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Abstract 

This paper discusses the possibility of detecting personal stress making use of popular wearable devices available in the 

market. Different instruments found in the literature to measure stress-related features are reviewed, distinguishing 

between subjective tests and mechanisms supported by the analysis of physiological signals from clinical devices. 

Taking them as a reference, a solution to estimate stress based on the use of commercial-off-the-shelf wrist wearables 

and machine learning techniques is described. A mobile app was developed to induce stress in a uniform and systematic 

way. The app implements well-known stress inducers, such as the Paced Auditory Serial Addition Test, the Stroop 

Color-Word Interference Test, and a hyperventilation activity. Wearables are used to collect physiological data used to 

train classifiers that provide estimations on personal stress levels. The solution has been validated in an experiment 

involving 19 subjects, offering an average accuracy and F-measures close to 0.99 in an individual model and an 

accuracy and F-measure close to 0.85 in a global 2-level classifier model. Stress can be a worrying problem in different 

scenarios, such as in educational settings. Thus, the last part of the paper describes the proposal of a set of stress related 

indicators aimed to support the management of stress over time in such settings. 

 

Keywords: COTS wrist wearables; stress quantification; wearables analytics; wearable stress detection. 

1. Introduction 

Selye defined stress as the adaptive response of our body to stressful events (Selye 1973). Usually, stress is seen as a 

negative thing or even harmful, but from a pragmatic point of view, it can be positive under certain circumstances. In 

the medical literature, stress featured as “distress” is considered harmful (García-Ros et al. 2012), affecting to the 

thoughts, demotivating, contributing to give up hope, etc. If stress is produced on a regular basis, the risk to develop a 

physiological or psychological condition increases. Some problems related to stress in working environments are 

(Colligan and Higgins 2006): absenteeism, truancy, organizational dysfunction, a decrease in productivity, etc. 

Meanwhile, also in the medical literature, “eustress” is considered as good stress that can be positive for the person 

(García-Ros et al. 2012). Experienced in small chunks at the beginning of activities, this kind of stress can support 

motivation and favor positive thoughts, that will contribute to achieve goals. Therefore, stress is an important issue and 

it deserves to be measured and managed. 

 

Several proposals can be found in the scientific literature to detect, measure and prevent stress, even solutions to 

manage it (Cooper and Cartwright 1997; Kompier and Cooper 1999; Sandhu et al. 2015). In the educational domain, 

which is the focus of this paper, existing pieces of research can be classified into two broad categories: focused on 

students or on academic staff. There exist problems that affect both types of users in a similar way, such as the Burnout 
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syndrome (Maslach et al. 1986b; Travers and Cooper 1997). This syndrome appears as a result of attaining too 

demanding challenges with scarce resources, which produces a constant over-stress in work (Gonzáles–Romá et al. 

2002). The Burnout syndrome can be identified by the following symptoms: emotional exhaustion, depersonalization-

effrontery of the tasks and work, and low personal development and professional effectiveness. In case of the students, 

usual stressful activities are (García-Ros et al. 2012): “classroom’s presentations” (46,7%), “lack of time to perform the 

academic assignments” (41,7%), “academic overload” (39,2%) and “performing exams” (35,7%). The effects of stress 

can be found in students, particularly in the first-year college students (Lu 1994; Deberard et al. 2004), where the 

general causes are combined with other components that increase the stress: changes at social and family level, adoption 

of new learning strategies, differences in assessment methods, etc. This may explain why between a 20% and 30% of 

the students drop out during the first year of college studies (Deberard et al. 2004; Kitsantas et al. 2008). To reduce the 

Burnout syndrome, an emotional intelligence helps students to tackle it in a more effective way their goals (Extremera 

et al. 2007). Proper management of stress allows to learn faster and solve problems to achieve success.  

 

Our final goal is to propose a solution to monitor and manage stress in educational contexts providing stress-related 

indicators. This is intended in a hassle-free and non-intrusive way to avoid unnecessary burdens on learners and on the 

learning process. There already exist some works that have tried to estimate stress in the educational domain based on 

different methods: focusing on keystrokes and linguistic features (Vizer et al. 2009), or using specialized devices 

(Kikhia et al. 2015; Sano and Eng 2016; Costa et al. 2019). By contrast, our approach is based on the use of nowadays 

popular commercial-off-the-shelf (COTS) wrist wearables. These devices are widely available in the market and their 

sales grow significantly each year (IDC 2017; Statista 2017, 2018). They are particularly popular among students as a 

result of their good features and prices. These devices allow us to collect physiological information from the student 

through sensors, such as the heart rate sensor or the accelerometer, in a non-intrusive and fully automatic way. These 

sensors are mostly present in the smartbands and smartwatches of the best-selling brands, such as Fitbit, Xiaomi or 

Apple (IDC 2016a, b, c). Other important factor to choose these devices is their availability, as long as smartbands and 

smartwatches are the most common COTS wearables (IDC 2016d) (more than 80% of market share by 2020). Different 

wearables and smartphones have already been used in the educational domain in various initiatives and projects to study 

certain behaviors of students and identify patterns and indicators. In the Studentlife project (Wang et al. 2014, 2015; 

Ben-Zeev et al. 2015; Mohr et al. 2016; Harari et al. 2016, 2017), data collected from mobile devices are used to 

provide enhanced student models with performance related indicators, such as the Grade Point Average (GPA), or 

behavioral trends, such as sleep patterns. There are other examples, such as (Espinosa et al. 2015), where the impact of 

inertial sensors for building engagement in educational activities is analyzed; or (Xu and Zhong 2018), where a portable 

EEG is studied as a wearable option to analyze different states of students; or (Mastrandrea et al. 2015), where wearable 

collected data is used to estimate relationship patterns among students. There exist also projects involving teachers to 

provide information related to their activities (Prieto et al. 2016).  

 

Currently, available COTS wrist wearables do not offer measures of stress. Just there exist some devices that provide 

stress-related warnings and suggest  to perform tasks to reduce stress when  changes in pulsations or breathing are 

detected (Caddy 2018). Nevertheless, these devices do not provide stress estimations, they are conceived as intelligent 

assistants to support healthy habits and self-emotional control. This paper is mainly focused on studying if popular 

COTS wrist wearables (affordable commercial wearables) can be used as tools to estimate the stress experienced by a 

subject at a specific time, namely instant stress. To this end, a lab experiment involving different types of stressing 

activities and wearables has been designed to collect some key physiological data: heart rate (HR), skin temperature 
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(ST), galvanic skin response (GSR) and accelerometer (ACC) data. Then, these data are analyzed using machine 

learning classifiers to estimate stress and measure the accuracy and F-measure. Once the feasibility of COTS wrist 

wearables as stress detectors is verified, it is proposed new indicators based on the variation along time of the instant 

stress to support the monitoring and management of stress in educational contexts. The goal of these indicators is to 

enable learners to enhance their self-awareness, to improve their self-management and learning. These indicators are 

also intended to support teachers during the development of educational activities. 

 

The rest of this paper is divided into four parts. Section 2 includes a review of the methods described in the scientific 

literature to measure stress. This review has a double purpose, to identify existing instruments, methods, and the factors 

for stress detection and to explore the possible use of COTS wrist wearables. Section 3 introduces the lab experiment 

and the results that validate the use of wearables for stress detection. Then, a set of indicators with potential use in 

educational scenarios is proposed in section 4. Finally, the last part of the paper explains the conclusions of this study. 

2. Methodologies to detect and analyze stress 

This section reviews existing methods to estimate stress and stress-related features. These methods can be found mainly 

in the medical literature, as part of psychological studies. Two different types of methods can be distinguished: 

subjective tests and physiological signals analysis. 

2.1. Clinical subjective tests 

Several different clinical subjective tests have been proposed to provide measures of stress-related features. These tests 

are based on the use of questionnaires to collect subjective data from subjects. Generally, questions are about the 

perception of stress or about the frequency of stressful events, usually considering different scenarios and situations. All 

the instruments are based on the use of Likert scales to collect the subjective user answers. The most well-known 

subjective stress tests found in the literature are the following ones:  

• State-Trait Anxiety Inventory (STAI) (Spielberger et al. 1970). This is the most used test worldwide (Cano 

et al. 2007) and it has been used as a support of multitude of studies (Grös et al. 2007). This test is made up by 

a total of 40 items that measure two different anxiety concepts: state anxiety and trait anxiety. Each one of the 

two parts is made up by 20 questions. Questions related to state anxiety are about the subject feelings at this 

moment (such as “I feel at ease”, “I feel upset”), while questions related to trait anxiety are about the subject 

feelings in his/her daily life situations (such as “I am a steady person”).  

• Maslach Burnout Inventory (MBI) (Maslach et al. 1986b). It is made up by 22 items referred to different 

stress situations, including features such as professional and emotional exhaustion or depersonalization. Three 

versions for different application areas have been proposed: the MBI-General Survey (MBI-GS) with a generic 

approach (Schaufeli and Leiter 1996); the MBI-Human Services Survey (MBI-HSS) (Maslach et al. 1986b)) 

focused on the professionals in the human services domain; and the MBI-Educators (MBI-ES) (Maslach et al. 

1986a), focused on teachers, administrators and other staff members, working in any educational setting. Each 

one of these focused tests involves an adaptation of the generic questions to the specificities of the domain. For 

example, depending on the test, question 4 is provided as follows: “I feel I can understand patients easily” and 

“I can easily understand the feelings of my students.”  
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• Perceived Stress Scale (PSS-14) (Cohen et al. 1983). This test was developed in 1983, but it continues in 

common use nowadays. In the original form, it includes 14 questions referred to potential stressful situations 

produced during the last month. For example: “In the last month, how often have you been upset because of 

something that happened unexpectedly?”. There exist two simplified versions with just 10 questions (PSS-10) 

and with just 4 questions (PSS-4) (Cohen and Williamson 1988).  

• Anxiety Sensitivity Index (ASI) (Reiss et al. 1986). This test includes 16 items designed to assess the 

sensitivity to anxiety situations, even the fear to the anxiety feelings. Several variants have been published. 

One of the most well-known ones is the ASI-3 (Taylor et al. 2007), made up by 18 items with evidence of 

improved psychometric properties over the original ASI. 

• Hamilton scale for Anxiety (HAM-A) or Hamilton Anxiety Rating Scale (HARS) (Hamilton 1959). This 

test with 14 items measures the importance of anxiety symptoms. It is used to measure both the mental anxiety 

(psychological distress) and the somatic anxiety (physical aches or complains related to the anxiety).  

• Generalized Anxiety Disorders (GAD). This test is focused on the detection of anxiety disorders and its 

involvement levels. There are several proposals, such as Anxiety Screening Questionnaire (ASQ—15) made 

up by 15 items (Wittchen and Boyer 1998) or the Screening Scale for DSM–IV GAD (Carroll and Davidson 

2000) made up by 12 items. 

• Beck Anxiety Inventory (BAI) (Beck and Steer 1990). This test is made up by 21 items. Each item checks the 

presence of anxiety symptoms. For example, “Fear of losing control” or “Fear of worst happening.” Its main 

goal is to differentiate anxiety from depression. 

• Anxiety Situations and Responses Inventory (ISRA) (Cano-Vindel and Miguel-Tobal 1999). This test made 

up by 224 items assesses the level of stress at cognitive, psychological and physical functions. The test shows 

the tendency to stress in four contexts: situations where the person can be assessed, social scenarios, phobic 

situations for the person and daily/ordinary situations. 

• Depression, Anxiety and Stress Scales (DASS) (Lovibond and Lovibond 1995). This test is designed to 

measure the seriousness of a range of common symptoms in three scales: depression, anxiety and stress. It is 

made up by 42 questions arranged in 14 items for each scale. There also exists a simplified version to reduce 

the number of questions and to improve the psychometric properties (Norton 2007). Both versions have shown 

good psychometric properties in several studies (Brown et al. 1997). 

 

From this review, we would like to notice the variety of contexts and ways in which stress is considered: 

• Related to the contexts, tests usually involve a specific focus on a particular context or variations for different 

contexts. For example, the MBI focuses on professional settings, PSS is about stressful situations produced 

during the last month and ISRA distinguishes four areas: situations where the person can be assessed, social 

scenarios, phobic situations for the person and daily/ordinary situations. 

• Related to the variety of ways, different stress-related features are recognized. The MBI is focused on 

emotional exhaustion, ASI analyses the anxiety sensitiveness in physical, cognitive and social dimensions, 

HAM-A analyses mental and somatic anxiety, BAI tries to differentiate anxiety from depression, DASS 

distinguishes between depression, anxiety and stress and finally, STAI distinguishes between state and trait 

anxiety.   

 

Other idea that can be obtained from this review is that these tests provide an estimation of accumulated stress in a 

period of time. These tests are used when the specialist detects a health problem or condition related to stress. In this 
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situation, the tests are not measuring the “snapshot” stress, but the stress accumulated during a period of time and the 

events related to such accumulation. 

2.2. Physiological signal analysis 

In contrast to the previous section, addressing subjective tests based on questionnaires and focused on accumulated 

stress, the scientific literature also includes many studies to detect instant stress. These studies are based on the analysis 

of physiological signals. Stress produces some physiological changes: variations in the cortisone levels, heartbeats, 

sweat, skin temperature, etc. These variations can be measured through clinical tests or using body sensors. Next list 

summarizes commonly used physiological signals to detect stress (Table 1 indicates studies in which these signals have 

been analyzed): 

• Heart rate (HR) and heart rate variability (HRV). Heartbeats are very related to stress. Several studies have 

demonstrated a strong relationship between stress and heart rate. When a subject is under a stressful situation 

the HR frequency increases. These changes in frequency are accurately measured by the HRV, also known as 

the instant HR. HRV can be calculated from an electrocardiograph by detecting R-wave peaks, but this method 

is very costly and uncomfortable for the subject. Nevertheless, the HR can also be measured using a 

photoplethysmograph from light signals over the skin (Healey 2000). Variations of this measurement are less 

precise than the HRV ones obtained from an electrocardiograph, but it is much more comfortable and 

affordable.  

• Galvanic skin response (GSR), electrodermal activity (EDA) or skin conductance (SC). When a person is 

in a stressful situation, an increase in the level of sweating is automatically produced. This increase provokes a 

variation in the electrical resistance of the skin. In this way, the EDA can be used to estimate the state of our 

nervous system. Several studies have shown very good results using the GSR as a stress detection 

physiological signal, particularly some recent works offer success results close to 100% using GSR in 

combination with HR (Cano et al. 2007; Santos 2012).  

• Muscle activity (MA). Based on the assumption that muscular activity increases with stress, some studies 

have been focused on the analysis of MA (Healey 2000). The registration of muscle activity is performed by 

an electromyograph (EMG) detecting surface voltages that occur when a muscle is contracted. 

• Blood pressure (BP) or blood volume pressure (BVP). Blood pressure is a physiological feature that varies 

for multiple reasons, such as the physical exercise, ingestion of food or stress. Using a sphygmomanometer, it 

is possible to measure the BP. The main drawback of this device is that it is not possible to take continuous 

measurements. Nevertheless, the photoplethysmograph used to measure the BP can also measure differences in 

blood volume through a reflected signal (infrared or red) over the skin in a controlled way.  

• Skin temperature (ST). The temperature of the skin has been proposed as a useful estimator of the stress level 

used in multimodal systems (Karthikeyan et al. 2012). Its use improves the accuracy of classifiers, providing 

figures similar to the BP ones, around 88.75%.  

• Respiration (RESP). Variations in the breath speed, deep breathes and irregular breathes are indicators of 

stressful situations. As it is described in (Healey 2000), a hall effect sensor can be used for measuring 

respiration through chest cavity expansion.  
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• Pupil diameter (PD). The size of pupil varies under stressful situations. Using methods such as video-

pupillography, studies have been performed to analyze how stress affects to the PD (Pedrotti et al. 2014). 

Mistaken and missed measurements due to automatic flickering are discarded or interpolated. 

• Salivary level (SL). Variations in salivary alpha-amylase and salivary corrosion are related to the body 

response under stressful situations. In (Rashkova et al. 2012), SL is identified as a good objective biomarker to 

detect stress when used in combination with a psychological test like STAI.    

 

Table 1. Scientific publications relating stress and physiological signals. 

Bibliographic Ref. BP/BVP RESP PD SL MA ST HR HRV GSR 

(Lundberg et al. 1994)     X     

(Healey 2000) X X   X  X X X 

(Vrijkotte et al. 2000) X      X X  

(Dishman et al. 2000)        X  

(Healey and Picard 2005)  X   X  X X X 

(Zhai et al. 2005) X  X      X 

(Lin et al. 2005) X      X  X 

(Zhai and Barreto 2006) X  X   X   X 

(Setz et al. 2010)         X 

(Mokhayeri et al. 2011)   X    X X  

(Hernandez et al. 2011)         X 

(Rashkova et al. 2012)    X      

(Karthikeyan et al. 2012)      X    

(Santos 2012)       X  X 

(Pedrotti et al. 2014)   X      X 

(Sano and Eng 2016)         X 

(Kothgassner et al. 2016)    X   X X  

 

As a summary, there exists a variety of physiological signals that can be used to estimate the stress. As it can be 

observed in Table 1, GSR and HR/HRV are the most common ones as they are considered in 8 of the 17 reviewed 

papers. These studies are focused on validating stress detection using the physiological signals. In 8 of these studies 

(Zhai et al. 2005; Zhai and Barreto 2006; Setz et al. 2010; Hernandez et al. 2011; Mokhayeri et al. 2011; Santos 2012; 

Pedrotti et al. 2014; Sano and Eng 2016) a machine learning approach is used to validate the stress detection and the 

results obtained are used to show the performance of the classifiers as predictors. These machine learning techniques 

facilitate the creation of adaptive algorithms to detect stress automatically.  

 

These papers also include other interesting issues: methods to induce stress in subjects during experiments and method 

to analyze the data collected. Next, a summary of the devices and method used to stress detection is shown (cf. Table 

2):  

• In (Zhai et al. 2005) a clinical NI DAQPad-6020E device was used to collect physiological signals. This is a 

multi-channel data acquisition system produced by National Instrumentation Corp. It was used in combination 

with the “Stroop Color-Word Test Interference Test” (Stroop 1935), a common stressor activity, in which 
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words referred to colors (e.g. “blue”) are shown colored in the same or in a different color to the word (e.g. the 

word “blue” can be painted in yellow color). 

• In (Zhai and Barreto 2006) there is no information about the equipment used to collect stress-related data. As 

in the previous case, the “Stroop Color-Word Interference Test” was used as stressor activity. The whole 

experiment comprises four consecutive sections: an Introductory segment (IS); a Congruent segment (C); an 

Incongruent segment (IC); and a Resting Section (RS). During the IC segment, the idea is to confuse the user, 

indicating wrong colors. 

• In (Setz et al. 2010) the Emotion Board device was used. This is a prototype for measuring EDA in a non-

intrusive way. To provoke stress, subjects were asked to solve some mathematical equations. A time bar 

showed the remaining time for solving the task, and a color bar showed a comparison between the individual 

performance and the performance of a simulated, representative population. The test also involved a kind of 

evaluator and a supervisor that tried to induce stress in the subject providing low marks or entering into the 

experimentation room to ask damning questions.  

• In (Mokhayeri et al. 2011) a video camera was used to collect the pupil diameter. This device records the 

subject and detects variations in the stress level induced using the “Stroop Color-Word Interference Test”.  

• In (Hernandez et al. 2011) data were recorded from dry Ag-AgCl 1cm diameter electrodes on the wrist, using 

an early beta version of the discontinued Affectiva QSensor device. The stressor activity was developed in the 

context of a call center, where participants were asked to respond calls and rate each call-in terms of stress. 

This study provides one of the lower values of accuracy for stress detection: 78.03% using SVM.  

• In (Santos 2012) a multichannel research device I-330-C2 PHYSIOLAB (J &J Engineering) was used to 

collect the measurements. The stressor activity was the Hyperventilation and Talk Preparation activity. In this 

activity, first subjects (in this case students) are required to perform a hyperventilation activity that produces 

variations in physiological signals like a stressor activity. Then, subjects are asked to prepare a presentation 

that will be recorded. The results from both activities are compared. This study provides one of the best results 

in stress detection, with an accuracy of 99.5% using a Fuzzy Logic classifier. 

• In (Pedrotti et al. 2014) it was used an eye tracker device (RED 4) for PD measurement; an Analog 

/Digital(A/D) converter (MP36R acquisition system for science researches) for measuring illumination and 

EDA. To generate a stressor situation, it was used a driving simulator, which consists of driving on a traffic-

free straight three-lane road, changing lanes according to the information displayed.  

• In (Sano and Eng 2016) an ad-hoc device was used, but there is no information about it. Stress analysis was 

performed through the quantification of activities along several days, not provoking stress with a specific 

stressor activity.  

 

Table 2. Summary of machine learning scientific publications. 

Bibliographic 

Ref. 

Device Physiological 

signal 

Machine Learning 

technique 

Stress activity Accuracy 

(Zhai et al. 

2005) 

NI DAQPad-

6020E 

BP/BVP, PD, 

GSR 

SVM Stroop Color-Word 

Interference Test 

80% 

(Zhai and 

Barreto 2006) 

- BP/BVP, PD, 

ST, GSR 

SVM, Naïve Bayes, 

Decision Tree 

Stroop Color-Word 

Interference Test 

90% 
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(Setz et al. 

2010) 

Emotion Board GSR SVM, LDA, NCC Mathematical 

equations 

81.30% 

(Mokhayeri et 

al. 2011) 

Video camera PD, HR, HRV GA, FSVM Stroop Color-Word 

Interference Test 

78.5% 

(Hernandez et 

al. 2011)  

Discontinued 

Affectiva 

QSensor device 

GSR SVM Call center 78.03% 

(Santos 2012) I-330-C2 

PHYSIOLAB 

HR, GSR SVM, LDA, MM, 

K-nn, Fuzzy Logic 

Hyperventilation and 

Talk Preparation 

99.5% 

(Pedrotti et al. 

2014) 

MP36R 

acquisition 

system 

PD, GSR Neuronal Network Driving simulator 79.20% 

(Sano and Eng 

2016) 

- GSR SVM Several activities 

during sleep and daily 

life 

82.4% 

 

As a summary, the SVM (Support Vector Machine) classifier has been the most used technique. Only 2 out of the 8 

studies did not use this technique. Another interesting feature is the accuracy of the models. In general, the accuracy is 

between 78% and 99.5%, with 2 studies obtaining a value over 90%. The main differences among results are related to 

the classifier selected and to the number of the physiological signals used. The use of a combination of signals has 

provided good results (Santos 2012). In another way, all the papers except one (Pedrotti et al. 2014), just estimate two 

levels of stress: relax, low stress or non-stress versus stress. Another important point is the variety of measurement 

devices and the activities to provoke stress. The “Stroop Color-Word Interference Test” has been used in several studies 

and can be taken as a reference. This activity, or other similar ones, have been used in combination with an audio 

stimulus (noise), social events (people entering or leaving the room) with the purpose of creating an atmosphere that 

can cause stress to the subjects.  

3. Feasibility analysis of stress detection 

From the results described in section 2, it is clear that the measurement of physiological signals and the use of machine 

learning methods can be used to provide a reasonable estimation of stress. Nevertheless, such signals have been 

collected using specialized devices with precise sensors. Our purpose is to validate the use of COTS wrist wearables 

and their sensors as collectors of such physiological signals to estimate stress.  

 

In the current market, there are COTS wrist wearables that have sensors that measure physiological signals with a 

precision similar to specialized devices. Some examples are:E4 wristband (empatica 2016) and Shimmer3 (Shimmer). 

Nevertheless, these devices have been designed to be used for research purposes (Burns et al. 2010; Koskimäki et al. 

2017).  The main problems with these devices are their high cost (over € 800) or the hassle caused to the users (small 

probes and wiring to measure the GSR in the fingers).  

 

For these reasons, our research has focused on the popular COTS wrist wearables. This type of device may involve 

concerns about their performance. In this regard, there are publications in the literature that try to quantify the accuracy 



 9 

of COTS wrist wearables (Guo et al. 2013; Stahl et al. 2016; Wallen et al. 2016; Wang et al. 2017). The results reveal 

that the accuracy depends on the level of movement of the subject (Stahl et al. 2016). However, in conditions of low 

movement, sensors such as the HR offer values of absolute error in a range of 2,8% - 5,41% (Stahl et al. 2016). We can 

say that, although COTS wrist wearables have a lower accuracy than clinical devices, the use of these devices allows 

studies to avoid the annoying wiring of clinical tests and thus eliminating the psychological biases that would result 

from their use.  

3.1. Methods 

From the available devices in the market, we selected the Microsoft Band 2 wrist wearable. The selection was mainly 

based on the included sensors: optical HR monitor, accelerometer/gyrometer, thermometer, barometer, GSR monitor, 

light and UV meters, microphone and GPS. Another selection criterial were the options available to collect and transfer 

sensor data to our analytics system. This is not a simple task, because several issues can be involved (de Arriba-Pérez et 

al. 2016): interoperability among systems, energy consumption, storage capacity, etc. In the Microsoft Band 2 case, data 

can be collected by an Android/Windows/iOS app using available libraries. Therefore, from the most relevant 

physiological signals described in section 2.2, we could collect the next ones: HR, ST, GSR and motion/acceleration. 

Table 3 shows the technical spec of this device. This information was obtained from the official web page of Microsoft 

(Microsoft 2015). 

 

Table 3. Microsoft Band 2 sensors information. 

Sensor Details Frequency 

Accelerometer 

Provides X, Y, and Z acceleration in g units. 1 g = 9.81 meters 

per second squared (m/s2). 

62/31/8 Hz 

 

 

Gyroscope Provides X, Y, and Z angular velocity in degrees per second 

(°/sec) units. 

62/31/8 Hz 

 

Heart Rate Provides the number of beats per minute. 1 Hz 

Skin temperature Provides the current skin temperature of the wearer in degrees 

Celsius. 

1 Hz 

 

UV Provides the current ultraviolet radiation exposure intensity. 1 Hz 

Galvanic Skin Response Provides the current skin resistance of the wearer in kohms. 0.2/5 Hz 

Ambient Light Provides the current light intensity (illuminance) in lux 

(Lumes per sq. meter). 

2 Hz 

 

Barometer Provides the current raw air pressure in hPa 

(hectopascals) and raw temperature in degrees Celsius. 

1 Hz 

 

Altimeter Provides current elevation data like total gain/loss, 

steps ascended/descended, flights ascended/descended, and 

elevation rate. 

1 Hz 

 

 

 

The experiment involves the induction of different stress levels to the subjects. The protocol to perform this experiment 

has been described in a previous publication (de Arriba-Pérez et al. 2018) and here we focus on the description of the 
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stressing activities and the data analysis. To support the performance of stressing activities an Android app was 

developed for both smartphone and tablet. This app proposes 4 different activities to the subject under experimentation. 

Each one of these activities is explained to the subject previous to the performance of the experiment, including also the 

description of the measured variables and the purpose of the measurement. Besides, previous to the performance of 

each activity, the app provides a brief textual description. The 4 activities are as follows: 

• The first activity (VIDEO) is a 4 minutes 20 seconds relaxing video. The aim is to take the subject to an entire 

relaxing situation (cf. Fig. 1). 

 

 
Fig. 1. Snapshot of the video activity. 

 

• The second activity (SCT) involves an adapted version of the “Stroop Color-Word Interference Test”. As it is 

indicated in section 2.2, this has been extensively used in the experiments about stress. In all of them, colored 

words appear in the screen and then disappear when the subject clicks in the button corresponding to the color 

shown with a time limit of 2 seconds (cf. Fig. 2), that is the maximum time available for answering. This 

activity is composed of 3 different levels of difficulty: 

o In the first level (SCT1), the colors and the words are in correspondence. For example, if the word is 

“Green”, then it is in green color. Besides, the words/colors are shown following the same sequence. 

The aim of this level is to train the user and to take into account the accelerometer movements in the 

absence of stress.  

o In the second level (SCT2), the colors and the words are in correspondence also, but the sequence of 

appearance is randomized. Also, the user will have just 2 attempts to get over this level. Every time 

the subject makes a mistake, a buzz is emitted. The aim of this level is to check the existence of a 

variation in the physiological signals as an indication of a level of stress produced by the 

concentration needed to perform the task. 

o In the third level (SCT3), the colors and the words are not in correspondence. The rest of the 

conditions are equal to the previous level. The aim is to take the subject stress to the highest level. 
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Fig. 2. Snapshot of the Stroop Color-Word Interference Test (SCT) activities. 

 

• The third activity (PASAT) involves an adaptation of the PASAT test (Tombaugh 2006). The aim of this test is 

to increase attention and concentration, as demonstrated by several studies (Tombaugh 2006). In this test, the 

subject hears numbers in a sequence, and he/she has to answer the result of adding the actual number with the 

previous one (cf. Fig. 3). For example, if the sequence is initiated with the number “1” and then the number 

“2”, the subject should write “3”; if the next number is “5”, he/she should answer “7”, and so on. This test has 

been included to compare the results with the ones obtained in the “Stroop Color-Word Interference Test”, 

trying to achieve a high concentration/attention state different from high stressed and relaxed ones. 

 

 
Fig. 3. Snapshot of the PASAT activity. 

• Finally, the fourth and last activity (HYPERVENT) involves the development of a hyperventilation exercise 

(Santos 2012). In this exercise, the subject has to breathe deeply, inhaling and exhaling, following the rhythm 
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marked by the app (cf. Fig. 4). The duration of the breathing periods is of 3 seconds. If physiological signals 

do not change significantly, the subject is asked to increase inspiration and expiration rates. The aim of this test 

is to assess the variations of the physiological signals when the user is in a hyperventilation state. 

 

 
Fig. 4. Snapshot of the hyperventilation activity. 

 

Each one of these activities is followed by a question about the stress perceived (cf. Fig. 5). The subject provides a 

value (using a 7-point Likert scale) of the perceived stress, indicating if he/she has felt relaxed, stressed, or has 

experimented any intermediate level of stress.  

 

 
Fig. 5. Quiz to be completed at the end of each activity. 
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The physiological signals are collected by another app developed for this purpose, and the data is sent to an analytic 

server. The data can be shown on a web dashboard. Each second a sample of HR, Acc, GSR and ST is recorded. To 

eliminate the noise of HR samples, a FIR filter has been introduced. This filter is commonly used in the real-time signal 

analysis (Fan and Wang 2010). Several filtering levels were tested with different time window values. Finally, a 15 

seconds time window was selected because the high-frequency component is reduced and the temporal shift and 

amplitude loss are almost insignificant. 

 

For data processing, we have used a Java Server with a REST API with Jersey (Jersey 2016) including Weka as the 

machine learning library (Mark et al. 2011). Data is stored in a MongoDB server (MongoDB 2017), as objects in BSON 

(Binary JSON) format. The data structure includes an id for each user and timestamp and a record with the value of 

each sensor at sampling times. Finally, the data and results are rendered in the web using the Highcharts library 

(Highcharts 2017) that provides an excellent set of tools to show dynamic graphics (cf. Fig. 6). 

 

 
Fig. 6. Dashboard to visualize the physiological signals collected from the wearable. 

3.2. Data Analysis 

The experiment involved 19 subjects with an average age of 23.5 ± 6.04. It was divided into two different stages, but 

the same stress induction procedures were carried out in both of them. In the first stage, a total of 7 researchers and 
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postgraduate students participated. In the second stage, 12 undergraduate students from the University of Vigo were 

involved. The experiment was performance inside the range of 18ºC to 24ºC recommended for the performance of 

intellectual activities. The people participating in the experiment were informed and provided their consent. All of them 

were aware of the voluntary character of the test and had a good knowledge about the aim of the study and its 

development. Nevertheless, they do not have previous experiences in the performance of stress-related tests like this 

one. In addition, no one of the subjects had any cardiopathy or known heart disorders. In the following sections are 

summarized the visual and numerical analysis performed on the generated datasets. 

3.2.1. Visual Analysis 

Firstly, we analyzed the physiological signals variations in a visual way. Fig. 7 shows results of the 7 subjects involved 

in the first stage. The most remarkable issues in the evolution of the physiological signals are the following ones: 

• The HR experiences an evident increase in the hyperventilation activity. At the beginning of this activity, the 

HR value is in a medium or low level, compared to the previous activities. Only the subject number 3 shows a 

very high HR value at the beginning of the activity. This behavior is anomalous in comparison to the other 

subjects. We asked the subject about this issue, and he explained that he was particularly nervous and worried 

about the next activity.  

• The GSR increases in a staggered way with the complexity of the activities. 

• The temperature shows several variations among subjects. Subjects 1, 3, 4 and 5 increase the temperature in 

the first SCT activities and this increase continues until the most demanding activities are experienced, such as 

the SCT3 and PASAT. From here, and mainly during the hyperventilation activity, the temperature decreases. 

Subject number 7 does not show this trend in the decrease of temperature during the hyperventilation, but the 

increase of temperature slows down. Finally, subject 2 shows a strange behavior, because the temperature 

decreases from the beginning, with a huge decrease at the beginning of the hyperventilation activity. 

 

The answer provided by the subjects to the question about the perceived stress is shown in the top part of each graph. 

When we analyzed the physiological signals of each subject, we observed that the perceived stress is highly subjective. 

For example, in the fifth graph, it is shown a subject that qualifies the video activity as medium stress. In the other 

activities, the perceived stress provided by the subject changes in correspondence with the physiological signals. 

Nevertheless, in the case of the hyperventilation activity, despite the subject does not consider it as a stressful situation 

it produces a high physiological activation, similar to a situation of high stress (Cano et al. 2007). In another way, the 

sixth graphic shows a subject that has qualified all the activities with the same stress level, but the variations of the 

physiological signals indicate different stress levels. As it can be observed, the answers provided by the subjects are 

diverse, but in general, the perceived stress is correlated with variations in the physiological signals. Nevertheless, the 

last activity (hyperventilation) generate many doubts to almost all the subjects, maybe because it is not a real 

psychological stressing activity. 
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Fig. 7. Physiological signals variations by activity. 



 16 

3.2.2. Numerical analysis: clustering 

Secondly, we analyze the feasibility to estimate stress using machine learning techniques. We begin this process with a 

clustering analysis of each dataset. The goal is to identify the most similar activities and differentiated groups that share 

similar values of physiological signals. 

 

To prepare the datasets we have used derived variables in addition to the raw data. Specifically, we have used the 

following raw variables: HR, ST, Acc and GSR. In addition, for each one of these variables we have used the standard 

deviation (st), the slope (sl) and the difference between the most remote value and the current one (diff) in the 15 and 30 

seconds of previous samples. Moreover, we have only used samples from the last 3 minutes of the activities to avoid 

non-representative samples of the initial period in which the user is just assuming the difficulty of the task and the 

physiological signals can vary randomly. Finally, we got 19 datasets with a total of 12200 samples (in mean, 642 

samples per subject).  

 

The obtained dataset files are processed by the Expectation Maximisation (EM) clustering algorithm to search 3 clusters 

for each subject. The clusterization results are shown in Table 4. In this table, it can be observed that activities SCT1 

and SCT2 are classified in most cases with the video activity and in other cases with more stressful activities, such as 

the SCT3 and PASAT. Similarly, the hyperventilation activity shares some samples with stressing activities, such as 

SCT3 and PASAT (Cluster 2) or it is classified separately (Cluster 3). This can be explained by the abrupt variations in 

the physiological signals that can be observed. Finally, the relaxing video provides a differentiated cluster (Cluster 1). 

Only in two cases, this activity introduced samples in a stress cluster. Nevertheless, this event has probably been the 

result of an initial sense of stress or the unusual physiological behavior of a subject. As a result, we conclude that the 

relaxing activity and the activities to produce stress provoke differentiated physiological signals. Therefore, we group 

the samples in three main categories: (i) video tagged as “Relax”; (ii) SCT3 and PASAT tagged as “Medium stress”; 

and (iii) hyperventilation tagged as “Stress”. Samples of the SCT1 and SCT2 are discarded because they belong to 

several groups simultaneously. This is coherent if we take into account that both activities serve as a transition between 

a relaxing activity (VIDEO) and a stressful activity (SCT3). 

 

Table 4. Classification of the individual subject activities into clusters detected. 

UserID Cluster 1 Cluster 2 Cluster 3 

1 VIDEO, SCT2  PASAT, SCT3, HYPERVENT VIDEO, SCT1, SCT3, PASAT, HYPERVENT 

2 VIDEO, SCT1 SCT2, SCT3, PASAT HYPERVENT 

3 VIDEO SCT1, SCT2, SCT3, PASAT SCT1, HYPERVENT 

4 VIDEO, SCT1, SCT2 SCT3, PASAT, HYPERVENT HYPERVENT 

5 VIDEO, HYPERVENT SCT1, SCT2  SCT3, PASAT, HYPERVENT 

6 VIDEO, SCT1, SCT2 SCT2, SCT3, HYPERVENT PASAT, SCT3, HYPERVENT 

7 VIDEO, SCT1, SCT2 SCT2, SCT3, PASAT HYPERVENT 

8 VIDEO, SCT1, SCT2 SCT3, PASAT VIDEO, SCT1, SCT2, PASAT, HYPERVENT 

9 
VIDEO, SCT1, SCT2, 
SCT3 

SCT1, SCT3, PASAT, 
HYPERVENT HYPERVENT 

10 VIDEO, SCT1, SCT2 
SCT2, SCT3, PASAT, 
HYPERVENT PASAT, HYPERVENT 
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11 
VIDEO, SCT1, SCT2, 
SCT3 SCT3, PASAT PASAT, HYPERVENT 

12 VIDEO, SCT1 SCT2, SCT3, PASAT VIDEO, SCT1, SCT2, SCT3, HYPERVENT 

13 VIDEO VIDEO, SCT1, SCT2, SCT3 PASAT, HYPERVENT 

14 VIDEO SCT1, SCT2, SCT3 SCT3, PASAT, HYPERVENT 

15 VIDEO, SCT1 
VIDEO, SCT1, SCT2, SCT3, 
PASAT HYPERVENT 

16 VIDEO, SCT1, SCT2 SCT3, PASAT VIDEO, SCT1, SCT2, HYPERVENT 

17 VIDEO, SCT1, SCT2 SCT1, SCT2, SCT3, PASAT HYPERVENT 

18 VIDEO, SCT1, SCT2 SCT1, SCT2, SCT3, PASAT SCT1, HYPERVENT 

19 VIDEO, SCT1 SCT1, SCT2, SCT3 SCT3, PASAT, HYPERVENT 
 

Our next step was to analyze the features that provide a gain regarding prediction, using the tagged samples. The goal is 

to select the features that offer more accurate using machine learning classifiers. We used as attribute evaluator an 

“InfoGainAttributeEval” and as search method a “Ranker” provided by Weka. Table 5 shows the results of this 

analysis. Columns tagged as Var show the variables: prefix st stands for standard deviation, prefix sl for slope and 

prefix diff for the difference between the most remote value and the current one in the 15 and 30 seconds of previous 

samples. In addition, subindexes 15 and 30 are used to differentiate both time windows. For the superficial skin 

temperature, the Temp abbreviation is used. The results, shown in Table 5, indicate that the most significant features are 

the raw values and the statistics obtained from a 30 seconds window. The 15 seconds window also offers a significant 

gain. For this reason, all of them are maintained for further analysis.  

 

Table 5. Mean gain value per attribute. 

Var Gain Ranking  Var Gain Ranking 

Temp 1.0785  diffTemp15 0.0805 

GSR 0.8124  stTemp30 0.0721 

stAcc30 0.3819  stGsr30 0.0594 

stAcc15 0.3683  diffHR30 0.056 

Acc 0.1816  stHR15 0.0546 

diffTemp30 0.1723  slGsr30 0.0454 

HRFIR 0.1672  slAcc30 0.0449 

diffAcc15 0.1343  stGsr15 0.0384 

diffAcc30 0.1229  slGsr15 0.0358 

diffGsr30 0.1128  stTemp15 0.0319 

slAcc15 0.0884  slHR15 0.0278 

slHR30 0.081  diffHR15 0.0257 

stHR30 0.081  slTemp15 0.0189 

diffGsr15 0.0807  slTemp30 0.0119 
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3.2.3. Numerical analysis: Individual data set study 

Using the obtained datasets, we analyzed the behavior of several machine learning algorithms to generate individual 

predictors for stress. Several predictors were evaluated to select the one that performs better following a cross-

validation check. In this cross-validation process, the input dataset was divided into 10 parts, using 9 to train and one to 

test. In the next step, the testing part becomes a part of training, and a part of training becomes testing. This process was 

performed 10 times moving the training parts. Finally, the mean value of all the obtained results is used to calculate the 

accuracy and errors.  

 

The results are shown in Table 6. In this table, it can be observed the accuracy for each stress category (Relax, Medium 

stress, Stress) and the mean accuracy and mean F-measure value of all individual subject’s analyses. All the 

classification algorithms evaluated in this table have been launched with the default parameters defined in the Weka 

analysis tool. As it can be observed, results are excellent. The accuracy of all the classifiers is over 0.9 (the Zero R is 

used as the worst result possible). The algorithms offering the best performance and results are the Neuronal Network (a 

Multilayer Perceptron with 15 hidden layers), Random Forest, C4.5 and IBK. Random Forest and C4.5. These 

algorithms create decision trees in accordance with the values of each one of the attributes used, and in this way, they 

can show overfitting problems if the data elements are very similar. For this reason, the algorithms that take into 

account the similarity among the samples using clusters and neighbor’s similitude such as SVM and IBK, or algorithms 

that try to follow the variations of the signals, such as, the Locally weighted learning can provide most strength. 

Following a different approach, the use of Neuronal Network also returns very good results. In this case, the drawback 

is that the computation is very expensive. A main conclusion from Table 6 is that the high degree of the accuracy of 

several algorithms confirm the existence of a significant physiological difference among the different stress levels.  

 

Table 6. Metric scores of individual subject values with several classifier. 

  Accuracy 

Relax 

Accuracy 

Medium 

Accuracy 

Stress 

Accuracy 

Global 

F-measure 

Neuronal Network 1 0.999 1 1 0.999 

SVM 1 0.994 0.994 0.996 0.992 

Locally weighted 

learning 0.991 0.933 0.924 0.95 0.882 

C4.5 1 0.998 0.998 0.999 0.998 

Random Forest 1 1 1 1 1 

IBK 1 0.999 0.999 0.999 0.998 

Naive Bayes 0.995 0.959 0.96 0.972 0.953 

Zero R 0.725 0.486 0.762 0.658 0.218 

3.2.4. Numerical analysis: Global classifier analysis  

Beyond the individual per-subject prediction models, we explored a general classifier using all the available samples. 

The goal is to provide a kind of cold start system that is able to detect stress and relax of a subject without any previous 

training. To analyze the behavior of this global classifier we carry out different tests that are explained below. 
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As a first approach, we evaluated the behavior of each classifier applying the same validation system than in the 

individual analyses case. To do it, we included all the samples in the same single file and applied the cross validation 

method over the same set of classification algorithms previously shown. As it can be observer in Table 7, the values 

obtained for Neuronal Network, Random Forest, C4.5 and IBK are very similar to the best results available in literature 

using specialized devices (Zhai and Barreto 2006; Santos 2012). In this case, the SVM suffers in comparison to the 

individual solution, but the prediction accuracy is reasonable. Again, Random Forest, C4.5 and IBK offer the best result 

with a value greater than 0.97. This result indicates that a general model involving all the subjects can be developed, but 

it does not confirm that new subjects can be assessed with a high success rate.  

 

Table 7. Scores of all user in the same file with several classifiers. 

  Accuracy 

Relax 

Accuracy 

Medium 

Accuracy 

Stress 

Accuracy 

Global 

F-measure 

Neuronal Network 0.929 0.894 0.916 0.913 0.857 

SVM 0.776 0.696 0.786 0.753 0.552 

Locally weighted 

learning 0.766 0.75 0.76 0.759 0.464 

C4.5 0.986 0.981 0.983 0.983 0.973 

Random Forest 0.998 0.994 0.995 0.996 0.993 

IBK 0.997 0.995 0.995 0.996 0.993 

Naive Bayes 0.58 0.621 0.761 0.654 0.458 

Zero R 0.725 0.486 0.762 0.658 0.218 

 

Our next goal was to analyze the behavior of the system in a more real scenario. To do it, a file was generated including 

the samples of 18 subjects to train the classifiers. Another file was generated containing the samples of the remaining 

subject, to be used as a test. This procedure is performed 19 times, once for each subject. In this case, as it can be seen 

in Table 8, the results obtained are much worse. The main difference is obtained with the Neural Network, C4.5 and 

IBK, providing accuracy values around 0.6. This is not the case of the Locally weighted learning and Random Forest, 

that continue to offer a reasonable percentage of detection, greater than 0.7. However, in both classifiers the value of F-

measure is reduced dramatically. 

 

Table 8.  Scores with all samples of subjects except one in a file as training and the remaining one samples in a different 

file as validation. 

  Accuracy 

Relax 

Accuracy 

Medium 

Accuracy 

Stress 

Accuracy 

Global 

F-measure 

Neuronal Network 0.64 0.569 0.611 0.606 0.353 

SVM 0.726 0.614 0.728 0.689 0.434 

Locally weighted 

learning 0.761 0.749 0.762 0.757 0.454 

C4.5 0.661 0.631 0.607 0.633 0.398 
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Random Forest 0.727 0.718 0.688 0.711 0.478 

IBK 0.638 0.561 0.624 0.608 0.368 

Naive Bayes 0.569 0.609 0.75 0.643 0.406 

Zero R 0.725 0.486 0.762 0.658 0.218 

 

Taking into account the results shown in Table 8, a new analysis was carried out. This time working with just two stress 

levels and discarding the hyperventilation samples. Table 9 shows the results obtained. A slight improvement in the 

accuracy level of the Random Forest and Locally weighted learning classifiers can be observed, with F-measure values 

above 0.7. These results are acceptable and they are very close to the ones shown in the literature using specialized 

devices (Hernandez et al. 2011; Mokhayeri et al. 2011).  

 

Analyzing separately the 19 iterations presented in Table 10, we noticed the existence of subjects whose values of 

accuracy and F-measure presented were very estrange. These subjects (marked in bold in Table 10) have certain 

peculiarities in their physiological signals, which include extremely high GSR values, physiological signals almost 

unchanged during the performance of the tests, skin surface temperature with sharp drops and an HR excessively high 

during video viewing. Table 11 shows the results when the samples of these subjects were omitted. In this case, the 

classifiers SVM, C4.5, Random Forest and Locally weighted learning improved their values of accuracy and F-measure 

significantly. This improvement was especially important for the last two classifiers, which place both metrics in a 

range of 0.7 to 0.85. 

 

Table 9. Scores with all samples of the subjects except one in a file as training and the remaining one samples in a 

different file as validation. Two-stage analysis. 

  Accuracy F-measure 

Neuronal Network 0.574 0.523 

SVM 0.67 0.631 

Locally weighted learning 0.785 0.76 

C4.5 0.678 0.648 

Random Forest 0.724 0.70 

IBK 0.567 0.538 

Naive Bayes 0.623 0.554 

Zero R 0.495 0.331 

 

 

Table 10. Accuracy and F-measures of each one of the experiment iterations using a single file with samples of all 

subjects except one as training, and a different file with the remaining one samples as validation. 

Interaction Accuracy F-measure 

1 0.555 0.443 

2 0.918 0.918 

3 0.728 0.701 
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4 0.654 0.574 

5 0.828 0.824 

6 0.922 0.922 

7 0.549 0.522 

8 0.734 0.713 

9 0.576 0.483 

10 0.817 0.815 

11 0.972 0.972 

12 0.8 0.792 

13 0.528 0.432 

14 0.879 0.878 

15 0.845 0.841 

16 0.972 0.972 

17 0.857 0.857 

18 0.972 0.972 

19 0.813 0.812 

 

Table 11. Scores using a single file with samples of all subjects except one as training, and a different file with the 

samples of the remaining one as validation, omitting atypical subjects 

  Accuracy F-measure 

Neuronal Network 0.587 0.535 

SVM 0.7 0.671 

Locally weighted learning 0.847 0.838 

C4.5 0.71 0.688 

Random Forest 0.765 0.758 

IBK 0.558 0.532 

Naive Bayes 0.642 0.575 

Zero R 0.496 0.332 

 

Finally, we wanted to see how this stress estimation system behaves in a realistic scenario. The Locally Weighted 

Learning (LWL) classifier was trained with the initial 19 subjects and evaluated with 5 new subjects. The results, shown 

in Table 12, offered values of accuracy and F-measure higher than 0.8 and mostly close to 0.9 in all cases. In addition, 

we wanted to analyze which variables are the most relevant for the two classifiers with the best results (LWL and 

Random Forest). We used Weka's ClassifierAtrributeEval algorithm to obtain the data shown in Table 13. As it can be 

observed, the GSR is the most representative signal of stress, as it appears in the top positions for both classifiers. This 

conclusion is aligned with works such as (Setz et al., 2010; Hernandez et al., 2011; Sano and Eng, 2016), where stress is 

estimated using only this variable.  
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Table 12. Metric scores of LWL in a real case study. 

  Accuracy F-measure 

1 0.944 0.944 

2 0.894 0.894 

3 0.958 0.958 

4 0.81 0.803 

5 0.892 0.892 

 

Table 13. Rankings of most important attributes for the LWL and Random Forest classifiers. 

Rank Random Forest Locally weighted learning 
1 Temp stAcc15 
2 GSR stAcc30 
3 stAcc15 Acc 
4 stAcc30 GSR 
5 Acc diffTemp30 
6 diffAcc15 diffAcc30 
7 diffAcc30 diffAcc15 
8 slAcc15 slAcc15 
9 diffTemp30 stHR15 

10 HRFIR stTemp30 
11 stTemp30 Temp 
12 slAcc30 stGsr30 
13 diffGsr30 stGsr15 
14 diffGsr15 HRFIR 

 

In conclusion, the obtained results provide a validation of the capability of COTS wrist wearables to estimate stress 

levels. In any case, such good results are possible because of the control of the experimental conditions. The models 

offer slightly worse results than the ones reported in the literature, although well aligned with them. 

4. Stress related indicators for educational purposes 

In the previous section, it is shown how COTS wrist wearable can be used to provide an estimation of stress level from 

the values of physiological variables. This can be considered as an indicator of the stress experienced at a particular 

time. Nevertheless, other indicators based on accumulated stress can be conceived to manage stress mainly for 

educational purposes. From the review of subjective tests included in section 2.1, it is clear the variety of testing 

methods to provide different stress indicators, considering different situations and stress-related features. Nevertheless, 

at this initial stage in our piece of research, we consider that the automatic identification of such conditions is not 

feasible in a wearable-based approach. Therefore, we propose some specific indicators taking into account the 

accumulation or variations of the stress level in the long time. This type of information can be especially useful in 

educational settings, where the burnout syndrome is present. In addition, prolonged stress, known by the name of 

chronic stress, has been shown to affect the health conditions and can be the source of pathologies (Dallman et al. 2003; 

Chandola et al. 2006; Mariotti 2015; Mayo Clinic Staff 2016) such as: heart problems, obesity, etc. The measurement of 
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accumulated stress does not pretend to be something new. As we have shown, the subjective tests, such as PSS-14 or 

STAI, study the stress conditions during a period of time and not the instantaneous stress, as we have been working on. 

For this reason, in this section we present five new indicators that are of potential utility for the characterization of 

stress in educational contexts. In a final stage, these indicators could support the development of new services 

(recommendation systems, alert generators) and enable the development of extended student profiles. 

4.1. Smoothed Stress (SS) 

This is the primary reference stress indicator providing the stress level value at each time point. This is based on the 

predictions of a trained classifier. The classifier provides an instantaneous stress level (IS) of the user from the new 

sensors’ raw data received. One issue of this indicator is that the results provided for each sample can produce 

oscillations for short time periods (cf. Fig. 8). These small oscillations are not relevant for the user and do not show a 

clear stress level. To manage this problem, we follow the following process (1): 

• A 60 seconds temporal window is applied to the results taking the all the values estimated during that period. 

• The state that is more repeated in such a period (mode) is taken. In other words, we use the mode statistic to 

detect the most repeated value in the period. 

• Such a state is provided as the estimation for such period. 

 

𝑆𝑆(𝑡) = 𝑀𝑜({𝐼𝑆(𝑡 − 60), 𝐼𝑆(𝑡 − 59)… 𝐼𝑆(𝑡)})         (1) 

 
Fig. 8. Micro-oscillation in predicted stress. 

4.2. Pattern of Stress Regularity (PSR) 

In this case, we followed an approximation similar to sleep regularity indicator (Sano and Eng 2016). Variations in a 

basic index are compared during a certain period of time on different days to check if the same pattern is repeated. In 

our case, the Pattern of Stress Regularity (PSR) is calculated by measuring the similarity of the vector (SS𝑛𝑜𝑟𝑚)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ,  that 

contains all the normalized stress measurements in a period of time (𝑇) against the medium vector of stress in the same 

period of time (𝑀𝑒𝑎𝑛SS)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . Each element of the vector  (SS𝑛𝑜𝑟𝑚)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   takes a value 0 if the subject’s state is relaxed, 0.5 in 
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case of stress and 1 in case of high stress. This indicator will allow us to check if stress varies along days. Next, the 

mathematical formula that calculates this indicator is presented (2). 

 

𝑃𝑆𝑅 =
∫ SS𝑛𝑜𝑟𝑚

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  [𝑡]𝑀𝑒𝑎𝑛SS⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  [t] 𝑑𝑡
𝑇

0

𝑇
 (2) 

4.3. Aggregated Stress (AS) 

This indicator is calculated as the aggregation of SS values for a period of time, e.g. a whole day. As a result, we get a 

number that represents the percentage of stress experienced during such a period. While the SS offers an instantaneous 

value of the stress level at a certain time point, the AS offers the percentage of time in which the user has been stressed. 

One of the most significant periods is one that covers 24 hours a day. This measures the percentage of time a student 

feels stressed during a whole day. If the AS is high, it could indicate a possible burnout syndrome. Using this indicator, 

we could check if the AS from Monday to Friday, school days, is higher or lower than on Saturday and Sunday. We 

propose a graphic representation related to this indicator (cf. Fig. 9). This kind of representation shows not just the AS 

value, but also the percentages for each level and the number of periods and duration of each period for each level.  

 

 
Fig. 9. Aggregated stress representation. 

4.4. Stress Variability (SV) 

Another factor that can influence the perception of stress is its variability. A scattered stress with periods of relaxation 

followed by periods of high stress can adversely affect the person. This indicator calculates the standard deviation (Std) 

of accumulated stress at different times, in periods of time similar to the duration of a class (60/120 minutes) AS𝑠𝑢𝑏𝑗𝑒𝑐𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 
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In case a student shows a high SV along a certain weekday, it is feasible that the student suffers during the performance 

of some activities and it is relaxed during other ones. This could be taken into account to schedule a better school 

activities and subjects programs. The calculation of this indicator is given by the following formula (3), where we have 

used 60 minute time periods.  

 

𝑆𝑉 = 𝑆𝑡𝑑(AS𝑠𝑢𝑏𝑗𝑒𝑐𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )         (3) 

4.5. Latent Stress (LS) 

If the stress experienced by the user is extended on time, it can cause a stress-related condition, such as the Burnout 

syndrome (Maslach and Jackson 1981). This is a not desirable situation. It can produce discourage and lack of interest. 

Therefore, it is important to detect and manage lengthy stress situations. The LS indicator is proposed for this purpose. 

Meanwhile, the previous two indicators provide just information, the goal of this indicator is to alert to potentially 

dangerous situations. 

 

This indicator is based on an idea used in other scientific areas, such as the declining curves using a roll-off rate 𝛼. 

Some examples of these systems can be found in the educational field as the Ebbinghaus forgetting curves (Ebbinghaus 

2013; wranx 2016) or in training, as recovery status curves (Polar 2017). The Ebbinghaus curves represent the loss of 

memory retention in time and how the review of the learning material contributes to extend it. The recovery status 

curves indicate that the recovering time after performing a physical exercise is extended on time. They are used by 

vendors, such as Polar, to help users find the perfect balance between training and rest. Similarly, we consider the 

application of this idea to the stress, representing that it is extended on time in accordance with a declining curve. This 

provides a new indicator known as latent stress (LS). A low value of this indicator represents low stress over time, 

while high value indicates that the user has been subject to a high pressure for a long time. 

 

The goal is to provide a stress indicator that varies in accordance with the duration of stress periods proportionally, and 

that is decreased by a K-factor. For example, is the subject experiences stress during half an hour then the latent stress 

will take a certain value. In the case K-factor=1, the declining curve will take the latent stress to 0 after half an hour 

without any stress.  

 

 To calculate the LS at a certain time, the following formulas are used (4) and (5): 

 

𝐿𝑆(𝑡) = 𝐿𝑆(𝑡 − 1) − 𝐾  if 𝐾 ≤ 𝐿𝑆(𝑡 − 1)    (4) 

 𝐿𝑆(𝑡) = 0 if  𝐾 > 𝐿𝑆(𝑡 − 1)    (5) 

Where: 

𝐾 is the stress recovery factor. 

 

In case a new stress level is produced after a relax or medium stress state, the value of 𝐿𝑆 is updated each second in 

accordance with the following formula (6): 

𝐿𝑆(𝑡) = 𝐿𝑆(𝑡 − 1) + 1    (6) 
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An example of the LS variations on time with K=1 can be seen at Fig. 10. 

 
Fig. 10. Variation of latent stress. 

5. Conclusions  

Despite the significant amount of scientific literature about stress, there are not many solutions to measure it in a non-

intrusive and simple way. The use of subjective tests only allows to estimate stress at certain time points, but not to 

measure it in a continuous basis, following its evolution. There exist clinical devices that allow to detect stress from 

physiological signals, but clinical procedures need to be supervised in hospitals, managed by experts and in some 

situations introduce psychological biases (Mario et al. 2009; Ibáñez et al. 2018). New COTS wrist wearables offer 

significant advantages related to the comfortability and automatization to collect physiological signals and detect 

information of interest such as stress states. The issue that we have tried to answer in this paper is if these devices are 

good enough to provide valid measures of stress. 

 

After a thorough analysis of the available sensor’s variables, we show COTS wrist wearables can be used to obtain 

classifiers with a high accuracy in stress estimation. This conclusion is provided taking into account the results obtained 

in several analysis. Firstly, results shown a 0.90 accuracy and F-measure in practically all classifiers analyzed in an 

individual subject model and a similar good result in the first global model analyses. Secondly, the good results were 

confirmed by a second experiment, where a classifier was trained with 18 subjects and tested with another one. The 

accuracy and F-measure results were well below the individual model. Nevertheless, when the samples of subjects who 

presented anomalous behavior were removed, the metrics of the two best classifiers approached 0.8. Finally, a new 

experiment was performed training an LWL classifier, the one which had provided the best results, with the samples of 

19 subjects and tested with 5 new subjects. This time, the accuracy and F-measure values were greater than 0.8 and on 

average close to 0.9. Notice the classifiers are evaluated with the parameters by default defined in the library of Weka 
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functions. The improvement of these parameters would allow to offer a general performance much greater than the 

provided one, especially in the case of the Neural Network.  

 

Several developments have been needed to make possible these results. Particularly, the app to induce stress can be an 

interesting resource, because it enables to reproduce the experiments in the same conditions. Despite the good results 

obtained and the possible applications, it is important to notice that there is a long way to walk until they can be used in 

everyday basics. One important issue is related to the reduced number of COTS wrist wearables providing the sensors 

needed to collect the required physiological signals. This type of wearables is oriented to support physical training 

activities, and they do not currently include sensors such as GSR or skin temperature. In another way, the preparation of 

the experiment also revealed some problems, particularly related to the GSR sensor. This sensor is sensitive to position 

changes, and when the device moves over the wrist, the GSR measure can be reset. Therefore, during the experiments, 

special care was taken to fix the wearable to the wrist. In general, these devices also present issues related to the 

battery-life duration, the memory available or the interoperability issues to enable third-party systems to collect data 

from them. Despite these problems, it is important to notice that the wearable domain is in continuous evolution. 

Therefore, as in the case of the HR sensor (it was almost inexistent two years ago but has been included by many 

vendors in their new products), we hope that sensors such as the GSR and the ST meters would become more common 

in future COTS wearables.  

 

The app to induce stress reproduced some broadly-used exercises already described in the literature. However, recent 

studies indicate that stress can be the product not only of the performance of a specific activity, but also the result of an 

emotional aspect and possible environmental factors. That is, a test may induce stress in a subject not just because the 

direct interactions, but also by the emotions that it evokes. Some authors (Rincon et al. 2018; Costa et al. 2019) use 

cameras or ad-hoc devices in order to estimate these emotions. The identification of these emotions can be used to 

create a model of enriched stress. However, in this paper we have not been able to approach this analysis, although we 

consider it is really interesting to propose an experiment that, in addition to evaluating stress, evaluates the emotions of 

the individual and therefore generates a more "real" measure of stress. 

 

Besides, we propose other stress-related indicators that can be of interest. They are based on the availability of 

continuous values of the stress level. This is a new research area still at an initial stage of development. From this point 

of view, it is still not clear how solutions and indicators can be integrated successfully in educational scenarios. 

Previously, we have been working in the development of sleep indicators (de Arriba-Pérez et al. 2017). Together with 

the stress indicators proposed in this paper, they could be used to enhance the learner models used in many educational 

systems: recommendation systems, cognitive tutors, affective tutors, etc. Beyond this, we consider other possible areas 

of application: 

• Self-regulated learning. The availability of the stress indicators can be used to make learners more aware of 

their own features and conditions. They could get better self-knowledge. If their study habits and learning 

strategies are provoking high-stress levels and event latent stress, they should consider some changes. 

• Improve learning activities. Anyone can easily understand that examinations produce a high-stress level in 

learners. Nevertheless, it is not so easy to know what learners feel more stressed performing group activities or 

the stress level during a particular lecture. Therefore, the stress level could be used to classify the learning 

activities in accordance with the stress experienced by learners. In another way, it is possible to measure the 

stress experienced by learners during an exam, and we can get the stress accumulated during the days previous 
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to the exam. Also, if we take student stress values during the performance of assessment tasks in accordance to 

different assessment strategies (e.g. continuous assessment vs final assessment), we could know the stress level 

of each one of the tasks and strategies. For otherwise, this can suggest the need of a certain amount of relaxing 

activities during the next days to an exam.  

 

All this information can be of high value in the educational environments. The development of solutions to provide this 

kind of indicators and their use in combination with other ones, opens the window to new opportunities that need to be 

conceived, yet. These new research fields using these devices offer a new opportunities in the education domains and  

others important areas such as health(Din and Paul 2018; Cola and Vecchio 2018). 
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