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NABLA FRACTIONAL BOUNDARY VALUE PROBLEM WITH A

NON-LOCAL BOUNDARY CONDITION

N. S. GOPAL1, J. M. JONNALAGADDA1∗, §

Abstract. In this work, we deal with the following two-point boundary value problem
for a finite fractional nabla difference equation with non-local boundary condition:{

−
(
∇ξρ(e)u

)
(z) = p(z, u(z)), z ∈ Nfe+2,

u(e) = g(u), u(f) = 0.

Here e, f ∈ R, with f−e ∈ N3, 1 < ξ < 2, p : Nfe+2×R→ R is a continuous function, the

functional g ∈ C[Nfe → R] and ∇ξρ(e) denotes the ξth- order Riemann–Liouville backward

(nabla) difference operator.
First, we derive the associated Green’s function and some of its properties. Using the

Guo–Krasnoselskii fixed point theorem on a suitable cone and under appropriate condi-
tions on the non-linear part of the difference equation, we establish sufficient conditions
for the existence of at least one positive solution to the boundary value problem. Next,
we discuss the uniqueness of the solution to the considered problem. For this purpose,
we use Brouwer and Banach fixed point theorem respectively. Finally, we provide an
example to illustrate the applicability of established results.

Keywords: Nabla fractional difference, boundary value problem, positive solution, fixed
point, existence.
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1. Introduction

Over the last few decades, the theory of fractional calculus has been extensively devel-
oped due to its properties, generalising most results of differential calculus and its non-
local nature of fractional derivatives. A robust theory of fractional differential equations
for functions of a real variable has arisen from the contributions of various mathematicians
over the course of three centuries. Its origins can be traced back to the letter written by
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Leibniz on September 30, 1695. In the last three decades, fractional calculus has been suc-
cessfully employed for mathematical modelling in health research, computational biology,
finance, physics, and a variety of engineering subjects and also while doing so, various def-
initions of fractional derivatives were put forward, enabling its theory and applications in
new directions, such a recent few can be found in [26, 27, 28, 29]. We refer to a few classic
texts on fractional calculus by the following authors for more applications and historical
literature Miller–Ross [24], Samko et al. [30], Podlubny [25] and Kilbas et al. [22].

On the other side of the coin, fractional nabla calculus is a branch of mathematics
that deals with arbitrary order differences and sums in the backward sense. The theory
of fractional nabla calculus is relatively young, with the most prominent works done in
the past decade. The notion of nabla fractional difference and sum can be traced back
to the work of Gray and Zhang[11] and Miller and Ross[24]. Following their work, the
contributions of several mathematicians have made this theory a fruitful field of research in
science and engineering. We refer here to a recent monograph by Goodrich and Peterson[7]
and the references therein, which is an excellent source for all those who wish to work in
this field.

The study of boundary value problems (BVPs) has a long past and can be followed
back to the work of Euler and Taylor on vibrating strings. On the discrete fractional
side, there is a sudden growth in interest in the development of fractional nabla BVPs.
Many authors have studied fractional nabla BVPs recently. To name a few, Ahrendt et
al. [4], Goar [10], and Ikram [20] worked with self-adjoint Caputo nabla BVP. Brackins
[5] studied a particular class of self-adjoint Riemann–Liouville nabla BVP and derived
the Green’s function associated with it along with a few of its properties. Gholami et al.
[6] obtained the Green’s function for a non-homogeneous Riemann–Liouville nabla BVP
with Dirichlet boundary conditions. Jonnalagadda [12, 13, 14, 15, 16, 17] analysed some
qualitative properties of two-point non-linear Riemann–Liouville nabla BVPs associated
with a variety of boundary conditions. Goodrich [8] has analysed fractional BVPs with a
non-local condition in the delta case.

We consider the following boundary value problem with non-local condition{
−(∇ξρ(e)u)(z) = p(z, u(z)), z ∈ Nfe+2

u(e) = g(u), u(f) = 0,
(1)

where e, f ∈ R, with f − e ∈ N3, 1 < ξ < 2, p : Nfe+2 × R → R and the functional

g ∈ C[Nfe → R] is continuous.
The present article is organised as follows: Section 2 contains a few preliminaries on

discrete fractional nabla calculus. In Section 3, we construct Green’s function and state
a few of its properties. In Section 4, we establish the existence of the positive solution
using Guo-Kranoselskii fixed point theorem on cones. In Section 5, we obtain sufficient
conditions on the uniqueness of the solution for the proposed class of boundary value
problem using Brouwer and Contraction mapping theorems, respectively. Finally, we
conclude this article with an example.

2. Preliminaries

Denote the set of all real numbers by R. We will use the following notations, definitions,
and known results of fractional nabla calculus [2, 7]. Assume empty sums and products
are 0 and 1, respectively.
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Definition 2.1. For e ∈ R, the sets Ne and Nfe , where f − e ∈ Z+, are defined by

Ne = {e, e+ 1, e+ 2, ...}, Nfe = {e, e+ 1, e+ 2, ..., f}.

Definition 2.2. We define the backward jump operator, ρ : Ne+1 −→ Ne, by

ρ(z) = z − 1, z ∈ Ne+1.

Let v : Ne → R and M ∈ N1. The first order nabla difference of v is defined by(
∇v
)
(z) = v(z)− v(z− 1) for z ∈ Ne+1, and the M th-order nabla difference of v is defined

recursively by
(
∇Mv

)
(z) =

(
∇
(
∇M−1v

))
(z) for z ∈ Ne+M .

Definition 2.3. Let z ∈ R\{. . . ,−2,−1, 0} and r ∈ R such that (z+r) ∈ R\{. . . ,−2,−1, 0},
the generalized rising function is defined by zr = Γ(z+r)

Γ(z) , 0r̄ = 0. Here Γ(·) denotes the

Euler gamma function.

Definition 2.4 (See [7, 17]). Let κ ∈ R \ {. . . ,−2,−1}. The κth-order fractional nabla
Taylor monomial is given by

Hκ(z, e) =
(z − e)κ

Γ(κ+ 1)
=

Γ(z − e+ κ)

Γ(z − e)Γ(κ+ 1)
,

given the right-hand side exists.

We observe the following properties of the fractional nabla Taylor monomials,

(1) Hκ(e, e) = 0,
(2) ∇Hκ(z, e) = Hκ−1(z, e),

(3)

z∑
s=e+1

Hκ(s, e) = Hκ+1(z, e),

(4)

z∑
s=e+1

Hκ(z, ρ(s)) = Hκ+1(z, e),

(5) H−k(z, e) = 0, ∀ k ∈ N1,
(6) Hk+1(z, ρ(e))−Hk(z, ρ(e)) = Hk+1(z, e).

Lemma 2.1 (See [17, 20]). Let κ > −1 and s ∈ Ne. Then the following hold:

(1) If z ∈ Nρ(s), then Hκ(z, ρ(s)) ≥ 0, and if z ∈ Ns, then Hκ(z, ρ(s)) > 0.
(2) If z ∈ Ns and −1 < κ < 0, then Hκ(z, ρ(s)) is an increasing function of s.
(3) If z ∈ Ns+1 and −1 < κ < 0, then Hκ(z, ρ(s)) is a decreasing function of z.
(4) If z ∈ Nρ(s) and κ > 0, then Hκ(z, ρ(s)) is a decreasing function of s.
(5) If z ∈ Nρ(s) and κ ≥ 0, then Hκ(z, ρ(s)) is a non-decreasing function of z.
(6) If z ∈ Ns and κ > 0, then Hκ(z, ρ(s)) is an increasing function of z.
(7) If 0 < v ≤ κ then Hv(t, a) ≤ Hκ(z, e), for each fixed z ∈ Ne.
(8) (e−s)ξ−1

(f−s)ξ−1
is a decreasing function of s for s ∈ Ne−1

0 , where 1 < ξ < 2 and f > e.
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Proof. (8) It is enough to show that ∇s
(

(e−s)ξ−1

(f−s)ξ−1

)
< 0.

∇s

(
(e− s)ξ−1

(f − s)ξ−1

)
=
−(f − s)ξ−1(ξ − 1)(e− ρ(s))ξ−2 + (e− s)ξ−1(ξ − 1)(f − ρ(s))ξ−2

(f − s)ξ−1(f − ρ(s))ξ−1

=
(ξ − 1)

(
−(f − s)(f − ρ(s))ξ−2(e− ρ(s))ξ−2 + (e− s)(e− ρ(s))ξ−2(f − ρ(s))ξ−2

)
(f − s)ξ−1(f − ρ(s))ξ−1

=
(ξ − 1)(f − ρ(s))ξ−2(e− ρ(s))ξ−2(−f + s+ e− s)

(f − s)ξ−1(f − ρ(s))ξ−1
.

Since f > e, we have (−f + e) < 0. Hence the result follows. The proof is
complete. �

Definition 2.5 (See [7]). Let v : Ne+1 → R and ν > 0. The νth-order nabla sum of v is
given by

(
∇−νe v

)
(z) =

∑z
s=e+1Hν−1(z, ρ(s))u(s), z ∈ Ne+1.

Definition 2.6 (See [7]). Let v : Ne+1 → R, ν > 0 and choose M ∈ N1, such that
M − 1 < ν ≤M . The νth-order Riemann–Liouville nabla difference of v is given by(

∇νev
)
(z) =

(
∇M

(
∇−(M−ν)
e v

))
(z), z ∈ Ne+M .

Lemma 2.2 (See [2, 7]). The following fractional nabla Taylor monomials are well defined.

(1) Let ν > 0 and κ ∈ R. Then, ∇−νe Hκ(z, ρ(e)) = Hκ+ν(z, ρ(e)), z ∈ Ne.
(2) Let ν, κ ∈ R and M ∈ N1 such that M − 1 < ν ≤M . Then,

∇νeHκ(z, ρ(e)) = Hκ−ν(z, ρ(e)), z ∈ Ne+M .

We state here the nabla Laplace transform, and a few properties for the same, from [7].

Definition 2.7 (See [4, 7]). Assume p : Ne+1 → R. Then, the nabla Laplace transform
of p is defined by Le[p(r)] =

∑∞
k=1(1− r)k−1p(e+ k), for those values of r, such that this

infinite series converges.

Theorem 2.1 (See [4, 7]). Assume v > 0 and the nabla Laplace transform of p : Ne+1 → R
converges for |r − 1| < s for some s > 0. Then, for |r − 1| < min{1, s},

Le{∇−ve p}(r) =
1

rv
Le{p}(r).

Theorem 2.2 (See [7]). Assume p : Ne+1 → R has exponential order s > 0 and 0 < v < 1.
Then for |r − 1| < s, Le{∇vep}(r) = rvLe{p}(r).

Lemma 2.3 (See [7]). Given p : Ne+1 → R and q ∈ N1, we have that

Le+q{p}(s) =

(
1

1− s

)q
Le{p}(s)−

q∑
k=1

f(e+ k)

(1− s)q−k+1
.

Theorem 2.3 (See [7]). Assume v > 0 and M − 1 < v ≤M . Then, a general solution of
∇vex(z) = 0 is given by x(z) = c1Hv−1(z, e)+c2Hv−2(z, e)+· · ·+cMHv−M (z, e), for z ∈
Ne.
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3. Construction of Green’s Function

In this section, we establish a formula for the Green’s function of our boundary value
problem (1) and also establish a few properties of the same, which will be used in the rest
of the sections.

Theorem 3.1 (See [5, 12]). The fractional nabla boundary value problem

−(∇ξρ(e)u)(z) = h(z), z ∈ Nfe+2, (2)

u(e) = u(f) = 0,

where e, f ∈ R, with f − e ∈ N3, 1 < ξ < 2 and h : Nfe+2 → R, has the unique solution

u(z) =

f∑
s=e+2

G(z, s)h(s), z ∈ Nfe , (3)

where G(z, s) is the Green’s function, given by

G(z, s) =

G1(z, s) = (z−e)ξ−1

(f−e)ξ−1

(f−s+1)ξ−1

Γ(ξ) , for s > z,

G2(z, s) = (z−e)ξ−1

(f−e)ξ−1

(f−s+1)ξ−1

Γ(ξ) − (z−s+1)ξ−1

Γ(ξ) , for s ≤ z.
(4)

Lemma 3.1. The solution of the homogeneous fractional nabla boundary value problem
with non-local condition {

−(∇ξρ(e)w)(z) = 0, z ∈ Nfe+2,

w(e) = g(w), w(f) = 0,
(5)

is given by

w(z) = g(w)
(f − z
f − e

)(z − e+ 1)ξ−2

Γ(ξ − 1)
, z ∈ Nfe . (6)

Proof. The general solution of the equation −(∇ξρ(e)w)(z) = 0, is given by

w(z) = c1(z − e+ 1)ξ−1 + c2(z − e+ 1)ξ−2, z ∈ Nfe , (7)

where c1 and c2 are arbitrary constants. Using w(e) = g(w) and w(f) = 0, respectively in
(7), we get that

g(w)

Γ(ξ − 1)
= c1(ξ − 1) + c2,

0 = c1(f − e+ 1)ξ−1 + c2(f − e+ 1)ξ−2.

Now, solving the above system of equations for c1 and c2, we get

c1 = −g(w)(f − e+ 1)ξ−2

Γ(ξ − 1)(f − e)ξ−1
, c2 =

g(w)

Γ(ξ − 1)
+

(ξ − 1)g(w)(f − e+ 1)ξ−2

Γ(ξ − 1)(f − e)ξ−1
.
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Substituting c1 and c2 in (7) and using (6) of Definition 2.4, we get

w(z) =

[
−g(w)(f − e+ 1)ξ−2

Γ(ξ − 1)(f − e)ξ−1

]
(z − e+ 1)ξ−1

+

[
g(w)

Γ(ξ − 1)
+

(ξ − 1)g(w)(f − e+ 1)ξ−2

Γ(ξ − 1)(f − e)ξ−1

]
(z − e+ 1)ξ−2

= g(w)
(f − e+ 1)ξ−2

Γ(ξ − 1)(f − e)ξ−1

[
(z − e+ 1)ξ−2(ξ − 1)− (z − e+ 1)ξ−1

]
+ g(w)

(z − e+ 1)ξ−2

Γ(ξ − 1)

=
g(w)

Γ(ξ − 1)

[
(z − e+ 1)ξ−2 − (f − e+ 1)ξ−2

(f − e)ξ−1
(z − e)ξ−1

]

=
g(w)

Γ(ξ − 1)

[
(z − e+ 1)ξ−2

(z − e)ξ−1
− (f − e+ 1)ξ−2

(f − e)ξ−1

]
(z − e)ξ−1

=
g(w)

Γ(ξ − 1)

[
1

(z − e)
− 1

(f − e)

]
(z − e)ξ−1

=
g(w)

Γ(ξ − 1)

(f − z
f − e

)(z − e)ξ−1

(z − e)

= g(w)
(f − z
f − e

)(z − e+ 1)ξ−2

Γ(ξ − 1)
.

The proof is complete. �

Lemma 3.2. w satisfies the following property:

max
z∈Nfe

w(z) ≤ g(w), (8)

for all w ∈ C[Nfe → R].

Proof. Consider

max
z∈Nfe

w(z) = max
z∈Nfe

(f − z
f − e

)(z − e+ 1)ξ−2

Γ(ξ − 1)
g(w)

From Lemma 2.1, it follows that the function (z−e+1)ξ−2

Γ(ξ−1) is decreasing in terms of z. Thus,

we have

max
z∈Nfe

(z − e+ 1)ξ−2

Γ(ξ − 1)
=

(e− e+ 1)ξ−2

Γ(ξ − 1)
= 1,

and

max
z∈Nfe

(f − z
f − e

)
= 1.

Hence the result follows. The proof is complete. �

Theorem 3.2. Let p : Nfe+2 × R → R. The fractional nabla boundary value problem (1)
has the unique solution
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u(z) = w(z) +

f∑
s=e+2

G(z, s)p(s, u(s)), z ∈ Nfe ,

where G(z, s) and w is given by (4) and (6), respectively.

Theorem 3.3 (See [5, 12]). The Green’s function G(z, s) defined in (4) satisfies the
following properties:

(1) G(e, s) = G(f, s) = 0, for all s ∈ Nfe+1.

(2) G(z, e+ 1) = 0, for all z ∈ Nfe .
(3) G(z, s) > 0, for all (z, s) ∈ Nf−1

e+1 × Nfe+2.

(4) max
z∈Nf−1

e+1

G(z, s) = G(s− 1, s), for all s ∈ Nfe+2.

(5)
∑f

s=e+1G(z, s) ≤ λ, for all (z, s) ∈ Nfe × Nfe+1, where

λ =
( f − e− 1

ξΓ(ξ + 1)

)((ξ − 1)(f − e) + 1

ξ

)ξ−1
. (9)

4. Positive Solutions

In this section, we prove the existence of at least one positive solution for the following
standard non-linear fractional nabla boundary value problem with a non-local condition,
using Guo–Krasnoselskii fixed point theorem [21, 23] on a suitable cone.

Definition 4.1. Let B be a Banach space over R. A closed nonempty subset C of B is
said to be a cone provided,
(i) au+ bv ∈ C, for all u, v ∈ C and all a, b ≥ 0,
(ii) u ∈ C and −u ∈ C implies u = 0.

Definition 4.2. An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

Lemma 4.1 (See [1]). [Guo—Krasnoselskii fixed point theorem] Let B be a Banach space
and C ⊆ B be a cone. Assume that Ω1 and Ω2 are open sets contained in B such that
0 ∈ Ω1 and Ω1 ⊆ Ω2. Further, assume that T : C ∩ (Ω2 \ Ω1) −→ C is a completely
continuous operator. If, either

(1) ‖Tv‖ ≤ ‖v‖ for v ∈ C ∩ ∂Ω1 and ‖Tv‖ ≥ ‖v‖ for v ∈ C ∩ ∂Ω2; or
(2) ‖Tv‖ ≥ ‖v‖ for v ∈ C ∩ ∂Ω1 and ‖Tv‖ ≤ ‖v‖ for v ∈ C ∩ ∂Ω2;

holds, then T has at least one fixed point in C ∩ (Ω2 \ Ω1).

We establish the following lemmas, which will be used later in this article.

Theorem 4.1. There exits a number γ ∈ (0, 1), such that

min
z∈Ndc

G(z, s) ≥ γmax
t∈Nfe

G(z, s) = γG(s− 1, s), (10)

where, c, d ∈ Nf−1
e+1 , c = e+

⌈
f−e+1

4

⌉
and d = e+ 3

⌊
f−e+1

4

⌋
.

Proof. Using the properties of the Green’s function and Taylor monomial from Definition

2.4, Lemma 2.1 and Theorem 3.3 one has, for s ∈ Nfe+2,

G(z, s)

G(s− 1, s)
=


(z−e)ξ−1

(s−e−1)ξ−1
, for s > z,

(z−e)ξ−1

(s−e−1)ξ−1
− (z−s+1)ξ−1(f−e)ξ−1

(f−s+1)ξ−1(s−e−1)ξ−1
, for s ≤ z.
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Now, for s > z and c ≤ z ≤ d, G1(z, s) is an increasing function with respect to z. Then,

min
z∈Ndc

G1(z, s) =G1(c, s)

=
(c− e)ξ−1(f − s+ 1)ξ−1

(f − e)ξ−1Γ(ξ)
.

For z ≥ s and c ≤ z ≤ d, G2(z, s) is a decreasing function with respect to z. Then,

min
z∈Ndc

G2(z, s) =G2(d, s),

=
(d− e)ξ−1(f − s+ 1)ξ−1

(f − e)ξ−1Γ(ξ)
− (d− s+ 1)ξ−1

Γ(ξ)
.

Thus,

min
z∈Ndc

G(z, s) =


G2(d, s), for s ∈ Nce+2,

min (G2(d, s), G1(c, s)) , for s ∈ Nd−1
c+1 ,

G1(c, s), for s ∈ Nfd ,

=

{
G2(d, s), for s ∈ Nre+2,

G1(c, s), for s ∈ Nfr ,

where c < r < d. Consider

minz∈Ndc G(z, s)

G(s− 1, s)
=


(d−e)ξ−1

(s−e−1)ξ−1
− (d−s+1)ξ−1(f−e)ξ−1

(f−s+1)ξ−1(s−e−1)ξ−1
, for s ∈ Nre+2,

(c−e)ξ−1

(s−e−1)ξ−1
, for s ∈ Nfr .

Thus,

min
z∈Ndc

G(z, s) ≥ γ(s) max
z∈Nfe

G(z, s), (11)

where

γ(s) = min

[
(c− e)ξ−1

(s− e− 1)ξ−1
,

(d− e)ξ−1

(s− e− 1)ξ−1
− (d− s+ 1)ξ−1(f − e)ξ−1

(f − s+ 1)ξ−1(s− e− 1)ξ−1

]
.

Let for s ∈ Nfr , denote

γ1(s) =
(c− e)ξ−1

(s− e− 1)ξ−1

≥ (c− e)ξ−1

(f − e− 1)ξ−1
.

Similarly for s ∈ Nre+2, we take

γ2(s) =
1

(s− e− 1)ξ−1

[
(d− e)ξ−1 − (d− s+ 1)ξ−1(f − e)ξ−1

(f − s+ 1)ξ−1

]
.
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By Lemma 2.1, we see that (d−s+1)ξ−1

(f−s+1)ξ−1
is a decreasing function for s ∈ Nre+2,

γ2(s) ≥ 1

(s− e− 1)ξ−1

[
(d− e)ξ−1 − (d− e− 1)ξ−1(f − e)ξ−1

(f − e− 1)ξ−1

]

>
1

(d− e)ξ−1

[
(d− e)ξ−1 − (d− e− 1)ξ−1(f − e)ξ−1

(f − e− 1)ξ−1

]
.

Thus,

min
z∈Ndc

G(z, s) ≥ γmax
∈Nfe

G(z, s), (12)

where

γ = min

[
(c− e)ξ−1

(f − e− 1)ξ−1
, 1− (d− e− 1)ξ−1(f − e)ξ−1

(f − e− 1)ξ−1(d− e)ξ−1

]
.

Since G1(c, s) > 0 and G2(d, s) > 0, we have γ(s) > 0 for all s ∈ Nfe+2, implying γ > 0.

It would be sufficient to prove that one of the terms (c−e)ξ−1

(f−e−1)ξ−1
, 1− (d−e−1)ξ−1(f−e)ξ−1

(f−e−1)ξ−1(d−e)ξ−1
is

less then 1. It follows from Lemma 2.1 that

(c− e)ξ−1

(f − e− 1)ξ−1
< 1.

Therefore we conclude that γ ∈ (0, 1). The proof is complete. �

Lemma 4.2. If g is non-negative, then there exists a constant γ ∈ (0, 1), such that

min
z∈Ndc

f∑
s=e+2

G(z, s)p(s, u(s)) + min
z∈Ndc

[
g(u)

(f − z
f − e

)(z − e+ 1)ξ−2

Γ(ξ − 1)

]

≥ γmax
z∈Nfe

f∑
s=e+2

G(z, s)p(s, u(s)) + γmax
z∈Nfe

[
g(u)

(f − z
f − e

)(z − e+ 1)ξ−2

Γ(ξ − 1)

]
.

Proof. From Theorem 4.1, we observe that there exits γ ∈ (0, 1), such that

min
z∈Ndc

G(z, s) ≥ γmax
z∈Nfe

G(z, s),

thus, we have

min
z∈Ndc

f∑
s=e+2

G(z, s)p(s, u(s)) ≥
f∑

s=e+2

min
z∈Ndc

G(z, s)p(s, u(s))

≥γ
f∑

s=e+2

max
z∈Nfe

G(z, s)p(s, u(s))

≥γmax
z∈Nfe

f∑
s=e+2

G(z, s)p(s, u(s)).

Consider w,

w(z) = g(u)
(f − z
f − e

)(z − e+ 1)ξ−2

Γ(ξ − 1)
, z ∈ Nfe+2.
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From Lemma 3.2, we have

w(z) ≤ g(u).

We deduce the existence of M > 0, such that

min
z∈Ndc

Hξ−2(z, ρ(e))
(f − z
f − e

)
= M.

Let γ0 = M ,

min
z∈Ndc

Hξ−2(z, ρ(e))
(f − z
f − e

)
g(u) = γ0 max

z∈Nfe
Hξ−2(z, ρ(e))

(f − z
f − e

)
g(u),

here max
z∈Nfe

Hξ−2(z, ρ(e))
(
f−z
f−e

)
= 1. Let γ = min[γ, γ0] =⇒ γ ∈ (0, 1). Thus

min
z∈Ndc

f∑
s=e+2

G(z, s)p(s, u(s)) + min
z∈Ndc

w(z) ≥ γmax
z∈Nfe

f∑
s=e+2

G(z, s)p(s, u(s)) + γmax
z∈Nfe

w(z).

The proof is complete. �

We observe by Theorem 3.2 that, u is a solution of (1) if and only if u is a solution of
the summation equation

u(z) = w(z) +

f∑
s=e+2

G(z, s)p(s, u(s)), z ∈ Nfe . (13)

Let us define the operator T : Rf−e+1 → Rf−e+1 by

Tu(z) = w(z) +

f∑
s=e+2

G(z, s)p(s, u(s)). (14)

We also observe from (13) and (14), that u is a fixed point of T , if and only if u is a
solution of (1). We use the fact that B = Rf−e+1 is a Banach space equipped with the
maximum norm.
We define the cone C, by

C = {u ∈ B : u(z) ≥ 0 and min
z∈Ndc

u(z) ≥ γ ‖u(z)‖}. (15)

Note that, T is a summation operator on a discrete finite set. Hence, operator T is trivially
completely continuous. We state here the following hypotheses, which will be used later.
Take

η =
1

f∑
s=e+2

G(s− 1, s)

. (16)

(H1) p(z, u) ≥ 0, (z, u) ∈ Nfe × [0,∞) and g(u) ≥ 0, ∀u ∈ C[Nfe+2 → R],

(H2) There exists a number r1 > 0 such that p(z, u) ≤ r1η

2
, whenever 0 ≤ u ≤ r1,

(H3) There exists a number r2 > 0 such that p(z, u) ≥ r2η

2γ
, whenever γr2 ≤ u ≤ r2,

(H4) There exists a number r2 > 0 such that p(z, u) ≤ r2η

2
, whenever γr2 ≤ u ≤ r2,

(H5) There exists a number r1 > 0 such that p(z, u) ≥ r1η

2γ
, whenever 0 ≤ u ≤ r1,

(G1) There exists a number r1 > 0 such that g(u) ≤ r1

2
, whenever 0 ≤ u ≤ r1,
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(G2) There exists a number r2 > 0 such that g(u) ≥ r2

2γ
, whenever γr2 ≤ u ≤ r2,

(G3) There exists a number r2 > 0 such that g(u) ≤ r2

2
, whenever γr2 ≤ u ≤ r2,

(G4) There exists a number r1 > 0 such that g(u) ≥ r1

2γ
, whenever 0 ≤ u ≤ r1.

Lemma 4.3. Assume (H1) holds. Then, T : C → C.

Proof. Let T be the operator as defined in (14), then from Lemma 4.2, we have

min
z∈Ndc

(Tu)(z) ≥ min
z∈Ndc

f∑
s=e+2

G(z, s)p(s, u(s)) + min
z∈Ndc

w(z)

≥γmax
z∈Nfe

f∑
s=e+2

G(z, s)p(s, u(s)) + γmax
z∈Nfe

w(z)

≥γ‖Tu‖.

It is obvious that Tu(z) ≥ 0, whenever u ∈ C, thus T : C → C. The proof is complete. �

Theorem 4.2. Assume p(z, u) and g(u) satisfy conditions {(H1),(H2),(H3)} and {(H1),(G1),
(G2)} respectively. Then, the boundary value problem (1) has at least one positive solution.

Proof. We know that, T : C → C is completely continuous. Define the set Ω1 = {u ∈ C :
‖u‖ < r1} where 0 < r1 < r2. Clearly, Ω1 ⊂ B is an open set with 0 ∈ Ω1. Since ‖u‖ = r1

for u ∈ ∂Ω1. Then, we have for u ∈ C ∩ ∂Ω1, condition (H2), (G1) holds.

‖Tu‖ ≤ max
z∈Nfe

∣∣∣∣∣
f∑

s=e+2

G(z, s)p(s, u(s))

∣∣∣∣∣+ max
z∈Nfe

|w(z)|,

using (H2) and (G1) we have

‖Tu‖ ≤
f∑

s=e+2

max
z∈Nfe

[G(z, s)]p(s, u(s)) + g(u)

≤ r1η

2

f∑
s=e+2

G(s− 1, s) +
r1

2

=
r1

2
+
r1

2
= r1.

Thus, we have ‖Tu‖ ≤ ‖u‖, for u ∈ C ∩ ∂Ω1. Similarly we define set Ω2 = {u ∈ C : ‖u‖ <
r2}. Clearly, Ω1 ∈ β is an open set and Ω1 ⊆ Ω2. Since ‖u‖ = r2 for u ∈ ∂Ω2, conditions
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(H3) and (G2), holds for all u ∈ ∂Ω2, by using Lemma 3.2 and Lemma 4.2, we have

‖Tu‖ ≥ min
z∈Ndc

Tu(z)

≥ min
z∈Ndc

f∑
s=e+2

G(z, s)p(s, u(s)) + min
z∈Ndc

w(z)

≥
f∑

s=e+2

min
z∈Ndc

[G(z, s)]p(s, u(s)) + min
z∈Ndc

w(z)

≥ γ
f∑

s=e+2

max
z∈Nfe

[G(z, s)]p(s, u(s)) + γmax
z∈Nfe

w(z)

≥ γ r2η

2γ

f∑
s=e+2

G(s− 1, s) + γg(u)

≥ r2

2
+
r2

2
= r2 = ‖u‖.

Thus, we have ‖Tu‖ ≥ ‖u‖, for u ∈ C ∩ ∂Ω2. By part (1) of lemma 4.1, we conclude that,
the operator T has at least one fixed point u0 in C ∩ (Ω2 \Ω1), satisfying r1 < ‖u0‖ < r2.
The proof is complete. �

Theorem 4.3. Assume p(z, u) and g(u) satisfy conditions {(H1),(H4),(H5)} and {(H1),
(G3),(G4)} respectively. Then, the boundary value problem (1) has at least one positive
solution.

Proof. We know that, T : C → C is completely continuous. Define the set Ω2 = {u ∈ C :
‖u‖ < r2} where 0 < r1 < r2. Clearly, Ω2 ⊂ B is an open set and Ω1 ⊆ Ω2. Since ‖u‖ = r2

for u ∈ ∂Ω2. Then we have for u ∈ C ∩ ∂Ω2, condition (H4), (G3) holds.

‖Tu‖ ≤ max
z∈Nfe

∣∣∣∣∣
f∑

s=e+2

G(z, s)p(s, u(s))

∣∣∣∣∣+ max
z∈Nfe

|w(z)|,

using (H4) and (G3), we have

‖Tu‖ ≤ r2η

2

f∑
s=e+2

max
z∈Nfe

[G(z, s)] + max
z∈Nfe

w(z)

≤ r2η

2

f∑
s=e+2

G(s− 1, s) + g(u)

≤ r2

2
+
r2

2
= r2.

Thus, we have ‖Tu‖ ≤ ‖u‖, for u ∈ C ∩ ∂Ω2. Similarly we define set Ω1 = {u ∈ C : ‖u‖ <
r1}. Clearly, Ω1 ∈ β is an open set and 0 ∈ Ω1. Since ‖u‖ = r1 for u ∈ ∂Ω1 and conditions
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(H5) and (G4), holds for all u ∈ ∂Ω1, by using Lemma 3.2, we have

‖Tu‖ ≥ min
z∈Ndc

Tu(z)

≥ min
z∈Ndc

f∑
s=e+2

G(z, s)p(s, u(s)) + min
z∈Ndc

w(z)

≥
f∑

s=e+2

min
z∈Ndc

[G(z, s)]p(s, u(s)) + min
z∈Ndc

w(z)

≥ γ
f∑

s=e+2

max
z∈Nfe

[G(z, s)]p(s, u(s)) + γmax
z∈Nfe

w(z)

≥ γ r1η

2γ

f∑
s=e+2

G(s− 1, s) + γg(u)

≥ r1

2
+
r1

2
= r1 = ‖u‖.

Thus, we have ‖Tu‖ ≥ ‖u‖, for u ∈ C ∩ ∂Ω1. By part (2) of lemma 4.1, we conclude that,
the operator T has at least one fixed point u0 in C ∩ (Ω2 \Ω1), satisfying r1 < ‖u0‖ < r2.
The proof is complete. �

5. Uniqueness of Solutions

In this section, we present uniqueness results of (1) using Brouwer fixed point theorem
and contraction mapping theorem, respectively, and also we construct an example to
illustrate the same results.

Theorem 5.1 (See [1]). [Brouwer fixed point theorem]. Let C0 be a nonempty compact
convex subset of Rn and T be a continuous mapping of C0 into itself. Then, T has a fixed
point in C0.

Theorem 5.2. Assume p(z, u) and g(u) is continuous with respect to ′u′, for each z ∈ Nfe .
Assume there exist a positive constant L, such that

max
−L≤‖u‖≤L

{g(u)} ≤ L

λ+ 1
and max

(z,u)∈Nfe×[−L,L]
{p(z, u)} ≤ L

λ+ 1
. (17)

Then, the boundary value problem (1) has a solution.

Proof. Consider C0 = {u ∈ Nfe → R, ‖u‖ ≤ L}. Clearly, C0 is a non-empty compact convex
subset of Rf−e+1. Let T be a operator as defined in (14). It is clear that T is a continuous
operator. Therefore the main objective is to show that T : C0 → C0. Then, Theorem 5.1
can be invoked.
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Let Ω0 = L
λ+1 , By using (17) and Lemma 3.2

‖Tu‖ ≤ max
z∈Nfe

|w(z)|+ max
z∈Nfe

f∑
s=e+2

G(z, s)p(s, u(s))

≤
(f − z
f − e

)
Hξ−2(z, ρ(e))g(u) +

( L

λ+ 1

)
max
z∈Nfe

f∑
s=e+2

G(z, s)

≤
( L

λ+ 1

)
+
( L

λ+ 1

)
λ

= Ω0(1 + λ) = L.

Thus, ‖Tu‖ ≤ L and T : C0 → C0. It follows at once by Brouwer fixed point theorem, that
there exist a fixed point of T say u0 ∈ C, such that ||u0|| ≤ L. The proof is complete. �

Theorem 5.3 (See [1]). [Contraction Mapping Theorem]. Let S be a closed subset of Rn.
Assume T : S → S is a contraction mapping, i.e there exists a number ′κ′, 0 ≤ κ ≤ 1,
such that
‖Tu− Tv‖ ≤ κ ‖u− v‖ , for all u, v ∈ S. Then, T has a unique fixed point u0 ∈ S.

Theorem 5.4. Assume that p(z, u) and g(u) are Lipschitz with respect to ′u′, i.e there ex-
ists ξ1, β > 0 such that |p(z, u1)−p(z, u2)| ≤ ξ1 ‖u1 − u2‖ and |g(u1)−g(u2)| ≤ β ‖u1 − u2‖
whenever u1, u2 ∈ C[Nfe → R]. Then, the boundary value problem (1), has a unique solu-
tion, provided ξ1λ+ β < 1 holds.

Proof.

‖Tu1 − Tu2‖ = max
t∈Nfe
|(Tu1)(z)− (Tu2)(z)|

≤max
z∈Nfe

∣∣∣∣∣
f∑

s=e+2

G(z, s)p(s, u1(s))

∣∣∣∣∣−max
z∈Nfe

∣∣∣∣∣
f∑

s=e+2

G(z, s)p(s, u2(s))

∣∣∣∣∣
+ max
z∈Nfe

∣∣∣∣(f − zf − e

)
Hξ−2(z, ρ(e))g(u1)

∣∣∣∣−max
z∈Nfe

∣∣∣∣(f − zf − e

)
Hξ−2(z, ρ(e))g(u2)

∣∣∣∣
≤ max

z∈Nfe

f∑
s=e+2

G(z, s)|p(z, u1)− p(z, u2)|

+ max
z∈Nfe

∣∣∣∣(f − zf − e

)
Hξ−2(z, ρ(e))

∣∣∣∣ |g(u1)− g(u2)|

≤ ξ1 ‖u1 − u2‖max
z∈Nfe

f∑
s=e+2

G(z, s) + |g(u1)− g(u2)|

≤ ξ1 ‖u1 − u2‖λ+ β ‖u1 − u2‖
= (ξ1λ+ β) ‖u1 − u2‖ .

Thus, T is a contraction on Rf−e+1. Hence, by Theorem 5.3, the boundary value problem
(1) has a unique solution. The proof is complete. �

Example 5.1. Suppose, ξ = 1.1, e = 0, f = 10, p(z, u) = sin(u)
15+z and g(u) = u(z)

20 , p(z, u)

and g(u) are Lipschitz with respect to u with Lipschitz constant ξ1 and β respectively. Here
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ξ1 = 1
15 and β = 1

20 . We have {
−(∇1.1

ρ(0)u)(z) = sin(u)
15+z ,

u(0) = u(t)
20 , u(10) = 0.

(18)

Here

λ =
((f − e)(ξ − 1) + 1

ξ

)ξ−1((f − e− 1)

ξΓ(ξ + 1)

)
= 8.05

(ξ1λ+ β) = 0.586 < 1.

Thus, by Theorem 5.4 the boundary value problem (18) has a unique solution.

6. Conclusions

In this work, we considered the two-point boundary value problem (1), we constructed
the Green’s function and established sufficient conditions on the existence of at least one
positive solution to the considered problem using Guo–Krasnoselskii fixed point theorem.
We also discussed the uniqueness of solution of (1) using Banach fixed point theorem and
Contraction mapping theorem. The results obtained also hint at a possible direction in
the field of fractional derivatives with q-calculus [18, 19]. Finally, we provided an example
to illustrate the applicability of established results.
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