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Abstract. The performance of the text classification techniques is com-
monly affected by the characteristics and representation of the document
corpora itself. Of all the problems arising from the corpus, there are three
major difficulties which the classifiers must deal with: the feature selec-
tion issues, the class imbalance problem and the size of the training set.
The objective of this paper is to present a based-content text classifier
called T-LHMM that is less sensitive to the text representation and the
size of the corpus, and more efficient in terms of running time than other
classification techniques. To demonstrate it, we present a set of experi-
ments performed on well-known biomedical text corpora. Our classifier
is also compared with k-NN and SVM models.
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1 Introduction

With the rapid growth of corporate and digital databases, text classification
has become one of the key techniques for handling and organizing text data.
Text classification is the task of automatically assigning documents to a pre-
defined set of classes or topics [1]. Different classification techniques have been
applied to text classification problems, including Naive Bayes, k-Nearest Neigh-
bours (kNN), and Support Vector Machines (SVMs), which have proven their
effectiveness in many scenarios [2–4]. However, the performance of these tech-
niques is commonly affected by the characteristics and representation of the text
corpora itself.

Of all the problems arising from the corpus, there are three major difficul-
ties which the classifiers must deal with: the feature selection issues, the class
imbalance problem and the size of the training set.

1.1 Feature selection

The representation of a document has a strong impact on the generalization
accuracy of a learning system. Documents, which are typically strings of charac-
ters, have to be transformed into a format that automatic classifiers can handle.
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The most common technique in document classification tasks is the bag-of-words
approach [5]. In this case, every document is represented by a vector where el-
ements describe the word frequency (number of occurrences) of a certain term.
The final selection of words that will be used to represent the documents is called
feature words.

This classical text representation technique is hindered by the practical lim-
itations of big text corpora. The complexity of the text classification in terms of
time and space depends on the size of the aforementioned vectors. Generally, not
all words have a significant contribution to discriminately represent a text. Fea-
ture reduction algorithms can be applied to the initial feature word set in order
to reduce its dimensionality. Some of these techniques can remove redundant or
irrelevant features from the dataset based on statistical filtering methods such
as Information Gain (InfoGain) [6]. Another type of feature reduction methods
creates new attributes as a combination of the original attributes, such as the
Principal Component Analysis (PCA) technique [7]. In general, the application
of these algorithms can improve classification accuracy and reduce the compu-
tational cost of the whole process, although it may be too costly to compute for
high-dimensional datasets.

1.2 Class imbalance

The class imbalance problem corresponds to domains where one class is repre-
sented by only a few number of instances, while the others present a much larger
number of examples [8,9]. The performance of standard classifiers such as those
mentioned is reduced when classifying this kind of corpus due to an assump-
tion of a balanced distribution of classes. Learning methods tend to ignore rare
classes and achieve low performance on them in favor of larger classes because
of the size effect [10].

Sampling strategies such as over- and undersampling are popular in tackling
the problem of class imbalance [11]. The undersampling algorithms artificially
decrease the number of samples that belong to larger classes, while the over-
sampling algorithms can be used to increase the number of instances of rare
classes by taking the larger classes into account. In general, these techniques can
improve the classification performance when the corpus is not balanced. How-
ever, it is possible to lose valuable information for the classifier (undersampling
case) or increase the time needed for the training phase and overfit the model
(oversampling case).

1.3 Training set size and learning curves

Generally, in a supervised text classification process, the more documents the
classifier can learn from in the training phase, the higher the classifier accuracy
[12]. This connection between the training sample size and the model accuracy
can be depicted by a learning curve. On a typical learning curve, the horizontal
axis represents the number of instances used for training, while the vertical axis
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represents a measure of the accuracy that the model obtained in a test process
using a different set of instances.

Learning curves typically have a fast increasing portion early in the curve,
followed by a relatively slow increasing portion, and finally a plateau portion late
in the curve [13]. The plateau shows that the curve has converged and occurs
when the model accuracy no longer increases with more training data.

The computational complexity of a learning algorithm depends on the num-
ber of training instances, with a linear dependency being the best case. The
usage of small datasets increases the efficiency of the classification process. The
convergence point of the learning curve of a classifier may indicate the minimum
number of instances required to perform well in terms of accuracy.

In summary, the problems related to the text corpora as described above,
can strongly affect the performance of any classifier.

The objective of this paper is to present a novel classifier called T-LHMM
that classifies documents based on their content. T-LHMM is an expansion of the
T-HMM technique [14], where the model is adapted to use general learning algo-
rithms that are specific to the HMM theory. The new approach helps to reduce its
sensitivity to the changes of the dataset and also to reduce the parameterization
cost. To show the robustness of the model, we test its variations when applying
different techniques that solve the above mentioned problems. Specifically, the
experiments are focused on showing the influence level that these limitations
have in the T-LHMM classifier. In addition, the SVM and k-NN techniques are
also used in the tests to provide a comparative viewpoint.

2 T-LHMM: The novel text classifier

Hidden Markov Models (HMM) have been used to describe the statistical prop-
erties of a sequential random process. They are known for their application in
language problems like speech recognition and pattern matching [15]. However,
their application has been extended to fields of text processing such as informa-
tion extraction [16–18], information retrieval [19], text categorization [20–22],
and text classification [23,24].

One of the common tasks that can be addressed by deploying an HMM in text
analysis is to infer the internal structure of the documents. This task is related to
the decoding problem for HMMs. For instance, Frasconi et al. [20] use HMM to
categorize pages in a multi-page document, exploiting the internal organization
of the document to provide the learner with better information. The HMM is
trained with page sequences to subsequently find the most probable structure
for a new given document.

Another text processing task that is solved with the use of HMMs is to per-
form a word sequence classification. In this case, the HMMs are treated as word
generators with an inner state transitions that defines the sequences they can
produce. This way, they can be used to determine the probability that a given
input sequence is the result of the HMM. This task is related to the evalua-
tion problem for HMMs. For example, Kairong Li et al. [21] research the text
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categorization process based on Hidden Markov Models. The main idea of the
article lies in setting up an HMM classifier, combining χ2 and an improved TF-
IDF (Term Frequency-Inverse Document Frequency, statistic that reflects how
important a word is to a document in a collection or corpus [25]) method, and
reflecting the semantic relationship in the different categories. The process shows
the semantic character in different documents to make the text categorization
process more stable and accurate.

Kwan Yi et al. [23] use the previous idea in a similar approach. They describe
the text classification as the process of finding a relevant class c for a given
document d. They implement a Hidden Markov Model to represent each class.
Thus, given a document d, the probability that a document d belongs to the
class c is computed on the specific HMM model c. In their system, a document
is treated as a wordlist, and the HMM for each class is viewed as a generator of
a word sequence.

In general, HMMs need to be adapted in order to be used in a text classi-
fication process. Previous HMM related techniques provide a way of applying
these models to a text processing task; however, they have a query expansion
approach [19] or need to use prior knowledge to achieve significant results [23].

In order to obtain a simpler and more effective classifier system than existing
methods, we propose the T-LHMM model based on the Hidden Markov Model,
an improved version of the T-HMM classifier [14]. This model aims to classify
documents according to their content.

In our context, given a training set T = {(d1, c1), (d2, c2)...(dn, cn)}, which
consists of a set of preclassified documents in classes, we want to build a classifier
using HMM to model the implicit relationship between the characteristics of the
document and its class, in order to be able to accurately classify new unknown
documents.

Each document di has a binary class attribute ci which can have a value of
Relevant or Non-relevant. Our work is therefore focused on building a classifier
based on the training set that can classify new documents as relevant or non-
relevant without previously knowing their class information.

Following the idea proposed by Kwan Yi et al. [23], we use HMM as a docu-
ment generator. In the T-LHMM model, an HMM is implemented for each class:
Relevant and Non-Relevant. Each model is then trained with documents belong-
ing to the class that the model represents. When a new document needs to be
classified, the system evaluates the probability (likelihood) of this document be-
ing generated by each of the Hidden Markov models. As a result, the class with
the maximum likelihood value is selected and considered as the output class for
the document.

Furthermore, since T-LHMM aims to classify documents according to their
content, input data needs to be expressed in a format that HMM algorithms can
handle. As stated in the Introduction Section, the most common approach is to
represent every document by a vector where elements describe word frequencies.
Additionally, some adjustments such as TF-IDF may be made in the word fre-
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quency value in order to improve the document representation. Fig. 1(a) shows
an example of a corpus processed in this way.

In our case, a document set represented with the previous approach is given
as input. We format the documents so that they are represented by a wordlist or-
dered by their relevance. In this case, the TF-IDF value is taken as the relevance
measure. Words with a higher TF-IDF value are more relevant because they are
considered the best representation of the document semantics. In this way, words
are placed in descending order according to their relevance in representing each
document, as seen in Fig. 1(b).

When building an HMM model, it is important to consider what “hidden
states” stand for. In our model, hidden states reflect the difference in relevance
(ranking) between words in a document. Each state represents a relevance level
for words appearing in the corpus. That is, the most probable observations for
the first state are the most relevant words in the corpus. The most probable ob-
servations for the second state are the words holding the second level of relevance
in the corpus, and so on. This can be seen in Fig. 1(c). It should be noted that
the number of states of the HMM sets the maximum cardinality of the wordlist.
Words with a relevance value equal to zero and those whose ranking exceeds the
number of states are ignored. The number of states N is a modifiable parameter
that depends on the training corpus and how much flexibility we want to add to
the model.

The HMMs for each class must be trained with documents belonging to
the class they represent. In order to adjust an HMM to a training dataset, a
procedure called Baum-Welch (BW) re-estimation may be used [15]. By applying
the algorithm with the dataset, the parameters of an initial required model can
be made to converge on values which are locally optimal for the given documents.

Considering that each document is ultimately represented by a vector or a
wordlist ranked in decreasing order, and ignoring words with zero value, an initial
Hidden Markov model is proposed to represent a predefined class c as follows:

1. The union of words from the training corpus is taken as the set of obser-
vation symbols V . For each word, there is a symbol vk. The set of possible
observations is the same for every HMM, taking into account all words in
the corpus, regardless of their class.

2. As mentioned above, states represent ranking positions. Therefore, states are
ordered from the first rank to the last one. The state transitions are ordered
sequentially in the same way, forming a linear HMM [15]. The elements of
the transition probability matrix A are defined as:

aij =


1
2 if j = i+ 1
1
2 if j = i
0 in other case

where aij represents the transition probability of the state i to the state j.
3. The observation output probability distribution of each state is defined ac-

cording to the training corpus and the class c. A word/observation vk has a
higher output probability at a given state si if the word appears frequently
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with the same ranking position that si represents. In addition, all states,
regardless of the rank they represent, have a probability of emitting words
appearing in documents with the class c for which the HMM was built.
Given a class c and a dataset Dc of documents that belong to that class, the
elements of the output probability matrix B for an HMM that represents
the class c is defined as follows:

bi(vk) =

∑
d∈Dc

Rd(vk, i) +
∑
d∈Dc

Ad(vk) + 1

∑
d∈Dc

Ed(i) +

|V |∑
j=0

(∑
d∈Dc

Ad(vj)

)
+ |V |

(a) bi(vk) stands for the probability of the word/observation vk being emit-
ted at the state si

(b) Rd(vk, i) =

{
1 if word vk appears at ith rank position in document d
0 in other case

(c) Ed(i) =

{
1 if there is any word with ith rank position in document d
0 in other case

(d) Ad(vk) =

{
1 if word vk appears at least one time in document d
0 in other case

(e) |V | is the number of feature words.

4. The initial probability distribution π is defined by giving probability 1 to
the first state s0.

As previously mentioned, this is considered the initial HMM model repre-
senting a class c for the application of the Baum-Welch algorithm. This process
requires adjusting to a set of observation sequences. In this case, the documents
from the training set formatted as previously explained (see Fig. 1(b)) are taken
as the set of observation sequences. The resultant HMM after applying the al-
gorithm with Dc is considered to be the trained HMM representing class c.

2.1 Classifying new documents

Once the two Hidden Markov models are created and trained (one for each
class), a new document d can be classified by, first of all, formatting it into
an ordered wordlist Ld in the same way as in the training process. Then, as
words are considered observations in T-LHMM, we calculate the probability
(likelihood) of the word sequence Ld being produced by the two HMMs. That
is, P (Ld|λR) and P (Ld|λN ) need to be computed, where λR is the model for
relevant documents and λN the model for non-relevant documents. The final
output class for document d is the class represented by the HMM with the
highest calculated likelihood.

The calculation of the likelihood measures is made by applying the forward-
backward algorithm explained in the Rabiner article [15].
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Fig. 1. Example of the HMM structure and input data. (a) Input document vector ma-
trix where documents are represented by word frequencies adjusted with TF-IDF. (b)
Adaptation of the input data to the T-LHMM classifier. Each document is represented
by a wordlist ordered by their relevance. (c) An HMM is built for each class (Relevant
and Non-relevant). Since states represent rankings of words, the most relevant words
for a rank have a higher output probability in their state.
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3 Corpus description

3.1 TREC Genomics Corpus

One of the tasks in TREC Genomics 2005 Track [26] was to automatically classify
a full-text document collection with the train and test sets, each consisting of
about 6,000 biomedical journal articles.

Systems were required to classify full-text documents from a two-year span
(2002-2003) of three journals, with the documents from 2002 comprising the
train data, and the documents from 2003 making up the test data.

The categorization task assessed how well systems can categorize documents
in four separate categories: A (Alelle), E (Expression), G (GO annotation), and
T (Tumor). In this paper, Allele and GO annotation categories are used to test
the performance of the classifiers in the different scenarios. A different corpus
is created for each category, where documents can be classified as relevant or
non-relevant.

Allele and GO were selected because they result in the best and the worst
efficiency, respectively, for the classifiers tested.

3.2 OHSUMED Corpus

The OHSUMED test collection, initially compiled by Hersh et al. [27], is a sub-
set of the MEDLINE database, a bibliographic database of important medical
literature maintained by the National Library of Medicine. OSHUMED con-
tains 348,566 references consisting of fields such as titles, abstracts, and MeSH
descriptors from 279 medical journals published between 1987 and 1991.

The collection includes 50,216 medical abstracts from the year 1991, which
were selected as the initial document set. Each document in the set has one or
more associated categories (from the 23 disease categories). In order to adapt
them to a scheme similar to the TREC corpus, which consists of distinguishing
relevant documents from non-relevant ones, we select one of these categories
as relevant and consider the others as non-relevant. If a document has been
labeled with two or more categories and one of them is considered relevant,
then the document itself is relevant and is excluded from the set of non-relevant
documents.

Five categories are chosen as relevant: Neoplasms(C04), Digestive (C06), Car-
dio (C14), Immunology (C20) and Pathology (C23), since they are by far the
most frequent categories of the OHSUMED corpus. The other 18 categories are
considered as the common bag of non-relevant documents. For each one of the
five relevant categories, a different corpus is created in the way mentioned above,
resulting in five distinct matrices.

4 Experiments

The goal of the experiments is to test the performance of text classifiers under
different conditions that affect the training dataset. In addition to the accu-
racy of the classifier, the time efficiency is also measured and compared in the



An HMM-based Text Classifier Less Sensitive 9

same scenarios. This can show how much the classifiers are dependent on the
characteristics of the corpus.

Fig. 2 shows the tests performed for a specific Corpus. These experiments
are divided into four different parts: Corpus preprocessing and splitting, Fea-
ture selection, Document Sampling and Corpus Size Reduction. The last three
correspond to the aforementioned classification problems. These parts are ex-
plained below along with the selection of techniques to solve each problem and
the classifiers selected for comparison.

Fig. 2. Experiments performed for a specific corpus.

4.1 Corpus preprocessing and splitting

Initially, the document corpora need to be preprocessed. In an initial step, called
Random Split in Fig. 2, the initial corpus is divided into two different splits:
the train split and the test split. This division is performed randomly while
maintaining the class proportion in the original corpus. These splits are used in
the training and testing phases of each evaluation step for each classifier.

In a subsequent step and following the bag-of-words approach, we format
every document into a vector of features in which elements describe the word
occurrence frequencies adjusted using the TF-IDF statistic. All the different
words that appear in the training corpus are candidates for feature words. In
order to reduce the initial feature size, standard text pre-processing techniques
are used. A predefined list of stopwords (common English words) is removed from
the text, and a stemmer based on the Lovins stemmer [28] is applied. Finally,
words occurring in fewer than five documents of the entire training corpus are
also removed.
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Table 1 shows the characteristics of the corpora after applying the initial
preprocess step.

Number of documents Number of features

Corpus Relevant Non-Relevant

TREC Allele 591 10204 13578

TREC GO 862 9933 13493

Ohsumed C04 2630 7755 10671

Ohsumed C06 1220 8430 10413

Ohsumed C14 2550 8030 10661

Ohsumed C20 1220 8239 10348

Ohsumed C23 3952 6778 10328

Table 1. Description of the datasets

At this point, an evaluation of the classifiers is performed to retrieve the
results achieved with the raw corpus (see Fig. 2).

4.2 Feature selection

As stated previously, feature reduction algorithms can be applied to the initial
feature set in order to further reduce its dimensionality. In this part of the
experiments, the goal is to test the degree of dependence of the classifiers on the
number of features.

The feature selection method based on the InfoGain that is implemented
in WEKA [29] is used as the feature reduction algorithm for this study, since it
was previously employed and its effectiveness proved in similar text classification
tasks [6,30]. This algorithm uses a threshold to determine the size of the reduced
feature set. In this case, the threshold is set to the minimum value, so that every
feature word with a non-zero value of the InfoGain is included in the resultant
feature set.

After this feature selection phase, the output train and test datasets are
created in which the number of feature words has been reduced. We call these
new datasets the “Baseline” (see Fig. 2), since they are used in the subsequent
parts of the experiments. This is done for reasons of time complexity, as the
original size of the feature set is very large for classification with classifiers like
SVM.

Finally, an evaluation of the classifiers is performed to retrieve the results
achieved with the Baseline corpus (see Fig. 2).

4.3 Document Sampling

All the selected corpora suffer from some degree of imbalance in the class distri-
bution, as it can be seen in Table 1. The goal of this part of the experiments is to
test how the class imbalance problem affects the classifiers. In order to achieve



An HMM-based Text Classifier Less Sensitive 11

this, document sampling techniques are applied to the Baseline train dataset to
evaluate the changes in performance between the imbalanced corpus (Baseline)
and the output balanced corpus.

In this case, the document sampling methods selected to perform the evalua-
tions are ROS (Random Over-Sampling) [8], RUS (Random Under-Sampling) [8]
and SMOTE (Synthetic Minority Over-sampling Technique) [31]. It is important
to note that the sampling techniques only modify the train dataset used in the
training phase of the classifiers. In addition, the target class balance is set to
50% for all the methods and corpus.

Finally, an evaluation of the classifiers is performed to retrieve the results
achieved with the “Balanced” corpus (see Fig. 2).

4.4 Corpus Size Reduction

The goal of this part is to test how the number of training documents affects the
performance of the classifiers. These experiments aim to output a learning curve
for each classifier where the minimum number of documents needed to converge
can be approximated.

In order to achieve this, the Baseline train dataset is reduced to the following
percentage of documents: [2%,4%,6%,8%,10%,15%,20%,25%,30%,40%,50%,75%].
It is important to note that reductions are performed randomly and conserve
the class balance present in the Baseline corpus.

Finally, an evaluation of the classifiers is performed to retrieve the results
achieved with the “Downsized” corpus (see Fig. 2).

4.5 Classifiers

In this study, the following classification algorithms are trained and tested to
perform the document classification tasks in the evaluation processes:

– T-LHMM: The text classifier developed by the authors is the baseline clas-
sifier to test and compare. In this case, the number of states N is set to 60
for all the corpus. This value leads to the best average results in the classi-
fication of the raw corpora, as shown in Fig. 3. This indicates that not all
the words help to improve the classification results, especially those with less
relevance value in each document. In addition, since the training document
set is large, a single iteration of the Baum-Welch algorithm is enough to
achieve its best performance. Further iterations overfit the model and lead
to worse results. In order to carry out the tests, an implementation of HMM
in Java (JAHMM) is used.

– Support Vector Machine (SVM): The implementation of the SVM used in
this case is LIBSVM [32] and the parameters are those utilized by default in
the WEKA environment [33], applying both a RBF and a Sigmoidal kernel.

– k-NN: The number of neighbours is set to k = 3 since it leads to the best
performance of the algorithm in the tested corpus. In addition, the Euclidean
distance is used to measure the distances between documents in the classifier.
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The complete collection of evaluation tests sum up 476:

– 28 tests for Raw corpus: 7 Corpus x 4 Classifiers (T-LHMM, SVM (RBF),
SVM (Sig.), k-NN).

– 28 tests for Feature reduced corpus (Baseline): 7 Corpus x 1 Technique (In-
foGain) x 4 Classifiers.

– 84 tests for Balanced corpus: 7 Corpus x 3 Techniques (ROS, SMOTE, RUS)
x 4 Classifiers.

– 336 tests for Downsized corpus: 7 Corpus x 12 Size reduction percentages x
4 Classifiers.

In addition, for statistical comparison purposes, and since the corpus is ran-
domly split in the first phase, the complete experiment scheme is executed ten
times starting at the Random Split point (see Fig. 2). This makes the entire set
of tests rise to 4760.

Fig. 3. Influence of the number of states in the T-LHMM. Five classification tests
are executed by corpus and N -value. Results are averaged for OHSUMED and TREC
corpora. The evaluation measure shown (y-axis) is the Kappa statistic.

5 Results

To evaluate the effectiveness of the models, the Kappa statistic, an evaluation
measure commonly utilized in text classification and information retrieval, is
used. Kappa is a single metric that takes the output confusion matrix of an
evaluation and reduces it to one value [34]. Kappa statistic is interesting because
it compares the accuracy of the system to the accuracy of a random system.
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Possible values of Kappa range between −1 and 1, where 1 is perfect agreement
between classifier and gold-standard, and negative values indicate agreement less
than would be expected by chance.

Furthermore, in order to demonstrate that the observed results are not just
a chance effect in the estimation process, we use a statistical test that gives
confidence bounds to predict the true performance from a given test set. A
Student’s t-test is performed on Kappa measures achieved in each evaluation
test.

The results for the feature selection and document sampling evaluations are
shown in Tables 2 and 3, while the results for the corpus size reduction evaluation
are shown in Fig. 5 with learning curves.

5.1 Feature selection

Table 2 shows the results achieved for each classifier with all the Raw and fea-
ture reduced corpus by the InfoGain algorithm. The main values correspond to
the average Kappa value achieved for the total of 10 executions with each cor-
pus/technique/classifier combination. The values in brackets and their symbols
(•, ◦) correspond to the statistical test part.

One test is performed for each pair of collection results achieved in each
technique. In this case, the baseline scenario is the use of the Raw Corpus,
which is compared in each classifier with the results obtained when applying
the InfoGain technique. The difference in a given confidence level is checked to
determine if it exceeds the confidence limit stated by a Student’s distribution. If
so, the null-hypothesis (the difference is due to chance) is rejected, proving that
the application of the InfoGain technique in the corpus makes a real difference
in the output of the classifier. The values in brackets correspond to the t-value
calculated in the comparison of the value collections. t-value gives a measure
of how large the difference is between applying or not the InfoGain technique:
higher absolute values indicate more difference.

According to the results, the T-LHMM classifier is the least affected by the
reduction in the number of features, since it shows a statistical difference in 4 of
the 7 corpus.

In addition, the t-values show minor differences when there is a statistical
difference, in the case of T-LHMM. The reverse occurs with the other classifiers,
especially in the SVM (Sigmoidal kernel), where the t-values show a big difference
when the feature selection technique is or is not applied, achieving much lower
classification results when not applied.

In order to demonstrate the independence of the number of features for the
T-LHMM, additional tests have been performed. In this case, the classification
process has been executed removing an increasing number of features using the
InfoGain algorithm. The results are shown in Fig. 4. For all the tested corpus,
the T-LHMM algorithm records an approximately constant Kappa statistic that
only decreases when the number of features reaches a certain point. In all the
cases, the performance begins to hinder when the number of attributes are below
the 5% of the total.
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Fig. 4. Results for T-LHMM removing an increasing number of features. The horizontal
axis indicates the percentage of attributes used to execute the classification process.

Corpus/Technique HMM SVM (RBF ) SVM (Sig.) k -NN, k=3

Allele

Raw 0,486 0,085 0,185 0,001

InfoGain 0,512 •(-2,88) 0,072 ◦(1,14) 0,503 •(-25,01) 0,063 •(-5,75)

GO

Raw 0,200 0,000 0,001 0,000

InfoGain 0,266 •(-9,86) 0,057 •(-8,50) 0,116 •(-19,86) 0,039 •(-6,39)

Ohsumed C04

Raw 0,738 0,673 0,666 0,044

InfoGain 0,740 ◦(-0,29) 0,743 •(-13,69) 0,752 •(-22,88) 0,339 •(-8,22)

Ohsumed C06

Raw 0,711 0,587 0,578 0,066

InfoGain 0,702 ◦(1,32) 0,705 •(-15,19) 0,730 •(-21,32) 0,377 •(-18,40)

Ohsumed C14

Raw 0,754 0,726 0,717 0,167

InfoGain 0,762 •(-2,35) 0,768 •(-12,03) 0,776 •(-15,40) 0,317 •(-4,03)

Ohsumed C20

Raw 0,606 0,501 0,515 0,106

InfoGain 0,607 ◦(-0,34) 0,673 •(-19,14) 0,700 •(-27,62) 0,340 •(-6,01)

Ohsumed C23

Raw 0,376 0,310 0,300 0,062

InfoGain 0,351 •(5,65) 0,377 •(-15,42) 0,356 •(-14,01) 0,189 •(-5,92)

•: Measured difference with Raw is statistically significant (p-value=0.05)

◦: Measured difference with Raw is statistically significant (p-value=0.05)
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Table 2. Results achieved for each classifier with all the Raw and feature-
reduced corpora by using the InfoGain algorithm. The main values correspond to
the average Kappa value achieved for the total of 10 executions with that cor-
pus/technique/classifier. The values in brackets correspond to the t-value calculated in
the comparison.

5.2 Document sampling

Table 3 shows the results achieved for each classifier with the entire over- and
undersampled corpus by the selected techniques. The values are organized in
the same way as the previous Table for feature selection results. Since the docu-
ment sampling techniques are applied to the output dataset from the InfoGain
algorithm, this is considered the baseline technique in all the statistical tests
performed. That is, the application of the sampling techniques (ROS, RUS and
SMOTE) is compared with the previous results for the imbalanced corpus (Base-
line/InfoGain).

According to the results, the T-LHMM classifier is again the least affected by
the class balance in the training corpus, since it only shows a statistical difference
in 6 of the 21 cases, and achieves t-values very close to the confidence limits.
The other classifiers show a higher degree of dependence on the class imbalance
problem (especially with both Allele and GO corpus) reaching the point where
without sampling techniques the classification performance is near to zero (in
the case of SVM with RBF kernel).



16 A. Seara Vieira, E.L. Iglesias, and L. Borrajo

Corpus/Technique HMM SVM (RBF ) SVM (Sig.) k -NN, k=3

Allele

Baseline 0,512 0,072 0,503 0,063

ROS 0,514 ◦(-0,29) 0,364 •(-23,54) 0,404 •(10,60) 0,248 •(-9,17)

SMOTE 0,548 •(-5,06) 0,520 •(-40,89) 0,435 •(6,22) 0,345 •(-19,14)

RUS 0,479 •(4,75) 0,349 •(-25,25) 0,543 •(-3,45) 0,294 •(-8,61)

GO

Baseline 0,266 0,057 0,116 0,039

ROS 0,263 ◦(0,45) 0,223 •(-13,98) 0,176 •(-8,68) 0,118 •(-7,78)

SMOTE 0,261 ◦(0,59) 0,230 •(-15,18) 0,181 •(-9,12) 0,139 •(-11,12)

RUS 0,250 ◦(2,06) 0,206 •(-15,25) 0,254 •(-16,20) 0,133 •(-9,40)

Ohsumed C04

Baseline 0,740 0,743 0,752 0,339

ROS 0,737 ◦(0,63) 0,767 •(-4,27) 0,755 ◦(-0,80) 0,365 ◦(-1,47)

SMOTE 0,732 ◦(1,82) 0,753 ◦(-1,98) 0,770 •(-5,14) 0,376 ◦(-1,96)

RUS 0,732 ◦(1,63) 0,718 •(4,09) 0,770 •(-4,93) 0,359 ◦(-1,05)

Ohsumed C06

Baseline 0,702 0,705 0,730 0,377

ROS 0,700 ◦(0,24) 0,738 •(-4,22) 0,584 •(15,25) 0,529 •(-6,99)

SMOTE 0,695 ◦(0,92) 0,711 ◦(-0,75) 0,640 •(10,58) 0,570 •(-10,64)

RUS 0,674 •(4,14) 0,555 •(21,00) 0,742 ◦(-1,91) 0,473 •(-3,95)

Ohsumed C14

Baseline 0,762 0,768 0,776 0,317

ROS 0,760 ◦(0,50) 0,788 •(-5,91) 0,730 •(9,36) 0,379 •(-4,58)

SMOTE 0,760 ◦(0,51) 0,780 •(-3,42) 0,765 •(2,48) 0,365 •(-3,91)

RUS 0,743 •(5,07) 0,574 •(39,62) 0,734 •(8,74) 0,284 ◦(1,73)

Ohsumed C20

Baseline 0,607 0,673 0,700 0,340

ROS 0,608 ◦(-0,19) 0,711 •(-5,55) 0,616 •(11,99) 0,459 •(-11,36)

SMOTE 0,613 ◦(-1,11) 0,714 •(-6,00) 0,686 ◦(1,96) 0,500 •(-12,99)

RUS 0,601 ◦(1,35) 0,617 •(7,99) 0,722 •(-3,75) 0,409 •(-6,05)

Ohsumed C23

Baseline 0,351 0,377 0,356 0,189

ROS 0,349 ◦(0,33) 0,367 ◦(1,94) 0,333 •(7,86) 0,165 •(3,27)

SMOTE 0,345 ◦(1,17) 0,269 •(20,22) 0,269 •(16,94) 0,178 ◦(1,57)

RUS 0,341 ◦(1,81) 0,081 •(54,42) 0,121 •(48,60) 0,121 •(8,15)

•: Measured difference with Baseline is statistically significant (p-value=0.05)

◦: Measured difference with Baseline is not statistically significant (p-value=0.05)
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Table 3. Results achieved for each classifier with all Baseline and balanced corpus
by the sampling techniques. The main values correspond to the average Kappa value
achieved for the total of 10 executions with that corpus/technique/classifier. The values
in brackets correspond to the t-value calculated in the comparison.

5.3 Document size reduction

Fig. 5 shows the learning curves created based on the results obtained for the
size reduction experiments. The plotted performance values (y-axis) correspond
to the average Kappa value achieved for each of the 10 executions with each size
percentage.

According to the results, the T-LHMM classifier reaches its convergence
plateau before any other classifier for all the corpora. The higher slopes in its
curves in the initial size increments indicate that the minimum number of train-
ing documents required to perform at its “best” is lower than that required in
the other classifiers.

5.4 Running time efficiency

In order to prove whether the T-LHMM classifier produces better results in
terms of running efficiency, the execution times for the experiments were also
saved. This includes each train/test process made for each evaluation. Table 4
shows the average CPU time (in miliseconds) achieved by the different models.

Technique T-LHMM SVM (RBF) SVM (Sig.) k -NN

Raw 28.067,05 43.910,30 25.053,62 62.612,65

InfoGain 3.936,56 8.016,79 4.352,67 12.551,10

ROS 6.383,95 23.639,70 11.213,25 19.735,54

SMOTE 7.874,73 33.530,65 13.483,56 78.147,79

RUS 2.085,68 3.291,83 2.069,11 4.763,24

Table 4. Results for user CPU time in miliseconds, representing the average execution
time for training and testing.

According to the results, T-LHMM is more efficient in terms of time than the
other approaches. This is not a surprising conclusion, since the model proposed
is focused on working with documents, while the other models have general
purposes. From the entire set of feature words, the T-LHMM system ignores,
for each document, those words having a frequency value equal to zero. This
means that for a given document, a total of only 50− 150 features are actually
considered in the T-LHMM calculations.

6 Conclusions

In this paper, an improved version of the T-HMM text classification model [14] is
presented. The main difference between T-LHMM and the previous T-HMM lies
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Fig. 5. Learning curves for the classifiers in all the tested corpus.

in its structure. T-LHMM is based on a linear state HMM with self-loops, while
T-HMM has a left-right HMM without self-transitions. The learning process in
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T-HMM is fixed by a static formula with a parameterization factor; however, in
T-LHMM the proposed formula is used to create the initial input for the Baum-
Welch algorithm, which is an HMM specific expectation-maximization algorithm
for training purposes. This allows the T-LHMM to be more independent and
reduce the parameterization cost.

The experimental and statistical results of this study show that the proposed
HMM-based text classifier is less sensitive to the class imbalance, the size of
the document corpora and the vocabulary (number of feature words) than the
common classifiers. In addition, T-HMM is more efficient in terms of running
time than SVM and k-NN techniques.
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33. Sierra Araujo B. Aprendizaje automático: conceptos básicos y avanzados: aspectos
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