 • fC2)(m1m2, n1n2)}.

�

4. Applications

Today, the issue of serving the people is one of the most important issues that gov-
ernments should take very seriously, because the greater the level of people’s satisfaction,
the better the development of that country, as well as the growth and prosperity of that
country’s economy will be.

One of the most important services to the people is the establishment of banks and
banking services. In fact, governments should set up the required banks according to the
population of a city and how people have access to them, so that people can do their
banking activities in the shortest possible time and in the shortest distance.

So in this application we are going to explain this further with the help of an ambiguous
graph. Hence, suppose that A, B, and C are three branches of a Bank in a city. We
consider these three branches and their relationship on a vague incidence graph. Let’s
consider that these branches are the vertex of graph G, and their relationship is shown
on the edge of the graph. Now we consider special weight for each branch and name it
“I” according to the amount of traffic of customers who have to go from one branch to
another to do their banking activities during the day.

I = {(A,AC), (C,CA), (C,CB), (B,BC), (B,BA), (A,AB), (D,DE), (E,ED)}.
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Table 1. The ability of bank staff to serve the people.
Name of banks A B C D E

tA 0.1 0.2 0.2 0.1 0.3
fA 0.3 0.4 0.6 0.8 0.4

Table 2. The degree of influence of bank staff on each other.
Edges AB AC BC DE
tB 0.1 0.1 0.2 0.1
fB 0.4 0.7 0.8 0.9

Table 3. The amount of customer traffic from one bank branch to another branch.
Incidence edges (A, AC) (C, CA) (C, CB) (B, BC)

Weight (0.1, 0.8) (0.1, 0.9) (0.1, 0.8) (0.1, 0.9)
Incidence edge (B, BA) (A, AB) (D, DE) (E, ED)

Weight (0.1, 0.6) (0.1, 0.5) (0.1, 0.9) (0.1, 0.9)

A(0.1, 0.3)

B(0.2, 0.4) C(0.2, 0.6)

(0
.1
, 0
.4
)

←−(0
.1
, 0
.5
)

−→(0
.1
, 0
.6
)

−→
(0.1, 0.8)

←−
(0.1, 0.9)

(0.1, 0.7)

−→
(0.1, 0.9)

←−
(0.1, 0.8)

(0.2, 0.8)

Figure 13. Vague incidence graph of G

The vertex B shows that the Bank B employees have only 20% of the power needed
to do banking services to the public, and unfortunately do not have the 40% percentage
knowledge needed to do so. Today, there is a lot of competition between banks to attract
customers and create deposits in banks, and this has led to very weak friendly relations
between branches. For example, the BC edge shows that there are only 20% of the
friendships between these two branches of the bank, and unfortunately they have 80% of
the differences. The incidence edge of (A,AC) indicates that only 10% of the customers
go from Branch A to C and do about 80% of their banking activities in Branch A.

The other two bank branches are shown in Figure 14.
Then, we can consider the Maximal product of graph G and graph G′ at follows.
As we can see in Figure 15, with the integration of branches, the ability of branch

employees to respond to people and also the level of friendly relations between branch
staff have increased sharply because with the integration of employees, information is
exchanged between staff. This will make serving the people faster. For example, the
vertex of AD(0.1, 0.3) shows that the ability of the employees of this branch has reached
10% and they do not have only 30% of the necessary information. Also for (AE,CE) edge,
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D(0.1, 0.8)y

E(0.3, 0.4)

x

(0.1, 0.9)

(0.1, 0.9)

(0.1, 0.9)

Figure 14. Vague incidence graph of G′

AD(0.1, 0.3)

AE(0.3, 0.3)

BE(0.3, 0.4)

BD(0.2, 0.4)

CE(0.3, 0.4)

CD(0.2, 0.6)

(0.1, 0.3)

(0.1, 0.3)
−→

−→

(0.1, 0.3)

−→

(0
.1
, 0
.5
)

(0
.1
, 0
.4
)

(0
.1
, 0
.6
)

−→

−→
(0
.1
,
0
.8
)

(0
.1
,
0
.7
)

−→

(0
.1
,
0
.8
)

(0.3, 0.4) ←−

−→
(0.3, 0.4)

(0.3, 0.4)

(0
.3
, 0
.4
) ←−

(0
.3
, 0
.4
)

−→(0
.3
, 0
.4
)

←−
−→ (0.1, 0.8)

(0.2, 0.8)
(0.1, 0.8)

(0.2, 0
.6) ←−

(0.2
, 0.6

)

−→
(0.2

, 0.6
)

←
−

−→
(0
.3
,
0
.4
)

(0
.3
,
0
.4
)

(0
.3
,
0
.4
)

(0
.2
,
0
.4
)

−→
←
−

(0
.2
,
0
.4
)

(0
.2
,
0
.4
)

Figure 15. Maximal product of graph G ∗G′.

as we see, the staff effectiveness between these two banks has increased to 30%, which is
very useful and valuable. Finally, in the case of the incidence edges, it should be noted
that people can now more freely decide which branch to invest in, so the number of people
moving to different branches has increased during the aggregation of branches, which is
evident in Figure 15.

Therefore, governments should provide the necessary facilities to the banks so that they
can be integrated, which will make serving the people faster, and the employees will be
able to serve the people better by providing the necessary information. Finally, people
can choose the best option by deciding on the facilities of each branch and their time will
be saved.
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5. Conclusion

It is well known that graphs are among the most ubiquitous models of both natural
and human made structures. They can be used to model many types of relations and
process dynamics in computer science and biological, social and physical systems. So,
we have applied the concept of vague sets to vague incidence graph. We have discussed
some operations on vague incidence graph with several examples. In our future work, we
will define vague incidence soft graph, cubic vague incidence graph, bondage number and
non-bondage number of vague incidence graph, and give some applications that will be
useful in our daily life.
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