UniversidadeVigo

Biblioteca Universitaria Área de Repositorio Institucional

This document is the Accepted Manuscript version of a Published Work that appeared in final form in *Physical Chemistry Chemical Physics*, copyright © 2019 Royal Society of Chemistry after peer review and technical editing by the publisher. To access the final edited and published work see: <u>https://doi.org/10.1039/C8CP073626</u>

Please cite this article as:

A new method to analyze and understand molecular linear and nonlinear optical responses via field-induced functions: a straightforward alternative to sum-over-states (SOS) analysis

Nicolás Otero, Panaghiotis Karamanis and Marcos Mandado. Phys. Chem. Chem. Phys., 2019,21, 6274-6286

Copyright © 2019 Royal Society of Chemistry

A new method to analyze and understand molecular linear and nonlinear optical responses via Field-Induced Functions. A straightforward alternative to Sum-Over-States (SOS) analysis

Nicolás Otero,^a Panaghiotis Karamanis^b and Marcos Mandado^{a,*}

^aDepartment of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310.Vigo, Spain ^bEquipe Chimie-Physique (ECP), Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Materiaux (IPREM) UMR 5254, Technopole Helioparc, 2 avenue du President Pierre Angot, 64053, Pau Cedex 09, France

*corresponding author email: <u>mandado@uvigo.es</u>

Abstract

Sum-Over-States (SOS) method allows the computation of polarizabilities and hyperpolarizabilities, additively, from the contributions of different electronic excited states in a given molecule or cluster. Subsequent analysis of the main excited configurations contributing to the relevant excited states allows characterizing the orbitals involved in the linear and nonlinear optical response. Unfortunately, the chemically relevant information that can be obtained by SOS is hindered by a series of methodological and computational drawbacks. Among these drawbacks, we can remark the large computational cost, problems arising from nonconvergent series and errors caused by inaccurate description of excitation energies and/or higher excited state matrix elements. For this reason, coupled-perturbed schemes are currently widely used to determine the NLO potential of molecules and materials. However, such a choice limits the amount of intuitive chemical information that, on the other hand, can be retrieved by a successful SOS computation. In this work, we present and discuss a novel computational strategy that offers the means to extract the useful chemical insights from a coupled-perturbed calculation at almost negligible extra computational cost providing a transparent picture about orbital contributions on the properties of interest. The proposed method is based on the generation and further analysis of field-induced orbitals, FIOs, from the analytic or numerical derivatives of the dipole moment. Orbital symmetry rules are derived using group theory and the method is tested for a series of small and medium size systems.

I. Introduction

The nonlinear optical susceptibilities of molecules are routinely studied within a robust semiclassical theoretical framework which describes the nonlinear dependence of the molecular dipole moment (or the molecular energy) on an external electric perturbation.¹⁻ ⁴ In this context, higher order properties referred as electric dipole (hyper)polarizabilities⁵ play the pivotal role and they are routinely employed as qualitative indices for the establishment of comprehensive structure-property relations to be exploited in the development of new nonlinear optical (NLO) materials.⁶⁻¹¹ In the realm of NLO materials, built from molecules of high nonlinear optical responses, current theoretical investigations mostly focus on the quantitative determination of the relevant (non)linear optical coefficients related to the electronic part of the response. Owing to the vast development of ab initio and density functional methods that treat, in principle, electronelectron coulomb interactions, a vast majority of these studies rely on coupled-perturbed⁹⁻ ¹⁴ Hartree-Fock or Kohn-Sham approaches which have become available in most of the commercial quantum chemical codes. Such methods provide analytic (hyper)polarizability values of negligible numerical errors as compared, for instance, to finite field self-consistent field (FF-SCF) techniques¹⁵ (see also ref [16] and refs therein), the application of which is currently limited to computations performed in molecules of small sizes at post-HF levels (MPn, CC) due to considerable computational cost. Provided that the suitable method/basis set is used, such approaches are able to deliver reliable static and/or dynamic (hyper)polarizability results as compared to the experiment, but they offer no information about crucial intramolecular physical processes from which the molecular (non)linear optical responses stem. To overcome this limitation, (hyper)polarizability investigations are frequently complemented by qualitative or $(SOS)^{17-19}$ semiquantitative studies within the sum-over-states perturbative

approximation. SOS relies on the description of the perturbed electronic wave function in terms of all eigenfunctions of the unperturbed Hamiltonian. In such a manner, any (hyper)polarizability tensorial component can be computed as a sum of infinite terms comprising excitation energies and dipole transitions. Few decades ago, this treatment, coupled with Configuration Interaction (CI) schemes or semiempirical wave functions, was the method of choice also in the quantitative prediction of the NLO properties of molecules.⁴ Nowadays, the application of SOS is mostly restricted to qualitative explorations^{20,21} of predominantly contributing electronic excitations on the (non)linear optical properties of interest. Such a choice stems from the success of few-state variations of the SOS approximation in the prediction of NLO responses of molecules featuring low-lying quantum transitions associated to "long-distance" charge transfer across their molecular structure (as for instance in donor-acceptor chromophores).⁴ In such cases, the SOS series converge rather fast to the correct value of the first hyperpolarizability returning useful structure property relations which can be generalized through carefully adapted semiempirical few-state SOS models.4,22-24 On the other hand, for systems of large sizes and complex structures in which more than few transitions contribute in their NLO responses, few-state SOS models do not guarantee the complete resolution of the underlying NLO intramolecular mechanism. Therefore, one has to perform computations across a large number of excited states, by means of CI or time-dependent methods, to determine a sufficient number of higher matrix elements, paying a high price in computational resources with no guarantee that useful intuitive data can be retrieved especially in cases of nonconvergent series. A significant lowering of the computational cost could be achieved through the so-called uncoupled HF approach (UCHF),²⁵ in which the excited state wave-functions are approximated by Slater determinants formed from Hartree-Fock (or Kohn-Sham) orbitals. In this case, the energies of each "state" are taken as the sum of the orbital energies of each determinant. However, in UCHF/SOS the fieldinduced effects stemming from electron-electron interaction are not taken into account. As a result, significant overestimations of the differences between the excited states are delivered which, in turn, lead to underestimated (non)linear optical properties and, in some cases, artifactual orbital-pair contributions.

Bearing in mind the shortcomings of the conventional application of SOS methods in the qualitative understanding of the (non)linear optical properties of molecules, in this work we propose an alternative approach based on field-induced orbitals (FIOs), taken from analytic or numerical derivatives of the molecular dipole moment with respect to a homogeneous external electric field. We show how this approach, contrary to other previously proposed orbital partitionings of the (non)linear optical properties,²⁶⁻²⁸ decomposes the response into orthogonal parts (FIOs) built from the combination of occupied and virtual unperturbed orbitals. This leads to an arbitrariness-free assignment of the different orbital contributions, allows understanding the response properties using orbital symmetry rules and, as will be shown in the following, provides a visualization tool similar to that based on natural transition orbitals (NTOs) and employed in SOS methods.^{29,20}

II. Theoretical Background

The total dipole moment of a molecule subjected to a uniform electric field is given by the following Taylor expansion,

$$\mu_{\sigma} = \mu_{\sigma}^{0} + \alpha_{\sigma\sigma'} E_{\sigma'} + \frac{1}{2} \beta_{\sigma\sigma'\sigma'} E_{\sigma'} E_{\sigma'} + \dots$$
(1)

where μ_{σ}^{0} represents the permanent dipole moment and α and β the dipole polarizability and first-order hyperpolarizability, respectively. In this work we will focus only on β for the analysis of the nonlinear response, as the generalization of the present formulation to higher-order polarizabilities is trivial.

In the Taylor expansion given above, the electric polarizability, α , corresponds to the derivative of the dipole moment, μ , with respect to the electric field, *E*. Since this derivative depends on both the dipole moment and field directions, α is represented by a 3x3 tensor, where each component is given by the following expression,

$$\alpha_{\sigma\sigma'} = \left(\frac{d\mu_{\sigma}}{dE_{\sigma'}}\right)_{E=0}$$
(2)

Eqn (2) can be rewritten as the integral to the whole space of the product of the electron density derivative and the corresponding Cartesian component.

$$\alpha_{\sigma\sigma'} = \int \sigma \left(\frac{d\rho(\mathbf{r})}{dE_{\sigma'}} \right)_{E=0} d\mathbf{r}$$
(3)

Introducing a basis set to represent the electron density derivative, in our case the set of unperturbed orbitals $\{\phi_i\}$, the polarizability can be expressed in a matrix fashion,

$$\alpha_{\sigma\sigma'} = \sum_{ij} D_{ij}^{\sigma'} \int \phi_i(\mathbf{r}) \sigma \phi_j(\mathbf{r}) d\mathbf{r}$$
(4)

where $D_{ij}^{\sigma'}$ are the components of the first derivative of the electron density matrix with respect to an electric field applied on the σ' direction. Diagonalization of this matrix leads to a set of orthogonal eigenfunctions, $\{\zeta_k^{\sigma'}\}$, and their corresponding eigenvalues, n_k . Then, the components of the polarizability tensor can be reduced to a single summation using these eigenfunctions.

$$\alpha_{\sigma\sigma'} = \sum_{k} n_k \int \zeta_k^{\sigma'}(\mathbf{r}) \sigma \zeta_k^{\sigma'}(\mathbf{r}) d\mathbf{r}$$
(5)

Since these eigenfunctions are linear combinations of the set of unperturbed orbitals, we refer to them as Field-Induced Orbitals (FIOs), by analogy with the Electron Deformation Orbitals (EDOs) previously introduced to analyze electric conductivities.³⁰⁻³² As in EDOs, FIOs are grouped in pairs of functions with the same absolute eigenvalue but opposite sign. Then, the polarizability tensor of eqn (5) can be reduced to a summation over the number of different pairs,

$$\alpha_{\sigma\sigma'} = \sum_{k} \int \operatorname{Tr}\left(\left(\Theta_{k}^{\sigma'}\right)^{t} \hat{\sigma} \Theta_{k}^{\sigma'}\right) d\mathbf{r}$$
(6)

where each pair in eqn (6) is represented by the following complex 2x2 matrix,

$$\boldsymbol{\Theta}_{k} = n_{k}^{1/2} \begin{pmatrix} \boldsymbol{\zeta}_{k}^{+} & \boldsymbol{0} \\ \boldsymbol{0} & i\boldsymbol{\zeta}_{k}^{-} \end{pmatrix}$$
(7)

By analogy with the analysis of electric conductivity, where Θ_k forms an electron transport channel,³¹ herein they represent polarizability channels, whose formation in one-determinant wave functions is ruled by the following symmetry constrain,

$$\Gamma_{occ} \otimes \Gamma_{unocc} = \Gamma_{\sigma'} \tag{8}$$

Eqn (8) is rooted in group theory and restricts the combinations of occupied and unoccupied orbitals to those where the symmetry product corresponds or contains the symmetry irreducible representation (*irrep*) of the field direction. It must be remarked that, in a multideterminant wave function, eqns (5) to (8) can be applied using the natural orbital representation of the one-electron density.

Similar steps may be followed to extend this formalism to the analysis of hyperpolarizabilities. In the case of the first hyperpolarizability, β , the second derivative of the electron density with respect to electric fields applied on the σ ' and σ '' directions is required,

$$\beta_{\sigma\sigma'\sigma''} = \int \sigma \left(\frac{\partial^2 \rho(\mathbf{r})}{\partial E_{\sigma'} \partial E_{\sigma''}} \right)_{E=0} d\mathbf{r}$$
(9)

Analogous equations to eqns (4) and (5) lead to an expression in terms of FIOs, obtained in this case by diagonalization of the second derivative of the electron density matrix.

$$\beta_{\sigma\sigma'\sigma''} = \sum_{k} n_{k} \int \zeta_{k}^{\sigma'\sigma''}(\mathbf{r}) \sigma \zeta_{k}^{\sigma'\sigma''}(\mathbf{r}) d\mathbf{r}$$
(10)

However, for β the FIOs can be grouped in pairs only when $\sigma' \neq \sigma''$, as the trace of the second derivative of the electron density matrix is not zero when $\sigma' = \sigma''$.³⁰ Thus, in the case of $\sigma' \neq \sigma''$, differences in the absolute eigenvalues between the FIOs of a given pair may occur. However, they can be also grouped in pairs as they still share the same orbital mixing.

FIOs allow decomposing the linear and nonlinear optical responses in individual contributions. The fact that these functions are constructed as linear combinations of unperturbed orbitals allows also quantifying the weight of each occupied and virtual orbital through the square of its coefficient in the FIOs expansions. In other words, the square of the coefficient of a given unperturbed orbital in an FIO measures its relative weight. Then, for a given FIO, k, the contribution of orbital i to the value of α may be measured as,

$$\alpha_{\sigma\sigma'}^k(i) = c_{i,k}^2 \alpha_{\sigma\sigma'}^k \tag{11}$$

By adding the whole set of FIOs we get a measure of the contribution of *i* to the total value of α .

$$\alpha_{\sigma\sigma'}(i) = \sum_{k} c_{i,k}^2 \alpha_{\sigma\sigma'}^k$$
(12)

An equivalent expression to eqn (12) can be written for β .

$$\beta_{\sigma\sigma'\sigma''}(i) = \sum_{k} c_{i,k}^2 \beta_{\sigma\sigma'\sigma''}^k$$
(13)

In symmetric molecules, the orbital symmetry rule given in eqn (8) allows understanding qualitatively the contributions of different occupied and virtual orbitals to the values of α and β . In the case of β , the rule is written as,

$$\Gamma_{occ} \otimes \Gamma_{unocc} = \Gamma_{\sigma'\sigma'} \tag{14}$$

where the rhs term refers to the *irrep* of the product $\sigma' \sigma''$.

III. Computational Details

To test the performance of the method presented in the previous section, the following set of molecules has been analyzed: hydrohelium cation (HHe⁺), nitrogen molecule (N₂), lithium fluoride (LiF), hydrogen fluoride (HF), hydrogen chloride (HCl), water (H_2O) . hydrogen sulphide (H₂S), ammonia (NH₃). fluoroethyne (C_2HF) , (trifluoromethyl)acetylene (C₃HF₃), cyanoacetylene (C₃HN), 1-cyano-1,3-butadiyne (C₅HN), 1-cyano-1,3,5-hexatriyne (C₇HN), *p*-cyanoaniline (C₇N₂H₆), *p*-nitroaniline $(C_6O_2N_2H_6)$ and *p*-methoxy-nitrobenzene $(C_7O_2NH_7)$. This set covers small and medium size molecules for which optical properties were previously investigated (see for instance refs 33-37). Our intention is to test the FIOs method in model molecules of different characteristics. Therefore, we chose systems of different polarities, comprising hard/soft central atoms bonded with single/double/triple bonds and bearing aromatic rings containing activating/deactivating groups.

Calculations of α and β tensors using FIOs were performed with a FORTRAN code developed in our lab, which interfaces with the Gaussian09 suite of programs³⁸ to read the density matrix derivatives obtained from a coupled or uncoupled perturbed HF calculation (CPHF-FIOs or UPHF-FIOs). In order to account for dynamic correlation effects, calculations were also performed using the coupled perturbed Kohn-Sham

method (CPKS-FIOs), with the CAM-B3LYP functional.³⁹ The results were confronted with those obtained using the SOS method, with the excited states calculated using the configuration interaction singles approach (CIS-SOS) and the time-dependent density functional theory (TDDFT-SOS). For these calculations, the information of excited states was obtained with Gaussian09, whereas the α and β tensors were computed with the Multiwfn program.⁴⁰ All the SOS calculations were performed including a sufficient number of excited states until convergence was reached. Triple-zeta basis sets including polarization functions (6-311G(d,p)) and polarization and diffuse functions (6- $311G^{++}(d,p)$) were employed for all the calculations. Even though diffuse s, p gaussiantype functions may be particularly important for the calculation of hyperpolarizabilities in molecules containing third-row and heavier elements, they were found to show a very slow convergence in the SOS calculations and, in some particular cases, caused instabilities to the ground state wave functions. Moreover, the effect of basis sets including larger polarization such as 6-311G(2d,2p) or 6-311G(3df,3pd), which are expected to improve the results for hyperpolarizabilities, was also assessed. Significant differences in β were only detected for HCl and H₂S, which are molecules built from third-row elements. Therefore, taking into account that our approach is general and not limited by the electronic structure method or the basis set size, we will discuss only results obtained with smallest basis set (6-311G(d,p)). At this point it must be noted that highly accurate hyperpolarizabilities obtained with heavily polarized basis sets is out of the scope of this work which aims at demonstrating the validity and capabilities of the FIOs analysis in comparison with SOS approximation. For the sake of completeness, results obtained including diffuse functions are given as Supplementary Material. In this work, only static properties will be analyzed. Implementation of the CP-FIOs

method for frequency-dependent polarizabilities and first-order hyperpolarizabilities,

which requires the diagonalization of nonsymmetric matrices, is currently in progress. First derivatives are obtained analytically, whereas second derivatives are computed numerically with a symmetric derivative formula, using an electric field strength of 10^{-3} au. Total values of α and β obtained from CP-FIOs (eqns (6) and (10)) were compared with the values obtained directly with the CP method using Gaussian09. Due to the use of analytical first derivatives of the density matrix, both CP and CP-FIOs values of α are the same, whereas negligible differences in β arise from the use of numerical second derivatives. These differences are indicated for each molecule in the Supplementary Information.

IV. Results and Discussion

Due to the large amount of data arising from the six and nine nonsymmetric components of α and β tensors, in this section we will discuss only the dominant components in each case that define the nonlinear response of each system considered. For all the molecules studied here, these components correspond to the orientation of the principal symmetry axis, α_{zz} and β_{zzz} . Plots representing the accumulative value of α_{zz} and β_{zzz} with respect to the occupied and virtual molecular orbitals (obtained by eqns (12) and (13)) are confronted, in this section, with those obtained with SOS in terms of excited states. These plots are included as Supporting Information for the sake of simplicity, and a general comparison is presented in the following pages. Nevertheless, some of these data are also discussed in detail in this section.

Confronting FIOs orbital plots and SOS excited state plots reveals a series of advantages of the former. The first one and, for obvious reasons, the most important one, is that the FIOs analysis is performed on the base of coupled perturbed theories, so that the total values of α and β are expected to be more accurate than those obtained from a truncated SOS series.

The second advantage is that convergence to the final property value with the number of orbitals is much faster than with the number of excited states. This is obvious since the contributions of a given MO in different excited states using SOS are gathered in just one using FIOs. It must be noticed that, even though convergence in SOS is reached for all the molecules investigated here, this is not always the case for larger molecules, the second nonlinear optical responses of which are defined more than few dominant charge transfer excited states. On the contrary, the fast convergence in the CP-FIOs calculations allows truncating the analysis to a reduced set of occupied and virtual orbitals in the case of large molecules. Such a choice reduces the dimension of the density matrices, lightening the diagonalization process, speeding up in such a manner the calculations. In this work, we have checked that reducing the number of MOs from 240 to 115 in the largest molecule (*p*-methoxy-nitrobenzene) changes the total value of α and β less than 1.1%.

Besides the advantages mentioned above, it could be argued that an orbital-based CP-FIOs analysis loses somehow the solid bridge between SOS and spectroscopic information obtained experimentally. However, we will show in the following discussion that this bridge is recovered when a deeper analysis of the different pairs of FIOs is performed. Therefore, similar information given by excited states in SOS is provided by the set of occupied and virtual orbitals involved in the FIOs. This is also not surprising since the orbital symmetry rule represented by eqns (8) and (14) also rules the magnitude of the components of the transition dipole and quadrupole moments, respectively, between different excited states and the ground state. If this rule is not satisfied for any of the excited configurations that contribute significantly to a given excited state, the transition dipole/quadrupole moment will be essentially null. Moreover, as will be shown in the following, FIOs are in most cases constructed from the combination of just one occupied and one virtual orbital, so linking with the orbital picture extensively employed to interpret spectroscopic data.

Analysis of Model Molecules

In this subsection, six molecules will be analyzed, HHe^+ , HF, H_2O , H_2S , *p*-nitroaniline and *p*-methoxy-nitrobenzene. Except for the last two molecules, the number of MOs that contribute significantly to the linear and nonlinear response is relatively small. Thus, the number of relevant FIOs is manageable and the symmetry rules can be exploited to understand the couplings between occupied and virtual MOs.

Starting with the simplest molecule, HHe⁺, the SOS analysis (see Fig. 1(b)) indicates the α_{zz} value arises mainly from the first excited state. The main contribution to this excited state comes from the HOMO(H)→LUMO(L) excited configuration (see Supporting Information). Two additional steps up can be clearly observed in the plot, corresponding to excited states 2 and 6. The main contributions to states 2 and 6 come from the H→L+1 and H→L+5 excited configurations, respectively. Similar steps up are observed in the orbital representation of α_{zz} at orbitals H, L, L+1 and L+5 (Fig. 1(a)). The increase of the α_{zz} value at the L orbital using FIOs is similar to that observed at the first excited states 2 and 6. Differences between SOS and FIOs in the polarizability of this molecule are found in the total values calculated with the different approaches. Whereas at DFT level FIOs and SOS values are identical, at the HF level small differences arise. The effect of increasing the value of α when introducing dynamic correlation is only appreciated using FIOs. In fact, SOS predicts a slightly smaller value at DFT level. On

the other hand, as can be seen in Fig. 1(a), removal of the orbital relaxation using UPHF as expected reduces the polarizability.

The analysis of β_{zzz} reflects significant differences between total values obtained with FIOs and SOS. In the excited state analysis provided by SOS (Fig. 1(d)) we can observe a large leap in β_{zzz} at the first excited state. As mentioned before this state corresponds mainly to the $H \rightarrow L$ orbital excitation. Afterwards, two drops of the hyperpolarizability occur at the excited states 2 and 6, which, as also discussed previously, involve excitations to L+1 and L+5 orbitals. The same information is extracted from the orbital analysis using FIOs (Fig. 1(c)), but with some nuances. Thus, the largest contributions arise from H and L orbitals, but mainly from the second one. Afterwards, two steps down are observed at the L+1 and L+5 orbitals. However, the fluctuations in the β_{zzz} value observed in the orbital representation are significantly smaller than those observed in the excited state representation. As remarked before, a much faster convergence of the optical properties is observed with the orbital representation obtained from FIOs. Additionally, visualization of the main FIOs involved in the optical response may give useful information similar to visualization of hole-electron natural transition orbitals of the crucial excited states^{19,20} that can be retrieved when SOS approximation is applied. Thus, the representation of the hole and electron distributions provided by the main pair of FIOs is confronted with those obtained using the principal NTOs of the first excited state in HHe⁺. A step-by-step description of the process to construct the net charge transfer representation is given in the plot. We can see first the FIO and NTO hole and electron functions. These functions are squared to get the corresponding distributions and finally they are scaled using their eigenvalues and added to obtain the net charge transfer plot. In the case of FIOs, we have two different plots, one for α and another one for β . This is an advantage of FIOs over NTOs, since the formers are directly obtained

from the perturbed density, which differs for α and β , whereas the later stem from a unique transition density employed to calculate both α and β . Then, if the same electronic excitation dominates the charge transfer representations of α and β , only the FIOs' are able to detect subtle differences between both. In the case of HHe⁺, we can observe in Fig. 2 how the FIOs functions are quite similar for α and β , but not identical. On the other hand, comparing with the NTOs important differences are observed in the hole and electron functions. However, the net charge transfer is almost the same as that one obtained with β FIOs.

In Fig. 2, the FIOs values for α_{zz} and β_{zzz} are also shown, together with the main MOs involved in its formation and their corresponding relative weight. Thus, the main pair of FIOs, both in α_{zz} and β_{zzz} , is formed by the combination of H and L orbitals in more than 90%. Comparing with the total values shown in Fig. 1, one can say that α_{zz} is exclusively given by this pair, whereas for β_{zzz} a small difference (+0.26 au) is observed, indicating that other FIOs contribute slightly to β_{zzz} . Both the z and zz functions transform following the Σ^+ *irrep*. According to eqn (8), the symmetry product of occupied and virtual orbitals involved in the FIOs must contain Σ^+ . This is the case of H (Σ^+) and L (Σ^+) orbitals.

Let us analyze now a more polar molecule, namely, hydrogen fluoride (HF). The substitution of helium by a more polarizable atom (fluorine) increases the value of α_{zz} . Due to the larger molecular dipole moment, β_{zzz} significantly increases with respect to HHe⁺. As can be observed in Fig. 3(a), the FIOs analysis reflects that the most relevant contributions to α_{zz} come from the H-2, L and, to a lesser extent, from L+1. However, additional, but weaker, orbital contributions are also noticeable (H-1, H, L+4, +6 and L+7). SOS analysis of α_{zz} indicates that the most important contributions come from

states 3 and 6 (Fig. 3(b)), where the main excitations correspond to H-2 \rightarrow L and H-2 \rightarrow L+1, respectively (see Supporting Information). Other noticeable changes are observed at states 13 and 23. For state 13 the main orbital transition corresponds to H-2 \rightarrow L+4, whereas for state 23 three orbital excitations contribute almost equally, H-2 \rightarrow L+5, H-1 \rightarrow L+6 and H \rightarrow L+7. Then, FIOs and SOS analysis agree quite well in the main orbitals involved in the linear response.

Looking at the plot obtained for β_{zzz} with FIOs (Fig. 3(c)), we can see that H-2, L and L+1 are again the orbitals of the most important contribution on the second-order nonlinear response in hydrogen fluoride. In this case, contribution stemming from the rest of the orbitals considered is negligible. Since excited states 3 and 6 contribute the most on the final SOS value for β_{zzz} (Fig. 3(d)), the main orbitals involved coincide with FIOs. However, the SOS plot shows again important fluctuations in comparison with the FIOs orbital representation, requiring in this case more than forty states to reach convergence in the β_{zzz} value.

The charge transfer stemmed from the main pairs of FIOs responsible of α_{zz} and β_{zzz} values in HF are depicted in Fig. 4. As can be observed, the electron charge flows from fluorine to hydrogen in all pairs. In the case of α_{zz} (Fig. 4(a)), three different pairs contribute, although only one displays a significant value. The participation of orbitals H-2 and L in this pair is 87.7%, and the L+1 has a contribution of 10%. The other two pairs involve the rest of orbitals with a nonnegligible weight in the plot of Fig. 4(a), as mentioned before.

In the case of β_{zzz} , the total value is almost the same as the value shown in Fig. 4(b) for the main pair of FIOs, with participation of orbitals H-2 and L in more than 95%. According to eqns (8) and (13), the symmetry product of occupied and virtual orbitals must contain, as in HHe⁺, the *irrep* of α_{zz} and β_{zzz} (Σ^+). This is fulfilled by the orbitals involved in each FIO shown in Fig. 5, H-2 (Σ^+) and L(Σ^+), H-2 (Σ^+) and L+1 (Σ^+), H-1(Π) and L+6 (Π) and H(Π) and L+7(Π).

The first nonlinear molecule studied is H₂O, with C_{2v} symmetry. Fig. 5 collects the excited state and orbital representations of α_{zz} and β_{zzz} obtained with SOS and FIOs, respectively. In Fig. 5(a), one can distinguish five orbitals that contribute clearly to the value of α_{zz} , H-2, H-1, L, L+1 and L+2, then α_{zz} continues growing slightly up to orbital L+10 where the convergence is reached. The SOS analysis is more complicated since many excited states significantly contribute and convergence requires the inclusion of more than eighty states (Fig. 5(b)). However, three states clearly stand out over the rest, state 3, 6 and 11, with the main contributions coming, respectively, from the excited configurations H-1 \rightarrow L, H-2 \rightarrow L+1 and H-2 \rightarrow L+2 (see Supporting Information). Once more, SOS and FIOs agree with respect to the orbitals involved. In terms of charge transfer, FIOs representations suggest that in the most important transition the electron charge should flow from oxygen to hydrogen.

In the FIOs plot of Fig. 5(c), we can clearly remark the contributions of orbitals H-1 and L. Convergence is rapidly reached with ten orbitals. On the other hand, state 3 stands out over the rest in the SOS plot (Fig. 5(d)), but many important fluctuations in the value of β_{zzz} are observed until the convergence is reached with more than fifty states. As mentioned in the previous paragraph for the discussion of α_{zz} , the main contribution to state 3 comes from the H-1 \rightarrow L excitation, the outstanding occupied and virtual orbitals in the FIOs plot of Fig. 5(c).

Fig. (6) shows the electron charge transfer associated to the main pairs of FIOs for α_{zz} and β_{zzz} , together with the occupied and virtual orbitals involved in their formation. These occupied-virtual orbital combinations, as in the previous molecules discussed, agree with the most important excitations in SOS. In the C_{2v} symmetry group, both z and *zz* functions transform as the A₁ *irrep*. Then, the close-in-energy combinations of occupied and virtual orbitals in H₂O whose symmetry product contains the A₁ *irrep* are: H-1(A₁) with L(A₁), H-2(B₂) with L+1(B₂) and H-2(B₂) with L+2(B₂). The values of α_{zz} and β_{zzz} obtained from the FIOs pairs and shown in Fig. (6) indicate that, for α_{zz} , two pairs are required to recover more than 90% of the total value, whereas only one is necessary in the case of β_{zzz} . The main orbitals involved in each pair coincide, as expected, with the orbital combinations derived from the symmetry rules.

Another interesting example to analyze in detail is the H₂S molecule, which shows strong fluctuations in the orbital and excited state representation of β_{zzz} . Many other molecules show these fluctuations but neither of the changes are so important, as in the case of small molecules, as those discussed above, or they are larger systems of more electrons, a feature that makes the respective analysis less obvious. In Fig. (7), the excited state and orbital representations of α_{zz} and β_{zzz} obtained with SOS and FIOs, respectively, are presented. In the SOS plot of α_{zz} , three excited states clearly stand out over the rest: 3, 9 and 37. The dominant excited configurations are: in state 3 H-1 \rightarrow L and, to a lesser extent, H-2 \rightarrow L+1; in state 9 H-2 \rightarrow L+1 and, to a lesser extent, H \rightarrow L+4; and in state 37 H-1 \rightarrow L+8 and H \rightarrow L+10 (see Supporting Information). The MOs involved in the excited configurations of states 3 and 9 correspond to the MOs with the largest contributions to α_{zz} in the FIOs plot, H-2, H-1, L and L+1. Other nonnegligible contributions come from H, L+4 and L+10, MOs involved in state 37 and, to a lesser extent, in state 9. Thus, once again the orbital and excited state representations score a perfect match.

More challenging is the analysis of β_{zzz} , due to the strong fluctuations observed. In the SOS plot (Fig. 7(d)) important positive and negative contributions to the value of β_{zzz} come from states 3 and 9, respectively. Other states also contribute significantly, but for

the sake of simplicity we are going to focus our attention on these two states. As mentioned above, excited configuration H-1 \rightarrow L dominates state 3. These orbitals are the ones with the largest positive contributions to β_{zzz} in the FIOs plot (Fig. 7(c)). On the other hand, the transition H-2 \rightarrow L+1 dominates state 9, and certainly these orbitals contribute negatively to β_{zzz} in the FIOs plot. There is, however, an orbital whose negative contribution is even larger in Fig. 7(c), L+3, but whose participation in state 9 is irrelevant. The contribution of this orbital seems to be underestimated in the SOS calculation and can partially explain the large difference between the total values of β_{zzz} obtained with CPKS and SOS.

Fig. 8 represents the main FIOs obtained for α_{zz} and β_{zzz} in H₂S. In the case of α_{zz} , the electron charge transfer associated to these FIOs is identical to that obtained for H₂O and depicted in Fig. 6. On the contrary, they differ significantly for β_{zzz} . In Fig. 8(b), we have depicted the positive and negative FIOs separately instead of grouped in pairs, since there are some important details of this molecule that can be noticed only by looking at the hole and electron distributions separately. For instance, although H-1 contributes to two different FIOs, one with a positive value of β_{zzz} and another one with a negative value, for the latter its relative weight is much larger, explaining the net positive contribution of this MO. Additionally, L and H-2 almost form by themselves individual FIOs, with relative weights around 75%. These FIOs account for the value of these MOs in Fig. 7. However, the most interesting FIO is the one formed mostly by L+3, since the contribution of this MO to the β_{zzz} value is apparently overlooked by SOS. This FIO is the third one in Fig. 8(b) and shows the largest β_{zzz} value (in absolute terms) together with the FIO formed by L. As can be seen, it is localized far over the S atom, in agreement with the high energy of the L+3 MO.

To finish this section, we will analyze and compare two widely known and extensively studied prototype book-text donor/acceptor chromophores exhibiting large molecular second-order nonlinear optical responses. These are *p*-nitroaniline and *p*-methoxy-nitrobenzene.⁴ In Fig. 9, we can observe a slow convergence of α_{zz} with the number of orbitals and excited states in the FIOs and SOS plots, respectively. The number of FIOs to take into account is too large, thus not appropriate, for testing the method. This, however, is not the case for β_{zzz} , the value of which is clearly dominated by the contribution of the frontier MOs in both molecules. SOS plots also reflect that state 2 stands out over the rest, which, in both molecules, involves mainly the H \rightarrow L excited configuration (see Supporting Information).

Visualization of the main pairs of FIOs of β_{zzz} in *p*-nitroaniline and *p*-methoxynitrobenzene (Fig. 10 and 11, respectively) reveals the nonlinear response is almost identical within the nitrobenzene fragment. The main differences are spotted, as expected, on the distinct groups (-NH₂ and -OCH₃). So, in terms of FIOs, the larger hyperpolarizability of *p*-nitroaniline could be attributed to the smaller inductive effect of -NH₂ since the long-range resonance effects should be reflected throughout the benzene ring. In both molecules, frontier orbitals contribute more than 90% to these FIOs. The charge transfer implied by the FIO representations occurs from the donors (-NH₂, -OCH₃) to the acceptor (-NO₂). This picture is in line with the push/pull properties of these groups as they have been determined in earlier investigations.⁴ What is more, the obtained FIOs representations can be compared in a straightforward manner to the dominant hole-electron NTOs shown in the same figures. As in the example of HHe⁺ discussed at the beginning of this section, some differences between the NTOs and FIOs functions are appreciated, however, the net charge transfer obtained is practically identical. The observed similarities, obviously stemming in this case from the predominance of the H-L transitions, clearly point out that the FIOs approach can be used as an alternative handy tool to analyze, in a chemist-friendly fashion, not only the linear and nonlinear optical responses of any molecule but also to retrieve information about crucial intramolecular charge transfer interactions avoiding costly excited state computations.

V. Concluding remarks

In this work we have presented a rigorous and efficient method to be used as a straightforward tool for the analysis and better understanding of the linear and nonlinear optical properties of molecules. The proposed method relies on the decomposition of the tensorial components of the electric dipole polarizability and the first dipole hyperpolarizability into contributions of field-induced orbitals (FIOs). These can be retrieved either analytically from coupled-perturbed (CP) Hartree-Fock, CP Kohn-Sham approximations or numerically from finite field (FF) field self-consistent computations. Its strongest feature lies on its ability to provide crucial information about the principal intramolecular physical processes related to the (non)linear optical responses of molecules by simply analyzing the ground state electronic state of a given molecule, exploiting in turn group-theory symmetry rules in an elegant and efficient manner in case of highly symmetric systems. This characteristic is of decisive importance since, as we have shown in this article, it distinguishes the proposed method from other methodologies that require excited state computations of higher computational cost, as, for instance, methods or models built within the realm of sum-over state perturbative approximation. What is more, the presented FIO-based analysis of the optical response of molecules can be used to obtain easy-to-interpret and quantitatively defined intuitive hole-electron representations of electron quantum transitions representing intramolecular charge transfer processes. Finally, it is important to stress that the proposed method is easily implementable to any electronic-structure computational code as a low cost *a posteriori* analysis method of a successful CP (HF, KS) computation, provided that an efficient diagonalization process of the density matrix derivatives is available.

Acknowledgements

N.O. thanks "Xunta de Galicia" for a postdoctoral contract. N. O. and M. M. thank "Xunta de Galicia" for financial support through the project GRC2015/017. Part of this work was granted access to the HPC resources of [CCRT/CINES/IDRIS] under the allocation 2018-2019 [A0040807031] made by GENCI ("Grand Equipement National de Calcul Intensif"). We also acknowledge the "Direction du Numérique" of the "Université de Pau et des Pays de l'Adour" for the computing facilities provided.

References

- 1 R. W. Boyd, In *Nonlinear Optics*; Elsevier: Burlington, 1992.
- 2 B. Kirtman, B. Champagne, Int. Rev. Phys. Chem., 1997, 16, 389-420.
- J. Zyss, D. S. Chemla, Quadratic Nonlinear Optics and Optimization of the Second-Order Nonlinear Optical Response of Molecular Crystals. In Nonlinear Optical Properties of Organic Molecules and Crystals; Elsevier: London, 1987; pp 23–191.
- 4 D. R. Kanis, M. A. Ratner, T. J. Marks, Chem. Rev., 1994, 94, 195–242.
- A. D. Buckingham, Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces. In Advances in Chemical Physics; J. O. Hirschfelder, Ed.; John Wiley & Sons, Inc., 2007; pp 107–142.
- 6 D. F. Eaton, *Science*, 1991, **253**, 281–287.

- 7 M. Hurst, R. W. Munn, Organic Materials for Nonlinear Optics, R. A. Hann, and D. Bloor, Eds.; Roy. Soc. Chem.: London, 1988.
- 8 W. Nie, Adv. Mater., 1993, 5, 520–545.
- 9 A. Datta, S. K. Pati, Chem. Soc. Rev., 2006, 35, 1305-1323.
- 10 A. Datta, J. Phys. Chem. C, 2009, 113, 3339-3344.
- 11 A. Datta, S. K. Pati, J. Mol. Struct. (THEOCHEM), 2005, 756, 97-102.
- 12 C. E. Dykstra, P. G. Jasien, Chem. Phys. Lett., 1984, 109, 388-393.
- R. McWeeny, In *Methods of Molecular Quantum Mechanics*, Second Edition;Elsevier: London, 1992.
- 14 G. J. B. Hurst, M. Dupuis, E. Clementi, J. Chem. Phys., 1988, 89, 385-395.
- 15 A. D. McLean, M. Yoshimine, J. Chem. Phys., 1967, 47, 1927–1935.
- 16 P. Karamanis, Int. J. Quant. Chem., 2012, 112, 2115-2125.
- 17 B. J. Orr, J. F. Ward, Mol. Phys., 1971, 20, 513-526.
- 18 D. M. Bishop, J. Chem. Phys., 1994, 100, 6535–6542.
- 19 S. Muhammad, H. Xu, Y. Liao, Y. Kan, Z. Su, Z. J. Am. Chem. Soc., 2009, 131, 11833–11840.
- 20 P. Karamanis, N. Otero, C. Pouchan, J. Am. Chem. Soc., 2014, 136, 7464-7473.
- 21 P. Karamanis, C. Pouchan, J. Phys. Chem. C, 2012, 116, 11808–11819.
- 22 J. Zhou, M. G. Kuzyk, J. Phys. Chem. C, 2008, 112, 7978-7982.
- 23 C. W. Dirk, L.-T. Cheng, M. G. Kuzyk, Int. J. Quant. Chem., 1992, 43, 27-36.
- 24 P. Karamanis, N. Otero, C. Pouchan, J. J. Torres, W. Tiznado, A. Avramopoulos, M. G. Papadopoulos, *J. Comput. Chem.*, 2014, **35**, 829–838.
- 25 D. Jacquemin, B. Champagne, J.-M. André, B. Kirtman, *Chem. Phys.*, 1996,
 213, 217–228.

- 26 S. P. Sitkiewicz, New orbital-based Partitioning of Nonlinear Optical Properties into Orbital Contributions-development, implementation and application, MSc Thesis, University of Valencia, Valencia, Spain, 2017.
- 27 P. Chopra, L. Carlacci, H. F. King, P. N. Prasad, J. Phys. Chem., 1989, 93, 7120.
- 28 J. Autschbach, H. F. King, J. Chem. Phys., 2010, 133, 044109.
- 29 R. L. Martin, J. Chem. Phys., 2003, 118, 4775-4777.
- 30 M. Mandado, N. Ramos-Berdullas, J. Comput. Chem., 2014, 35, 1261–1269.
- 31 N. Ramos-Berdullas, S. Gil-Guerrero, M. Mandado, Int. J. Quantum Chem., 2018, 118, e25651.
- 32 N. Ramos-Berdullas, A. M. Graña, M. Mandado, *Theor. Chem. Acc.*, 2015, 134, 20.
- 33 G. Maroulis, J. Comput. Chem. 2003, 24, 443-452.
- 34 G. Maroulis, D. Xenides, J. Mol. Sci. 2003, 24, 443-452.
- 35 D. M. Bishop, G. Maroulis, J. Chem. Phys. 1985, 82, 2380-2391.
- 36 S. P. Karna, P. N. Prasad, M. Dupuis, J. Chem. Phys. 1991, 94, 1171-1181.
- 37 H. S. Nalwa, S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, CRC Press: Boca Raton, Florida, 1997.
- 38 Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.

Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M.
Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R.
Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S.
Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J.
W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J.
Fox, Gaussian, Inc., Wallingford CT, 2009.

- 39 T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett., 2004, 393, 51-57.
- 40 T. Lu, F. Chen, J. Comput. Chem., 2012, 33, 580–592.

Fig. 1 For HHe⁺ molecule, Variation of α_{zz} (top) and β_{zzz} (bottom) with respect to the number of orbitals (plots (**a**) and (**c**) obtained using FIOs) and excited states (plots (**b**) and (**d**) obtained using SOS approach), respectively. For the FIOs plots, up to three approaches were applied: CPKS, CPHF and UPHF. For the SOS plots, TDDFT (CAM-B3LYP) and CIS methods were employed. Total values of α_{zz} and β_{zzz} are shown in the plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

Fig. 2 Representation of the electron and hole functions obtained from the main pairs of FIOs and NTOs responsible of the α_{zz} and β_{zz} values in HHe⁺. Below the functions are represented the corresponding distributions (obtained by scaling the squared functions with the eigenvalues) and below the electron and hole distributions is depicted the net electron charge transfer (obtained by adding the electron and hole distributions). Value of the (hyper)polarizability associated to the FIOs are also included together with the relative weight of the main occupied and virtual MOs involved.

Fig. 3 For HF molecule, variation of α_{zz} (top) and β_{zzz} (bottom) with respect to the number of orbitals (plots (a) and (c) obtained using FIOs) and excited states (plots (b) and (d) obtained using SOS). For the FIOs plots, up to three approaches were applied: CPKS, CPHF and UPHF. For the SOS plots, TDDFT (CAM-B3LYP) and CIS methods were employed. Total values of α_{zz} and β_{zzz} are shown in the plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

Fig. 4 Representation of the electron charge distribution in the main pairs of FIOs obtained for α_{zz} (plot (a)) and β_{zzz} (plot (b)) in HF molecule. Values of the (hyper)polarizability corresponding to these pairs are included in the Figure together with the relative weight of the main occupied and virtual MOs involved.

Fig. 5 For H₂O molecule, variation of α_{zz} (top) and β_{zzz} (bottom) with respect to the number of orbitals (plots (a) and (c) obtained using FIOs) and excited states (plots (b) and (d) obtained using SOS). For the FIOs plots, up to three approaches were applied: CPKS, CPHF and UPHF. For the SOS plots, TDDFT (CAM-B3LYP) and CIS methods were employed. Total values of α_{zz} and β_{zzz} are shown in the plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

Fig. 6 Representation of the electron charge distribution in the main pairs of FIOs obtained for α_{zz} (plot (a)) and β_{zzz} (plot (b)) in H₂O molecule. Values of the (hyper)polarizability corresponding to these pairs are included in the Figure together with the relative weight of the main occupied and virtual MOs involved.

Fig. 7 For H₂S molecule, variation of α_{zz} (top) and β_{zzz} (bottom) with respect to the number of orbitals (plots (a) and (c) obtained using FIOs) and excited states (plots (b) and (d) obtained using SOS). For the FIOs plots, up to three approaches were applied: CPKS, CPHF and UPHF. For the SOS plots, TDDFT (CAM-B3LYP) and CIS methods were employed. Total values of α_{zz} and β_{zzz} are shown in the plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

Fig. 8 Representation of the electron charge distribution in the main pairs of FIOs obtained for α_{zz} (plot (a)) and the main FIOs of β_{zzz} (plot (b)) in H₂S molecule. Values of the (hyper)polarizability corresponding to these pairs are included in the Figure together with the relative weight of the main occupied and virtual MOs involved.

Fig. 9 Variation of β_{zzz} with respect to the number of orbitals obtained using FIOs for *p*nitroaniline (plots (a1) and (a2)) and *p*-methoxy-nitrobenzene (plots (c1) and (c2)), and variation of β_{zzz} with respect to the number of excited states obtained using SOS for *p*nitroaniline (plots (b1) and (b2)) and *p*-methoxy-nitrobenzene (plots (d1) and (d2)). For the FIOs plots, two approaches were applied: CPKS and CPHF. For the SOS plots, TDDFT (CAM-B3LYP) and CIS methods were employed. Total values of β_{zzz} are shown in the plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively. The region showing the most important changes is reproduced right below each plot by reducing the number of MOs or excited states.

Fig. 10 Representation of the electron and hole functions obtained from the main pairs of FIOs and NTOs responsible of the β_{zz} value in p-nitroaniline. Below the functions are represented the corresponding distributions (obtained by scaling the squared functions with the eigenvalues) and below the electron and hole distributions is depicted the net electron charge transfer (obtained by adding the electron and hole distributions). The value of β_{zz} associated to the FIOs is also included together with the relative weight of the main occupied and virtual MOs involved.

Fig. 11 Representation of the electron and hole functions obtained from the main pairs of FIOs and NTOs responsible of the β_{zz} value in p-methoxynitrobenzene. Below the functions are represented the corresponding distributions (obtained by scaling the squared functions with the eigenvalues) and below the electron and hole distributions is depicted the net electron charge transfer (obtained by adding the electron and hole distributions). The value of β_{zz} associated to the FIOs is also included together with the relative weight of the main occupied and virtual MOs involved.

Supporting Information:

A New Method to Analyze and Understand Molecular Linear and Nonlinear Responses via Field-Induced Functions. A Straightforward Alternative to Sum-Over-States (SOS) Analysis

Nicolás Otero,[†] Panaghiotis Karamanis,[‡] and Marcos Mandado^{*,†}

†Department of Physical Chemistry, University of Vigo, As Lagoas-Marcosende s/n, 36310. Vigo, Spain

‡Équipe Chimie-Physique (ECP), Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Materiaux (IPREM) UMR 5254, Technopole Helioparc, 2 avenue du President Pierre Angot, 64053. Pau Cedex 09, France)

E-mail: mandado@uvigo.es

Contents

1	Des	criptio	on of the ESI	S-7
Re	efere	nces		S-9
2	Mo	lecular	$^{\rm c}$ polarizability and $1^{\rm st}$ hyperpolarizability tensor component	ts S-10
3	HH	\mathbf{e}^+		S-19
	3.1	6-3110	G(d,p)	S-19
		3.1.1	Plots	S-19
		3.1.2	Contributions from excited states (TDDFT)	S-20
		3.1.3	Contributions from excited states (CIS)	S-21
	3.2	6-3110	G++(d,p)	S-24
		3.2.1	Plots	S-24
		3.2.2	Contributions from excited states (TDDFT)	S-24
		3.2.3	Contributions from excited states (CIS)	S-27
4	N_2			S-30
	4.1	6-3110	G(d,p)	S-30
		4.1.1	Plots	S-30
	4.2	6-311-	++G(d,p)	S-31
		4.2.1	Plots	S-31
5	HF			S-32
	5.1	6-3110	G(d,p)	S-32
		5.1.1	Plots	S-32
		5.1.2	Contributions from excited states (TDDFT)	S-33
		5.1.3	Contributions from excited states (CIS)	S-36
	5.2	6-311-	++G(d,p)	S-41

		5.2.1	Plots	S-41
		5.2.2	Contributions from excited states (TDDFT)	S-41
		5.2.3	Contributions from excited states (CIS)	S-48
6	HCl	l	5	S-56
	6.1	6-3110	G(d,p)	S-56
		6.1.1	Plots	S-56
	6.2	6-311+	++G(d,p)	S-57
		6.2.1	Plots	S-57
7	H_2C)	5	S-58
	7.1	6-3110	G(d,p)	S-58
		7.1.1	Plots	S-58
		7.1.2	Contributions from excited states (TDDFT)	S-59
		7.1.3	Contributions from excited states (CIS)	S-64
	7.2	6-311+	++G(d,p)	S-71
		7.2.1	Plots	S-71
		7.2.2	Contributions from excited states (TDDFT)	S-71
		7.2.3	Contributions from excited states (CIS)	S-81
8	H_2S		5	S-92
	8.1	6-3110	G(d,p)	S-92
		8.1.1	Plots	S-92
		8.1.2	Contributions from excited states (TDDFT)	S-93
		8.1.3	Contributions from excited states (CIS)	S-99
	8.2	6-311+	++G(d,p)	S-105
		8.2.1	Plots	S-105
		8.2.2	Contributions from excited states (TDDFT)	S-105
		8.2.3	Contributions from excited states (CIS)	S-112

9	NH	3	S-	-119
	9.1	6-311G(d,p)	•	S-119
		9.1.1 Plots		S-119
	9.2	6-311++G(d,p)		S-120
		9.2.1 Plots	•	S-120
10	F-C	C-H	S-	$\cdot 121$
	10.1	6-311G(d,p)		S-121
		10.1.1 Plots		S-121
	10.2	6-311++G(d,p)		S-122
		10.2.1 Plots	•	S-122
11	HC	CCF ₃	S-	$\cdot 123$
	11.1	6-311G(d,p)		S-123
		11.1.1 Plots		S-123
	11.2	6-311++G(d,p)		S-125
		11.2.1 Plots		S-125
12	CN-	-CC-H	S-	-127
	12.1	6-311G(d,p)		S-127
		12.1.1 Plots		S-127
	12.2	6-311++G(d,p)		S-129
		12.2.1 Plots	•	S-129
13	CN-	-CC-CC-H	S-	$\cdot 131$
	13.1	6-311G(d,p)		S-131
		13.1.1 Plots		S-131
	13.2	6-311++G(d,p)		S-133
		13.2.1 Plots		S-133

14	CN-	CC-CC-CC-H	S	-135
	14.1	6-311G(d,p)	•	S-135
		14.1.1 Plots	•	S-135
	14.2	6-311++G(d,p) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots		S-137
		14.2.1 Plots		S-137
15	p-cy	zanoaniline	S	-139
	15.1	6-311G(d,p)	•	S-139
		15.1.1 Plots	•	S-139
	15.2	6-311++G(d,p)	•	S-141
		15.2.1 Plots		S-141
16	<i>p</i> -ni	troaniline	\mathbf{S}	-143
	16.1	6-311G(d,p)		S-143
		16.1.1 Plots	•	S-143
		16.1.2 Contributions from excited states (TDDFT)	•	S-144
		16.1.3 Contributions from excited states (CIS)		S-147
	16.2	6-311++G(d,p)		S-152
		16.2.1 Plots	•	S-152
		16.2.2 Contributions from excited states (TDDFT)	•	S-153
		16.2.3 Contributions from excited states (CIS)		S-156
17	<i>m</i> -n	itroaniline	S	-161
	17.1	6-311G(d,p)		S-161
		17.1.1 Plots		S-161
18	<i>p</i> -m	ethoxy-nitrobenzene	S	-163
	18.1	6-311G(d,p)		S-163
		18.1.1 Plots		S-163

	18.1.2	Contributions from excited states (TDDFT)	S-164
	18.1.3	Contributions from excited states (CIS)	S-167
18.2	6-311+	+G(d,p)	S-172
	18.2.1	Plots	S-172
	18.2.2	Contributions from excited states (TDDFT)	S-173
	18.2.3	Contributions from excited states (CIS)	S-176

1 Detailed description of the electronic supporting information

This electronic supporting information (ESI) contains two kinds of information:

• Plots with the representations of the variation of a component of the polarizability, α , or one of the 1st hyperpolarizability, β , with respect to the number of molecular orbitals (MOs) or excited states, depending on the approach considered. If it is not said otherwise, the principal axis is considered along z direction.

Each figure is formed by four subfigures, except N₂ molecule, whose full β tensor is zero. Subfigures (a) and (c) were obtained by means of our field-induced orbital (FIO) decomposition and summed over the number of MOs. For α , three approaches were considered: coupled perturbed Kohn-Sham (CPKS), coupled perturbed Hartree-Fock (CPHF) and uncoupled perturbed Hartree-Fock (UPHF). In the case of β , only CPKS and CPHF approaches were taken into account.

The values shown in subfigures (b) and (d) were computed through the TDDFT and CIS *sum over states* method (SOS) as implemented in Multiwfn.^{S1} In the case of larger molecules, the number of excited states considered to compute the (hyper)polarizabilities were truncated to a value of 1500.

In addition to the four subfigures and caused by the enormous number of states and MOs, subfigures (e) and (f) of benzene derivatives, the series of molecules based on CN-C=C-H as well as $H-C=C-CF_3$ are also included with a shorten range on the x axis to observe the most important variations.

The plots were obtained at CAM-B3LYP and HF approaches combined in both cases with 6-311G(d,p) and 6-311++G(d,p) basis sets for the optimized structures. The FIOs and SOS results of these basis sets are included in the corresponding subsections, as can be seen in the table of contents. Since the FIOs and TDDFT-SOS approaches are independent of the functional to be considered, CAM-B3LYP was employed due to the well-known results obtained in calculations of (hyper)polarizabilities.^{S2–S6} The first derivative of the density matrices with respect to an uniform electric field was obtained analytically from the corresponding Gaussian calculations.^{S7} On the contrary, the second derivative was computed by the symmetric numerical definition of the finite field (FF) approach with an electric field strength of 0.001 au.

In all cases, the recomputed total values of the corresponding component are included in plots (a)–(d).

• Outputs from our either TDDFT (CAM-B3LYP) or CIS calculations of the molecules commented in the main text of the work, *i.e.*, the following set of molecules are shown: HHe^+ (Subsections 3.1.2 and 3.1.3), HF (Subsections 5.1.2 and 5.1.3), H₂O (Subsections 7.1.2 and 7.1.3), H₂S (Subsections 8.1.2 and 8.1.3), p-nitroaniline (Subsections 16.1.2 and 16.1.3), m-nitroaniline (Subsections ?? and ??) and p-methoxynitrobenzene (Subsections 18.1.2 and 18.1.3). These outputs, considering the aforementioned two basis sets, are formed by a truncated set of excited states (except HHe⁺, the full number of excited states was printed) adequate to represent the most important contributions to recover the final SOS value (see the corresponding figures of the same section and read the main text of the work). The symmetry determined by Gaussian 09 (symm), the energy (Exc.E), the oscillator strength (Osc.Strength), the transition dipole moment (f) and $\langle S^2 \rangle$ (<S**2>) are included together with the main excited configurations ordered by the five first largest and the five first lowest CI coefficients. In the last line of each excited state, the number of nonnegligible excited configurations with respect to the CI coefficient (#CIs), as well as the number of positive (#CIs>0) and negative (#CIs<0) values considered to obtain the SOS plots are shown.

References

- (S1) Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem.
 2012, 33, 580–592.
- (S2) Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). *Chem. Phys. Lett.* 2004, 393, 51–57.
- (S3) Xenides, D.; Karamanis, P.; Pouchan, C. A critical analysis of the performance of new generation functionals on the calculation of the (hyper) polarizabilities of clusters of varying stoichiometry: Test case the Si_mGe_n (m + n = 7, n = 0 - 7) clusters. Chem. Phys. Lett. **2010**, 498, 134–139.
- (S4) Karamanis, P.; Pouchan, C.; Weatherford, C. A.; Gutsev, G. L. Evolution of properties in prolate (GaAs)_n clusters. J. Phys. Chem. C 2011, 115, 97–107.
- (S5) Karamanis, P.; Marchal, R.; Carbonniére, P.; Pouchan, C. Doping-enhanced hyperpolarizabilities of silicon clusters: A global ab initio and density functional theory study of Si₁₀(Li, Na, K)_n (n = 1, 2) clusters. J. Chem. Phys. **2011**, 135, 044511.
- (S6) Karamanis, P. The importance of the DFT method on the computation of the second hyperpolarizability of semiconductor clusters of increasing size: A critical analysis on prolate aluminum phosphide clusters. Int. J. Quantum Chem. 2012, 112, 2115–2125.
- (S7) Otero, N.; Alsenoy, C. V.; Pouchan, C.; Karamanis, P. Hirshfeld-based intrinsic polarizability density representations as a tool to analyze molecular polarizability. J. Comput. Chem. 2015, 36, 1831–1843.

2 Molecular polarizability and 1st hyperpolarizability tensor components

Table S1: Tensor components of polarizability α of the molecules considered in this work. 1 CAM-B3LYP/6-311G**, 2 CAM-B3LYP/6-311++G*, 3 HF/6-311G**, 4 HF/6-311++G**

Level	α_{XX}	α_{XY}	α_{YY}	α_{XZ}	α_{YZ}	α_{ZZ}
1	0.62	0.00	0.62	0.00	0.00	1.62
2	0.62	0.00	0.62	0.00	0.00	1.63
3	0.60	0.00	0.60	0.00	0.00	1.46
4	0.60	0.00	0.60	0.00	0.00	1.46
1	6.05	0.00	6.05	0.00	0.00	13.66
2	7.81	0.00	7.81	0.00	0.00	15.23
3	5.73	0.00	5.73	0.00	0.00	13.68
4	7.00	0.00	7.00	0.00	0.00	14.66
1	8.61	0.00	8.61	0.00	0.00	13.04
2	9.92	0.00	9.92	0.00	0.00	15.27
3	8.23	0.00	8.23	0.00	0.00	12.45
4	9.06	0.00	9.06	0.00	0.00	14.01
1	7.33	0.00	7.33	0.00	0.00	8.08
2	7.31	0.00	7.31	0.00	0.00	9.31
3	4.84	0.00	4.84	0.00	0.00	5.64
4	5.17	0.00	5.17	0.00	0.00	6.58
1	1.82	0.00	1.82	0.00	0.00	4.58
2	2.82	0.00	2.82	0.00	0.00	5.05
3	1.70	0.00	1.70	0.00	0.00	4.15
4	2.32	0.00	2.32	0.00	0.00	4.42
	Level 1 2 3 4 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 3 4 3 4 3 4 3 4 3 4 4 3 3 4 4 3 4 4 4 5 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Level α _{XX} 1 0.62 2 0.62 3 0.60 4 0.60 4 0.60 1 6.05 2 7.81 3 5.73 4 7.00 1 8.61 2 9.92 3 8.23 4 9.06 1 7.33 2 7.31 3 4.84 4 5.17 1 1.82 2 2.82 3 1.70 4 2.32	Level α_{XX} α_{XY} 10.620.0020.620.0030.600.0040.600.0016.050.0027.810.0035.730.0047.000.0018.610.0029.920.0038.230.0049.060.0017.330.0027.310.0034.840.0045.170.0011.820.0022.820.0031.700.0042.320.00	Level α_{XX} α_{XY} α_{YY} 10.620.000.6220.620.000.6230.600.000.6040.600.000.6016.050.006.0527.810.007.8135.730.005.7347.000.007.0018.610.008.6129.920.009.9238.230.008.2349.060.007.3134.840.004.8445.170.005.1711.820.001.8222.820.002.8231.700.001.7042.320.002.32	Level α_{XX} α_{XY} α_{YY} α_{XZ} 10.620.000.620.0020.620.000.620.0030.600.000.600.0040.600.000.600.0016.050.006.050.0027.810.007.810.0035.730.005.730.0047.000.007.000.0018.610.008.610.0029.920.009.920.0038.230.008.230.0049.060.007.310.0017.330.007.310.0034.840.004.840.0045.170.005.170.0011.820.001.820.0022.820.002.820.00	Level α_{XX} α_{XY} α_{XY} α_{XZ} α_{YZ} 10.620.000.620.000.0020.620.000.620.000.0030.600.000.600.000.0040.600.000.600.000.0016.050.006.050.000.0027.810.007.810.000.0035.730.005.730.000.0047.000.007.000.000.0018.610.008.610.000.0029.920.009.920.000.0038.230.007.330.000.0049.060.007.330.000.0034.840.004.840.000.0045.170.005.170.000.0011.820.001.820.000.0034.340.002.820.000.0045.170.002.820.000.0031.700.001.700.000.0030.002.820.000.00

Continued on next page

Molecule	Level	α_{XX}	α_{XY}	α_{YY}	α_{XZ}	α_{YZ}	α_{ZZ}
HCl	1	6.82	0.00	6.82	0.00	0.00	13.32
	2	9.43	0.00	9.43	0.00	0.00	13.48
	3	6.56	0.00	6.56	0.00	0.00	12.82
	4	8.70	0.00	8.70	0.00	0.00	12.95
H_2O	1	4.02	0.00	7.66	0.00	0.00	5.83
	2	6.81	0.00	8.21	0.00	0.00	6.76
	3	3.77	0.00	7.08	0.00	0.00	5.28
	4	5.50	0.00	7.42	0.00	0.00	5.85
H_2S	1	11.59	0.00	18.52	0.00	0.00	17.27
	2	19.27	0.00	18.64	0.00	0.00	17.31
	3	11.24	0.00	18.19	0.00	0.00	16.15
	4	17.99	0.00	18.31	0.00	0.00	16.17
NH_3	1	10.18	0.00	10.18	0.00	0.00	7.89
	2	10.95	0.00	10.95	0.00	0.00	12.89
	3	9.65	0.00	9.65	0.00	0.00	7.38
	4	10.19	0.00	10.19	0.00	0.00	10.70
$F\!-\!CC\!-\!H$	1	10.43	0.00	10.43	0.00	0.00	30.09
	2	13.09	0.00	13.09	0.00	0.00	32.28
	3	10.21	0.00	10.21	0.00	0.00	28.49
	4	12.51	0.00	12.51	0.00	0.00	29.96
HCCCF_3	1	20.33	0.00	20.33	0.00	0.00	43.04
	2	25.83	0.00	25.83	0.00	0.00	47.35
	3	18.88	0.00	18.88	0.00	0.00	39.89
	4	42.88	0.00	23.26	0.00	0.00	23.26

Table S1 – Continued from previous page

 $Continued \ on \ next \ page$

Molecule	Level	α_{XX}	α_{XY}	α_{YY}	α_{XZ}	α_{YZ}	α_{ZZ}
CN-CC-H	1	15.74	0.00	15.74	0.00	0.00	63.21
	2	18.53	0.00	18.53	0.00	0.00	65.17
	3	15.50	0.00	15.50	0.00	0.00	59.87
	4	18.04	0.00	18.04	0.00	0.00	63.11
CN-CC-CC-H	1	22.20	0.00	22.20	0.00	0.00	135.18
	2	26.54	0.00	26.54	0.00	0.00	142.87
	3	22.03	0.00	22.03	0.00	0.00	121.44
	4	25.87	0.00	25.87	0.00	0.00	126.60
CN-CC-CC-CC-H	1	28.56	0.00	28.56	0.00	0.00	236.59
	2	34.28	0.00	34.28	0.00	0.00	247.52
	3	28.46	0.00	28.46	0.00	0.00	201.60
	4	33.62	0.00	33.62	0.00	0.00	208.47
p-cyanoaniline	1	37.39	-0.31	138.11	0.00	0.00	81.57
	2	51.43	0.17	147.59	0.00	0.00	86.80
	3	37.25	-0.51	126.22	0.00	0.00	78.37
	4	50.36	-0.09	133.04	0.00	0.00	83.05
p-cyanoaniline	1	81.57	0.00	37.39	0.00	-0.31	138.11
	2	86.80	0.00	51.43	0.00	0.17	147.59
	3	78.37	0.00	37.25	0.00	-0.51	126.22
	4	83.05	0.00	50.36	0.00	-0.09	133.04
p-nitroaniline	1	91.94	0.00	36.12	0.00	0.25	131.30
	2	98.17	0.00	50.40	0.00	-0.20	143.48
	3	88.50	0.00	35.99	0.00	0.44	115.25
	4	93.83	0.00	49.25	0.00	0.05	122.90

Table S1 – Continued from previous page

 $Continued \ on \ next \ page$

Molecule	Level	α_{XX}	α_{XY}	α_{YY}	α_{XZ}	α_{YZ}	α_{ZZ}
m-nitroaniline	1	95.68	18.61	44.15	-1.38	-12.71	109.43
	2						
	3	78.01	27.89	57.77	2.74	-12.20	98.47
	4						
p-methoxy-nitrobenzene	1	44.02	0.00	96.90	0.00	2.02	137.08
	2	56.62	0.00	103.91	0.00	1.37	147.44
	3	43.18	0.00	93.02	0.00	2.07	122.03
	4	55.18	0.00	98.91	0.00	1.81	128.82

Table S1 – Continued from previous page

Table S CAM-B;	(2: Nonzero te 3LYP/6-311G* [*]	ensor com *, 2 CAM-	ponents of B3LYP/6-3	the $1^{\rm st}$ h 11++G*, 3	yperpolarize HF/6-311C	the initial β of β^{**} , 4 HF/6	f the mole $-311++G^*$	scules consi :*	dered in thi	s work. 1
Molecule	Level	β_{XXX}	β_{XXY}	β_{XYY}	β_{YYY}	β_{XXZ}	β_{XYZ}	β_{YYZ}	β_{XZZ}	β_{YZZ}
Molecule	Level	β_{XXX}	β_{XXY}	β_{XYY}	β_{YYY}	β_{XXZ}	β_{XYZ}	β_{YYZ}	β_{XZZ}	β_{YZZ}
HHe^+	1	0.00	0.00	0.00	0.00	0.12	0.00	0.12	0.00	0.00
	2	0.00	0.00	0.00	0.00	0.12	0.00	0.12	0.00	0.00
	က	0.00	0.00	0.00	0.00	0.11	0.00	0.11	0.00	0.00
	4	0.00	0.00	0.00	0.00	0.12	0.00	0.12	0.00	0.00
CO	1	0.00	0.00	0.00	0.00	-0.64	0.00	-0.64	0.00	0.00
	2	0.00	0.00	0.00	0.00	4.05	0.00	4.05	0.00	0.00
	က	0.00	0.00	0.00	0.00	-1.06	0.00	-1.06	0.00	0.00
	4	0.00	0.00	0.00	0.00	1.98	0.00	1.98	0.00	0.00
LiF	1	0.00	0.00	0.00	0.00	73.27	0.00	73.27	0.00	0.00
	2	0.00	0.00	0.00	0.00	50.88	0.00	50.88	0.00	0.00
	3	0.00	0.00	0.00	0.00	32.53	0.00	32.53	0.00	0.00
	4	0.00	0.00	0.00	0.00	22.48	0.00	22.48	0.00	0.00
HF	1	0.00	0.00	0.00	0.00	2.42	0.00	2.42	0.00	0.00
	2	0.00	0.00	0.00	0.00	0.28	0.00	0.28	0.00	0.00

Continued o

0.00 0.00 0.00
0.00 0.00 0.00
15.50 0.90 12.44
0.00 0.00 0.00
15.50 0.90 12.44
-20.36 -16.24 -18.34
0.00 0.00 0.00
20.36 16.26 18.34
0.00 0.00 0.00
3 5 1
H ₃

Continued o

					9	г т	c			
Molecule	Level	β_{XXX}	β_{XXY}	β_{XYY}	β_{YYY}	β_{XXZ}	β_{XYZ}	β_{YYZ}	β_{XZZ}	β_{YZZ}
	4	0.00	15.57	0.00	-15.57	2.99	0.00	2.99	0.00	0.00
F-CC-H	1	0.00	0.00	0.00	0.00	1.28	0.00	1.28	0.00	0.00
	2	0.00	0.00	0.00	0.00	13.29	0.00	13.29	0.00	0.00
	ŝ	0.00	0.00	0.00	0.00	-0.05	0.00	-0.05	0.00	0.00
	4	0.00	0.00	0.00	0.00	7.95	0.00	7.95	0.00	0.00
$HCCCF_3$	1	0.00	-3.96	0.00	3.96	-16.42	0.00	-16.42	0.00	0.00
	5	0.00	-9.46	0.00	9.45	-11.65	0.00	-11.64	0.00	0.00
	c,	0.00	-2.71	0.00	2.71	-11.78	0.00	-11.78	0.00	0.00
	4	0.00	-3.43	-7.02	3.43	-8.42	0.00	-8.42	0.00	7.02
CN-CC-H	1	0.00	0.00	0.00	0.00	9.45	0.00	9.45	0.00	0.00
	2	0.00	0.00	0.00	0.00	9.23	0.00	9.23	0.00	0.00
	ŝ	0.00	0.00	0.00	0.00	10.16	0.00	10.16	0.00	0.00
	4	0.00	0.00	0.00	0.00	11.58	0.00	11.58	0.00	0.00
CN-CC-CC-H	1	0.00	0.00	0.00	0.00	12.16	0.00	12.16	0.00	0.00
	2	0.00	0.00	0.00	0.00	17.70	0.00	17.70	0.00	0.00
	3	0.00	0.00	0.00	0.00	12.58	0.00	12.58	0.00	0.00
	4	0.00	0.00	0.00	0.00	17.46	0.00	17.46	0.00	0.00

Continued o

S-16

Table S2 – Continued from previous page

			Ĺ	able S2 – \mathcal{C}	Jontinued fr	om previous	page			
Molecule	Level	β_{XXX}	β_{XXY}	β_{XYY}	β_{YYY}	β_{XXZ}	β_{XYZ}	β_{YYZ}	β_{XZZ}	β_{YZZ}
CN-CC-CC-CC-H	, - 1	0.00	0.00	0.00	0.00	14.11	0.00	14.11	0.00	0.00
	2	0.00	0.00	0.00	0.00	24.09	0.00	24.09	0.00	0.00
	c,	0.00	0.00	0.00	0.00	14.15	0.00	14.15	0.00	0.00
	4	0.00	0.00	0.00	0.00	21.85	0.00	21.85	0.00	0.00
$p-{ m cyanoaniline}$, _ 1	0.00	4.22	0.00	3.63	-94.92	0.00	-14.54	0.00	28.60
	2	0.00	3.20	0.00	9.11	-84.28	0.00	-44.47	0.00	7.34
	c,	0.00	4.44	0.00	3.42	-100.81	0.00	-14.12	0.00	23.41
	4	0.00	4.48	0.00	9.30	-96.13	0.00	-31.04	0.00	5.61
p-nitroaniline	, _ 1	0.00	-3.71	0.00	-3.22	-143.65	0.00	-15.50	0.00	-28.53
	2	0.00	-2.31	0.00	-7.68	-142.01	0.00	-60.12	0.00	-10.54
	c,	0.00	-4.04	0.00	-3.18	-165.83	0.00	-10.48	0.00	-22.73
	4	0.00	-3.50	0.00	-8.39	-174.41	0.00	-37.66	00.00	-7.14
m-nitroaniline	, _ 1	-17.72	-31.14	-50.88	-87.01	13.48	33.60	74.67	-57.98	16.35
	2									
	c,	-47.85	-44.53	-43.13	-49.85	20.89	21.95	16.41	-33.82	11.14
	4									
$p-{ m methoxy-nitrobenzene}$		0.00	-33.44	0.00	7.09	-37.53	0.00	-113.23	0.00	-82.49
										Continued o

1able 32 – Continuea from previous page	Level β_{XXX} β_{XYY} β_{YYY} β_{YYZ} β_{XYZ} β_{YYZ} β_{YYZ} β_{YZZ} β_{YZZ}	$2 \qquad 0.00 -30.04 \qquad 0.00 2.45 -39.28 \qquad 0.00 -110.52 \qquad 0.00 -105.12$	$3 \qquad 0.00 -26.81 \qquad 0.00 9.20 -26.03 \qquad 0.00 -136.73 \qquad 0.00 -61.17$	$4 \qquad 0.00 -21.62 \qquad 0.00 \qquad 9.85 -28.48 \qquad 0.00 -140.21 \qquad 0.00 -71.73$
	Level β_{XXX} β_{XXY}	2 0.00 -30.04	3 0.00 -26.81	4 0.00 -21.62
	Molecule	2	6.9	7

page
previous
from
\dot{a}
Continue
S_2
Table

$3 HHe^+$

3.1 6-311G(d,p)

3.1.1 Plots

Figure S1: For HHe⁺ molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (bottom) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S1a and S1c) or states (SOS approaches, in Plots S1b and S1d). For α FIOs, three approaches were considered: CPKS (CAM-B3LYP), CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. All elements of the β tensor were recomputed with an error less than 0.04 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

3.1.2 Main contributions from different excited states at TDDFT (CAM-B3LYP) approach

#_exc.st	symm	Exc.E	Osc	Strength	f	_ <s**2>_</s**2>	min(4))= 1 ->	3	0.00130	
							min(5))= 1 ->	7	0.00683	
1	Singlet-SG	25.3777		48.86	0.3892	0.000	#CIs=	7 #CIs>0=4 #CI	s<0=3		
	max(1))=	1 ->	2	0.70588						
	max(2))=	1 ->	7	0.01962	4	Singlet-?Sym	49.6261	24	1.98 0.6477	0.000
	max(3))=	1 ->	11	-0.00521		max(1))= 1 ->	5	0.68562	
	max(4))=	1 ->	10	-0.00607		max(2))= 1 ->	6	0.17112	
	max(5))=	1 ->	12	-0.00815		max(3))= 1 ->	8	0.03117	
	min(1))=	1 ->	4	-0.05874		max(4))= 1 ->	9	0.00778	
	min(2))=	1 ->	3	-0.02041		max(5))= 1 ->	4	0.70534	
	min(3))=	1 ->	12	-0.00815		min(1))= 1 ->	9	0.00778	
	min(4))=	1 ->	10	-0.00607		min(2))= 1 ->	8	0.03117	
	min(5))=	1 ->	11	-0.00521		min(3))= 1 ->	6	0.17112	
	#CIs=	7 #CIs>0=	2 #CI	s<0=5			min(4))= 1 ->	5	0.68562	
							min(5))= 1 ->	10	-0.01534	
2	Singlet-SG	32.8423		37.75	0.0947	0.000	#CIs=4	4 #CIs>0=4 #CI	s<0=0		
	max(1))=	1 ->	3	0.70684						
	max(2))=	1 ->	2	0.02014	5	Singlet-?Sym	49.6261	24	1.98 0.6477	0.000
	max(3))=	1 ->	10	0.00422		max(1))= 1 ->	6	0.68562	
	max(4))=	1 ->	12	-0.00125		max(2))= 1 ->	9	0.03117	
	max(5))=	1 ->	4	-0.00287		max(3))= 1 ->	8	-0.00778	
	min(1))=	1 ->	7	-0.01227		max(4))= 1 ->	5	-0.17112	
	min(2))=	1 ->	11	-0.00600		max(5))= 1 ->	5	0.68562	
	min(3))=	1 ->	4	-0.00287		min(1))= 1 ->	5	-0.17112	
	min(4))=	1 ->	12	-0.00125		min(2))= 1 ->	8	-0.00778	
	min(5))=	1 ->	10	0.00422		min(3))= 1 ->	9	0.03117	
	#CIs=	7 #CIs>0=	3 #CI:	s<0=4			min(4))= 1 ->	6	0.68562	
							min(5))= 1 ->	9	0.00778	
3	Singlet-SG	46.8246		26.48	0.0004	0.000	#CIs=4	4 #CIs>0=2 #CI	s<0=2		
	max(1))=	1 ->	4	0.70534						
	max(2))=	1 ->	2	0.06098	6	Singlet-SG	62.9858	19.6	38 0.1317	0.000
	max(3))=	1 ->	7	0.00683		max(1))= 1 ->	7	0.70660	
	max(4))=	1 ->	3	0.00130		max(2))= 1 ->	3	0.01341	
	max(5))=	1 ->	11	-0.01096		max(3))= 1 ->	11	0.00424	
	min(1))=	1 ->	10	-0.01534		max(4))= 1 ->	12	0.00210	
	min(2))=	1 ->	12	-0.01193		max(5))= 1 ->	4	-0.00606	
	min(3))=	1 ->	11	-0.01096		min(1))= 1 ->	10	-0.02235	

	min(2)=	1 -> 2	-0.02114		max(3)=	1 -> 4	0.01452	
	$\min(3) =$	1 -> 4	-0.00606		max(4)=	1 -> 2	0.00667	
	$\min(4)=$	1 -> 12	0.00210		max(5)=	1 -> 12	-0.00146	
	min(5)=	1 -> 11	0.00424		min(1)=	1 -> 11	-0.02345	
	#CIs=7 #C	CIs>0=4 #CIs<0=3			min(2)=	1 -> 3	-0.00411	
					min(3)=	1 -> 12	-0.00146	
7	Singlet-?Sym 6	67.8741 1	8.27 0.0646	0.000	min(4)=	1 -> 2	0.00667	
	$\max(1)=$	1 -> 8	0.70122		min(5)=	1 -> 4	0.01452	
	max(2)=	1 -> 6	0.00392		#CIs=7 #CIs>0=	4 #CIs<0=3		
	max(3)=	1 -> 5	-0.03213					
	$\max(4)=$	1 -> 9	-0.08553	10	Singlet-SG 96.1022	12.90	0.0172	0.000
	max(5)=	1 -> 7	0.70660		max(1)=	1 -> 11	0.70657	
	$\min(1)=$	1 -> 9	-0.08553		max(2)=	1 -> 10	0.02337	
	$\min(2)=$	1 -> 5	-0.03213		max(3)=	1 -> 4	0.01134	
	$\min(3)=$	1 -> 6	0.00392		$\max(4) =$	1 -> 2	0.00711	
	$\min(4)=$	1 -> 8	0.70122		max(5)=	1 -> 3	0.00569	
	$\min(5)=$	1 -> 10	-0.02235		$\min(1)=$	1 -> 12	-0.01013	
	#CIs=4 #C	CIs>0=2 #CIs<0=2			min(2)=	1 -> 7	-0.00336	
					$\min(3) =$	1 -> 3	0.00569	
8	Singlet-?Sym 6	67.8741 1	8.27 0.0646	0.000	$\min(4) =$	1 -> 2	0.00711	
	$\max(1)=$	1 -> 9	0.70122		$\min(5) =$	1 -> 4	0.01134	
	$\max(2)=$	1 -> 8	0.08553		#CIs=7 #CIs>0=	5 #CIs<0=2		
	max(3)=	1 -> 5	-0.00392					
	$\max(4)=$	1 -> 6	-0.03213	11	Singlet-SG 190.6269	6.50	0.0000	0.000
	$\max(5)=$	1 -> 8	0.70122		$\max(1)=$	1 -> 12	0.70701	
	$\min(1)=$	1 -> 6	-0.03213		max(2)=	1 -> 4	0.01214	
	$\min(2)=$	1 -> 5	-0.00392		max(3)=	1 -> 2	0.01028	
	$\min(3)=$	1 -> 8	0.08553		$\max(4) =$	1 -> 11	0.00999	
	$\min(4)=$	1 -> 9	0.70122		max(5)=	1 -> 10	0.00163	
	$\min(5)=$	1 -> 9	-0.08553		$\min(1)=$	1 -> 7	-0.00194	
	#CIs=4 #C	SIS>0=2 #CIS<0=2			$\min(2)=$	1 -> 3	0.00107	
					$\min(3) =$	1 -> 10	0.00163	
9	Singlet-SG 77.	1426 16.	07 0.0019	0.000	min(4)=	1 -> 11	0.00999	
	$\max(1)=$	1 -> 10	0.70618		$\min(5)=$	1 -> 2	0.01028	
	max(2)=	1 -> 7	0.02284		#CIs=7 #CIs>0=	6 #CIs<0=1		

3.1.3 Main contributions from different excited states at CIS approach

#_exc.st ___symm___ Exc.E Osc._Strength ___f___<S**2>_ Singlet-SG 27.3850 45.27 0.4599 0.000
max(1)= 1 -> 2 0.69064

	max(2)=	1 -> 3	0.15138		$\max(4)=$	1 ->	6 -	0.37670	
	max(3)=	1 -> 4	0.00085		max(5)=	1 ->	4	0.70452	
	max(4)=	1 -> 11	-0.00083		$\min(1) =$	1 ->	6 -	0.37670	
	max(5)=	1 -> 10	-0.00419		min(2)=	1 ->	9 -	0.01844	
	min(1)=	1 -> 7	-0.00761		min(3)=	1 ->	8	0.01161	
	min(2)=	1 -> 12	-0.00534		$\min(4) =$	1 ->	5	0.59801	
	min(3)=	1 -> 10	-0.00419		$\min(5) =$	1 ->	2 -	0.01354	
	$\min(4)=$	1 -> 11	-0.00083		#CIs=4 #	CIs>0=2 #CIs	<0=2		
	min(5)=	1 -> 4	0.00085						
	#CIs=7 #CIs>(D=3 #CIs<0=4		5	Singlet-?Sym	50.2671	24.67	0.7000	0.000
					max(1)=	1 ->	6	0.59801	
2	Singlet-SG 35.3079	9 35.12	0.0965	0.000	max(2)=	1 ->	5	0.37670	
	max(1)=	1 -> 3	0.68769		max(3)=	1 ->	9 -	0.01161	
	max(2)=	1 -> 11	0.00673		$\max(4) =$	1 ->	8 -	0.01844	
	max(3)=	1 -> 12	0.00078		max(5)=	1 ->	5	0.59801	
	max(4)=	1 -> 10	-0.01229		$\min(1) =$	1 ->	8 -	0.01844	
	max(5)=	1 -> 7	-0.02391		$\min(2) =$	1 ->	9 -	0.01161	
	min(1)=	1 -> 2	-0.15098		$\min(3) =$	1 ->	5	0.37670	
	min(2)=	1 -> 4	-0.05936		$\min(4) =$	1 ->	6	0.59801	
	min(3)=	1 -> 7	-0.02391		min(5)=	1 ->	6 -	0.37670	
	min(4)=	1 -> 10	-0.01229		#CIs=4 #	CIs>0=2 #CIs	<0=2		
	min(5)=	1 -> 12	0.00078						
	#CIs=7 #CIs>0	D=3 #CIs<0=4		6	Singlet-SG 64	1.5538	19.21	0.1502	0.000
					$\max(1)=$	1 ->	7	0.70500	
3	Singlet-SG 48.221	5 25.71	0.0038	0.000	$\max(2)=$	1 ->	3	0.02445	
	max(1)=	1 -> 4	0.70452		max(3)=	1 -> 1	11	0.02297	
	max(2)=	1 -> 3	0.05741		$\max(4) =$	1 ->	4	0.00516	
	max(3)=	1 -> 11	0.01036		$\max(5) =$	1 ->	2	0.00216	
	$\max(4)=$	1 -> 12	-0.00016		$\min(1) =$	1 -> 1	- 10	0.04254	
	max(5)=	1 -> 10	-0.00303		min(2)=	1 -> 1	12 -	0.00179	
	min(1)=	1 -> 2	-0.01354		min(3)=	1 ->	2	0.00216	
	min(2)=	1 -> 7	-0.00763		min(4)=	1 ->	4	0.00516	
	min(3)=	1 -> 10	-0.00303		min(5)=	1 -> 1	11	0.02297	
	min(4)=	1 -> 12	-0.00016		#CIs=7 #	CIs>0=5 #CIs<	<0=2		
	min(5)=	1 -> 11	0.01036						
	#CIs=7 #CIs>0	D=3 #CIs<0=4		7	Singlet-?Sym	69.9228	17.73	0.0531	0.000
					$\max(1)=$	1 ->	9	0.53751	
4	Singlet-?Sym 50.26	671 24.6	0.7000	0.000	max(2)=	1 ->	5	0.01657	
	max(1)=	1 -> 5	0.59801		max(3)=	1 ->	6 -	0.01415	
	max(2)=	1 -> 8	0.01161		$\max(4)=$	1 ->	8 -	0.45891	
	max(3)=	1 -> 9	-0.01844		max(5)=	1 ->	7	0.70500	

	$\min(1)=$	1 -> 8	-0.45891		$\min(4) =$	1 -> 12	0.00432	
	min(2)=	1 -> 6	-0.01415		min(5)=	1 -> 3	0.01496	
	min(3)=	1 -> 5	0.01657		#CIs=7 #CIs>0=	6 #CIs<0=1		
	$\min(4)=$	1 -> 9	0.53751					
	min(5)=	1 -> 10	-0.04254	10	Singlet-SG 100.0171	12.40	0.0099	0.000
	#CIs=4 #CIs>0=	=2 #CIs<0=2			max(1)=	1 -> 11	0.70591	
					max(2)=	1 -> 10	0.03320	
8	Singlet-?Sym 69.922	28 17.73	0.0531	0.000	max(3)=	1 -> 2	0.00245	
	$\max(1)=$	1 -> 8	0.53751		max(4)=	1 -> 12	0.00040	
	max(2)=	1 -> 9	0.45891		max(5)=	1 -> 3	-0.00734	
	max(3)=	1 -> 6	0.01657		$\min(1)=$	1 -> 7	-0.02067	
	$\max(4)=$	1 -> 5	0.01415		min(2)=	1 -> 4	-0.00982	
	max(5)=	1 -> 9	0.53751		$\min(3) =$	1 -> 3	-0.00734	
	$\min(1)=$	1 -> 5	0.01415		min(4)=	1 -> 12	0.00040	
	$\min(2)=$	1 -> 6	0.01657		min(5)=	1 -> 2	0.00245	
	min(3)=	1 -> 9	0.45891		#CIs=7 #CIs>0=	4 #CIs<0=3		
	$\min(4) =$	1 -> 8	0.53751					
	min(5)=	1 -> 8	-0.45891	11	Singlet-SG 195.2285	6.35	0.0002	0.000
	#CIs=4 #CIs>0=	=4 #CIs<0=0			max(1)=	1 -> 12	0.70707	
					max(2)=	1 -> 2	0.00538	
9	Singlet-SG 79.7245	15.55	0.0013	0.000	max(3)=	1 -> 7	0.00150	
	max(1)=	1 -> 10	0.70491		max(4)=	1 -> 3	0.00038	
	max(2)=	1 -> 7	0.04303		max(5)=	1 -> 4	0.00024	
	max(3)=	1 -> 3	0.01496		$\min(1)=$	1 -> 10	-0.00445	
	max(4)=	1 -> 12	0.00432		min(2)=	1 -> 11	-0.00016	
	max(5)=	1 -> 4	0.00278		$\min(3) =$	1 -> 4	0.00024	
	$\min(1)=$	1 -> 11	-0.03170		$\min(4) =$	1 -> 3	0.00038	
	$\min(2)=$	1 -> 2	0.00147		min(5)=	1 -> 7	0.00150	
	$\min(3)=$	1 -> 4	0.00278		#CIs=7 #CIs>0=	5 #CIs<0=2		

$3.2 \quad 6-311G++(d,p)$

3.2.1 Plots

Figure S2: For HHe⁺ molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (bottom) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S2a and S2c) or states (SOS approaches, in Plots S2b and S2d). For α FIOs, three approaches were considered: CPKS (CAM-B3LYP), CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. All elements of the β tensor were recomputed with an error less than 0.01 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

3.2.2 Main contributions from different excited states at TDDFT (CAM-B3LYP) approach

#_exc.st	symm	Exc.E ()scS	trength	f	<s4**2>_</s4**2>	Singlet-S	G 3	8.2925		32.38	0.0580	0.000
							ma	x(1)=		1 ->	5	0.70329	
1	Singlet-SG	25.1296		49.34	0.3939	0.000	ma	x(2)=	:	1 ->	4	0.05189	
	max(1)) =	1 ->	2	0.70332		ma	x(3)=	:	1 ->	8	0.01362	
	max(2)) =	1 ->	9	0.02163		ma	x(4)=	:	1 ->	12	0.00803	
	max(3))=	1 ->	5	0.01447		ma	x(5)=	:	1 ->	14	0.00137	
	max(4)) =	1 ->	12	-0.00201		mi	n(1)=	:	1 ->	3	-0.04807	
	max(5)) =	1 ->	13	-0.00342		mi	n(2)=	:	1 ->	2	-0.01391	
	min(1)) =	1 ->	4	-0.05371		mi	n(3)=		1 ->	9	-0.01248	
	min(2)) =	1 ->	3	-0.05257		mi	n(4)=		1 ->	13	-0.00457	
	min(3)) =	1 ->	8	-0.03704		mi	n(5)=		1 ->	14	0.00137	
	$\min(4)$) =	1 ->	14	-0.00709		#C	Is=9	#CIs>0=5	5 #CIs	<0=4		
	min(5)) =	1 ->	13	-0.00342								
	#CIs=9	9 #CIs>0=3	8 #CIs	<0=6		5	Singlet-?	Sym	49.6273	3	24.	98 0.6480	0.000
							ma	x(1)=	:	1 ->	6	0.58275	
2	Singlet-SG	30.6326		40.47	0.0252	0.000	ma	x(2)=	:	1 ->	11	0.02657	
	max(1)) =	1 ->	3	0.70046		ma	x(3)=	:	1 ->	10	-0.01822	
	max(2)) =	1 ->	4	0.06388		ma	x(4)=	:	1 ->	7	-0.39970	
	max(3)) =	1 ->	2	0.05598		ma	x(5)=	:	1 ->	5	0.70329	
	max(4)) =	1 ->	5	0.04451		mi	n(1)=	:	1 ->	7	-0.39970	
	max(5)) =	1 ->	12	-0.00111		mi	n(2)=	:	1 ->	10	-0.01822	
	min(1)) =	1 ->	8	-0.01699		mi	n(3)=	:	1 ->	11	0.02657	
	min(2)) =	1 ->	9	-0.00620		mi	n(4)=	:	1 ->	6	0.58275	
	min(3)) =	1 ->	13	-0.00407		mi	n(5)=	:	1 ->	3	-0.04807	
	$\min(4)$) =	1 ->	14	-0.00290		#C	Is=4	#CIs>0=2	2 #CIs	<0=2		
	min(5)) =	1 ->	12	-0.00111								
	#CIs=9	9 #CIs>0=4	ł #CIs	<0=5		6	Singlet-?	Sym	49.6273	3	24.	98 0.6480	0.000
							ma	x(1)=	:	1 ->	7	0.58275	
3	Singlet-SG	34.7510		35.68	0.0113	0.000	ma	x(2)=		1 ->	6	0.39970	
	max(1)) =	1 ->	4	0.70028		ma	x(3)=		1 ->	10	0.02657	
	max(2)) =	1 ->	2	0.05004		ma	x(4)=		1 ->	11	0.01822	
	max(3)) =	1 ->	9	0.00912		ma	x(5)=		1 ->	6	0.58275	
	max(4)) =	1 ->	12	-0.00367		mi	n(1)=	:	1 ->	11	0.01822	
	max(5)) =	1 ->	13	-0.00392		mi	n(2)=	:	1 ->	10	0.02657	
	min(1)) =	1 ->	3	-0.06453		mi	n(3)=		1 ->	6	0.39970	
	min(2)) =	1 ->	5	-0.05487		mi	n(4)=	:	1 ->	7	0.58275	
	min(3))=	1 ->	8	-0.02113		mi	n(5)=	:	1 ->	7	-0.39970	
	$\min(4)$)=	1 ->	14	-0.00632		#C	Is=4	#CIs>0=4	l #CI≲	s<0=0		
	min(5)) =	1 ->	13	-0.00392								
	#CIs=9	9 #CIs>0=3	3 #CIs	s<0=6		7	Singlet-S	G 5	4.0800		22.93	0.0032	0.000
							ma	x(1)=	:	1 ->	8	0.70582	

	max(2)=	1 -> 2	0.04125		max(4)=	1 -> 10	-0.11508	
	max(3)=	1 -> 4	0.01935		max(5)=	1 -> 10	0.69698	
	max(4)=	1 -> 9	0.01682		min(1)=	1 -> 10	-0.11508	
	max(5)=	1 -> 3	0.01352		min(2)=	1 -> 6	-0.03202	
	min(1)=	1 -> 5	-0.01333		min(3)=	1 -> 7	0.00529	
	min(2)=	1 -> 14	-0.01019		min(4)=	1 -> 11	0.69698	
	min(3)=	1 -> 13	-0.00972		min(5)=	1 -> 7	-0.03202	
	min(4)=	1 -> 12	-0.00861		#CIs=4 #CIs>C	=2 #CIs<0=2		
	min(5)=	1 -> 3	0.01352					
	#CIs=9 #CI	s>0=5 #CIs<0=4		11	Singlet-SG 81.6646	15.18	0.0000	0.000
					max(1)=	1 -> 12	0.70620	
8	Singlet-SG 64.0	602 19.35	0.1254	0.000	max(2)=	1 -> 9	0.02804	
	max(1)=	1 -> 9	0.70608		max(3)=	1 -> 8	0.00742	
	max(2)=	1 -> 5	0.01421		max(4)=	1 -> 4	0.00289	
	max(3)=	1 -> 3	0.00753		max(5)=	1 -> 2	0.00201	
	max(4)=	1 -> 13	0.00678		$\min(1)=$	1 -> 13	-0.01945	
	max(5)=	1 -> 14	0.00307		min(2)=	1 -> 5	-0.00788	
	min(1)=	1 -> 12	-0.02742		$\min(3)=$	1 -> 14	-0.00016	
	min(2)=	1 -> 2	-0.02419		$\min(4)=$	1 -> 3	0.00158	
	min(3)=	1 -> 8	-0.01586		min(5)=	1 -> 2	0.00201	
	min(4)=	1 -> 4	-0.00683		#CIs=9 #CIs>C	=6 #CIs<0=3		
	min(5)=	1 -> 14	0.00307					
	#CIs=9 #CI	s>0=5 #CIs<0=4		12	Singlet-SG 97.3985	12.73	0.0185	0.000
					max(1)=	1 -> 13	0.70669	
9	Singlet-?Sym 67	.8710 18.	27 0.0651	0.000	max(2)=	1 -> 12	0.01962	
	max(1)=	1 -> 10	0.69698		max(3)=	1 -> 8	0.00999	
	max(2)=	1 -> 11	0.11508		max(4)=	1 -> 2	0.00511	
	max(3)=	1 -> 6	-0.00529		max(5)=	1 -> 4	0.00491	
	max(4)=	1 -> 7	-0.03202		min(1)=	1 -> 14	-0.00857	
	max(5)=	1 -> 9	0.70608		min(2)=	1 -> 9	-0.00577	
	min(1)=	1 -> 7	-0.03202		min(3)=	1 -> 3	0.00334	
	min(2)=	1 -> 6	-0.00529		min(4)=	1 -> 5	0.00400	
	min(3)=	1 -> 11	0.11508		min(5)=	1 -> 4	0.00491	
	min(4)=	1 -> 10	0.69698		#CIs=9 #CIs>C	=7 #CIs<0=2		
	min(5)=	1 -> 12	-0.02742					
	#CIs=4 #CI	s>0=2 #CIs<0=2		13	Singlet-SG 194.5931	6.37	0.0000	0.000
					$\max(1)=$	1 -> 14	0.70703	
10	Singlet-?Sym 67	.8710 18.	27 0.0651	0.000	$\max(2)=$	1 -> 8	0.01027	
	$\max(1)=$	1 -> 11	0.69698		max(3)=	1 -> 2	0.00937	
	max(2)=	1 -> 7	0.00529		max(4)=	1 -> 13	0.00846	
	max(3)=	1 -> 6	-0.03202		max(5)=	1 -> 4	0.00666	

	$\min(2)=$	1 -> 5	-0.00189	min(5)=	1 -> 4	0.00666
$min(3) = 1 \times 12 = 0.00036 = \#CT_0 = 0.0017 \#CT_0 = 0.0007 = 0.00$	$\min(2)$	1 > 12	0.00036	#CIa=9 #CIa		0.00000

3.2.3 Main contributions from different excited states at CIS approach

#_exc.st	symm	Exc.E Os	scStrengt	thf	<s**2>_</s**2>	min(1)	= 1 ->	3	-0.18050	
						min(2)	= 1 ->	5	-0.16569	
1	Singlet-SG	27.2151	45.5	56 0.4638	0.000	min(3)	= 1 ->	2	-0.09407	
	max(1)	= 1	1 -> 2	0.68603		$\min(4)$	= 1 ->	9	-0.00754	
	max(2)	= 1	1 -> 4	0.03846		min(5)	= 1 ->	12	-0.00595	
	max(3)	= 1	1 -> 13	-0.00033		#CIs=9	#CIs>0=3 #CIs	<0=6		
	$\max(4)$	= 1	1 -> 12	-0.00190						
	max(5)	= 1	1 -> 9	-0.00389	4	Singlet-SG	41.4654	29.90	0.0604	0.000
	min(1)	= 1	1 -> 3	-0.14286		max(1)	= 1 ->	5	0.66948	
	min(2)	= 1	1 -> 5	-0.08511		max(2)	= 1 ->	4	0.12336	
	min(3)	= 1	1 -> 8	-0.01384		max(3)	= 1 ->	2	0.03956	
	min(4)	= 1	1 -> 14	-0.00462		max(4)	= 1 ->	8	0.03758	
	min(5)	= 1	1 -> 9	-0.00389		max(5)	= 1 ->	9	0.02596	
	#CIs=9	#CIs>0=2	#CIs<0=7			min(1)	= 1 ->	3	-0.18026	
						$\min(2)$	= 1 ->	13	-0.00917	
2	Singlet-SG	33.4779	37.0	0.0270	0.000	min(3)	= 1 ->	14	0.00045	
	max(1)	= 1	1 -> 3	0.64369		$\min(4)$	= 1 ->	12	0.01865	
	max(2)	= 1	1 -> 4	0.22561		min(5)	= 1 ->	9	0.02596	
	max(3)	= 1	1 -> 2	0.13717		#CIs=9	#CIs>0=7 #CIs	<0=2		
	$\max(4)$	= 1	1 -> 5	0.12136						
	max(5)	= 1	1 -> 8	0.03399	5	Singlet-?Sym	50.2689	24.66	0.7008	0.000
	min(1)	= 1	1 -> 13	-0.00281		max(1)	= 1 ->	6	0.56957	
	min(2)	= 1	1 -> 14	-0.00215		max(2)	= 1 ->	10	0.01283	
	min(3)	= 1	1 -> 12	0.00259		max(3)	= 1 ->	11	-0.01746	
	min(4)	= 1	1 -> 9	0.00699		$\max(4)$	= 1 ->	7	-0.41848	
	min(5)	= 1	1 -> 8	0.03399		max(5)	= 1 ->	5	0.66948	
	#CIs=9	#CIs>0=7	#CIs<0=2			min(1)	= 1 ->	7	-0.41848	
						min(2)	= 1 ->	11	-0.01746	
3	Singlet-SG	38.1164	32.5	53 0.0175	0.000	min(3)	= 1 ->	10	0.01283	
	max(1)	= 1	1 -> 4	0.65507		min(4)	= 1 ->	6	0.56957	
	max(2)	= 1	1 -> 8	0.04347		min(5)	= 1 ->	3	-0.18026	
	max(3)	= 1	1 -> 13	0.00254		#CIs=4	#CIs>0=2 #CIs	<0=2		
	max(4)	= 1	1 -> 14	-0.00334						
	max(5)	= 1	1 -> 12	-0.00595	6	Singlet-?Sym	50.2689	24.66	0.7008	0.000

		4 5 7	0 50057				0 00001	
	max(1)=	1 -> 7	0.56957		$\max(3) =$	1 -> 7	0.02081	
	max(2)=	1 -> 6	0.41848		$\max(4) =$	1 -> 6	0.00603	
	max(3)=	1 -> 11	-0.01283		$\max(5) =$	1 -> 9	0.70507	
	max(4)=	1 -> 10	-0.01746		$\min(1) =$	1 -> 6	0.00603	
	max(5)=	1 -> 6	0.56957		$\min(2)=$	1 -> 7	0.02081	
	$\min(1)=$	1 -> 10	-0.01746		$\min(3) =$	1 -> 11	0.19673	
	$\min(2)=$	1 -> 11	-0.01283		$\min(4) =$	1 -> 10	0.67884	
	$\min(3)=$	1 -> 6	0.41848		$\min(5) =$	1 -> 12	-0.03697	
	$\min(4)=$	1 -> 7	0.56957		#CIs=4 #CI	s>0=4 #CIs<0=0		
	$\min(5)=$	1 -> 7	-0.41848					
	#CIs=4 #	#CIs>0=2 #CIs<0=2		10	Singlet-?Sym 69	.9154 17.	73 0.0538	0.000
					$\max(1) =$	1 -> 11	0.67884	
7	Singlet-SG 55	5.4610 22.3	36 0.0011	0.000	$\max(2)=$	1 -> 6	0.02081	
	max(1)=	1 -> 8	0.70363		$\max(3) =$	1 -> 7	-0.00603	
	max(2)=	1 -> 13	0.01144		$\max(4)=$	1 -> 10	-0.19673	
	max(3)=	1 -> 2	0.01060		$\max(5)=$	1 -> 10	0.67884	
	$\max(4)=$	1 -> 9	0.00999		$\min(1) =$	1 -> 10	-0.19673	
	max(5)=	1 -> 14	0.00250		min(2)=	1 -> 7	-0.00603	
	min(1)=	1 -> 4	-0.05715		$\min(3) =$	1 -> 6	0.02081	
	min(2)=	1 -> 5	-0.03340		$\min(4) =$	1 -> 11	0.67884	
	$\min(3)=$	1 -> 3	-0.01315		$\min(5) =$	1 -> 6	0.00603	
	$\min(4)=$	1 -> 12	0.00112		#CIs=4 #CI	s>0=2 #CIs<0=2		
	min(5)=	1 -> 14	0.00250					
	#CIs=9 #	#CIs>0=6 #CIs<0=3		11	Singlet-SG 84.3	348 14.70	0.0001	0.000
					$\max(1) =$	1 -> 12	0.70522	
8	Singlet-SG 65	5.8644 18.8	32 0.1411	0.000	$\max(2) =$	1 -> 9	0.03721	
	max(1)=	1 -> 9	0.70507		max(3)=	1 -> 14	0.00281	
	max(2)=	1 -> 13	0.02621		$\max(4) =$	1 -> 4	0.00166	
	max(3)=	1 -> 4	0.00118		$\max(5) =$	1 -> 3	0.00035	
	$\max(4)=$	1 -> 2	-0.00012		$\min(1) =$	1 -> 13	-0.02834	
	max(5)=	1 -> 3	-0.00226		$\min(2) =$	1 -> 5	-0.02154	
	min(1)=	1 -> 12	-0.03697		$\min(3) =$	1 -> 8	-0.00207	
	min(2)=	1 -> 5	-0.02612		$\min(4) =$	1 -> 2	-0.00057	
	min(3)=	1 -> 8	-0.01155		$\min(5) =$	1 -> 3	0.00035	
	$\min(4)=$	1 -> 14	-0.00266		#CIs=9 #CI	s>0=5 #CIs<0=4		
	min(5)=	1 -> 3	-0.00226					
	#CIs=9 #	#CIs>0=3 #CIs<0=6		12	Singlet-SG 101.3	328 12.24	0.0110	0.000
					max(1)=	1 -> 13	0.70589	
9	Singlet-?Sym	69.9154 17	7.73 0.0538	0.000	max(2)=	1 -> 12	0.02994	
	max(1)=	1 -> 10	0.67884		max(3)=	1 -> 5	0.01038	
	max(2)=	1 -> 11	0.19673		max(4)=	1 -> 2	0.00152	

max(1)=	1 ->	14	0.70707		#CIs=9 #CIs	>0=6 #CIs<0=3	
Singlet-SG 199.0088		6.23	0.0000	0.000	min(5)=	1 -> 3	0.00033
					min(4)=	1 -> 13	0.00018
#CIs=8 #CIs>0=	=6 #CIs	<0=2	min(3)=	1 -> 5	-0.00129		
min(5)=	1 ->	2	0.00152		min(2)=	1 -> 8	-0.00233
min(4)=	1 ->	4	0.00111		min(1)=	1 -> 12	-0.00299
min(3)=	1 ->	3	0.00111		max(5)=	1 -> 3	0.00033
min(2)=	1 ->	8	-0.01060		max(4)=	1 -> 9	0.00241
min(1)=	1 ->	9	-0.02446		max(3)=	1 -> 4	0.00416
$\max(5)=$	1 ->	3	0.00111		$\max(2)=$	1 -> 2	0.00439

13

$4 N_2$

4.1 6-311G(d,p)

4.1.1 Plots

Figure S3: For N₂ molecule and 6-311G(d,p) basis set, plots of variation of α_{ZZ} with respect to the number of orbitals (FIO decomposition presented in this work, in Figure ZZZ) or states (SOS approach, in Figure S3a). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. Recomputed values of α_{ZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

4.2 6-311++G(d,p)

4.2.1 Plots

Figure S4: For N₂ molecule and 6-311++G(d,p) basis set, plots of variation of α_{ZZ} with respect to the number of orbitals (FIO decomposition presented in this work, in Figure ZZZ) or states (SOS approach, in Figure S4a). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. Recomputed values of α_{ZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

5 HF

5.1 6-311G(d,p)

5.1.1 Plots

Figure S5: For HF molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (bottom) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S5a and S5c) or states (SOS approaches, in Plots S5b and S5d). For α FIOs, three approaches were considered: CPKS (CAM-B3LYP), CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. All elements of the β tensor were recomputed with an error less than 0.02 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

5.1.2 Main contributions from different excited states at TDDFT (CAM-B3LYP) approach

#_exc.st	symm	Exc.E OscStrength	f<	<s**2>_</s**2>	$\min(4) =$	2 -> 10	-0.00114	
					min(5)=	3 -> 23	-0.00071	
1	Singlet-?Sym	9.7484 127.18	0.0196	0.000	#CIs=24	#CIs>0=16 #CIs<	0=8	
	max(1)=	5 -> 6	0.70013					
	max(2)=	5 -> 7	0.05593	4	Singlet-?Sym	19.1128	64.87 0.0380	0.000
	max(3)=	5 -> 11	0.00895		max(1)=	4 -> 7	0.65596	
	max(4)=	4 -> 17	0.00353		max(2)=	5 -> 7	0.25691	
	max(5)=	5 -> 16	0.00353		max(3)=	5 -> 17	0.00522	
	min(1)=	4 -> 6	-0.08111		$\max(4) =$	2 -> 12	0.00518	
	min(2)=	5 -> 10	-0.01210		max(5)=	3 -> 18	0.00240	
	min(3)=	4 -> 7	-0.00648		min(1)=	4 -> 6	-0.05264	
	min(4)=	2 -> 9	-0.00395		min(2)=	5 -> 6	-0.02062	
	min(5)=	2 -> 19	-0.00188		min(3)=	4 -> 10	-0.01632	
	#CIs=36	#CIs>0=19 #CIs<0=17			min(4)=	4 -> 14	-0.01092	
					min(5)=	3 -> 12	-0.00821	
2	Singlet-?Sym	9.7484 127.18	0.0196	0.000	#CIs=37	#CIs>0=17 #CIs<	0=20	
	max(1)=	4 -> 6	0.70013					
	max(2)=	5 -> 6	0.08111	5	Singlet-?Sym	19.1128	64.87 0.0380	0.000
	max(3)=	4 -> 7	0.05593		max(1)=	5 -> 7	0.65596	
	max(4)=	4 -> 11	0.00895		max(2)=	4 -> 6	0.02062	
	max(5)=	5 -> 7	0.00648		max(3)=	4 -> 10	0.00639	
	min(1)=	4 -> 10	-0.01210		$\max(4) =$	4 -> 17	0.00522	
	min(2)=	2 -> 8	-0.00395		max(5)=	5 -> 16	0.00522	
	min(3)=	4 -> 16	-0.00353		min(1)=	4 -> 7	-0.25691	
	min(4)=	2 -> 18	-0.00188		min(2)=	5 -> 6	-0.05264	
	min(5)=	4 -> 20	-0.00186		min(3)=	5 -> 10	-0.01632	
	#CIs=36	#CIs>0=17 #CIs<0=19			$\min(4) =$	5 -> 14	-0.01092	
					min(5)=	3 -> 13	-0.00821	
3	Singlet-SG 14	4.2483 87.02	0.1866	0.000	#CIs=37	#CIs>0=19 #CIs<	0=18	
	max(1)=	3 -> 6	0.70537					
	max(2)=	4 -> 8	0.03354	6	Singlet-SG 24	4.8444 4	9.90 0.3252	0.000
	max(3)=	5 -> 9	0.03354		max(1)=	3 -> 7	0.69678	
	max(4)=	3 -> 11	0.01300		max(2)=	4 -> 8	0.07887	
	max(5)=	2 -> 11	0.01211		max(3)=	5 -> 9	0.07887	
	min(1)=	3 -> 7	-0.02865		max(4)=	4 -> 12	0.03505	
	min(2)=	2 -> 14	-0.00293		max(5)=	5 -> 13	0.03505	
	min(3)=	2 -> 20	-0.00183		min(1)=	2 -> 14	-0.00837	

	min(2)=	4 -> 18	-0.00807		$\min(4) =$	5 -> 12	-0.00011	
	$\min(3) =$	5 -> 19	-0.00807		$\min(5) =$	5 -> 9	-0.00001	
	$\min(4) =$	3 -> 20	-0.00445		#CIs=12	#CIs>0=7 #CIs<0	=5	
	$\min(5) =$	3 -> 15	-0.00239					
	#CIs=25	#CIs>0=16 #CIs<0=9		10	Singlet-?Sym	33.5752	36.93 0.0000	0.000
					$\max(1) =$	4 -> 8	0.49999	
7	Singlet-SG 3	1.7579 39.04	0.0200	0.000	max(2)=	4 -> 22	0.00348	
	$\max(1)=$	2 -> 6	0.69080		$\max(3) =$	5 -> 19	0.00012	
	max(2)=	2 -> 7	0.02635		$\max(4) =$	5 -> 13	0.00011	
	max(3)=	3 -> 11	0.02229		max(5)=	4 -> 9	-0.00001	
	$\max(4)=$	4 -> 12	0.01501		$\min(1) =$	5 -> 9	-0.49999	
	max(5)=	5 -> 13	0.01501		$\min(2)=$	5 -> 21	-0.00348	
	$\min(1)=$	4 -> 8	-0.10235		$\min(3) =$	2 -> 16	-0.00256	
	$\min(2)=$	5 -> 9	-0.10235		$\min(4) =$	3 -> 16	-0.00126	
	$\min(3) =$	3 -> 10	-0.01609		$\min(5) =$	4 -> 18	-0.00012	
	$\min(4) =$	4 -> 18	-0.00780		#CIs=12	#CIs>0=4 #CIs<0	=8	
	min(5)=	5 -> 19	-0.00780					
	#CIs=25	#CIs>0=13 #CIs<0=12	1	11	Singlet-?Sym	34.6083	35.82 0.0004	0.000
					$\max(1)=$	5 -> 10	0.70260	
8	Singlet-?Sym	33.2149 37.	33 0.0000	0.000	$\max(2)=$	5 -> 7	0.01815	
	max(1)=	5 -> 8	0.50001		max(3)=	5 -> 6	0.01069	
	max(2)=	5 -> 22	0.00357		$\max(4) =$	5 -> 14	0.00742	
	max(3)=	4 -> 19	0.00026		$\max(5) =$	4 -> 17	0.00561	
	$\max(4)=$	5 -> 12	0.00022		$\min(1) =$	3 -> 9	-0.05751	
	max(5)=	4 -> 13	-0.00022		$\min(2) =$	4 -> 10	-0.04755	
	$\min(1) =$	4 -> 9	-0.50001		$\min(3) =$	3 -> 13	-0.01150	
	$\min(2)=$	4 -> 21	-0.00357		$\min(4) =$	2 -> 9	-0.00870	
	$\min(3) =$	5 -> 18	-0.00026		$\min(5) =$	5 -> 15	-0.00464	
	$\min(4) =$	4 -> 13	-0.00022		#CIs=36	#CIs>0=18 #CIs<	0=18	
	$\min(5) =$	5 -> 12	0.00022					
	#CIs=8 ;	#CIs>0=4 #CIs<0=4		12	Singlet-?Sym	34.6083	35.82 0.0004	0.000
					$\max(1) =$	4 -> 10	0.70260	
9	Singlet-?Sym	33.5752 36.	93 0.0000	0.000	$\max(2) =$	5 -> 10	0.04755	
	max(1)=	4 -> 9	0.49999		max(3)=	4 -> 7	0.01815	
	max(2)=	5 -> 8	0.49999		$\max(4) =$	4 -> 6	0.01069	
	max(3)=	4 -> 21	0.00348		$\max(5) =$	4 -> 14	0.00742	
	$\max(4)=$	5 -> 22	0.00348		$\min(1) =$	3 -> 8	-0.05751	
	max(5)=	2 -> 17	0.00256		min(2)=	3 -> 12	-0.01150	
	min(1)=	4 -> 19	-0.00012		min(3)=	2 -> 8	-0.00870	
	min(2)=	5 -> 18	-0.00012		$\min(4) =$	4 -> 16	-0.00561	
	min(3)=	4 -> 13	-0.00011		$\min(5)=$	4 -> 15	-0.00464	

	#CIs=36 #	CIs>0=21 #CIs<0=15		16	Singlet-SG 4	1.0629 3	30.19 0.0690	0.000
					max(1)=	2 -> 7	0.67483	
13	Singlet-SG 37.	0885 33.43	0.1478	0.000	max(2)=	3 -> 11	0.06680	
	max(1)=	3 -> 10	0.52121		max(3)=	2 -> 11	0.00524	
	max(2)=	2 -> 7	0.10466		max(4)=	3 -> 7	0.00470	
	max(3)=	3 -> 7	0.06640		max(5)=	4 -> 22	0.00198	
	max(4)=	3 -> 6	0.02774		min(1)=	3 -> 10	-0.18857	
	max(5)=	2 -> 11	0.02669		min(2)=	2 -> 6	-0.04316	
	min(1)=	4 -> 8	-0.31905		min(3)=	4 -> 8	-0.03670	
	min(2)=	5 -> 9	-0.31905		$\min(4)=$	5 -> 9	-0.03670	
	min(3)=	2 -> 6	-0.08795		min(5)=	4 -> 18	-0.00650	
	$\min(4)=$	2 -> 14	-0.00782		#CIs=26	#CIs>0=7 #CIs<0	0=19	
	min(5)=	3 -> 15	-0.00628					
	#CIs=26 #	CIs>0=15 #CIs<0=11		17	Singlet-?Sym	43.6287	28.42 0.2384	0.000
					max(1)=	5 -> 11	0.70330	
14	Singlet-?Sym 3	7.4368 33.1	.2 0.0010	0.000	max(2)=	4 -> 11	0.04835	
	max(1)=	3 -> 9	0.70452		max(3)=	3 -> 13	0.04384	
	max(2)=	5 -> 10	0.05715		max(4)=	3 -> 9	0.00823	
	max(3)=	4 -> 17	0.00543		max(5)=	3 -> 19	0.00359	
	max(4)=	5 -> 16	0.00543		min(1)=	2 -> 9	-0.03136	
	max(5)=	3 -> 19	0.00455		min(2)=	5 -> 6	-0.00890	
	min(1)=	3 -> 13	-0.01455		min(3)=	2 -> 13	-0.00477	
	min(2)=	5 -> 11	-0.00788		$\min(4) =$	5 -> 20	-0.00454	
	min(3)=	2 -> 9	-0.00740		min(5)=	2 -> 8	-0.00216	
	$\min(4)=$	2 -> 13	-0.00370		#CIs=36	#CIs>0=17 #CIs<	<0=19	
	min(5)=	5 -> 20	-0.00153					
	#CIs=28 #	CIs>0=17 #CIs<0=11		18	Singlet-?Sym	43.6287	28.42 0.2384	0.000
					max(1)=	4 -> 11	0.70330	
15	Singlet-?Sym 3	7.4368 33.1	.2 0.0010	0.000	max(2)=	3 -> 12	0.04384	
	max(1)=	3 -> 8	0.70452		max(3)=	3 -> 8	0.00823	
	max(2)=	4 -> 10	0.05715		$\max(4) =$	3 -> 18	0.00359	
	max(3)=	5 -> 17	0.00543		max(5)=	5 -> 17	0.00326	
	max(4)=	3 -> 18	0.00455		min(1)=	5 -> 11	-0.04835	
	max(5)=	3 -> 22	0.00446		min(2)=	2 -> 8	-0.03136	
	min(1)=	3 -> 12	-0.01455		min(3)=	4 -> 6	-0.00890	
	min(2)=	4 -> 11	-0.00788		$\min(4) =$	2 -> 12	-0.00477	
	min(3)=	2 -> 8	-0.00740		min(5)=	4 -> 20	-0.00454	
	min(4)=	4 -> 16	-0.00543		#CIs=36	#CIs>0=17 #CIs<	<0=19	
	min(5)=	2 -> 12	-0.00370					
	#CIs=28 #	CIs>0=14 #CIs<0=14		19	Singlet-?Sym	45.5255	27.23 0.0000	0.000
					max(1)=	4 -> 13	0.49999	
	$\max(2)=$	5 -> 12	0.4999	9	min(2)=	5 -> 18	-0.00391	
----	--------------	-----------------	------------	-------	--------------	------------------	--------------	-------
	max(3)=	3 -> 17	0.0008	6	min(3)=	5 -> 22	-0.00026	
	$\max(4)=$	2 -> 17	0.0008	5	min(4)=	= 5 -> 8	-0.00022	
	max(5)=	5 -> 13	0.0007	5	min(5)=	4 -> 9	0.00022	
	min(1)=	4 -> 19	-0.0031	.8	#CIs=8	#CIs>0=4 #CIs<0:	=4	
	min(2)=	5 -> 18	-0.0031	.8				
	min(3)=	4 -> 12	-0.0007	5 22	Singlet-SG 4	6.1756	26.85 0.1086	0.000
	$\min(4)=$	4 -> 21	-0.0000	1	max(1)=		0.35181	
	min(5)=	5 -> 22	-0.0000	1	max(2)=	= 2 -> 11	0.12650	
	#CIs=12	#CIs>0=7 #CIs<0)=5		max(3)=	- 3 -> 7	0.08663	
					max(4)=	3 -> 14	0.04823	
20	Singlet-?Sym	45.5255	27.23 0.00	0.000	max(5)=	= 3 -> 6	0.03473	
	$\max(1)=$	4 -> 12	0.4999	9	min(1)=	3 -> 10	-0.31846	
	$\max(2)=$	5 -> 19	0.0031	.8	min(2)=	- 4 -> 8	-0.27020	
	$\max(3)=$	4 -> 13	0.0007	5	min(3)=	= 5 -> 9	-0.27020	
	$\max(4)=$	5 -> 12	0.0007	5	min(4)=	= 4 -> 12	-0.19263	
	$\max(5)=$	4 -> 8	0.0001	.0	min(5)=	= 5 -> 13	-0.19263	
	min(1)=	5 -> 13	-0.4999	9	#CIs=26	6 #CIs>0=13 #CIs	<0=13	
	$\min(2)=$	4 -> 18	-0.0031	.8				
	$\min(3)=$	3 -> 16	-0.0008	6 23	Singlet-SG 4	7.4801	26.11 0.4714	0.000
	$\min(4)=$	2 -> 16	-0.0008	5	max(1)=	3 -> 11	0.41253	
	$\min(5)=$	5 -> 9	-0.0001	.0	max(2)=	4 -> 12	0.39957	
	#CIs=12	#CIs>0=6 #CIs<0)=6		max(3)=	5 -> 13	0.39957	
					max(4)=	4 -> 18	0.01712	
21	Singlet-?Sym	45.5781	27.20 0.00	0.000	max(5)=	5 -> 19	0.01712	
	$\max(1) =$	5 -> 12	0.4999	9	min(1)=	3 -> 14	-0.05195	
	$\max(2)=$	4 -> 19	0.0039	1	min(2)=	2 -> 10	-0.04999	
	$\max(3)=$	4 -> 21	0.0002	.6	min(3)=	= 2 -> 7	-0.04505	
	$\max(4)=$	4 -> 9	0.0002	2	min(4)=	- 3 -> 7	-0.03926	
	$\max(5)=$	5 -> 8	-0.0002	2	min(5)=	2 -> 6	-0.02861	
	$\min(1) =$	4 -> 13	-0.4999	9	#CIs=25	6 #CIs>0=15 #CIs	<0=10	

5.1.3 Main contributions from different excited states at CIS approach

#_exc.st	symm	Exc.E OscSt	rength .	f <s*< th=""><th>*2>_</th><th>$\max(4)=$</th><th>4 -> 10</th><th>0.02682</th></s*<>	*2>_	$\max(4)=$	4 -> 10	0.02682
						$\max(5)=$	5 -> 15	0.00971
1	Singlet-?Sym	12.0824	102.62	0.0238	0.000	$\min(1) =$	4 -> 6	-0.42020
	max(1)=	5 ->	6	0.53959		min(2)=	4 -> 7	-0.10263
	max(2)=	5 ->	7	0.13179		min(3)=	5 -> 10	-0.03444
	max(3)=	5 -> 1	11	0.03502		$\min(4) =$	4 -> 11	-0.02727

	min(5)=	5 -> 14	-0.01179					
	#states=34	#states>0=16	#states<0=18	5	Singlet-?Sym	21.6414	57.29 0.0565	0.000
					$\max(1) =$	4 -> 7	0.56812	
2	Singlet-?Sym 12	2.0824 1	02.62 0.0238	0.000	max(2)=	5 -> 7	0.37572	
	max(1)=	4 -> 6	0.53959		max(3)=	4 -> 15	0.01263	
	max(2)=	5 -> 6	0.42020		max(4)=	5 -> 15	0.00835	
	max(3)=	4 -> 7	0.13179		max(5)=	2 -> 12	0.00763	
	max(4)=	5 -> 7	0.10263		min(1)=	4 -> 6	-0.14313	
	max(5)=	4 -> 11	0.03502		min(2)=	5 -> 6	-0.09466	
	min(1)=	4 -> 10	-0.03444		min(3)=	4 -> 10	-0.05179	
	min(2)=	5 -> 10	-0.02682		$\min(4)=$	4 -> 14	-0.03867	
	min(3)=	4 -> 14	-0.01179		min(5)=	5 -> 10	-0.03425	
	$\min(4)=$	5 -> 14	-0.00918		#states	=36 #states>0=1	7 #states<0=19	
	$\min(5)=$	4 -> 23	-0.00311					
	#states=34	#states>0=21	#states<0=13	6	Singlet-SG 2	7.0282	45.87 0.3872	0.000
					$\max(1) =$	3 -> 7	0.68277	
3	Singlet-SG 16.4	1027 75	.59 0.2385	0.000	max(2)=	4 -> 8	0.10281	
	max(1)=	3 -> 6	0.69825		max(3)=	5 -> 9	0.10281	
	max(2)=	3 -> 7	0.07072		max(4)=	4 -> 12	0.03791	
	max(3)=	4 -> 8	0.05015		max(5)=	5 -> 13	0.03791	
	$\max(4) =$	5 -> 9	0.05015		min(1)=	3 -> 6	-0.08600	
	max(5)=	3 -> 11	0.04267		min(2)=	3 -> 10	-0.02836	
	min(1)=	3 -> 10	-0.00654		min(3)=	2 -> 7	-0.02226	
	min(2)=	2 -> 6	-0.00604		$\min(4) =$	3 -> 14	-0.01898	
	min(3)=	2 -> 14	-0.00566		min(5)=	4 -> 19	-0.00846	
	$\min(4) =$	3 -> 23	-0.00179		#states	=24	4 #states<0=10	
	min(5)=	2 -> 23	-0.00155					
	#states=24	l #states>0=19	#states<0=5	7	Singlet-?Sym	34.1898	36.26 0.0000	0.000
					$\max(1) =$	5 -> 8	0.49975	
4	Singlet-?Sym 21	.6414	57.29 0.0565	0.000	max(2)=	5 -> 22	0.01482	
	max(1)=	5 -> 7	0.56812		max(3)=	5 -> 12	0.00500	
	max(2)=	4 -> 6	0.09466		$\max(4) =$	4 -> 18	0.00063	
	max(3)=	4 -> 10	0.03425		max(5)=	5 -> 19	-0.00063	
	$\max(4)=$	4 -> 14	0.02557		min(1)=	4 -> 9	-0.49975	
	max(5)=	5 -> 15	0.01263		min(2)=	4 -> 21	-0.01482	
	min(1)=	4 -> 7	-0.37572		$\min(3) =$	4 -> 13	-0.00500	
	min(2)=	5 -> 6	-0.14313		min(4)=	5 -> 19	-0.00063	
	min(3)=	5 -> 10	-0.05179		min(5)=	4 -> 18	0.00063	
	min(4)=	5 -> 14	-0.03867		#states	=8 #states>0=4	#states<0=4	
	min(5)=	3 -> 13	-0.00879					
	#states=36	8 #states>0=17	#states<0=19	8	Singlet-?Sym	34.5435	35.89 0.0000	0.000

	max(1)=	5 -> 9	0.49980		$\max(3)=$	4 -> 11	0.03841	
	max(2)=	5 -> 21	0.01358		$\max(4) =$	4 -> 6	0.02249	
	max(3)=	5 -> 13	0.00344		max(5)=	3 -> 9	0.01699	
	$\max(4) =$	2 -> 17	0.00333		$\min(1) =$	5 -> 10	-0.31508	
	max(5)=	3 -> 17	0.00067		$\min(2) =$	3 -> 8	-0.03369	
	min(1)=	4 -> 8	-0.49980		$\min(3) =$	5 -> 7	-0.03223	
	min(2)=	4 -> 22	-0.01358		$\min(4) =$	5 -> 11	-0.01936	
	min(3)=	4 -> 12	-0.00344		$\min(5) =$	3 -> 12	-0.01257	
	min(4)=	5 -> 18	-0.00066		#states=35	#states>0=18	#states<0=17	
	min(5)=	4 -> 19	0.00066					
	#states	=10 #states>0=6	#states<0=4	12	Singlet-SG 38.04	466 32	2.59 0.0230	0.000
					$\max(1)=$	2 -> 6	0.53808	
9	Singlet-?Sym	34.5435	35.89 0.0000	0.000	$\max(2)=$	3 -> 10	0.25213	
	$\max(1)=$	4 -> 9	0.49980		$\max(3) =$	2 -> 7	0.14849	
	$\max(2)=$	5 -> 8	0.49980		$\max(4) =$	3 -> 7	0.08412	
	max(3)=	4 -> 21	0.01358		$\max(5)=$	2 -> 11	0.03692	
	$\max(4)=$	5 -> 22	0.01358		$\min(1) =$	4 -> 8	-0.23618	
	$\max(5)=$	4 -> 13	0.00344		$\min(2)=$	5 -> 9	-0.23618	
	min(1)=	2 -> 16	-0.00333		$\min(3) =$	2 -> 14	-0.01129	
	$\min(2)=$	3 -> 16	-0.00067		$\min(4) =$	2 -> 10	-0.00979	
	min(3)=	4 -> 18	-0.00066		$\min(5)=$	4 -> 19	-0.00574	
	$\min(4)=$	5 -> 19	-0.00066		#states=25	<pre>#states>0=13</pre>	#states<0=12	
	$\min(5)=$	4 -> 13	0.00344					
	#states	=10 #states>0=6	#states<0=4	13	Singlet-?Sym 38	.5159	32.19 0.0001	0.000
					$\max(1)=$	3 -> 8	0.69780	
10	Singlet-?Sym	36.1022	34.34 0.0014	0.000	max(2)=	3 -> 9	0.10225	
	$\max(1)=$	5 -> 10	0.62498		max(3)=	4 -> 10	0.03564	
	$\max(2)=$	4 -> 10	0.31508		$\max(4) =$	4 -> 11	0.02616	
	max(3)=	5 -> 7	0.06394		$\max(5) =$	3 -> 22	0.01715	
	$\max(4)=$	5 -> 11	0.03841		$\min(1) =$	2 -> 12	-0.01288	
	max(5)=	4 -> 7	0.03223		$\min(2) =$	2 -> 19	-0.00511	
	min(1)=	3 -> 9	-0.03369		$\min(3) =$	4 -> 6	-0.00402	
	min(2)=	3 -> 8	-0.01699		$\min(4) =$	2 -> 13	-0.00189	
	min(3)=	3 -> 13	-0.01257		$\min(5) =$	4 -> 20	-0.00109	
	$\min(4) =$	5 -> 15	-0.01026		#states=33	<pre>#states>0=24</pre>	#states<0=9	
	min(5)=	3 -> 12	-0.00634					
	#states	=35 #states>0=21	#states<0=14	14	Singlet-?Sym 38	.5159	32.19 0.0001	0.000
					$\max(1)=$	3 -> 9	0.69780	
11	Singlet-?Sym	36.1022	34.34 0.0014	0.000	max(2)=	5 -> 10	0.03564	
	$\max(1)=$	4 -> 10	0.62498		max(3)=	5 -> 11	0.02616	
	max(2)=	4 -> 7	0.06394		$\max(4) =$	3 -> 21	0.01715	

	max(5)=	2 -> 9	0.00592		min(2)	= 4 -> 10	-0.04034	
	min(1)=	3 -> 8	-0.10225		min(3)	= 3 -> 8	-0.02493	
	min(2)=	2 -> 13	-0.01288		$\min(4)$	= 4 -> 7	-0.01206	
	min(3)=	4 -> 10	-0.00522		min(5)	= 4 -> 20	-0.01188	
	min(4)=	2 -> 18	-0.00511		#state:	s=31 #states>0=1	4 #states<0=17	
	min(5)=	5 -> 17	-0.00421					
	#states=33 #s	tates>0=16 #	states<0=17	18	Singlet-SG	47.2064	26.26 0.0982	0.000
					max(1):	= 2 -> 7	0.62911	
15	Singlet-SG 38.8694	31.	90 0.2130	0.000	max(2):	= 4 -> 12	0.08063	
	max(1)=	3 -> 10	0.49289		max(3):	= 5 -> 13	0.08063	
	max(2)=	3 -> 7	0.08178		max(4):	= 3 -> 7	0.03327	
	max(3)=	2 -> 10	0.04860		max(5):	= 2 -> 11	0.01882	
	max(4)=	3 -> 6	0.02090		min(1)	= 2 -> 6	-0.19425	
	max(5)=	3 -> 14	0.02041		min(2)	= 3 -> 10	-0.17280	
	min(1)=	2 -> 6	-0.40590		min(3)	= 4 -> 8	-0.09351	
	min(2)=	4 -> 8	-0.19908		$\min(4)$	= 5 -> 9	-0.09351	
	min(3)=	5 -> 9	-0.19908		min(5)	= 2 -> 10	-0.04884	
	min(4)=	2 -> 7	-0.05090		#state:	s=25 #states>0=1	3 #states<0=12	
	min(5)=	3 -> 15	-0.01043					
	#states=23 #s	tates>0=14 #	states<0=9	19	Singlet-?Sym	48.4145	25.61 0.0000	0.000
					max(1):	= 5 -> 13	0.49976	
16	Singlet-?Sym 45.11	00 2	7.48 0.2896	0.000	max(2):	= 4 -> 19	0.01496	
	max(1)=	5 -> 11	0.70043		max(3):	= 4 -> 8	0.00346	
	max(2)=	2 -> 9	0.02993		max(4):	= 4 -> 22	0.00015	
	max(3)=	3 -> 13	0.02980		max(5):	= 2 -> 17	-0.00011	
	$\max(4)=$	5 -> 15	0.02857		min(1)	= 4 -> 12	-0.49976	
	max(5)=	4 -> 16	0.00348		min(2):	= 5 -> 18	-0.01496	
	min(1)=	5 -> 6	-0.04560		min(3)	= 5 -> 9	-0.00346	
	min(2)=	4 -> 11	-0.04529		$\min(4)$:	= 3 -> 17	-0.00072	
	min(3)=	5 -> 10	-0.04034		min(5)	= 5 -> 21	-0.00015	
	min(4)=	3 -> 9	-0.02493		#state:	s=12 #states>0=4	#states<0=8	
	min(5)=	5 -> 7	-0.01206					
	#states=31 #s	tates>0=13 #	states<0=18	20	Singlet-?Sym	48.4145	25.61 0.0000	0.000
					max(1):	= 4 -> 13	0.49976	
17	Singlet-?Sym 45.11	00 2	7.48 0.2896	0.000	max(2):	= 5 -> 12	0.49976	
	max(1)=	4 -> 11	0.70043		max(3):	= 3 -> 16	0.00072	
	max(2)=	5 -> 11	0.04529		max(4):	= 5 -> 13	0.00012	
	max(3)=	2 -> 8	0.02993		max(5):	= 2 -> 16	0.00011	
	max(4)=	3 -> 12	0.02980		min(1)	= 4 -> 18	-0.01496	
	max(5)=	4 -> 15	0.02857		min(2)	= 5 -> 19	-0.01496	
	min(1)=	4 -> 6	-0.04560		min(3)	= 4 -> 9	-0.00346	

	min(4)=	5 -> 8	-0.00346		max(1)=	2 -> 11	C	0.01561	
	min(5)=	4 -> 21	-0.00015		max(5)=	3 -> 7	C	0.01530	
	#sta	tes=12 #st	ates>0=5 #states	s<0=7		min(1)=	4 -> 12	-C	.12835	
						min(2)=	5 -> 13	-C	.12835	
21	Singlet-?Sy	m 48.512	2 25.56	0.0000	0.000	min(3)=	3 -> 10	-C	.08210	
	max(1)=	5 -> 12	0.49972		min(1)=	4 -> 8	-C	.05871	
	max(2)=	4 -> 18	0.01595		min(5)=	5 -> 9	-C	.05871	
	max(3)=	4 -> 9	0.00501		#sta	tes=26 #sta	ates>0=13	#states<	:0=13	
	max(4)=	4 -> 21	0.00045							
	max(5)=	5 -> 22	-0.00045	23	Singlet-?Sy	n 50.5029	9	24.55	0.6813	0.000
	min(1)=	4 -> 13	-0.49972		max(1)=	4 -> 12	C	.42459	
	min(2)=	5 -> 19	-0.01595		max(2)=	5 -> 13	C	.42459	
	min(3)=	5 -> 8	-0.00501		max(3)=	3 -> 11	C	.21226	
	min(4)=	5 -> 22	-0.00045		max(1)=	4 -> 8	C	.15236	
	min(5)=	4 -> 21	0.00045		max(5)=	5 -> 9	C	.15236	
	#sta	tes=8 #sta	tes>0=4 #states•	<0=4		min(1)=	3 -> 7	- C	.09358	
						min(2)=	3 -> 14	- C	.08157	
22	Singlet-SG	48.8362	25.39	0.0809	0.000	min(3)=	2 -> 11	- C	0.06761	
	max(1)=	3 -> 11	0.66958		min(1)=	2 -> 10	-C	0.04123	
	max(2)=	2 -> 10	0.03031		min(5)=	3 -> 6	-0	.03072	
	max(3)=	3 -> 15	0.02673		#sta	tes=26 #sta	ates>0=15	#states<	:0=11	

5.2 6-311++G(d,p)

5.2.1 Plots

Figure S6: For HF molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (bottom) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S6a and S6c) or states (SOS approaches, in Plots S6b and S6d). For α FIOs, three approaches were considered: CPKS (CAM-B3LYP), CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. All elements of the β tensor were recomputed with an error less than 0.01 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

5.2.2 Main contributions from different excited states at TDDFT (CAM-B3LYP) approach

#_exc.st	symm	Exc.E OscStrength	f	<s4**2>_</s4**2>	Singlet-?Sym	13.2757	93.39 0.0161	0.000
					max(1)=	5 -> 7	0.59902	
1	Singlet-?Sym	9.5784 129.44	1 0.0302	0.000	max(2)=	4 -> 6	0.07589	
	max(1)=	5 -> 6	0.56118		$\max(3) =$	4 -> 10	0.04715	
	max(2)=	4 -> 6	0.39106		$\max(4) =$	4 -> 12	0.03511	
	max(3)=	5 -> 7	0.13820		$\max(5) =$	4 -> 15	0.00482	
	$\max(4)=$	4 -> 7	0.09630		$\min(1) =$	4 -> 7	-0.31328	
	max(5)=	5 -> 11	0.03273		$\min(2) =$	5 -> 6	-0.14512	
	min(1)=	5 -> 12	-0.02299		$\min(3) =$	5 -> 10	-0.09015	
	min(2)=	4 -> 12	-0.01602		$\min(4) =$	5 -> 12	-0.06714	
	min(3)=	5 -> 15	-0.00525		$\min(5) =$	5 -> 15	-0.00921	
	min(4)=	4 -> 15	-0.00366		#CIs=46	#CIs>0=22 #CIs<	<0=24	
	min(5)=	2 -> 13	-0.00248					
	#CIs=46	#CIs>0=23 #CIs<0=23		5	Singlet-SG 13	3.5686 9	91.38 0.1527	0.000
					max(1)=	3 -> 6	0.68540	
2	Singlet-?Sym	9.5784 129.44	1 0.0302	0.000	max(2)=	4 -> 8	0.09770	
	max(1)=	4 -> 6	0.56118		max(3)=	5 -> 9	0.09770	
	max(2)=	4 -> 7	0.13820		$\max(4) =$	3 -> 7	0.08276	
	max(3)=	4 -> 11	0.03273		max(5)=	3 -> 10	0.04809	
	$\max(4) =$	4 -> 10	0.03139		$\min(1) =$	2 -> 12	-0.00588	
	max(5)=	5 -> 12	0.01602		$\min(2) =$	4 -> 17	-0.00316	
	min(1)=	5 -> 6	-0.39106		$\min(3) =$	5 -> 16	-0.00316	
	min(2)=	5 -> 7	-0.09630		$\min(4) =$	2 -> 15	-0.00314	
	min(3)=	4 -> 12	-0.02299		$\min(5) =$	3 -> 15	-0.00280	
	min(4)=	5 -> 11	-0.02281		#CIs=32	#CIs>0=19 #CIs<	<0=13	
	min(5)=	5 -> 10	-0.02187					
	#CIs=46	#CIs>0=24 #CIs<0=22		6	Singlet-?Sym	15.0780	82.23 0.0000	0.000
					$\max(1) =$	5 -> 8	0.49967	
3	Singlet-?Sym	13.2757 93.39	9 0.0161	0.000	max(2)=	5 -> 14	0.01782	
	max(1)=	4 -> 7	0.59902		$\max(3) =$	5 -> 17	0.00529	
	max(2)=	5 -> 7	0.31328		$\max(4) =$	5 -> 26	0.00034	
	max(3)=	3 -> 17	0.00278		max(5)=	4 -> 24	0.00003	
	$\max(4) =$	4 -> 21	0.00174		$\min(1) =$	4 -> 9	-0.49967	
	max(5)=	5 -> 22	0.00174		$\min(2) =$	4 -> 13	-0.01782	
	min(1)=	4 -> 6	-0.14512		$\min(3) =$	4 -> 16	-0.00529	
	min(2)=	4 -> 10	-0.09015		$\min(4) =$	4 -> 27	-0.00034	
	min(3)=	5 -> 6	-0.07589		$\min(5) =$	5 -> 23	-0.00003	
	min(4)=	4 -> 12	-0.06714		#CIs=10	#CIs>0=5 #CIs<0	0=5	
	min(5)=	5 -> 10	-0.04715					
	#CIs=46	#CIs>0=23 #CIs<0=23		7	Singlet-?Sym	15.1837	81.66 0.0000	0.000
					max(1)=	4 -> 9	0.49978	

	max(2)=	5 -> 8	0.49978		$\max(4) =$	4 -> 15	0.01138	
	max(3)=	4 -> 13	0.01406		max(5)=	5 -> 11	0.00746	
	$\max(4)=$	5 -> 14	0.01406		$\min(1) =$	5 -> 10	-0.24426	
	max(5)=	4 -> 16	0.00458		$\min(2) =$	4 -> 6	-0.05631	
	$\min(1) =$	4 -> 24	-0.00002		$\min(3) =$	5 -> 7	-0.03112	
	min(2)=	5 -> 23	-0.00002		$\min(4) =$	4 -> 11	-0.01997	
	min(3)=	4 -> 27	0.00051		min(5)=	4 -> 12	-0.01377	
	$\min(4)=$	5 -> 26	0.00051		#CIs=47	#CIs>0=25 #CIs<	0=22	
	min(5)=	3 -> 22	0.00083					
	#CIs=12	#CIs>0=10 #CIs<0=2		11	Singlet-?Sym	16.4171	75.52 0.0115	0.000
					max(1)=	4 -> 8	0.39821	
8	Singlet-?Sym	15.1837 81.6	0.0000	0.000	max(2)=	5 -> 9	0.39821	
	$\max(1)=$	4 -> 8	0.49978		max(3)=	3 -> 7	0.36890	
	max(2)=	4 -> 14	0.01406		$\max(4) =$	3 -> 11	0.02117	
	max(3)=	4 -> 17	0.00458		max(5)=	2 -> 12	0.00980	
	$\max(4)=$	2 -> 21	0.00199		min(1)=	3 -> 6	-0.14835	
	$\max(5)=$	3 -> 21	0.00083		min(2)=	3 -> 10	-0.14758	
	$\min(1)=$	5 -> 9	-0.49978		min(3)=	3 -> 12	-0.04469	
	$\min(2)=$	5 -> 13	-0.01406		$\min(4) =$	3 -> 15	-0.02312	
	$\min(3)=$	5 -> 16	-0.00458		min(5)=	2 -> 7	-0.01835	
	$\min(4)=$	5 -> 27	-0.00051		#CIs=34	#CIs>0=8 #CIs<0	=26	
	min(5)=	4 -> 23	-0.00002					
	#CIs=12	#CIs>0=7 #CIs<0=5		12	Singlet-?Sym	18.2404	67.97 0.0924	0.000
					$\max(1) =$	4 -> 11	0.69518	
9	Singlet-?Sym	15.6619 79.1	0.0309	0.000	max(2)=	5 -> 11	0.10727	
	$\max(1)=$	5 -> 10	0.65417		max(3) =	3 -> 8	0.05108	
	$\max(2)=$	4 -> 10	0.24426		$\max(4) =$	4 -> 10	0.01910	
	max(3)=	5 -> 7	0.08336		$\max(5) =$	4 -> 12	0.01572	
	$\max(4) =$	4 -> 7	0.03112		min(1)=	4 -> 6	-0.04058	
	max(5)=	5 -> 15	0.01138		min(2)=	4 -> 15	-0.01356	
	$\min(1)=$	5 -> 6	-0.05631		min(3)=	5 -> 6	-0.00626	
	$\min(2)=$	4 -> 6	-0.02102		$\min(4) =$	3 -> 17	-0.00440	
	$\min(3)=$	5 -> 11	-0.01997		min(5)=	2 -> 14	-0.00284	
	$\min(4) =$	5 -> 12	-0.01377		#CIs=47	#CIs>0=22 #CIs<	0=25	
	min(5)=	4 -> 11	-0.00746					
	#CIs=47	#CIs>0=16 #CIs<0=31		13	Singlet-?Sym	18.2404	67.97 0.0924	0.000
					max(1)=	5 -> 11	0.69518	
10	Singlet-?Sym	15.6619 79.1	0.0309	0.000	$\max(2) =$	3 -> 9	0.05108	
	max(1)=	4 -> 10	0.65417		max(3)=	5 -> 10	0.01910	
	max(2)=	4 -> 7	0.08336		$\max(4) =$	5 -> 12	0.01572	
	max(3)=	5 -> 6	0.02102		max(5)=	4 -> 6	0.00626	

	$\min(1)=$	4 -> 11	-0.10727		min(3):	= 5 ->	15 -0.00237	
	min(2)=	5 -> 6	-0.04058		min(4):	= 5 -> ;	21 -0.00234	
	min(3)=	5 -> 15	-0.01356		min(5):	= 5 ->	18 -0.00177	
	min(4)=	3 -> 8	-0.00788		#CIs=43	3 #CIs>0=21 #C	Is<0=22	
	min(5)=	3 -> 16	-0.00440					
	#CIs=47	#CIs>0=25 #CIs<0=22		17	Singlet-SG	19.9758	62.07 0.0203	0.000
					max(1):	= 3 ->	10 0.64226	i
14	Singlet-SG 18	8.5639 66.79	0.1732	0.000	max(2):	= 4 ->	8 0.15845	
	max(1)=	3 -> 7	0.58095		max(3):	= 5 ->	9 0.15845	
	max(2)=	3 -> 10	0.23673		max(4):	= 3 ->	11 0.09867	
	max(3)=	3 -> 12	0.03949		max(5):	= 2 ->	12 0.00754	:
	max(4)=	4 -> 14	0.03630		min(1):	= 3 ->	7 -0.12997	
	max(5)=	5 -> 13	0.03630		min(2):	= 3 ->	6 -0.07934	:
	min(1)=	4 -> 8	-0.22540		min(3):	= 3 ->	12 -0.05143	i -
	min(2)=	5 -> 9	-0.22540		min(4):	= 4 ->	14 -0.03507	
	min(3)=	3 -> 11	-0.03182		min(5):	= 5 ->	13 -0.03507	
	min(4)=	3 -> 6	-0.02141		#CIs=34	4 #CIs>0=13 #C	Is<0=21	
	min(5)=	2 -> 12	-0.01690					
	#CIs=33	#CIs>0=19 #CIs<0=14		18	Singlet-SG	21.9019	56.61 0.0283	0.000
					max(1):	= 3 ->	11 0.69699	
15	Singlet-?Sym	18.8792 65.67	0.0014	0.000	max(2):	= 3 ->	7 0.02726	i
	max(1)=	3 -> 8	0.70473		max(3):	= 3 ->	12 0.02201	
	max(2)=	3 -> 14	0.01951		max(4):	= 2 ->	6 0.02033	i
	max(3)=	3 -> 17	0.00878		max(5):	= 2 ->	7 0.01850	
	$\max(4)=$	4 -> 10	0.00439		min(1):	= 3 ->	10 -0.07745	
	max(5)=	3 -> 23	0.00235		min(2):	= 4 ->	8 -0.04874	:
	$\min(1) =$	4 -> 11	-0.05198		min(3):	= 5 ->	9 -0.04874	:
	min(2)=	3 -> 9	-0.01326		min(4):	= 3 ->	6 -0.02803	i
	$\min(3) =$	2 -> 8	-0.00249		min(5):	= 2 ->	-0.00687	
	$\min(4) =$	4 -> 15	-0.00237		#CIs=33	3 #CIs>0=21 #C	Is<0=12	
	min(5)=	4 -> 18	-0.00177					
	#CIs=43	#CIs>0=23 #CIs<0=20		19	Singlet-?Sym	22.5967	54.87 0.025	0 0.000
					max(1):	= 4 ->	12 0.59791	
16	Singlet-?Sym	18.8792 65.67	0.0014	0.000	max(2):	= 5 ->	12 0.36723	i
	max(1)=	3 -> 9	0.70473		max(3):	= 4 ->	7 0.06976	i
	max(2)=	3 -> 13	0.01951		max(4):	= 5 ->	7 0.04284	:
	max(3)=	3 -> 8	0.01326		max(5):	= 4 ->	15 0.01263	i
	max(4)=	3 -> 16	0.00878		min(1):	= 4 ->	-0.01271	
	max(5)=	5 -> 10	0.00439		min(2):	= 4 ->	19 -0.01107	
	min(1)=	5 -> 11	-0.05198		min(3):	= 5 ->	-0.00781	
	min(2)=	2 -> 9	-0.00249		min(4):	= 3 ->	-0.00683	i

	min(5)=	5 -> 19	-0.00680						
	#CIs=46 #C	Is>0=27 #CIs<0=19		23	Singlet-SG 3	35.2070	35.22	0.0229	0.000
					max(1):	= 2 ->	7	0.68655	
20	Singlet-?Sym 22	.5967 54.87	0.0250	0.000	max(2):	= 4 ->	8	0.01356	
	max(1)=	5 -> 12	0.59791		max(3):	= 5 ->	9	0.01356	
	max(2)=	5 -> 7	0.06976		max(4):	= 3 ->	18	0.01188	
	max(3)=	5 -> 15	0.01263		max(5):	= 3 ->	12	0.00803	
	max(4)=	2 -> 9	0.01024		min(1):	= 2 ->	10 -	0.11122	
	max(5)=	5 -> 6	0.00794		min(2):	= 2 ->	6 -	0.09972	
	min(1)=	4 -> 12	-0.36723		min(3):	= 2 ->	12 -	0.04923	
	min(2)=	4 -> 7	-0.04284		min(4):	= 2 ->	11 -	0.03786	
	min(3)=	5 -> 11	-0.01271		min(5):	= 4 ->	14 -	0.01987	
	$\min(4)=$	5 -> 19	-0.01107		#CIs=32	2 #CIs>0=8 #CI	s<0=24		
	min(5)=	4 -> 15	-0.00775						
	#CIs=46 #C	Is>0=24 #CIs<0=22		24	Singlet-?Sym	37.0121	33.50	0.0164	0.000
					max(1):	= 2 ->	8	0.68553	
21	Singlet-SG 28.0	003 44.28	0.1677	0.000	max(2):	= 3 ->	17	0.01537	
	max(1)=	3 -> 12	0.69279		max(3):	= 2 ->	14	0.01383	
	max(2)=	4 -> 8	0.04307		max(4):	= 4 -> 1	21	0.00817	
	max(3)=	5 -> 9	0.04307		max(5):	= 5 -> 5	22	0.00817	
	max(4)=	3 -> 10	0.02267		min(1):	= 2 ->	9 -	0.16898	
	max(5)=	4 -> 17	0.02231		min(2):	= 3 ->	14 -	0.01642	
	min(1)=	4 -> 14	-0.06640		min(3):	= 4 ->	15 -	0.01635	
	min(2)=	5 -> 13	-0.06640		min(4):	= 4 ->	18 -	0.01217	
	min(3)=	2 -> 6	-0.06520		min(5):	= 4 ->	12 -	0.01178	
	min(4)=	2 -> 10	-0.03705		#CIs=4	7 #CIs>0=25 #C	Is<0=22		
	min(5)=	2 -> 7	-0.02746						
	#CIs=33 #C	Is>0=15 #CIs<0=18		25	Singlet-?Sym	37.0121	33.50	0.0164	0.000
					max(1):	= 2 ->	9	0.68553	
22	Singlet-SG 31.5	816 39.26	0.0249	0.000	max(2):	= 2 ->	8	0.16898	
	max(1)=	2 -> 6	0.69172		max(3):	= 3 ->	16	0.01537	
	max(2)=	2 -> 7	0.09990		max(4):	= 2 ->	13	0.01383	
	max(3)=	3 -> 12	0.06033		max(5):	= 4 -> 2	22	0.00817	
	max(4)=	2 -> 10	0.02592		min(1):	= 3 ->	13 -	0.01642	
	max(5)=	4 -> 8	0.02170		min(2):	= 5 ->	15 -	0.01635	
	min(1)=	4 -> 14	-0.04758		min(3):	= 5 ->	18 -	0.01217	
	min(2)=	5 -> 13	-0.04758		min(4):	= 5 ->	12 -	0.01178	
	min(3)=	3 -> 15	-0.02596		min(5):	= 5 -> 3	21 -	0.00817	
	min(4)=	3 -> 11	-0.01921		#CIs=4	7 #CIs>0=26 #C	Is<0=21		
	min(5)=	4 -> 17	-0.01828						
	#CIs=33 #C	Is>0=13 #CIs<0=20		26	Singlet-SG	37.4162	33.14	0.0010	0.000

	max(1)=	2 -> 10	0.69005		max(3)=	4 -> 16	0.00601	
	max(2)=	2 -> 7	0.09841		max(4)=	5 -> 17	0.00601	
	max(3)=	3 -> 12	0.02113		max(5)=	4 -> 27	0.00356	
	max(4)=	4 -> 8	0.01193		$\min(1) =$	4 -> 9	-0.01412	
	max(5)=	5 -> 9	0.01193		$\min(2) =$	5 -> 8	-0.01412	
	min(1)=	4 -> 14	-0.07067		min(3)=	4 -> 24	-0.00099	
	min(2)=	5 -> 13	-0.07067		$\min(4) =$	5 -> 23	-0.00099	
	min(3)=	2 -> 6	-0.05244		$\min(5) =$	3 -> 22	0.00114	
	min(4)=	3 -> 15	-0.01965		#CIs=12	#CIs>0=8 #CIs<0	=4	
	min(5)=	3 -> 7	-0.01064					
	#CIs=34	#CIs>0=17 #CIs<0=17	,	30	Singlet-?Sym	42.0714	29.47 0.0000	0.000
					max(1)=	5 -> 13	0.49975	
27	Singlet-SG 3	9.8666 31.10	0.0044	0.000	max(2)=	4 -> 8	0.01412	
	max(1)=	2 -> 11	0.69972		max(3)=	5 -> 16	0.00601	
	max(2)=	2 -> 12	0.03729		$\max(4) =$	5 -> 27	0.00356	
	max(3)=	2 -> 7	0.02974		$\max(5) =$	4 -> 23	0.00099	
	$\max(4) =$	3 -> 10	0.00959		$\min(1) =$	4 -> 14	-0.49975	
	max(5)=	2 -> 18	0.00497		$\min(2) =$	5 -> 9	-0.01412	
	min(1)=	4 -> 14	-0.05116		$\min(3) =$	4 -> 17	-0.00601	
	min(2)=	5 -> 13	-0.05116		$\min(4) =$	4 -> 26	-0.00356	
	min(3)=	2 -> 6	-0.03258		$\min(5) =$	2 -> 21	-0.00201	
	min(4)=	4 -> 17	-0.02218		#CIs=12	#CIs>0=5 #CIs<0	=7	
	min(5)=	5 -> 16	-0.02218					
	#CIs=33	#CIs>0=13 #CIs<0=20)	31	Singlet-?Sym	43.4895	28.51 0.0018	0.000
					$\max(1) =$	5 -> 15	0.58358	
28	Singlet-?Sym	41.8623 29.	62 0.0000	0.000	max(2)=	4 -> 15	0.39205	
	max(1)=	4 -> 13	0.49947		$\max(3) =$	3 -> 16	0.01818	
	max(2)=	5 -> 8	0.01793		$\max(4) =$	3 -> 17	0.01221	
	max(3)=	4 -> 16	0.01420		max(5)=	5 -> 11	0.01217	
	$\max(4)=$	4 -> 27	0.00364		$\min(1) =$	3 -> 13	-0.05338	
	max(5)=	5 -> 23	0.00128		$\min(2)=$	3 -> 14	-0.03586	
	min(1)=	5 -> 14	-0.49947		$\min(3) =$	5 -> 12	-0.01262	
	min(2)=	4 -> 9	-0.01793		$\min(4) =$	5 -> 10	-0.01083	
	min(3)=	5 -> 17	-0.01420		$\min(5) =$	4 -> 12	-0.00848	
	$\min(4)=$	5 -> 26	-0.00364		#CIs=46	#CIs>0=29 #CIs<	0=17	
	min(5)=	4 -> 24	-0.00128					
	#CIs=10	#CIs>0=5 #CIs<0=5		32	Singlet-?Sym	43.4895	28.51 0.0018	0.000
					$\max(1) =$	4 -> 15	0.58358	
29	Singlet-?Sym	42.0714 29.	47 0.0000	0.000	max(2)=	3 -> 13	0.03586	
	max(1)=	4 -> 13	0.49975		$\max(3) =$	3 -> 17	0.01818	
	max(2)=	5 -> 14	0.49975		$\max(4) =$	4 -> 11	0.01217	

	max(5)=	2 -> 8	0.01202		min(2)=	5 -> 21	-0.00797	
	$\min(1) =$	5 -> 15	-0.39205		min(3)=	2 -> 13	-0.00703	
	min(2)=	3 -> 14	-0.05338		min(4)=	5 -> 19	-0.00687	
	min(3)=	4 -> 12	-0.01262		min(5)=	5 -> 12	-0.00451	
	$\min(4) =$	3 -> 16	-0.01221		#CIs=41	#CIs>0=26 #CIs<	0=15	
	min(5)=	4 -> 10	-0.01083					
	#CIs=46	#CIs>0=24 #CIs<0	=22	36	Singlet-SG 4	6.0142 2	6.94 0.2948	0.000
					max(1)=	3 -> 15	0.49866	
33	Singlet-SG 44	.3180 27	.98 0.0000	0.000	max(2)=	2 -> 12	0.25054	
	max(1)=	2 -> 12	0.64836		max(3)=	3 -> 7	0.03128	
	max(2)=	4 -> 14	0.17401		max(4)=	2 -> 18	0.02582	
	max(3)=	5 -> 13	0.17401		max(5)=	3 -> 6	0.01620	
	$\max(4)=$	2 -> 7	0.06048		min(1)=	4 -> 14	-0.29831	
	max(5)=	2 -> 10	0.03196		min(2)=	5 -> 13	-0.29831	
	$\min(1)=$	3 -> 15	-0.11051		min(3)=	3 -> 12	-0.05786	
	$\min(2)=$	3 -> 18	-0.02780		$\min(4) =$	2 -> 11	-0.04490	
	$\min(3)=$	2 -> 11	-0.01301		min(5)=	2 -> 10	-0.04298	
	$\min(4)=$	2 -> 19	-0.01013		#CIs=33	#CIs>0=14 #CIs<	0=19	
	$\min(5)=$	2 -> 18	-0.00901					
	#CIs=34	#CIs>0=23 #CIs<0	=11	37	Singlet-?Sym	46.4005	26.72 0.0000	0.000
					max(1)=	4 -> 16	0.49993	
34	Singlet-?Sym	46.0076	26.95 0.0141	0.000	max(2)=	5 -> 17	0.49993	
	max(1)=	3 -> 14	0.70034		max(3)=	4 -> 24	0.00303	
	max(2)=	3 -> 17	0.06914		$\max(4) =$	5 -> 23	0.00303	
	max(3)=	4 -> 15	0.06144		max(5)=	4 -> 27	0.00115	
	max(4)=	2 -> 8	0.01662		min(1)=	4 -> 13	-0.00614	
	max(5)=	4 -> 21	0.00797		min(2)=	5 -> 14	-0.00614	
	$\min(1)=$	3 -> 8	-0.02005		min(3)=	4 -> 9	-0.00441	
	min(2)=	3 -> 13	-0.00839		min(4)=	5 -> 8	-0.00441	
	$\min(3)=$	2 -> 14	-0.00703		min(5)=	3 -> 22	-0.00054	
	$\min(4) =$	4 -> 19	-0.00687		#CIs=12	#CIs>0=6 #CIs<0	=6	
	$\min(5)=$	4 -> 12	-0.00451					
	#CIs=41	#CIs>0=23 #CIs<0	=18	38	Singlet-?Sym	46.4005	26.72 0.0000	0.000
					max(1)=	5 -> 16	0.49993	
35	Singlet-?Sym	46.0076	26.95 0.0141	0.000	max(2)=	4 -> 14	0.00614	
	max(1)=	3 -> 13	0.70034		max(3)=	4 -> 8	0.00441	
	max(2)=	3 -> 16	0.06914		max(4)=	5 -> 24	0.00303	
	max(3)=	5 -> 15	0.06144		max(5)=	5 -> 27	0.00115	
	$\max(4)=$	2 -> 9	0.01662		$\min(1)=$	4 -> 17	-0.49993	
	$\max(5)=$	3 -> 14	0.00839		min(2)=	5 -> 13	-0.00614	
	min(1)=	3 -> 9	-0.02005		$\min(3) =$	5 -> 9	-0.00441	

	$\min(4) =$	4 -> 23	-0.00303		$\max(4) =$	3 -> 7	0.02273	
	min(5)=	4 -> 26	-0.00115		$\max(5) =$	3 -> 18	0.02161	
	#CIs=12	#CIs>0=7 #CIs<0)=5		$\min(1) =$	3 -> 15	-0.18122	
					$\min(2) =$	4 -> 14	-0.14689	
39	Singlet-?Sym	46.4344	26.70 0.0000	0.000	$\min(3) =$	5 -> 13	-0.14689	
	max(1)=	4 -> 16	0.49976		$\min(4) =$	3 -> 12	-0.05964	
	max(2)=	5 -> 14	0.01437		$\min(5) =$	3 -> 19	-0.05207	
	max(3)=	5 -> 8	0.00477		#CIs=34	#CIs>0=18 #CIs<	0=16	
	$\max(4)=$	4 -> 24	0.00368					
	max(5)=	4 -> 27	0.00135	41	Singlet-?Sym	50.8965	24.36 0.3830	0.000
	min(1)=	5 -> 17	-0.49976		$\max(1)=$	3 -> 17	0.59677	
	$\min(2)=$	4 -> 13	-0.01437		$\max(2)=$	3 -> 16	0.36549	
	$\min(3) =$	4 -> 9	-0.00477		$\max(3) =$	4 -> 19	0.01624	
	$\min(4) =$	5 -> 23	-0.00368		$\max(4) =$	5 -> 19	0.00995	
	min(5)=	5 -> 26	-0.00135		$\max(5) =$	4 -> 12	0.00823	
	#CIs=10	#CIs>0=5 #CIs<0)=5		$\min(1) =$	3 -> 14	-0.05625	
					$\min(2) =$	4 -> 18	-0.05329	
40	Singlet-?Sym	47.7941	25.94 0.6017	0.000	$\min(3) =$	3 -> 13	-0.03445	
	max(1)=	4 -> 17	0.45504		$\min(4) =$	5 -> 18	-0.03264	
	max(2)=	5 -> 16	0.45504		min(5)=	4 -> 15	-0.02262	
	max(3)=	2 -> 12	0.03458		#CIs=48	#CIs>0=23 #CIs<	0=25	

5.2.3 Main contributions from different excited states at CIS approach

#_exc.st	symm	Exc.E OscStrength	f<	S**2>_	$\max(1)=$	4 -> 6	0.52373	
					max(2)=	4 -> 7	0.30641	
1	Singlet-?Sym	11.9145 104.06	0.0300	0.000	max(3)=	5 -> 6	0.26468	
	max(1)=	5 -> 6	0.52373		$\max(4) =$	5 -> 7	0.15485	
	max(2)=	5 -> 7	0.30641		$\max(5) =$	4 -> 11	0.11227	
	max(3)=	5 -> 11	0.11227		$\min(1) =$	4 -> 12	-0.10838	
	$\max(4) =$	5 -> 10	0.06641		min(2)=	5 -> 12	-0.05477	
	max(5)=	4 -> 12	0.05477		$\min(3)=$	4 -> 15	-0.02697	
	min(1)=	4 -> 6	-0.26468		$\min(4)=$	5 -> 15	-0.01363	
	min(2)=	4 -> 7	-0.15485		min(5)=	4 -> 19	-0.01297	
	min(3)=	5 -> 12	-0.10838		#CIs=44 #CIs	>0=29 #CIs<0=1	15	
	min(4)=	4 -> 11	-0.05674					
	min(5)=	4 -> 10	-0.03356	3	Singlet-SG 15.711	1 78.9	0.1958	0.000
	#CIs=44	#CIs>0=21 #CIs<0=23			$\max(1)=$	3 -> 6	0.60306	
					$\max(2)=$	3 -> 7	0.26720	
2	Singlet-?Sym	11.9145 104.06	0.0300	0.000	max(3)=	4 -> 9	0.13778	

	$\max(4)=$	5 -> 8	0.13778		$\min(1) =$	4 -> 8	-0.49683	
	max(5)=	3 -> 11	0.11576		min(2)=	4 -> 13	-0.05371	
	$\min(1)=$	3 -> 12	-0.05736		$\min(3) =$	4 -> 16	-0.01621	
	min(2)=	3 -> 15	-0.01597		$\min(4) =$	4 -> 26	-0.00329	
	$\min(3)=$	2 -> 7	-0.01411		$\min(5) =$	5 -> 23	-0.00013	
	$\min(4)=$	2 -> 6	-0.00498		#CIs=10	#CIs>0=5 #CIs<0	=5	
	min(5)=	2 -> 19	-0.00458					
	#CIs=30	#CIs>0=21 #CIs<	0=9	7	Singlet-?Sym	17.2989	71.67 0.0000	0.000
					$\max(1)=$	4 -> 8	0.49736	
4	Singlet-?Sym	15.7979	78.48 0.0261	0.000	max(2)=	5 -> 9	0.49736	
	max(1)=	5 -> 7	0.55625		max(3)=	4 -> 13	0.04884	
	$\max(2)=$	4 -> 7	0.04469		$\max(4) =$	5 -> 14	0.04884	
	$\max(3)=$	5 -> 20	0.00696		max(5)=	4 -> 16	0.01529	
	$\max(4)=$	3 -> 16	0.00371		$\min(1) =$	2 -> 22	-0.00166	
	max(5)=	4 -> 22	0.00185		$\min(2)=$	4 -> 9	-0.00070	
	$\min(1)=$	5 -> 6	-0.33730		$\min(3) =$	3 -> 22	-0.00027	
	$\min(2)=$	5 -> 10	-0.20533		$\min(4) =$	4 -> 24	-0.00019	
	$\min(3)=$	5 -> 12	-0.17067		$\min(5) =$	5 -> 23	-0.00019	
	$\min(4)=$	5 -> 15	-0.04318		#CIs=14	#CIs>0=9 #CIs<0	=5	
	$\min(5)=$	4 -> 6	-0.02709					
	#CIs=41	#CIs>0=17 #CIs<	0=24	8	Singlet-?Sym	17.2989	71.67 0.0000	0.000
					max(1)=	5 -> 8	0.49736	
5	Singlet-?Sym	15.7979	78.48 0.0261	0.000	max(2)=	5 -> 13	0.04884	
	$\max(1)=$	4 -> 7	0.55625		max(3)=	5 -> 16	0.01529	
	$\max(2)=$	5 -> 6	0.02709		$\max(4) =$	5 -> 26	0.00282	
	$\max(3)=$	5 -> 10	0.01650		max(5)=	2 -> 21	0.00166	
	$\max(4)=$	5 -> 12	0.01371		$\min(1) =$	4 -> 9	-0.49736	
	max(5)=	4 -> 20	0.00696		$\min(2)=$	4 -> 14	-0.04884	
	$\min(1)=$	4 -> 6	-0.33730		$\min(3) =$	4 -> 17	-0.01529	
	$\min(2)=$	4 -> 10	-0.20533		$\min(4) =$	4 -> 27	-0.00282	
	$\min(3)=$	4 -> 12	-0.17067		$\min(5) =$	4 -> 8	-0.00070	
	$\min(4)=$	5 -> 7	-0.04469		#CIs=14	#CIs>0=7 #CIs<0	=7	
	$\min(5)=$	4 -> 15	-0.04318					
	#CIs=41	#CIs>0=23 #CIs<	0=18	9	Singlet-?Sym	18.1234	68.41 0.0314	0.000
					$\max(1)=$	5 -> 10	0.66525	
6	Singlet-?Sym	17.2784	71.76 0.0000	0.000	max(2)=	5 -> 7	0.12381	
	max(1)=	5 -> 9	0.49683		max(3)=	5 -> 11	0.06687	
	max(2)=	5 -> 14	0.05371		$\max(4) =$	5 -> 18	0.03270	
	max(3)=	5 -> 17	0.01621		max(5)=	5 -> 15	0.03232	
	$\max(4)=$	5 -> 27	0.00329		min(1)=	5 -> 6	-0.18092	
	max(5)=	4 -> 24	0.00013		$\min(2)=$	5 -> 12	-0.04824	

	$\min(3) =$	5 -> 21	-0.00408		min(5)=	5 -> 7	-0.06087	
	$\min(4) =$	4 -> 10	-0.00379		#CIs=43	#CIs>0=21 #CIs<	:0=22	
	$\min(5) =$	5 -> 19	-0.00280					
	#CIs=31	#CIs>0=17 #CIs<0=1	4	13	Singlet-?Sym	20.7628	59.71 0.0525	0.000
					max(1)=	4 -> 11	0.53783	
10	Singlet-?Sym	18.1234 68	.41 0.0314	0.000	max(2)=	3 -> 9	0.41629	
	max(1)=	4 -> 10	0.66525		max(3)=	5 -> 11	0.10691	
	max(2)=	4 -> 7	0.12381		$\max(4) =$	3 -> 8	0.08275	
	max(3)=	4 -> 11	0.06687		max(5)=	3 -> 14	0.04214	
	$\max(4) =$	4 -> 18	0.03270		min(1)=	4 -> 6	-0.07307	
	max(5)=	4 -> 15	0.03232		min(2)=	4 -> 10	-0.07215	
	$\min(1) =$	4 -> 6	-0.18092		min(3)=	4 -> 7	-0.06087	
	min(2)=	4 -> 12	-0.04824		min(4)=	4 -> 15	-0.03193	
	$\min(3) =$	4 -> 19	-0.00280		min(5)=	5 -> 6	-0.01453	
	$\min(4) =$	4 -> 25	-0.00105		#CIs=43	#CIs>0=28 #CIs<	:0=15	
	$\min(5) =$	5 -> 6	-0.00103					
	#CIs=31	#CIs>0=22 #CIs<0=9		14	Singlet-?Sym	20.9412	59.21 0.0439	0.000
					max(1)=	3 -> 9	0.47181	
11	Singlet-?Sym	18.6919 66	.33 0.0039	0.000	max(2)=	5 -> 11	0.22691	
	max(1)=	4 -> 9	0.36939		max(3)=	4 -> 6	0.04261	
	max(2)=	5 -> 8	0.36939		$\max(4) =$	3 -> 14	0.04137	
	max(3)=	3 -> 7	0.30592		max(5)=	4 -> 7	0.03615	
	$\max(4) =$	2 -> 12	0.01600		min(1)=	4 -> 11	-0.35287	
	max(5)=	4 -> 14	0.01134		min(2)=	3 -> 8	-0.30340	
	$\min(1) =$	3 -> 6	-0.28933		min(3)=	5 -> 6	-0.02740	
	$\min(2) =$	3 -> 10	-0.19081		min(4)=	3 -> 13	-0.02660	
	$\min(3) =$	3 -> 12	-0.10075		min(5)=	5 -> 7	-0.02326	
	$\min(4) =$	3 -> 15	-0.04466		#CIs=44	#CIs>0=23 #CIs<	:0=21	
	$\min(5) =$	2 -> 7	-0.01668					
	#CIs=31	#CIs>0=10 #CIs<0=2	1	15	Singlet-?Sym	20.9412	59.21 0.0439	0.000
					max(1)=	3 -> 8	0.47181	
12	Singlet-?Sym	20.7628 59	.71 0.0525	0.000	max(2)=	3 -> 9	0.30340	
	$\max(1)=$	5 -> 11	0.53783		max(3)=	5 -> 6	0.04261	
	max(2)=	3 -> 8	0.41629		$\max(4) =$	3 -> 13	0.04137	
	max(3)=	3 -> 13	0.04214		max(5)=	5 -> 7	0.03615	
	$\max(4) =$	5 -> 12	0.02634		min(1)=	5 -> 11	-0.35287	
	max(5)=	5 -> 18	0.02127		min(2)=	4 -> 11	-0.22691	
	min(1)=	4 -> 11	-0.10691		min(3)=	5 -> 12	-0.01739	
	min(2)=	3 -> 9	-0.08275		min(4)=	5 -> 18	-0.01524	
	min(3)=	5 -> 6	-0.07307		min(5)=	4 -> 12	-0.01119	
	$\min(4)=$	5 -> 10	-0.07215		#CIs=44	#CIs>0=27 #CIs<	0=17	

					$\max(1)=$	5 -> 12	0.66461	
16	Singlet-SG 2	1.1870 58.52	0.2080	0.000	max(2)=	5 -> 7	0.21985	
	max(1)=	3 -> 7	0.52266		$\max(3) =$	4 -> 12	0.06741	
	max(2)=	3 -> 10	0.29800		$\max(4) =$	5 -> 19	0.04840	
	max(3)=	4 -> 14	0.03320		max(5)=	5 -> 15	0.04231	
	max(4)=	5 -> 13	0.03320		$\min(1) =$	3 -> 16	-0.00948	
	max(5)=	3 -> 15	0.02683		$\min(2)=$	5 -> 20	-0.00686	
	min(1)=	4 -> 9	-0.21817		$\min(3) =$	4 -> 22	-0.00629	
	min(2)=	5 -> 8	-0.21817		$\min(4) =$	3 -> 24	-0.00431	
	min(3)=	3 -> 6	-0.18874		$\min(5) =$	5 -> 11	-0.00397	
	min(4)=	3 -> 12	-0.04468		#CIs=43	#CIs>0=26 #CIs<0=1	.7	
	min(5)=	2 -> 12	-0.01017					
	#CIs=32	#CIs>0=20 #CIs<0=12		20	Singlet-?Sym	25.2680 49	0.0272	0.000
					$\max(1)=$	4 -> 12	0.66461	
17	Singlet-SG 2	2.1522 55.97	0.0082	0.000	max(2)=	4 -> 7	0.21985	
	max(1)=	3 -> 10	0.58476		$\max(3) =$	4 -> 19	0.04840	
	max(2)=	4 -> 9	0.19111		$\max(4) =$	4 -> 15	0.04231	
	max(3)=	5 -> 8	0.19111		$\max(5) =$	4 -> 6	0.01222	
	max(4)=	3 -> 11	0.13729		$\min(1) =$	5 -> 12	-0.06741	
	max(5)=	2 -> 12	0.01959		$\min(2) =$	5 -> 7	-0.02230	
	min(1)=	3 -> 7	-0.21739		$\min(3) =$	3 -> 17	-0.00948	
	min(2)=	3 -> 6	-0.10687		$\min(4) =$	4 -> 20	-0.00686	
	min(3)=	3 -> 12	-0.04714		$\min(5) =$	4 -> 21	-0.00629	
	min(4)=	4 -> 14	-0.03978		#CIs=43	#CIs>0=20 #CIs<0=2	23	
	min(5)=	5 -> 13	-0.03978					
	#CIs=30	#CIs>0=13 #CIs<0=17		21	Singlet-SG 30	40.6	6 0.2501	0.000
					$\max(1)=$	3 -> 12	0.67977	
18	Singlet-SG 2	4.3185 50.98	0.0292	0.000	$\max(2)=$	3 -> 7	0.09924	
	max(1)=	3 -> 11	0.68114		$\max(3) =$	4 -> 9	0.06274	
	max(2)=	3 -> 18	0.03006		$\max(4) =$	5 -> 8	0.06274	
	max(3)=	3 -> 12	0.02777		$\max(5) =$	3 -> 10	0.03869	
	max(4)=	4 -> 14	0.01805		$\min(1) =$	4 -> 14	-0.08800	
	max(5)=	5 -> 13	0.01805		$\min(2) =$	5 -> 13	-0.08800	
	min(1)=	3 -> 10	-0.14011		$\min(3) =$	2 -> 10	-0.01804	
	min(2)=	3 -> 6	-0.07064		$\min(4) =$	2 -> 18	-0.01759	
	min(3)=	4 -> 9	-0.05794		$\min(5) =$	2 -> 6	-0.01605	
	min(4)=	5 -> 8	-0.05794		#CIs=32	#CIs>0=15 #CIs<0=1	.7	
	min(5)=	3 -> 7	-0.02786					
	#CIs=31	#CIs>0=18 #CIs<0=13		22	Singlet-SG 38	3.2279 32.4	43 0.0194	0.000
					max(1)=	2 -> 6	0.60203	
19	Singlet-?Sym	25.2680 49.0	0.0272	0.000	max(2)=	2 -> 7	0.32218	

	max(3)=	2 -> 11	0.10171		max(5)=	2 -> 13	0.03162	
	max(4)=	2 -> 10	0.06264		$\min(1) =$	4 -> 15	-0.03279	
	max(5)=	3 -> 7	0.01055		min(2)=	3 -> 14	-0.01831	
	min(1)=	2 -> 12	-0.09953		min(3)=	5 -> 15	-0.01774	
	min(2)=	4 -> 14	-0.05109		$\min(4) =$	4 -> 11	-0.01409	
	min(3)=	5 -> 13	-0.05109		min(5)=	4 -> 18	-0.00994	
	min(4)=	4 -> 17	-0.03419		#CIs=46	#CIs>0=21 #CIs<	.0=25	
	min(5)=	5 -> 16	-0.03419					
	#CIs=32	#CIs>0=14 #CIs<0=18		26	Singlet-?Sym	43.5482	28.47 0.0187	0.000
					$\max(1) =$	2 -> 8	0.61668	
23	Singlet-SG 4	2.0036 29.52	0.0192	0.000	max(2)=	2 -> 13	0.05847	
	max(1)=	2 -> 7	0.57611		max(3)=	3 -> 16	0.03289	
	max(2)=	4 -> 9	0.01274		$\max(4) =$	4 -> 15	0.01774	
	max(3)=	5 -> 8	0.01274		max(5)=	2 -> 16	0.01267	
	max(4)=	3 -> 10	0.01250		min(1)=	2 -> 9	-0.33351	
	max(5)=	3 -> 7	0.00911		$\min(2)=$	5 -> 15	-0.03279	
	min(1)=	2 -> 6	-0.32206		$\min(3) =$	2 -> 14	-0.03162	
	min(2)=	2 -> 10	-0.17300		$\min(4) =$	3 -> 13	-0.01831	
	min(3)=	2 -> 12	-0.16783		min(5)=	3 -> 17	-0.01779	
	$\min(4)=$	4 -> 17	-0.03956		#CIs=46	#CIs>0=22 #CIs<	.0=24	
	min(5)=	5 -> 16	-0.03956					
	#CIs=32	#CIs>0=9 #CIs<0=23		27	Singlet-?Sym	43.7371	28.35 0.0000	0.000
					$\max(1)=$	4 -> 13	0.49404	
24	Singlet-?Sym	43.5292 28.	48 0.0000	0.000	$\max(2)=$	5 -> 14	0.49404	
	max(1)=	5 -> 14	0.49317		max(3)=	4 -> 16	0.05619	
	max(2)=	5 -> 17	0.05902		$\max(4) =$	5 -> 17	0.05619	
	max(3)=	4 -> 8	0.05534		max(5)=	4 -> 26	0.01376	
	max(4)=	5 -> 27	0.01491		$\min(1) =$	4 -> 8	-0.05033	
	max(5)=	4 -> 24	0.00373		$\min(2) =$	5 -> 9	-0.05033	
	min(1)=	4 -> 13	-0.49317		$\min(3) =$	4 -> 14	-0.00494	
	min(2)=	4 -> 16	-0.05902		$\min(4) =$	4 -> 24	-0.00365	
	min(3)=	5 -> 9	-0.05534		$\min(5) =$	5 -> 23	-0.00365	
	min(4)=	4 -> 26	-0.01491		#CIs=20	#CIs>0=10 #CIs<	0=10	
	min(5)=	5 -> 23	-0.00373					
	#CIs=10	#CIs>0=5 #CIs<0=5		28	Singlet-?Sym	43.7371	28.35 0.0000	0.000
					$\max(1) =$	5 -> 13	0.49404	
25	Singlet-?Sym	43.5482 28.	47 0.0187	0.000	max(2)=	5 -> 16	0.05619	
	max(1)=	2 -> 9	0.61668		max(3)=	4 -> 9	0.05033	
	max(2)=	2 -> 8	0.33351		$\max(4) =$	5 -> 26	0.01376	
	max(3)=	2 -> 14	0.05847		max(5)=	4 -> 23	0.00365	
	max(4)=	3 -> 17	0.03289		$\min(1) =$	4 -> 14	-0.49404	

	$\min(2)=$	4 -> 17	-0.05619		$\min(4) =$	4 -> 20	-0.01536	
	$\min(3)=$	5 -> 8	-0.05033		$\min(5) =$	5 -> 12	-0.00196	
	$\min(4)=$	4 -> 27	-0.01376		#CIs=41	#CIs>0=30 #CIs<	0=11	
	$\min(5) =$	4 -> 13	-0.00494					
	#CIs=20	#CIs>0=9 #CIs<0=11		32	Singlet-SG 46	3.8521 2	6.46 0.0025	0.000
					$\max(1) =$	2 -> 11	0.68763	
29	Singlet-SG 44	1.3839 27.93	0.0107	0.000	max(2)=	2 -> 12	0.04870	
	max(1)=	2 -> 10	0.65724		max(3)=	2 -> 18	0.02444	
	max(2)=	2 -> 7	0.09934		$\max(4) =$	3 -> 10	0.01646	
	max(3)=	2 -> 11	0.06909		$\max(5) =$	2 -> 20	0.00519	
	$\max(4)=$	3 -> 15	0.03702		$\min(1) =$	2 -> 10	-0.09090	
	max(5)=	2 -> 15	0.03142		$\min(2) =$	2 -> 6	-0.08807	
	$\min(1)=$	2 -> 6	-0.15705		$\min(3) =$	3 -> 15	-0.04482	
	min(2)=	4 -> 14	-0.10467		$\min(4) =$	2 -> 7	-0.03966	
	min(3)=	5 -> 13	-0.10467		$\min(5) =$	2 -> 15	-0.03861	
	$\min(4)=$	2 -> 12	-0.05324		#CIs=32	#CIs>0=9 #CIs<0	=23	
	min(5)=	3 -> 10	-0.02027					
	#CIs=32	#CIs>0=15 #CIs<0=17		33	Singlet-?Sym	47.6919	26.00 0.0117	0.000
					$\max(1)=$	3 -> 13	0.66569	
30	Singlet-?Sym	45.2872 27.3	0.0015	0.000	$\max(2)=$	3 -> 14	0.19729	
	max(1)=	5 -> 15	0.69676		max(3)=	3 -> 16	0.09241	
	max(2)=	5 -> 11	0.03763		$\max(4) =$	5 -> 15	0.04525	
	max(3)=	2 -> 8	0.03419		max(5)=	3 -> 17	0.02739	
	$\max(4)=$	5 -> 18	0.02796		$\min(1) =$	3 -> 8	-0.06443	
	max(5)=	5 -> 7	0.02605		$\min(2)=$	3 -> 9	-0.01909	
	$\min(1)=$	5 -> 12	-0.05371		$\min(3) =$	5 -> 21	-0.00675	
	$\min(2)=$	3 -> 13	-0.05278		$\min(4) =$	5 -> 12	-0.00616	
	$\min(3)=$	5 -> 10	-0.04635		$\min(5) =$	2 -> 24	-0.00571	
	$\min(4)=$	4 -> 15	-0.02539		#CIs=43	#CIs>0=28 #CIs<	0=15	
	$\min(5)=$	5 -> 20	-0.01536					
	#CIs=41	#CIs>0=20 #CIs<0=21		34	Singlet-?Sym	47.6919	26.00 0.0117	0.000
					$\max(1) =$	3 -> 14	0.66569	
31	Singlet-?Sym	45.2872 27.3	0.0015	0.000	$\max(2) =$	3 -> 17	0.09241	
	max(1)=	4 -> 15	0.69676		$\max(3) =$	4 -> 15	0.04525	
	max(2)=	4 -> 11	0.03763		$\max(4) =$	2 -> 17	0.02205	
	max(3)=	2 -> 9	0.03419		max(5)=	4 -> 18	0.02129	
	max(4)=	4 -> 18	0.02796		$\min(1) =$	3 -> 13	-0.19729	
	max(5)=	4 -> 7	0.02605		min(2)=	3 -> 9	-0.06443	
	min(1)=	4 -> 12	-0.05371		min(3)=	3 -> 16	-0.02739	
	min(2)=	3 -> 14	-0.05278		$\min(4) =$	5 -> 15	-0.01341	
	min(3)=	4 -> 10	-0.04635		min(5)=	2 -> 16	-0.00653	

	#CIs=43	#CIs>0=24 #CIs<	<0=19	38	Singlet-?Sym	49.0153	25.29 0.0000	0.000
					$\max(1) =$	5 -> 17	0.49598	
35	Singlet-SG 47	7.7102 2	25.99 0.1516	0.000	$\max(2) =$	4 -> 13	0.06044	
	max(1)=	3 -> 15	0.52662		max(3) =	5 -> 23	0.01545	
	max(2)=	3 -> 19	0.03383		$\max(4) =$	4 -> 8	0.00967	
	max(3)=	3 -> 7	0.03330		max(5)=	5 -> 27	0.00377	
	$\max(4)=$	3 -> 11	0.03280		$\min(1) =$	4 -> 16	-0.49598	
	max(5)=	3 -> 18	0.02923		$\min(2) =$	5 -> 14	-0.06044	
	min(1)=	4 -> 14	-0.28466		$\min(3) =$	4 -> 24	-0.01545	
	min(2)=	5 -> 13	-0.28466		$\min(4) =$	5 -> 9	-0.00967	
	min(3)=	2 -> 10	-0.12197		$\min(5) =$	4 -> 26	-0.00377	
	min(4)=	4 -> 17	-0.09935		#CIs=10	#CIs>0=5 #CIs<0)=5	
	min(5)=	5 -> 16	-0.09935					
	#CIs=33	#CIs>0=14 #CIs<	<0=19	39	Singlet-?Sym	50.6494	24.48 0.9291	0.000
					$\max(1)=$	4 -> 17	0.40917	
36	Singlet-?Sym	48.9219	25.34 0.0000	0.000	$\max(2) =$	5 -> 16	0.40917	
	max(1)=	4 -> 16	0.49637		max(3)=	2 -> 12	0.28695	
	max(2)=	5 -> 17	0.49637		$\max(4) =$	2 -> 7	0.12930	
	max(3)=	4 -> 24	0.01447		$\max(5) =$	3 -> 19	0.05461	
	$\max(4)=$	5 -> 23	0.01447		$\min(1) =$	4 -> 14	-0.16281	
	max(5)=	4 -> 26	0.00335		$\min(2) =$	5 -> 13	-0.16281	
	min(1)=	4 -> 13	-0.05743		$\min(3) =$	3 -> 12	-0.06142	
	min(2)=	5 -> 14	-0.05743		$\min(4) =$	2 -> 10	-0.04661	
	min(3)=	4 -> 8	-0.00963		$\min(5) =$	2 -> 11	-0.02511	
	min(4)=	5 -> 9	-0.00963		#CIs=32	#CIs>0=17 #CIs<	<0=15	
	min(5)=	3 -> 22	-0.00082					
	#CIs=12	#CIs>0=6 #CIs<0)=6	40	Singlet-SG 53	1.3252 2	24.16 0.0531	0.000
					$\max(1)=$	2 -> 12	0.58096	
37	Singlet-?Sym	48.9219	25.34 0.0000	0.000	$\max(2) =$	3 -> 15	0.18145	
	max(1)=	5 -> 16	0.49637		max(3)=	2 -> 7	0.17257	
	max(2)=	4 -> 14	0.05743		$\max(4) =$	4 -> 14	0.10663	
	max(3)=	5 -> 24	0.01447		$\max(5) =$	5 -> 13	0.10663	
	$\max(4)=$	4 -> 9	0.00963		$\min(1) =$	4 -> 17	-0.18363	
	max(5)=	5 -> 26	0.00335		$\min(2) =$	5 -> 16	-0.18363	
	min(1)=	4 -> 17	-0.49637		$\min(3) =$	3 -> 19	-0.02596	
	min(2)=	5 -> 13	-0.05743		$\min(4) =$	3 -> 18	-0.02488	
	min(3)=	4 -> 23	-0.01447		$\min(5) =$	2 -> 18	-0.01056	
	$\min(4)=$	5 -> 8	-0.00963		#CIs=32	#CIs>0=21 #CIs<	<0=11	
	min(5)=	4 -> 27	-0.00335					
	#CIs=12	#CIs>0=7 #CIs<0)=5	41	Singlet-?Sym	53.2054	23.30 0.4536	0.000
					$\max(1) =$	3 -> 16	0.54376	

max(2)=	3 -> 17	0.43157	min(2)=	3 -> 14	-0.05651
max(3)=	2 -> 13	0.03149	min(3)=	5 -> 18	-0.04060
$\max(4)=$	2 -> 14	0.02499	min(4)=	2 -> 8	-0.03482
$\max(5)=$	5 -> 21	0.01432	min(5)=	4 -> 18	-0.03222
min(1)=	3 -> 13	-0.07121	#CIs=44 #CIs>0	=19 #CIs<0=25	

6 HCl

6.1 6-311G(d,p)

6.1.1 Plots

Figure S7: For HCl molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (bottom) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S7a and S7c) or states (SOS approaches, in Plots S7b and S7d). For α FIOs, three approaches were considered: CPKS (CAM-B3LYP), CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. All elements of the β tensor were recomputed with an error less than 0.01 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

6.2 6-311++G(d,p)

6.2.1 Plots

Figure S8: For HCl molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (bottom) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S8a and S8c) or states (SOS approaches, in Plots S8b and S8d). For α FIOs, three approaches were considered: CPKS (CAM-B3LYP), CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. All elements of the β tensor were recomputed with an error less than 0.06 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

$7 H_2O$

7.1 6-311G(d,p)

7.1.1 Plots

Figure S9: For H₂O molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (bottom) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S9a and S9c) or states (SOS approaches, in Plots S9b and S9d). For α FIOs, three approaches were considered: CPKS (CAM-B3LYP), CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. All elements of the β tensor were recomputed with an error less than 0.02 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

7.1.2 Main contributions from different excited states at TDDFT (CAM-B3LYP) approach

#_exc.st	symm	Exc.E OscStrengt	hf	<s**2>_</s**2>	$\min(4) =$	5 -> 11	-0.02154	
					$\min(5) =$	4 -> 13	-0.01319	
1	Singlet-B1	7.4450 166.5	3 0.0265	0.000	#states=32	states>0=13 #sta	tes<0=19	
	max(1)=	5 -> 6	0.70615					
	max(2)=	5 -> 10	0.01679	4	Singlet-B2 11.757	2 105.45	0.0493	0.000
	max(3)=	2 -> 11	0.00495		$\max(1)=$	4 -> 7	0.70420	
	$\max(4) =$	5 -> 25	0.00396		$\max(2)=$	4 -> 12	0.03096	
	max(5)=	2 -> 22	0.00187		max(3)=	3 -> 9	0.02523	
	$\min(1) =$	5 -> 9	-0.03581		$\max(4) =$	4 -> 8	0.02167	
	min(2)=	5 -> 13	-0.00974		$\max(5) =$	5 -> 15	0.00949	
	min(3)=	3 -> 23	-0.00333		$\min(1)=$	3 -> 6	-0.04529	
	min(4)=	5 -> 14	-0.00314		$\min(2)=$	2 -> 7	-0.01200	
	min(5)=	4 -> 22	-0.00306		$\min(3)=$	2 -> 8	-0.00448	
	#states	=21 #states>0=12 #s	tates<0=9		$\min(4) =$	3 -> 13	-0.00342	
					$\min(5)=$	3 -> 19	-0.00315	
2	Singlet-A2	9.3956 131.9	6 0.0000	0.000	#states=28	states>0=15 #sta	tes<0=13	
	$\max(1) =$	5 -> 7	0.70282					
	max(2)=	5 -> 8	0.07139	5	Singlet-B2 13.667	90.72	0.2301	0.000
	max(3)=	5 -> 12	0.03137		$\max(1)=$	3 -> 6	0.70410	
	$\max(4) =$	2 -> 15	0.00328		max(2)=	4 -> 7	0.04683	
	max(5)=	5 -> 21	0.00186		max(3)=	3 -> 10	0.01555	
	min(1)=	3 -> 11	-0.00287		$\max(4)=$	2 -> 8	0.00900	
	min(2)=	5 -> 18	-0.00189		$\max(5)=$	2 -> 12	0.00728	
	min(3)=	4 -> 15	0.00005		$\min(1)=$	4 -> 8	-0.04276	
	$\min(4)=$	3 -> 22	0.00023		$\min(2)=$	3 -> 9	-0.00787	
	min(5)=	3 -> 27	0.00029		$\min(3)=$	3 -> 13	-0.00786	
	#states	=16 #states>0=14 #s	tates<0=2		$\min(4) =$	2 -> 7	-0.00427	
					$\min(5)=$	3 -> 20	-0.00268	
3	Singlet-A1	9.7608 127.0	2 0.0831	0.000	#states=28 #	states>0=14 #sta	tes<0=14	
	max(1)=	4 -> 6	0.70407					
	max(2)=	- 2 -> 6	0.01169	6	Singlet-A1 16.479	75.23	0.0836	0.000
	max(3)=	2 -> 10	0.00301		$\max(1)=$	3 -> 7	0.69406	
	max(4)=	2 -> 19	0.00177		max(2)=	4 -> 9	0.07754	
	max(5)=	2 -> 24	0.00141		max(3)=	4 -> 6	0.05067	
	min(1)=	- 3 -> 7	-0.05111		max(4)=	2 -> 6	0.02311	
	min(2)=	- 3 -> 8	-0.02584		max(5)=	2 -> 10	0.00505	
	min(3)=	- 4 -> 9	-0.02436		min(1)=	5 -> 11	-0.08145	

	$\min(2)=$	4 -> 10	-0.05991		$\min(4) =$	3 -> 19	-0.01154	
	min(3)=	2 -> 13	-0.01796		$\min(5) =$	2 -> 12	-0.00636	
	min(4)=	2 -> 9	-0.01170		#states=29	#states>0=16 #sta	tes<0=13	
	min(5)=	4 -> 14	-0.00820					
	#states=32 #st	tates>0=13 #stat	es<0=19	10	Singlet-A1 20.19	61.41	0.0037	0.000
					$\max(1) =$	4 -> 9	0.69335	
7	Singlet-A2 16.4823	75.22	0.0000	0.000	max(2)=	3 -> 8	0.09678	
	max(1)=	5 -> 8	0.70335		max(3)=	5 -> 11	0.04687	
	max(2)=	5 -> 17	0.00551		$\max(4) =$	4 -> 6	0.02446	
	max(3)=	2 -> 15	0.00402		max(5)=	4 -> 10	0.02086	
	$\max(4)=$	3 -> 16	0.00152		$\min(1) =$	3 -> 7	-0.07088	
	max(5)=	4 -> 23	0.00146		min(2)=	2 -> 6	-0.03485	
	min(1)=	5 -> 7	-0.07148		$\min(3) =$	4 -> 19	-0.00907	
	min(2)=	5 -> 18	-0.01292		$\min(4) =$	3 -> 18	-0.00638	
	min(3)=	3 -> 11	-0.00279		$\min(5) =$	2 -> 10	-0.00439	
	min(4)=	5 -> 21	0.00007		#states=33	#states>0=18 #sta	tes<0=15	
	min(5)=	5 -> 12	0.00027					
	#states=16 #st	tates>0=13 #stat	es<0=3	11	Singlet-A1 24.04	51.56	0.3084	0.000
					$\max(1) =$	3 -> 8	0.68778	
8	Singlet-B1 18.2693	67.86	0.1098	0.000	max(2)=	2 -> 6	0.02708	
	max(1)=	5 -> 9	0.70462		max(3)=	4 -> 13	0.02354	
	max(2)=	5 -> 6	0.03664		$\max(4) =$	4 -> 6	0.01822	
	max(3)=	3 -> 15	0.01952		max(5)=	5 -> 22	0.00870	
	$\max(4)=$	5 -> 14	0.01511		$\min(1) =$	5 -> 11	-0.10529	
	max(5)=	4 -> 22	0.00784		$\min(2) =$	4 -> 9	-0.08643	
	min(1)=	5 -> 10	-0.03669		$\min(3) =$	4 -> 10	-0.06761	
	min(2)=	4 -> 16	-0.01422		$\min(4) =$	4 -> 14	-0.04153	
	min(3)=	2 -> 11	-0.01195		$\min(5) =$	5 -> 16	-0.03280	
	min(4)=	4 -> 11	-0.00983		#states=34	#states>0=17 #sta	tes<0=17	
	min(5)=	5 -> 25	-0.00862					
	#states=21 #st	tates>0=10 #stat	es<0=11	12	Singlet-B2 25.33	48.94	0.4482	0.000
					max(1)=	3 -> 9	0.68990	
9	Singlet-B2 19.5924	63.28	0.1626	0.000	max(2)=	2 -> 7	0.02512	
	max(1)=	4 -> 8	0.69023		max(3)=	2 -> 18	0.01090	
	max(2)=	3 -> 9	0.13979		$\max(4) =$	4 -> 17	0.01027	
	max(3)=	3 -> 6	0.04498		max(5)=	3 -> 19	0.00553	
	max(4)=	5 -> 15	0.02937		$\min(1) =$	4 -> 8	-0.13780	
	max(5)=	3 -> 14	0.01653		$\min(2)=$	5 -> 15	-0.05403	
	min(1)=	2 -> 7	-0.02841		$\min(3) =$	3 -> 10	-0.03554	
	min(2)=	4 -> 7	-0.02381		$\min(4) =$	3 -> 14	-0.02565	
	min(3)=	3 -> 13	-0.01183		min(5)=	4 -> 7	-0.01947	

	#states=29 #s	tates>0=11 #sta	tes<0=18	16	Singlet-B1 28.	5426 43.44	0.0004	0.000
					max(1)=	4 -> 11	0.70385	
13	Singlet-B1 26.3281	47.09	0.0043	0.000	max(2)=	5 -> 10	0.06474	
	max(1)=	5 -> 10	0.70251		max(3)=	5 -> 9	0.01298	
	max(2)=	5 -> 9	0.03551		max(4)=	3 -> 15	0.00754	
	max(3)=	5 -> 14	0.01435		max(5)=	4 -> 22	0.00601	
	max(4)=	5 -> 13	0.01142		min(1)=	2 -> 11	-0.00748	
	max(5)=	3 -> 15	0.01069		min(2)=	5 -> 13	-0.00654	
	min(1)=	4 -> 11	-0.06565		min(3)=	4 -> 16	-0.00487	
	min(2)=	5 -> 6	-0.01448		min(4)=	5 -> 20	-0.00393	
	min(3)=	4 -> 16	-0.01123		min(5)=	5 -> 25	-0.00340	
	min(4)=	2 -> 11	-0.00628		#states=2	1 #states>0=12 #sta	tes<0=9	
	min(5)=	5 -> 20	-0.00469					
	#states=21 #s	tates>0=13 #sta	tes<0=8	17	Singlet-A2 29.	42.54	0.0000	0.000
					max(1)=	5 -> 12	0.70607	
14	Singlet-A1 26.8026	46.26	0.0023	0.000	max(2)=	5 -> 26	0.00594	
	$\max(1)=$	2 -> 6	0.55788		max(3)=	5 -> 29	0.00309	
	max(2)=	5 -> 11	0.40820		max(4)=	4 -> 15	0.00279	
	max(3)=	3 -> 8	0.02606		$\max(5) =$	5 -> 21	0.00213	
	$\max(4) =$	3 -> 7	0.01543		$\min(1) =$	5 -> 7	-0.03122	
	max(5)=	5 -> 22	0.00590		min(2)=	3 -> 11	-0.01859	
	min(1)=	4 -> 10	-0.14000		min(3)=	5 -> 18	-0.00901	
	min(2)=	2 -> 9	-0.03125		min(4)=	5 -> 8	-0.00368	
	min(3)=	4 -> 14	-0.01544		min(5)=	3 -> 16	-0.00133	
	$\min(4)=$	2 -> 13	-0.01275		#states=1	5 #states>0=8 #stat	es<0=7	
	min(5)=	4 -> 13	-0.01143					
	#states=34 #s	tates>0=19 #sta	tes<0=15	18	Singlet-B2 29.	1639 42.51	0.0249	0.000
					max(1)=	2 -> 7	0.70262	
15	Singlet-A1 27.7605	44.66	0.0361	0.000	max(2)=	2 -> 8	0.04474	
	$\max(1)=$	4 -> 10	0.45111		max(3)=	4 -> 8	0.03021	
	max(2)=	2 -> 6	0.38926		max(4)=	5 -> 15	0.02864	
	max(3)=	3 -> 12	0.05436		max(5)=	3 -> 10	0.02379	
	$\max(4) =$	4 -> 9	0.03237		$\min(1) =$	3 -> 13	-0.03709	
	max(5)=	2 -> 9	0.01766		min(2)=	3 -> 9	-0.01426	
	$\min(1)=$	5 -> 11	-0.37344		$\min(3) =$	3 -> 24	-0.00479	
	$\min(2)=$	3 -> 8	-0.02482		$\min(4) =$	3 -> 19	-0.00293	
	min(3)=	3 -> 7	-0.02093		$\min(5) =$	4 -> 21	-0.00257	
	$\min(4) =$	4 -> 6	-0.01708		#states=2	9 #states>0=19 #sta	tes<0=10	
	$\min(5)=$	4 -> 14	-0.01236					
	#states=33 #s	tates>0=19 #sta	tes<0=14	19	Singlet-B2 31.	2720 39.65	0.0552	0.000
					$\max(1) =$	4 -> 12	0.70364	

	max(2)=	3 -> 9	0.00621		max(4)=	3 -> 19	0.00651	
	max(3)=	4 -> 26	0.00557		max(5)=	2 -> 12	0.00643	
	max(4)=	4 -> 21	0.00257		min(1)=	2 -> 8	-0.04556	
	max(5)=	4 -> 29	0.00248		min(2)=	5 -> 15	-0.02289	
	min(1)=	3 -> 10	-0.05643		min(3)=	2 -> 7	-0.01922	
	min(2)=	4 -> 7	-0.03140		min(4)=	3 -> 6	-0.01537	
	min(3)=	2 -> 8	-0.02077		min(5)=	4 -> 8	-0.00929	
	min(4)=	4 -> 18	-0.00909		#states=28 #st	tates>0=13 #sta	tes<0=15	
	min(5)=	3 -> 13	-0.00785					
	#states=29 #s	tates>0=12 #sta	tes<0=17	23	Singlet-B1 35.3546	35.07	0.2780	0.000
					max(1)=	5 -> 13	0.70377	
20	Singlet-A1 32.2158	38.49	0.0254	0.000	max(2)=	4 -> 16	0.01793	
	max(1)=	4 -> 10	0.44285		max(3)=	5 -> 6	0.00925	
	max(2)=	5 -> 11	0.31756		max(4)=	4 -> 11	0.00800	
	max(3)=	3 -> 8	0.08835		max(5)=	5 -> 20	0.00343	
	max(4)=	3 -> 7	0.08007		$\min(1) =$	5 -> 14	-0.05491	
	max(5)=	3 -> 18	0.01510		$\min(2)=$	3 -> 15	-0.02904	
	$\min(1)=$	3 -> 12	-0.38580		min(3)=	2 -> 11	-0.01841	
	min(2)=	2 -> 6	-0.14060		min(4)=	5 -> 10	-0.00858	
	$\min(3)=$	2 -> 9	-0.10601		$\min(5)=$	2 -> 16	-0.00635	
	min(4)=	4 -> 13	-0.07796		#states=20 #st	tates>0=9 #stat	es<0=11	
	min(5)=	2 -> 13	-0.04564					
	#states=34 #s	tates>0=13 #sta	tes<0=21	24	Singlet-B2 36.4613	34.00	0.0132	0.000
					max(1)=	2 -> 8	0.70193	
21	Singlet-A2 32.5557	38.08	0.0000	0.000	max(2)=	3 -> 10	0.04063	
	max(1)=	3 -> 11	0.70682		max(3)=	4 -> 12	0.02309	
	max(2)=	5 -> 12	0.01868		$\max(4)=$	3 -> 9	0.01872	
	max(3)=	3 -> 16	0.00515		max(5)=	3 -> 19	0.01043	
	max(4)=	3 -> 27	0.00474		$\min(1)=$	2 -> 7	-0.04660	
	max(5)=	2 -> 15	0.00408		$\min(2)=$	3 -> 13	-0.04061	
	$\min(1) =$	5 -> 21	-0.00040		$\min(3)=$	5 -> 15	-0.02747	
	$\min(2)=$	2 -> 23	-0.00013		$\min(4) =$	3 -> 6	-0.01090	
	$\min(3)=$	5 -> 17	-0.00008		$\min(5)=$	2 -> 12	-0.00575	
	$\min(4)=$	5 -> 26	0.00015		#states=29 #st	tates>0=16 #sta	tes<0=13	
	$\min(5)=$	5 -> 29	0.00021					
	#states=16 #s	tates>0=13 #sta	tes<0=3	25	Singlet-A1 36.7454	33.74	0.0155	0.000
					$\max(1) =$	4 -> 13	0.45863	
22	Singlet-B2 32.6057	38.03	0.0715	0.000	max(2)=	2 -> 9	0.37355	
	max(1)=	3 -> 10	0.70183		max(3)=	2 -> 6	0.05708	
	max(2)=	4 -> 12	0.05425		$\max(4)=$	4 -> 14	0.04690	
	max(3)=	3 -> 9	0.03306		$\max(5) =$	2 -> 13	0.02161	

	min(1))= 3 ->	• 12	-0.36537			min(3)=	4 ->	18	-0.00602	
	min(2))= 4 ->	• 10	-0.07242			min(4) =	4 ->	7	-0.00452	
	min(3))= 5->	• 11	-0.06040			min(5) =	2 ->	12	-0.00221	
	min(4))= 3 ->	8	-0.03184			#stat	es=27 #st	ates>(0=18 #stat	es<0=9	
	min(5))= 2 ->	• 10	-0.02044								
	#state	es=34 #states>	•0=18 #state	es<0=16	29	Single	t-A1	41.5677		29.83	0.1166	0.000
							max(1)=	3 ->	12	0.43955	
26	Singlet-A1	37.7280	32.86	0.1525	0.000		max(2)=	2 ->	9	0.28204	
	max(1))= 2 ->	9	0.51484			max(3)=	5 ->	11	0.24599	
	max(2))= 3 ->	8	0.01380			max(4)=	4 ->	10	0.23623	
	max(3))= 2 ->	• 6	0.01327			max(5) =	4 ->	13	0.22929	
	max(4))= 2 ->	• 10	0.01316			min(1) =	2 ->	13	-0.15527	
	max(5))= 3 ->	• 18	0.00515			min(2) =	4 ->	14	-0.12715	
	min(1))= 4 ->	• 13	-0.47829			min(3) =	2 ->	6	-0.10825	
	min(2))= 3 ->	• 12	-0.07042			min(4)=	4 ->	9	-0.04234	
	min(3))= 4 ->	• 10	-0.02153			min(5)=	2 ->	14	-0.03711	
	min(4))= 5->	• 16	-0.01458			#stat	es=34 #st	ates>(0=16 #stat	es<0=18	
	min(5))= 4 ->	9	-0.00910								
	#state	es=34 #states>	•0=16 #state	es<0=18	30	Single	t-B2	41.7356		29.71	0.2993	0.000
							max(1)=	3 ->	13	0.49106	
27	Singlet-B1	39.9174	31.06	0.1543	0.000		max(2)=	3 ->	14	0.11443	
	max(1))= 5->	• 14	0.70186			max(3)=	2 ->	7	0.04167	
	max(2))= 5->	• 13	0.05138			max(4)=	4 ->	18	0.03530	
	max(3))= 4 ->	• 16	0.03444			max(5) =	4 ->	8	0.03363	
	max(4))= 5->	20	0.00563			min(1)=	5 ->	15	-0.48759	
	max(5))= 5->	• 6	0.00309			min(2)=	2 ->	12	-0.03995	
	min(1))= 3 ->	• 15	-0.05544			min(3) =	3 ->	9	-0.02908	
	min(2))= 5->	• 9	-0.01411			min(4) =	3 ->	19	-0.02258	
	min(3))= 5->	• 10	-0.01302			min(5) =	4 ->	17	-0.01930	
	min(4))= 2 ->	• 16	-0.00800			#stat	es=29 #st	ates>(0=15 #stat	es<0=14	
	min(5))= 5->	24	-0.00635								
	#state	es=21 #states>	•0=10 #state	es<0=11	31	Single	t-A2	42.5653		29.13	0.0000	0.000
							max(1)=	4 ->	15	0.70702	
28	Singlet-B2	41.0057	30.24	0.1354	0.000		max(2)=	4 ->	23	0.00788	
	max(1))= 3 ->	• 13	0.50218			max(3)=	3 ->	16	0.00465	
	max(2))= 5 ->	• 15	0.49075			max(4)=	5 ->	21	0.00433	
	max(3))= 2 ->	8	0.04624			max(5)=	2 ->	23	0.00263	
	max(4))= 3 ->	9	0.03435			min(1)=	2 ->	15	-0.00344	
	max(5))= 3 ->	• 10	0.01399			min(2)=	5 ->	12	-0.00287	
	min(1))= 3 ->	• 14	-0.05363			min(3)=	3 ->	11	-0.00231	
	min(2))= 4 ->	8	-0.01843			min(4)=	5 ->	18	-0.00197	

	min(5)=	3 -> 22	-0.00088		$\max(5) =$	5 -> 14	0.01143	
	#states=16 #:	states>0=8 #stat	es<0=8		$\min(1)=$	4 -> 16	-0.04529	
					$\min(2)=$	5 -> 20	-0.01266	
32	Singlet-A1 43.0050	28.83	0.2949	0.000	$\min(3)=$	5 -> 25	-0.00640	
	max(1)=	4 -> 14	0.65511		$\min(4)=$	5 -> 6	-0.00352	
	max(2)=	3 -> 12	0.07714		min(5)=	5 -> 24	-0.00331	
	max(3)=	4 -> 10	0.06582		#states=21 #s	tates>0=15 #sta	tes<0=6	
	max(4)=	5 -> 11	0.05746					
	max(5)=	3 -> 8	0.04229	35	Singlet-B2 46.6248	26.59	0.4669	0.000
	min(1)=	5 -> 16	-0.21775		$\max(1)=$	3 -> 14	0.69181	
	min(2)=	2 -> 10	-0.05573		max(2)=	5 -> 15	0.11017	
	min(3)=	2 -> 13	-0.05376		max(3)=	2 -> 12	0.06058	
	min(4)=	4 -> 9	-0.02003		max(4)=	3 -> 9	0.02927	
	min(5)=	3 -> 17	-0.01494		max(5)=	3 -> 19	0.02577	
	#states=34 #s	states>0=19 #sta	tes<0=15		$\min(1)=$	3 -> 13	-0.03756	
					$\min(2)=$	4 -> 18	-0.03331	
33	Singlet-A1 46.190	1 26.84	0.4031	0.000	$\min(3)=$	4 -> 8	-0.02828	
	max(1)=	2 -> 10	0.61488		$\min(4) =$	2 -> 7	-0.01462	
	max(2)=	2 -> 13	0.05756		min(5)=	5 -> 23	-0.01454	
	max(3)=	4 -> 9	0.01346		#states=29 #s	tates>0=14 #sta	tes<0=15	
	max(4)=	2 -> 14	0.01293					
	max(5)=	4 -> 13	0.01091	36	Singlet-B1 47.1570	26.29	0.0698	0.000
	$\min(1)=$	5 -> 16	-0.33361		max(1)=	3 -> 15	0.58822	
	$\min(2)=$	3 -> 12	-0.04863		max(2)=	4 -> 16	0.37646	
	$\min(3)=$	4 -> 14	-0.03980		max(3)=	5 -> 14	0.02667	
	$\min(4)=$	4 -> 10	-0.03068		max(4)=	5 -> 13	0.01396	
	$\min(5)=$	5 -> 11	-0.02834		max(5)=	2 -> 22	0.00588	
	#states=34 #:	states>0=20 #sta	tes<0=14		$\min(1)=$	2 -> 11	-0.10346	
					$\min(2)=$	5 -> 19	-0.02000	
34	Singlet-B1 46.3378	3 26.76	0.3301	0.000	$\min(3)=$	5 -> 9	-0.01160	
	max(1)=	2 -> 11	0.68852		$\min(4)=$	4 -> 22	-0.01026	
	max(2)=	3 -> 15	0.14998		$\min(5)=$	5 -> 10	-0.00410	
	max(3)=	5 -> 13	0.02656		#states=20 #s	tates>0=11 #sta [.]	tes<0=9	
	$\max(4)=$	5 -> 19	0.01564					

7.1.3 Main contributions from different excited states at CIS approach

#_exc.st	symm	Exc.E OscSt	rength _	f<	5**2>_	$\max(1) =$	5 -> 6	0.69518
						max(2) =	5 -> 10	0.05494
1	Singlet-B1	9.1435	135.60	0.0334	0.000	max(3) =	5 -> 25	0.00722

	$\max(4)=$	5 -> 19	0.00552		$\min(1) =$	2 -> 7	-0.01435	
	max(5)=	5 -> 24	0.00356		min(2)=	4 -> 18	-0.00906	
	min(1)=	5 -> 9	-0.10597		min(3)=	3 -> 19	-0.00604	
	min(2)=	5 -> 13	-0.04558		$\min(4)=$	2 -> 8	-0.00597	
	min(3)=	5 -> 14	-0.01226		min(5)=	2 -> 18	-0.00540	
	min(4)=	5 -> 20	-0.00711		#states=28 #s	tates>0=17 #stat	tes<0=11	
	min(5)=	4 -> 22	-0.00503					
	#states=20 #	states>0=9 #stat	es<0=11	5	Singlet-B2 15.1582	81.79	0.2558	0.000
					max(1)=	3 -> 6	0.69771	
2	Singlet-A2 10.997	76 112.74	0.0000	0.000	max(2)=	3 -> 10	0.05047	
	max(1)=	5 -> 7	0.67657		max(3)=	4 -> 7	0.00692	
	max(2)=	5 -> 8	0.17849		max(4)=	3 -> 19	0.00438	
	max(3)=	5 -> 12	0.09969		max(5)=	5 -> 15	0.00434	
	$\max(4)=$	5 -> 21	0.00613		min(1)=	3 -> 9	-0.08306	
	max(5)=	5 -> 29	0.00465		min(2)=	4 -> 8	-0.03719	
	min(1)=	5 -> 18	-0.01808		min(3)=	3 -> 13	-0.03667	
	min(2)=	3 -> 11	-0.00342		min(4)=	2 -> 7	-0.02717	
	min(3)=	2 -> 23	-0.00233		min(5)=	3 -> 20	-0.00886	
	min(4)=	4 -> 15	-0.00054		#states=27 #s	tates>0=14 #stat	ces<0=13	
	min(5)=	4 -> 23	-0.00027					
	#states=16 #	states>0=10 #sta	tes<0=6	6	Singlet-A1 18.1618	68.27	0.1038	0.000
					max(1)=	3 -> 7	0.68186	
3	Singlet-A1 11.628	106.62	0.1068	0.000	max(2)=	3 -> 8	0.08424	
	max(1)=	4 -> 6	0.69628		max(3)=	4 -> 9	0.06440	
	max(2)=	4 -> 10	0.01680		max(4)=	4 -> 6	0.04995	
	max(3)=	4 -> 19	0.00583		max(5)=	3 -> 12	0.04112	
	$\max(4)=$	3 -> 18	0.00353		min(1)=	5 -> 11	-0.11005	
	max(5)=	2 -> 19	0.00296		min(2)=	4 -> 10	-0.08070	
	min(1)=	4 -> 9	-0.08738		min(3)=	2 -> 13	-0.02116	
	min(2)=	4 -> 13	-0.04633		min(4)=	4 -> 14	-0.01121	
	min(3)=	3 -> 7	-0.04312		min(5)=	4 -> 13	-0.00981	
	min(4)=	5 -> 11	-0.03734		#states=32 #s	tates>0=14 #stat	ces<0=18	
	min(5)=	3 -> 8	-0.03001					
	#states=31 #	states>0=10 #sta	tes<0=21	7	Singlet-A2 18.3499	67.57	0.0000	0.000
					max(1)=	5 -> 8	0.68094	
4	Singlet-B2 13.460	92.11	0.0774	0.000	max(2)=	5 -> 12	0.02015	
	max(1)=	4 -> 7	0.69007		max(3)=	5 -> 17	0.01640	
	max(2)=	4 -> 8	0.11713		$\max(4) =$	2 -> 15	0.00592	
	max(3)=	4 -> 12	0.09317		max(5)=	5 -> 29	0.00344	
	max(4)=	3 -> 9	0.02572		$\min(1)=$	5 -> 7	-0.18393	
	$\max(5)=$	5 -> 15	0.01164		$\min(2)=$	5 -> 18	-0.04149	

	min(3)=	3 -> 11	-0.00457			min(5)=	3 ->	18	-0.00817	
	$\min(4)=$	2 -> 23	-0.00179			#stat	es=32 #st	ates>()=19 #stat	ces<0=13	
	$\min(5)=$	5 -> 26	-0.00082								
	#states=15 #st	ates>0=10 #stat	es<0=5	11	Singlet	-A1	25.6809		48.28	0.3664	0.000
						max(1)=	3 ->	8	0.67337	
8	Singlet-B1 20.2860	61.12	0.1541	0.000		max(2)=	2 ->	9	0.03073	
	max(1)=	5 -> 9	0.68891			max(3)=	3 ->	12	0.02558	
	max(2)=	5 -> 6	0.11412			max(4)=	4 ->	13	0.01546	
	max(3)=	5 -> 14	0.02534			max(5)=	4 ->	6	0.01047	
	$\max(4)=$	3 -> 15	0.02465			min(1)=	5 ->	11	-0.14822	
	$\max(5)=$	4 -> 22	0.01113			min(2)=	3 ->	7	-0.11290	
	min(1)=	5 -> 10	-0.09559			min(3)=	4 ->	10	-0.05653	
	min(2)=	5 -> 19	-0.02832			min(4)=	4 ->	9	-0.04766	
	$\min(3)=$	4 -> 16	-0.01626			min(5)=	4 ->	14	-0.04454	
	$\min(4)=$	2 -> 11	-0.01490			#stat	es=31 #st	ates>()=14 #stat	ces<0=17	
	$\min(5)=$	5 -> 25	-0.01030								
	#states=21 #st	ates>0=12 #stat	es<0=9	12	Singlet	:-B2	27.0060		45.91	0.5800	0.000
						max(1)=	3 ->	9	0.67812	
9	Singlet-B2 21.5272	57.59	0.2114	0.000		max(2)=	3 ->	6	0.08248	
	$\max(1)=$	4 -> 8	0.67789			max(3)=	2 ->	7	0.04611	
	$\max(2)=$	3 -> 9	0.13310			max(4)=	2 ->	8	0.03192	
	max(3)=	3 -> 6	0.05162			max(5)=	2 ->	12	0.02255	
	$\max(4)=$	5 -> 15	0.03412			min(1)=	4 ->	8	-0.13319	
	$\max(5)=$	3 -> 14	0.02330			min(2)=	3 ->	10	-0.08283	
	$\min(1)=$	4 -> 7	-0.12491			min(3)=	5 ->	15	-0.05735	
	$\min(2)=$	4 -> 18	-0.02601			min(4)=	4 ->	12	-0.02643	
	$\min(3)=$	2 -> 7	-0.02316			min(5)=	3 ->	19	-0.01851	
	$\min(4)=$	3 -> 13	-0.01782			#stat	es=27 #st	ates>()=12 #stat	ces<0=15	
	$\min(5)=$	3 -> 19	-0.01612								
	#states=28 #st	ates>0=16 #stat	es<0=12	13	Singlet	:-B1	27.2615		45.48	0.0033	0.000
						max(1)=	5 ->	10	0.69414	
10	Singlet-A1 22.3378	55.50	0.0065	0.000		max(2)=	5 ->	9	0.10012	
	$\max(1) =$	4 -> 9	0.68979			max(3)=	5 ->	14	0.03855	
	$\max(2)=$	4 -> 6	0.09055			max(4)=	5 ->	13	0.03081	
	max(3)=	5 -> 11	0.07695			max(5)=	5 ->	19	0.01715	
	$\max(4)=$	3 -> 8	0.05313			min(1)=	4 ->	11	-0.05686	
	$\max(5) =$	4 -> 14	0.01915			min(2)=	5 ->	6	-0.03750	
	$\min(1) =$	3 -> 7	-0.06763			min(3)=	4 ->	16	-0.01272	
	$\min(2)=$	4 -> 19	-0.03185			min(4)=	5 ->	20	-0.00870	
	$\min(3)=$	2 -> 6	-0.02035			min(5)=	2 ->	11	-0.00357	
	$\min(4)=$	4 -> 10	-0.00954			#stat	es=21 #st	ates>()=13 #stat	ces<0=8	

					$\max(1)=$	2 -> 6	0.60273	
14	Singlet-A1 28.2577	7 43.88	0.0348	0.000	$\max(2)=$	4 -> 10	0.28259	
	max(1)=	5 -> 11	0.52721		max(3)=	5 -> 11	0.15393	
	max(2)=	3 -> 8	0.07978		$\max(4)=$	3 -> 8	0.07180	
	max(3)=	2 -> 6	0.05201		max(5)=	3 -> 7	0.05580	
	max(4)=	4 -> 6	0.03192		min(1)=	2 -> 9	-0.10806	
	max(5)=	3 -> 7	0.02822		min(2)=	3 -> 12	-0.08806	
	$\min(1)=$	4 -> 10	-0.44913		$\min(3)=$	2 -> 13	-0.04101	
	min(2)=	4 -> 9	-0.07043		$\min(4)=$	4 -> 14	-0.02765	
	min(3)=	3 -> 12	-0.04264		min(5)=	5 -> 16	-0.01880	
	$\min(4)=$	2 -> 9	-0.03126		#states=33 #s	tates>0=21 #sta	tes<0=12	
	min(5)=	4 -> 13	-0.02101					
	#states=32 #s	states>0=14 #sta	tes<0=18	18	Singlet-B2 32.9175	37.67	0.0662	0.000
					$\max(1)=$	4 -> 12	0.69403	
15	Singlet-B1 29.3023	3 42.31	0.0020	0.000	max(2)=	2 -> 7	0.07541	
	max(1)=	4 -> 11	0.70379		max(3)=	2 -> 12	0.02083	
	max(2)=	5 -> 10	0.05384		$\max(4)=$	4 -> 26	0.01833	
	max(3)=	5 -> 13	0.02516		max(5)=	4 -> 29	0.01056	
	$\max(4)=$	4 -> 27	0.01977		$\min(1) =$	4 -> 7	-0.08737	
	max(5)=	5 -> 9	0.01682		$\min(2) =$	4 -> 8	-0.03599	
	min(1)=	2 -> 22	-0.00480		min(3)=	3 -> 10	-0.03290	
	$\min(2)=$	2 -> 16	-0.00368		$\min(4) =$	4 -> 18	-0.03150	
	$\min(3)=$	5 -> 20	-0.00182		$\min(5) =$	2 -> 8	-0.01558	
	$\min(4)=$	5 -> 25	-0.00170		#states=25 #s	tates>0=12 #sta	tes<0=13	
	$\min(5)=$	5 -> 24	-0.00143					
	#states=20 #s	states>0=15 #sta	tes<0=5	19	Singlet-A2 33.7332	36.75	0.0000	0.000
					$\max(1)=$	3 -> 11	0.70597	
16	Singlet-A2 30.8203	40.23	0.0000	0.000	$\max(2)=$	3 -> 16	0.02493	
	max(1)=	5 -> 12	0.69802		max(3)=	5 -> 12	0.02242	
	max(2)=	5 -> 26	0.02110		$\max(4) =$	3 -> 27	0.01668	
	max(3)=	5 -> 29	0.01102		max(5)=	2 -> 15	0.01003	
	max(4)=	5 -> 21	0.01074		min(1)=	2 -> 23	-0.00610	
	max(5)=	2 -> 15	0.00323		$\min(2)=$	4 -> 15	-0.00465	
	min(1)=	5 -> 7	-0.09158		min(3)=	5 -> 7	-0.00081	
	min(2)=	5 -> 8	-0.04745		$\min(4)=$	5 -> 29	-0.00013	
	min(3)=	5 -> 18	-0.03045		min(5)=	5 -> 26	-0.00011	
	$\min(4)=$	3 -> 11	-0.02195		#states=16 #s	tates>0=11 #sta	tes<0=5	
	min(5)=	2 -> 23	-0.00255					
	#states=16 #s	states>0=6 #state	es<0=10	20	Singlet-B2 33.9624	36.51	0.0927	0.000
					$\max(1)=$	3 -> 10	0.65878	
17	Singlet-A1 32.1386	38.58	0.0020	0.000	$\max(2)=$	2 -> 7	0.23906	

	max(3)=	3 -> 9	0.06643		max(5)=	4 -> 16	0.01432	
	max(4)=	2 -> 12	0.04028		$\min(1)=$	3 -> 15	-0.02827	
	max(5)=	3 -> 14	0.02538		$\min(2)=$	5 -> 10	-0.02638	
	min(1)=	3 -> 6	-0.03125		$\min(3)=$	4 -> 11	-0.02333	
	min(2)=	3 -> 13	-0.01754		$\min(4) =$	5 -> 9	-0.01633	
	min(3)=	5 -> 15	-0.00884		min(5)=	5 -> 25	-0.01609	
	min(4)=	3 -> 20	-0.00816		#states=21 #s	tates>0=10 #stat	tes<0=11	
	min(5)=	2 -> 18	-0.00727					
	#states=28 #s	states>0=16 #sta	ates<0=12	24	Singlet-A1 38.6227	32.10	0.1823	0.000
					$\max(1)=$	4 -> 13	0.68243	
21	Singlet-A1 34.4238	36.02	0.0476	0.000	max(2)=	4 -> 14	0.06061	
	max(1)=	3 -> 12	0.42831		max(3) =	4 -> 6	0.04244	
	max(2)=	2 -> 6	0.32214		$\max(4) =$	2 -> 6	0.03135	
	max(3)=	2 -> 9	0.04064		$\max(5)=$	2 -> 10	0.03108	
	max(4)=	4 -> 9	0.02431		$\min(1) =$	3 -> 12	-0.13386	
	max(5)=	4 -> 14	0.02087		min(2)=	4 -> 10	-0.07313	
	min(1)=	4 -> 10	-0.34337		min(3)=	5 -> 11	-0.04533	
	min(2)=	5 -> 11	-0.25990		min(4)=	3 -> 8	-0.02165	
	min(3)=	3 -> 8	-0.11649		min(5)=	4 -> 25	-0.01294	
	min(4)=	3 -> 7	-0.09233		#states=33 #s	tates>0=22 #stat	tes<0=11	
	min(5)=	3 -> 18	-0.02545					
	#states=33 #s	states>0=20 #sta	ates<0=13	25	Singlet-B2 41.7617	29.69	0.0071	0.000
					$\max(1)=$	2 -> 8	0.68256	
22	Singlet-B2 34.5364	4 35.90	0.0024	0.000	$\max(2)=$	3 -> 10	0.04830	
	max(1)=	2 -> 7	0.63055		$\max(3) =$	4 -> 12	0.03401	
	max(2)=	2 -> 8	0.16759		$\max(4) =$	2 -> 12	0.02331	
	max(3)=	2 -> 12	0.06511		$\max(5)=$	5 -> 15	0.01912	
	$\max(4)=$	5 -> 15	0.06019		$\min(1)=$	2 -> 7	-0.16609	
	max(5)=	4 -> 8	0.03692		$\min(2)=$	2 -> 18	-0.03097	
	min(1)=	3 -> 10	-0.22620		$\min(3) =$	4 -> 17	-0.01476	
	min(2)=	3 -> 9	-0.07412		$\min(4) =$	3 -> 6	-0.01196	
	min(3)=	4 -> 12	-0.07274		$\min(5) =$	3 -> 9	-0.01089	
	min(4)=	3 -> 13	-0.03724		#states=28 #s	tates>0=16 #sta	tes<0=12	
	min(5)=	2 -> 18	-0.00980					
	#states=28 #s	states>0=16 #sta	ates<0=12	26	Singlet-B1 42.0235	29.50	0.1561	0.000
					$\max(1)=$	5 -> 14	0.70071	
23	Singlet-B1 36.5430	33.93	0.3422	0.000	$\max(2)=$	2 -> 11	0.03494	
	max(1)=	5 -> 13	0.70240		max(3)=	4 -> 16	0.03492	
	max(2)=	5 -> 6	0.04567		$\max(4) =$	5 -> 20	0.01183	
	max(3)=	2 -> 11	0.03321		$\max(5)=$	5 -> 6	0.01042	
	max(4)=	5 -> 20	0.02217		$\min(1) =$	3 -> 15	-0.05856	

	min(2)=	5 -> 10	-0.03304		min(4):	= 4 -> 8	-0.04507	
	min(3)=	5 -> 9	-0.02867		min(5)	= 4 -> 18	-0.03734	
	$\min(4)=$	5 -> 24	-0.02765		#state:	s=29 #states>0=13 #s	tates<0=16	
	$\min(5)=$	2 -> 16	-0.00874					
	#states=21 #st	ates>0=9 #state	s<0=12	30	Singlet-A2	44.8333 27.6	5 0.0000	0.000
					max(1):	= 4 -> 15	0.70546	
27	Singlet-A1 42.1927	29.39	0.0734	0.000	max(2)=	= 4 -> 23	0.02901	
	max(1)=	2 -> 9	0.54454		max(3):	= 3 -> 11	0.00592	
	max(2)=	2 -> 6	0.15166		max(4):	= 2 -> 23	0.00589	
	max(3)=	4 -> 14	0.08151		max(5)=	= 5 -> 21	0.00578	
	$\max(4)=$	5 -> 16	0.04288		min(1)	= 2 -> 15	-0.02964	
	max(5)=	2 -> 13	0.03024		min(2)=	= 3 -> 16	-0.02206	
	$\min(1)=$	3 -> 12	-0.34801		min(3)	= 5 -> 12	-0.00231	
	min(2)=	4 -> 10	-0.12503		min(4)=	= 5 -> 18	-0.00173	
	min(3)=	5 -> 11	-0.11016		min(5)	= 3 -> 22	-0.00158	
	$\min(4)=$	4 -> 13	-0.10997		#state:	s=16 #states>0=10 #s	tates<0=6	
	min(5)=	2 -> 10	-0.07825					
	#states=32 #st	ates>0=15 #stat	es<0=17	31	Singlet-A1	45.0818 27.5	0 0.2982	0.000
					max(1):	= 4 -> 14	0.47648	
28	Singlet-B2 42.6650	29.06	0.0658	0.000	max(2)=	= 2 -> 13	0.07653	
	max(1)=	3 -> 13	0.62289		max(3):	= 2 -> 6	0.04783	
	max(2)=	5 -> 15	0.32791		max(4)=	= 5 -> 22	0.02402	
	max(3)=	2 -> 12	0.04011		max(5):	= 2 -> 20	0.01195	
	max(4)=	3 -> 6	0.03196		min(1):	= 2 -> 9	-0.34241	
	max(5)=	3 -> 20	0.02091		min(2):	= 3 -> 12	-0.25008	
	$\min(1)=$	3 -> 14	-0.01060		min(3):	= 5 -> 11	-0.16084	
	min(2)=	3 -> 25	-0.00644		min(4):	= 4 -> 10	-0.15815	
	min(3)=	4 -> 8	-0.00507		min(5):	= 5 -> 16	-0.11879	
	$\min(4)=$	4 -> 7	-0.00289		#state:	s=33 #states>0=18 #s	tates<0=15	
	min(5)=	2 -> 8	-0.00155					
	#states=29 #st	ates>0=20 #stat	es<0=9	32	Singlet-A1	45.7819 27.0	8 0.1032	0.000
					max(1):	= 4 -> 14	0.44738	
29	Singlet-B2 43.9053	28.24	0.4593	0.000	max(2)=	= 3 -> 12	0.29431	
	max(1)=	5 -> 15	0.60140		max(3):	= 2 -> 9	0.25822	
	max(2)=	3 -> 9	0.05190		max(4):	= 5 -> 11	0.19824	
	max(3)=	3 -> 19	0.02666		max(5)=	= 4 -> 10	0.17814	
	max(4)=	4 -> 17	0.02440		min(1):	= 5 -> 16	-0.22536	
	max(5)=	3 -> 10	0.01691		min(2):	= 2 -> 13	-0.09773	
	min(1)=	3 -> 13	-0.31918		min(3):	= 2 -> 6	-0.04880	
	min(2)=	3 -> 14	-0.15346		$\min(4)$:	= 4 -> 9	-0.03835	

				35	Singlet-A	49.6651	24.96	0.9053	0.000
33	Singlet-B2 4	18.5010	25.56 0.62	10 0.000	ma	x(1)=	5 -> 16	0.60968	
	max(1)=	= 3 ->	14 0.67	999	ma	x(2)=	4 -> 14	0.19094	
	max(2)=	= 5 ->	15 0.12	960	ma	x(3)=	3 -> 12	0.08274	
	max(3)=	= 2 ->	12 0.08	822	ma	x(4)=	4 -> 10	0.06910	
	max(4)=	= 4 ->	17 0.04	585	ma	x(5)=	3 -> 18	0.05888	
	max(5)=	= 3 ->	19 0.02	988	mi	n(1)=	2 -> 10	-0.25123	
	min(1)=	= 3 ->	13 -0.06	053	mi	n(2)=	2 -> 13	-0.07250	
	min(2)=	= 2 ->	17 -0.04	136	mi	n(3)=	4 -> 19	-0.02658	
	min(3)=	= 4 ->	8 -0.03	682	mi	n(4)=	3 -> 17	-0.02650	
	min(4)=	= 4 ->	18 -0.03	179	mi	n(5)=	4 -> 9	-0.02388	
	min(5)=	= 2 ->	7 -0.03	020	#s ⁻	tates=33 #st	ates>0=16 #stat	es<0=17	
	#states=28 #states>0=13 #sta			5					
				36	Singlet-B	1 50.4783	24.56	0.2298	0.000
34	Singlet-B1 4	18.9576	25.32 0.60	80 0.000	ma	x(1)=	2 -> 11	0.54624	
	max(1)=	= 3 ->	15 0.64	380	ma	x(2)=	2 -> 16	0.02227	
	max(2)=	= 2 ->	11 0.25	506	ma	x(3)=	4 -> 22	0.01636	
	max(3)=	= 4 ->	16 0.12	313	ma	x(4)=	2 -> 27	0.01540	
	max(4)=	= 2 ->	16 0.04	626	ma	x(5)=	5 -> 9	0.00624	
	max(5)=	= 5 ->	14 0.03	417	mi	n(1)=	4 -> 16	-0.42598	
	min(1)=	= 5 ->	19 -0.02	506	mi	n(2)=	3 -> 15	-0.13474	
	min(2)=	= 5 ->	9 -0.01	912	mi	n(3)=	5 -> 13	-0.02236	
	min(3)=	= 4 ->	22 -0.01	893	mi	n(4)=	5 -> 14	-0.01666	
	min(4)=	= 4 ->	11 -0.00	794	mi	n(5)=	3 -> 23	-0.01037	
	min(5)=	= 5 ->	10 -0.00	645	#s ⁻	tates=20 #st	ates>0=10 #stat	es<0=10	

#states=32 #states>0=16 #states<0=16</pre>

#states=20 #states>0=14 #states<0=6</pre>

7.2 6-311++G(d,p)

7.2.1 Plots

Figure S10: For H₂O molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (bottom) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S10a and S10c) or states (SOS approaches, in Plots S10b and S10d). For α FIOs, three approaches were considered: CPKS (CAM-B3LYP), CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. All elements of the β tensor were recomputed with an error less than 0.01 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

7.2.2 Main contributions from different excited states at TDDFT (CAM-B3LYP) approach
#_exc.st	symm	Exc.E Osc.	Strength	f	<s4**2>_</s4**2>	Singlet-B2	10.7886		114.92	0.0220	0.000
						max(1)=	4 ->	7	0.69084	
1	Singlet-B1	7.0656	175.48	0.0430	0.000	max(2)=	4 ->	12	0.11322	
	max(1)=	= 5-	-> 6	0.69164		max(3)=	4 ->	11	0.09718	
	max(2)=	= 5-	-> 9	0.02286		max(4)=	3 ->	8	0.01419	
	max(3)=	= 5-	-> 16	0.00818		max(5)=	3 ->	15	0.01030	
	max(4)=	= 2 -	-> 17	0.00446		min(1)=	2 ->	11	-0.00694	
	max(5)=	= 5-	-> 31	0.00316		min(2)=	3 ->	6	-0.00615	
	min(1)=	= 5-	-> 8	-0.14018		min(3)=	2 ->	7	-0.00548	
	min(2)=	= 5-	-> 13	-0.03766		min(4)=	3 ->	19	-0.00384	
	min(3)=	= 5-	-> 15	-0.01357		min(5)=	3 ->	9	-0.00355	
	min(4)=	= 4 -	-> 10	-0.00353		#CIs	=34 #CIs>0	=17 #0	CIs<0=17		
	min(5)=	= 3-	-> 29	-0.00260							
	#CIs=24	4 #CIs>0=15	#CIs<0=9		5	Singlet-B1	11.3098		109.63	0.0135	0.000
						max(1)=	5 ->	8	0.61707	
2	Singlet-A2	8.6960	142.58	0.0000	0.000	max(2)=	5 ->	9	0.31795	
	max(1)=	= 5-	-> 7	0.68100		max(3)=	5 ->	6	0.11232	
	max(2)=	= 5-	-> 11	0.14949		max(4)=	5 ->	15	0.03812	
	max(3)=	= 5-	-> 12	0.11540		max(5)=	3 ->	20	0.00328	
	max(4)=	= 5-	-> 18	0.00966		min(1)=	5 ->	13	-0.05807	
	max(5)=	= 2 -	-> 20	0.00197		min(2)=	5 ->	16	-0.02629	
	min(1)=	= 5-	-> 14	-0.02226		min(3)=	2 ->	10	-0.00579	
	min(2)=	= 3-	-> 10	-0.00261		min(4)=	5 ->	19	-0.00305	
	min(3)=	= 3-	-> 17	-0.00148		min(5)=	4 ->	10	-0.00149	
	min(4)=	= 5-	-> 32	-0.00065		#CIs	=25 #CIs>0	=12 #0	CIs<0=13		
	min(5)=	= 4 -	-> 20	0.00009							
	#CIs=19	9 #CIs>0=15	#CIs<0=4		6	Singlet-A2	11.6120		106.77	0.0000	0.000
						max(1)=	5 ->	11	0.68564	
3	Singlet-A1	9.1679	135.24	0.0909	0.000	max(2)=	5 ->	18	0.00691	
	max(1)=	= 4 -	-> 6	0.69150		max(3)=	2 ->	20	0.00282	
	max(2)=	= 4 -	-> 9	0.05192		max(4)=	5 ->	24	0.00274	
	max(3)=	= 3-	-> 14	0.01310		max(5)=	5 ->	12	0.00157	
	max(4)=	= 2 -	-> 9	0.00593		min(1)=	5 ->	7	-0.15347	
	max(5)=	= 2 -	-> 16	0.00377		min(2)=	5 ->	14	-0.07909	
	min(1)=	= 4 -	-> 8	-0.10644		min(3)=	3 ->	10	-0.00732	
	min(2)=	= 5-	-> 10	-0.06702		min(4)=	3 ->	17	-0.00117	
	min(3)=	= 4 -	-> 13	-0.04911		min(5)=	5 ->	32	-0.00044	
	min(4)=	= 3-	-> 11	-0.02173		#CIs	=19 #CIs>0	=14 #0	CIs<0=5		
	min(5)=	= 3-	-> 7	-0.01263							
	#CIs=42	2 #CIs>0=18	#CIs<0=24		7	Singlet-B1	11.8022		105.05	0.0041	0.000
						max(1)=	5 ->	9	0.62946	

	max(2)=	4 -> 10	0.03259		max(4)=	5 -> 8	0.02209	
	max(3)=	2 -> 10	0.00942		max(5)=	5 -> 6	0.01483	
	max(4)=	4 -> 22	0.00487		min(1)=	5 -> 9	-0.02346	
	max(5)=	4 -> 17	0.00454		min(2)=	5 -> 15	-0.00582	
	min(1)=	5 -> 8	-0.30783		min(3)=	5 -> 16	-0.00465	
	min(2)=	5 -> 6	-0.08343		min(4)=	4 -> 22	-0.00297	
	min(3)=	5 -> 15	-0.02764		min(5)=	5 -> 25	-0.00249	
	min(4)=	5 -> 21	-0.00965		#CIs=26 #CIs>0)=14 #CIs<0=12		
	min(5)=	5 -> 16	-0.00793					
	#CIs=25 #CIs	>0=11 #CIs<0=14		11	Singlet-A2 13.5756	91.33	0.0000	0.000
					max(1)=	5 -> 12	0.69638	
8	Singlet-A1 12.062	0 102.79	0.0003	0.000	max(2)=	5 -> 18	0.03155	
	max(1)=	5 -> 10	0.65817		max(3)=	2 -> 20	0.00131	
	max(2)=	4 -> 9	0.16900		$\max(4) =$	5 -> 24	0.00105	
	max(3)=	4 -> 8	0.14652		max(5)=	5 -> 23	0.00070	
	$\max(4)=$	4 -> 6	0.06805		$\min(1)=$	5 -> 7	-0.11265	
	max(5)=	4 -> 15	0.01365		$\min(2)=$	5 -> 11	-0.02965	
	$\min(1)=$	3 -> 7	-0.07841		$\min(3)=$	5 -> 14	-0.02148	
	$\min(2)=$	3 -> 11	-0.04695		$\min(4) =$	3 -> 10	-0.00598	
	$\min(3)=$	3 -> 12	-0.04549		$\min(5)=$	3 -> 17	-0.00171	
	$\min(4)=$	4 -> 13	-0.03117		#CIs=19 #CIs>0)=13 #CIs<0=6		
	$\min(5)=$	4 -> 16	-0.02145					
	#CIs=42 #CIs	>0=17 #CIs<0=25		12	Singlet-A1 13.6771	90.65	0.0098	0.000
					max(1)=	4 -> 8	0.62303	
9	Singlet-B2 13.095	0 94.68	0.1017	0.000	max(2)=	3 -> 7	0.12860	
	max(1)=	3 -> 6	0.68118		max(3)=	4 -> 6	0.11331	
	max(2)=	4 -> 7	0.02655		max(4)=	3 -> 11	0.06724	
	max(3)=	4 -> 14	0.02207		max(5)=	4 -> 15	0.04742	
	max(4)=	3 -> 16	0.00659		$\min(1)=$	4 -> 9	-0.26220	
	max(5)=	4 -> 12	0.00530		$\min(2)=$	5 -> 10	-0.06239	
	$\min(1)=$	4 -> 11	-0.13326		$\min(3)=$	4 -> 13	-0.03142	
	$\min(2)=$	3 -> 8	-0.12410		$\min(4) =$	3 -> 14	-0.02107	
	$\min(3)=$	3 -> 13	-0.03958		$\min(5)=$	2 -> 6	-0.01224	
	$\min(4)=$	2 -> 14	-0.00697		#CIs=41 #CIs>)=26 #CIs<0=15		
	$\min(5)=$	2 -> 7	-0.00589					
	#CIs=35 #CIs	>0=22 #CIs<0=13		13	Singlet-B1 13.9251	89.04	0.2295	0.000
					max(1)=	5 -> 13	0.69411	
10	Singlet-B1 13.484	7 91.94	0.0043	0.000	max(2)=	5 -> 6	0.04408	
	max(1)=	4 -> 10	0.69627		max(3)=	5 -> 8	0.04008	
	max(2)=	5 -> 13	0.11539		$\max(4) =$	5 -> 9	0.03321	
	max(3)=	4 -> 17	0.02519		max(5)=	2 -> 10	0.00825	

	min(1)=	4 -> 10	-0.11588		$\min(3)=$	4 -> 9	-0.18768	
	min(2)=	3 -> 20	-0.00829		$\min(4)=$	3 -> 11	-0.03757	
	min(3)=	4 -> 17	-0.00549		min(5)=	5 -> 17	-0.03005	
	$\min(4) =$	2 -> 17	-0.00266		#CIs=41 #CIs>	0=12 #CIs<0=29		
	min(5)=	5 -> 16	-0.00254					
	#CIs=26 #CI	[s>0=13 #CIs<0=13		17	Singlet-B2 15.5247	79.86	0.0042	0.000
					$\max(1)=$	4 -> 12	0.69625	
14	Singlet-A1 14.00	88.55	0.0329	0.000	max(2)=	4 -> 18	0.03145	
	max(1)=	4 -> 9	0.58843		max(3)=	3 -> 9	0.01360	
	max(2)=	3 -> 7	0.30091		max(4)=	4 -> 11	0.00900	
	max(3)=	4 -> 8	0.16055		max(5)=	2 -> 14	0.00268	
	max(4)=	3 -> 11	0.10152		$\min(1)=$	4 -> 7	-0.11596	
	max(5)=	3 -> 12	0.08715		$\min(2)=$	4 -> 14	-0.01951	
	$\min(1)=$	5 -> 10	-0.13441		$\min(3) =$	3 -> 13	-0.01010	
	min(2)=	4 -> 6	-0.02044		$\min(4) =$	2 -> 11	-0.00717	
	$\min(3)=$	3 -> 14	-0.01773		$\min(5)=$	3 -> 19	-0.00186	
	min(4)=	4 -> 15	-0.00766		#CIs=35 #CIs>	0=20 #CIs<0=15		
	min(5)=	2 -> 6	-0.00742					
	#CIs=43 #CI	[s>0=25 #CIs<0=18		18	Singlet-A1 15.8050	78.45	0.0187	0.000
					max(1)=	4 -> 13	0.64318	
15	Singlet-B2 14.07	88.09	0.1941	0.000	max(2)=	3 -> 7	0.24176	
	$\max(1)=$	4 -> 11	0.68254		max(3)=	5 -> 10	0.08461	
	max(2)=	3 -> 6	0.14328		$\max(4)=$	4 -> 6	0.05523	
	max(3)=	3 -> 8	0.03412		max(5)=	3 -> 14	0.01957	
	$\max(4)=$	3 -> 15	0.03244		$\min(1)=$	4 -> 9	-0.10020	
	max(5)=	5 -> 20	0.01551		$\min(2)=$	4 -> 8	-0.05266	
	$\min(1)=$	4 -> 7	-0.09217		$\min(3)=$	3 -> 12	-0.04434	
	$\min(2)=$	4 -> 14	-0.02779		$\min(4) =$	3 -> 11	-0.04188	
	$\min(3)=$	3 -> 13	-0.02701		$\min(5)=$	4 -> 16	-0.02236	
	$\min(4)=$	4 -> 12	-0.02574		#CIs=43 #CIs>	0=17 #CIs<0=26		
	$\min(5)=$	3 -> 9	-0.02356					
	#CIs=35 #CI	[s>0=17 #CIs<0=18		19	Singlet-B2 17.4650	70.99	0.0202	0.000
					max(1)=	3 -> 8	0.55587	
16	Singlet-A1 15.46	80.18	0.0190	0.000	max(2)=	3 -> 9	0.42179	
	max(1)=	3 -> 7	0.57066		max(3)=	3 -> 6	0.08974	
	max(2)=	5 -> 10	0.14238		max(4)=	3 -> 15	0.02027	
	max(3)=	3 -> 14	0.02853		max(5)=	2 -> 11	0.00993	
	$\max(4)=$	4 -> 15	0.01668		$\min(1)=$	3 -> 13	-0.04292	
	max(5)=	2 -> 6	0.00983		$\min(2)=$	4 -> 11	-0.03631	
	min(1)=	4 -> 13	-0.28149		$\min(3) =$	3 -> 16	-0.02610	
	min(2)=	4 -> 8	-0.18966		min(4)=	4 -> 14	-0.02418	

	$\min(5)=$	4 -> 12	-0.01091					
	#CIs=35 #CIs	s>0=14 #CIs<0=21		23	Singlet-B2 19.675	63.01	0.0093	0.000
					max(1)=	3 -> 13	0.70202	
20	Singlet-A2 17.525	50 70.75	0.0000	0.000	max(2)=	3 -> 6	0.04877	
	$\max(1)=$	3 -> 10	0.70641		max(3)=	4 -> 14	0.04441	
	max(2)=	3 -> 17	0.02690		$\max(4)=$	3 -> 8	0.03327	
	max(3)=	5 -> 14	0.01239		max(5)=	3 -> 9	0.02172	
	$\max(4)=$	5 -> 11	0.00898		$\min(1)=$	2 -> 7	-0.01917	
	max(5)=	5 -> 12	0.00697		min(2)=	2 -> 11	-0.01135	
	$\min(1)=$	5 -> 18	-0.00213		$\min(3)=$	3 -> 16	-0.00612	
	min(2)=	5 -> 24	-0.00087		min(4)=	3 -> 15	-0.00505	
	$\min(3)=$	4 -> 20	-0.00015		$\min(5)=$	4 -> 24	-0.00454	
	$\min(4)=$	5 -> 32	0.00008		#CIs=36 #CIs	>0=22 #CIs<0=14		
	min(5)=	5 -> 23	0.00010					
	#CIs=18 #CIs	s>0=15 #CIs<0=3		24	Singlet-A1 20.415	60.73	0.0023	0.000
					$\max(1)=$	3 -> 12	0.66605	
21	Singlet-B2 18.092	68.53	0.2259	0.000	max(2)=	3 -> 11	0.15716	
	max(1)=	3 -> 9	0.56528		max(3)=	5 -> 10	0.08316	
	max(2)=	4 -> 11	0.05752		max(4)=	4 -> 15	0.05918	
	max(3)=	4 -> 14	0.04931		max(5)=	2 -> 6	0.04360	
	$\max(4)=$	5 -> 20	0.01222		$\min(1)=$	4 -> 8	-0.07218	
	max(5)=	4 -> 18	0.00590		min(2)=	4 -> 9	-0.06693	
	min(1)=	3 -> 8	-0.41187		$\min(3) =$	5 -> 17	-0.06213	
	min(2)=	3 -> 6	-0.06941		min(4)=	4 -> 16	-0.04766	
	$\min(3)=$	2 -> 14	-0.00990		$\min(5)=$	3 -> 7	-0.03684	
	min(4)=	3 -> 15	-0.00868		#CIs=43 #CIs	>0=17 #CIs<0=26		
	min(5)=	4 -> 12	-0.00862					
	#CIs=36 #CIs	s>0=19 #CIs<0=17		25	Singlet-A2 20.676	9 59.96	0.0000	0.000
					max(1)=	5 -> 14	0.70166	
22	Singlet-A1 18.432	67.26	0.1931	0.000	max(2)=	5 -> 11	0.08102	
	$\max(1)=$	3 -> 11	0.66976		max(3)=	5 -> 12	0.02532	
	max(2)=	5 -> 10	0.05992		$\max(4)=$	5 -> 27	0.00207	
	max(3)=	4 -> 15	0.03792		max(5)=	5 -> 7	0.00089	
	$\max(4)=$	2 -> 9	0.02021		$\min(1)=$	5 -> 24	-0.01531	
	max(5)=	4 -> 6	0.01630		$\min(2)=$	3 -> 10	-0.01361	
	$\min(1)=$	3 -> 12	-0.18873		$\min(3)=$	5 -> 23	-0.00462	
	min(2)=	4 -> 8	-0.07682		min(4)=	2 -> 20	-0.00418	
	min(3)=	4 -> 9	-0.04611		$\min(5)=$	5 -> 18	-0.00409	
	min(4)=	5 -> 17	-0.03060		#CIs=19 #CIs	>0=7 #CIs<0=12		
	$\min(5)=$	4 -> 16	-0.02777					
	#CIs=42 #CIs	s>0=17 #CIs<0=25		26	Singlet-B1 22.291	5 55.62	0.0437	0.000

	max(1)=	5 -> 15	0.70375		max(3)=	4 -> 15	0.05628	
	max(2)=	3 -> 20	0.01885		max(4)=	3 -> 18	0.03052	
	max(3)=	5 -> 21	0.01033		max(5)=	4 -> 16	0.02993	
	$\max(4)=$	5 -> 9	0.00756		$\min(1)=$	3 -> 14	-0.13429	
	$\max(5)=$	4 -> 28	0.00736		$\min(2)=$	2 -> 8	-0.07799	
	min(1)=	5 -> 8	-0.04895		$\min(3)=$	3 -> 12	-0.03442	
	min(2)=	2 -> 10	-0.02729		min(4)=	2 -> 13	-0.03160	
	$\min(3)=$	5 -> 16	-0.02487		$\min(5)=$	3 -> 11	-0.02429	
	$\min(4)=$	4 -> 22	-0.01332		#CIs=42 #CIs>0)=23 #CIs<0=19		
	$\min(5)=$	5 -> 19	-0.01326					
	#CIs=26 #CIs	>0=13 #CIs<0=13		30	Singlet-A1 28.0269	44.24	0.1489	0.000
					max(1)=	3 -> 14	0.67325	
27	Singlet-B2 23.532	1 52.69	0.0937	0.000	max(2)=	2 -> 6	0.11931	
	$\max(1)=$	4 -> 14	0.69115		max(3)=	5 -> 17	0.09799	
	$\max(2)=$	3 -> 8	0.05384		$\max(4) =$	4 -> 15	0.08717	
	max(3)=	4 -> 11	0.03163		$\max(5)=$	4 -> 16	0.08316	
	$\max(4) =$	2 -> 7	0.02634		$\min(1) =$	2 -> 9	-0.05739	
	$\max(5) =$	2 -> 12	0.02287		min(2)=	4 -> 19	-0.03710	
	$\min(1)=$	3 -> 15	-0.11070		$\min(3)=$	5 -> 10	-0.02311	
	$\min(2)=$	3 -> 13	-0.04548		$\min(4) =$	3 -> 7	-0.01165	
	$\min(3)=$	5 -> 20	-0.03452		$\min(5)=$	4 -> 6	-0.01067	
	$\min(4)=$	3 -> 9	-0.02616		#CIs=42 #CIs>0)=27 #CIs<0=15		
	$\min(5)=$	4 -> 18	-0.01290					
	#CIs=36 #CIs	>0=17 #CIs<0=19		31	Singlet-B2 28.1815	43.99	0.0104	0.000
					max(1)=	2 -> 7	0.69014	
28	Singlet-A1 24.215	3 51.20	0.0000	0.000	max(2)=	2 -> 11	0.11997	
	$\max(1)=$	4 -> 15	0.69087		max(3)=	2 -> 12	0.08383	
	$\max(2)=$	2 -> 8	0.04154		$\max(4)=$	3 -> 13	0.02229	
	max(3)=	5 -> 17	0.02851		$\max(5)=$	5 -> 20	0.01823	
	$\max(4) =$	4 -> 9	0.02817		$\min(1) =$	4 -> 14	-0.02827	
	$\max(5)=$	4 -> 16	0.01398		min(2)=	3 -> 19	-0.01307	
	$\min(1)=$	3 -> 14	-0.08550		$\min(3)=$	4 -> 24	-0.00683	
	$\min(2)=$	2 -> 6	-0.07527		$\min(4) =$	2 -> 14	-0.00596	
	$\min(3)=$	3 -> 11	-0.04622		$\min(5)=$	3 -> 21	-0.00495	
	$\min(4)=$	4 -> 8	-0.03836		#CIs=35 #CIs>0)=20 #CIs<0=15		
	$\min(5)=$	3 -> 12	-0.03810					
	#CIs=43 #CIs	>0=20 #CIs<0=23		32	Singlet-B2 29.1611	42.52	0.2181	0.000
					$\max(1) =$	3 -> 15	0.69228	
29	Singlet-A1 26.666	0 46.50	0.0018	0.000	max(2)=	4 -> 14	0.10962	
	$\max(1) =$	2 -> 6	0.68062		max(3)=	3 -> 19	0.01872	
	max(2)=	5 -> 17	0.06049		$\max(4) =$	2 -> 14	0.01758	

	$\max(5)=$	2 -> 12	0.01287		min(2)=	2 -> 14	-0.05116	
	$\min(1)=$	5 -> 20	-0.06585		$\min(3)=$	2 -> 12	-0.02835	
	min(2)=	2 -> 11	-0.03616		$\min(4)=$	3 -> 9	-0.01142	
	min(3)=	3 -> 16	-0.03299		min(5)=	3 -> 19	-0.01000	
	min(4)=	4 -> 18	-0.02836		#CIs=36 #CI:	s>0=16 #CIs<0=20		
	min(5)=	4 -> 11	-0.02567					
	#CIs=36 #CIs>	0=16 #CIs<0=20		36	Singlet-A1 31.21	55 39.72	0.0052	0.000
					$\max(1)=$	2 -> 8	0.48330	
33	Singlet-A1 31.0251	39.96	0.0189	0.000	$\max(2)=$	2 -> 6	0.07753	
	$\max(1)=$	2 -> 9	0.50775		max(3)=	2 -> 15	0.03221	
	$\max(2)=$	2 -> 8	0.48135		$\max(4)=$	5 -> 10	0.02209	
	max(3)=	2 -> 6	0.04451		$\max(5)=$	2 -> 16	0.00798	
	$\max(4) =$	3 -> 14	0.02177		$\min(1) =$	2 -> 9	-0.48189	
	$\max(5)=$	4 -> 21	0.02010		$\min(2)=$	5 -> 17	-0.12505	
	min(1)=	2 -> 13	-0.06626		min(3)=	2 -> 13	-0.06967	
	$\min(2)=$	5 -> 17	-0.03361		$\min(4) =$	4 -> 16	-0.05388	
	$\min(3)=$	3 -> 18	-0.01986		$\min(5) =$	3 -> 14	-0.04433	
	$\min(4)=$	4 -> 19	-0.01932		#CIs=42 #CI	s>0=17 #CIs<0=25		
	$\min(5)=$	2 -> 16	-0.01669					
	#CIs=41 #CIs>	0=19 #CIs<0=22		37	Singlet-B1 32.44	79 38.21	0.0142	0.000
					$\max(1)=$	5 -> 16	0.70243	
34	Singlet-B1 31.0404	39.94	0.0142	0.000	$\max(2)=$	2 -> 10	0.05137	
	max(1)=	2 -> 10	0.70335		max(3)=	5 -> 15	0.02635	
	max(2)=	5 -> 15	0.02498		$\max(4)=$	5 -> 21	0.02185	
	$\max(3)=$	2 -> 17	0.01805		$\max(5)=$	5 -> 8	0.01975	
	$\max(4)=$	3 -> 20	0.01732		$\min(1)=$	4 -> 17	-0.03193	
	$\max(5)=$	4 -> 28	0.00653		min(2)=	4 -> 22	-0.01620	
	min(1)=	5 -> 16	-0.05427		min(3)=	5 -> 19	-0.01409	
	$\min(2)=$	4 -> 17	-0.01899		$\min(4)=$	5 -> 25	-0.01100	
	min(3)=	5 -> 19	-0.01674		min(5)=	5 -> 6	-0.00410	
	$\min(4)=$	4 -> 22	-0.01368		#CIs=26 #CIs	s>0=16 #CIs<0=10		
	$\min(5)=$	5 -> 25	-0.01011					
	#CIs=26 #CIs>	0=14 #CIs<0=12		38	Singlet-A1 33.003	38 37.57	0.0017	0.000
					$\max(1)=$	2 -> 13	0.68721	
35	Singlet-B2 31.1819	39.76	0.0149	0.000	$\max(2)=$	2 -> 8	0.06590	
	$\max(1)=$	2 -> 11	0.69297		$\max(3) =$	2 -> 6	0.05231	
	$\max(2)=$	3 -> 15	0.04061		$\max(4) =$	2 -> 9	0.01416	
	max(3)=	3 -> 13	0.00939		$\max(5) =$	2 -> 21	0.01130	
	$\max(4) =$	4 -> 12	0.00818		$\min(1) =$	5 -> 17	-0.13902	
	$\max(5)=$	3 -> 16	0.00701		$\min(2)=$	4 -> 16	-0.02383	
	$\min(1) =$	2 -> 7	-0.11893		$\min(3) =$	2 -> 15	-0.01242	

	$\min(4) =$	2 -> 16	-0.00477		#CIs=42 #CIs	0=25 #CIs<0=17		
	min(5)=	3 -> 14	-0.00464					
	#CIs=41 #CIs	>0=23 #CIs<0=18		42	Singlet-B1 35.452	34.97	0.0039	0.000
					max(1)=	4 -> 17	0.70538	
39	Singlet-B2 33.120	1 37.43	0.0247	0.000	max(2)=	5 -> 16	0.02975	
	max(1)=	2 -> 12	0.69911		max(3)=	2 -> 10	0.02052	
	max(2)=	5 -> 20	0.02937		$\max(4) =$	3 -> 20	0.00947	
	max(3)=	3 -> 16	0.02180		max(5)=	5 -> 15	0.00740	
	max(4)=	2 -> 18	0.02088		$\min(1)=$	4 -> 10	-0.02562	
	max(5)=	4 -> 18	0.01152		min(2)=	5 -> 19	-0.01421	
	min(1)=	2 -> 7	-0.08959		min(3)=	5 -> 25	-0.00616	
	min(2)=	3 -> 19	-0.01843		min(4)=	4 -> 22	-0.00592	
	min(3)=	4 -> 14	-0.01818		min(5)=	2 -> 17	-0.00464	
	min(4)=	2 -> 14	-0.01467		#CIs=26 #CIs	0=13 #CIs<0=13		
	min(5)=	3 -> 21	-0.00984					
	#CIs=36 #CIs	>0=19 #CIs<0=17		43	Singlet-B2 35.7803	3 34.65	0.0613	0.000
					$\max(1)=$	4 -> 18	0.70366	
40	Singlet-A2 33.722	5 36.77	0.0000	0.000	max(2)=	2 -> 14	0.02139	
	max(1)=	5 -> 18	0.70618		max(3)=	3 -> 15	0.02050	
	max(2)=	5 -> 24	0.00677		max(4)=	4 -> 14	0.01553	
	max(3)=	5 -> 14	0.00629		max(5)=	3 -> 19	0.01126	
	max(4)=	4 -> 20	0.00435		min(1)=	5 -> 20	-0.03337	
	max(5)=	5 -> 35	0.00314		min(2)=	3 -> 16	-0.03210	
	min(1)=	5 -> 12	-0.03253		min(3)=	4 -> 12	-0.03179	
	min(2)=	5 -> 11	-0.00695		min(4)=	4 -> 11	-0.01158	
	min(3)=	5 -> 32	-0.00639		min(5)=	3 -> 21	-0.00842	
	$\min(4)=$	3 -> 17	-0.00615		#CIs=36 #CIs	0=14 #CIs<0=22		
	min(5)=	5 -> 7	-0.00278					
	#CIs=18 #CIs	>0=9 #CIs<0=9		44	Singlet-A1 37.545	33.02	0.0323	0.000
					max(1)=	4 -> 16	0.41222	
41	Singlet-A1 34.015	7 36.45	0.0040	0.000	max(2)=	5 -> 17	0.35178	
	max(1)=	4 -> 16	0.49937		max(3)=	2 -> 8	0.07722	
	max(2)=	3 -> 18	0.04544		max(4)=	2 -> 13	0.07503	
	max(3)=	2 -> 15	0.02644		max(5)=	3 -> 12	0.05513	
	max(4)=	4 -> 9	0.01845		min(1)=	3 -> 18	-0.39272	
	max(5)=	4 -> 19	0.01842		min(2)=	2 -> 15	-0.12480	
	min(1)=	5 -> 17	-0.48584		min(3)=	3 -> 14	-0.08672	
	min(2)=	2 -> 13	-0.07454		min(4)=	4 -> 21	-0.08143	
	min(3)=	2 -> 8	-0.06545		min(5)=	2 -> 9	-0.05149	
	min(4)=	3 -> 12	-0.01306		#CIs=43 #CIs	0=20 #CIs<0=23		
	min(5)=	5 -> 22	-0.00944					

45	Singlet-B2 38.5945	32.12	0.0351	0.000	max(2)=	5 -> 20	0.12263	
	max(1)=	3 -> 16	0.69627		max(3)=	2 -> 11	0.05122	
	max(2)=	2 -> 14	0.04436		$\max(4)=$	3 -> 19	0.03177	
	max(3)=	4 -> 18	0.02423		max(5)=	3 -> 21	0.01376	
	max(4)=	3 -> 15	0.02209		$\min(1)=$	3 -> 16	-0.02499	
	max(5)=	3 -> 9	0.01842		min(2)=	4 -> 18	-0.01663	
	min(1)=	5 -> 20	-0.10355		min(3)=	4 -> 23	-0.00809	
	min(2)=	2 -> 12	-0.01691		min(4)=	3 -> 8	-0.00765	
	min(3)=	3 -> 25	-0.00895		min(5)=	3 -> 15	-0.00739	
	min(4)=	5 -> 29	-0.00581		#CIs=36 #CIs>0	=20 #CIs<0=16		
	min(5)=	2 -> 11	-0.00513					
	#CIs=35 #CIs>	0=21 #CIs<0=14		49	Singlet-A1 41.2289	30.07	0.0012	0.000
					max(1)=	2 -> 15	0.56383	
46	Singlet-A2 39.4993	31.39	0.0000	0.000	max(2)=	4 -> 19	0.11671	
	max(1)=	3 -> 17	0.70647		max(3)=	4 -> 21	0.09107	
	max(2)=	4 -> 20	0.00927		$\max(4)=$	2 -> 9	0.02576	
	max(3)=	5 -> 18	0.00629		max(5)=	3 -> 14	0.02202	
	$\max(4)=$	3 -> 33	0.00532		min(1)=	3 -> 18	-0.37659	
	max(5)=	2 -> 20	0.00429		min(2)=	4 -> 16	-0.08335	
	$\min(1)=$	3 -> 10	-0.02688		$\min(3)=$	5 -> 17	-0.07448	
	$\min(2)=$	5 -> 14	-0.00138		$\min(4)=$	2 -> 8	-0.05965	
	min(3)=	5 -> 24	-0.00136		min(5)=	2 -> 16	-0.01841	
	min(4)=	2 -> 29	-0.00080		#CIs=43 #CIs>0	=21 #CIs<0=22		
	min(5)=	5 -> 27	-0.00069					
	#CIs=18 #CIs>	0=11 #CIs<0=7		50	Singlet-B2 41.7194	29.72	0.5302	0.000
					max(1)=	5 -> 20	0.67217	
47	Singlet-B1 40.1338	30.89	0.0075	0.000	max(2)=	3 -> 19	0.11765	
	max(1)=	5 -> 19	0.70576		max(3)=	3 -> 16	0.10033	
	max(2)=	3 -> 20	0.02474		max(4)=	3 -> 15	0.06251	
	max(3)=	2 -> 10	0.01663		max(5)=	4 -> 14	0.04309	
	max(4)=	5 -> 15	0.01360		$\min(1)=$	2 -> 14	-0.11772	
	max(5)=	4 -> 17	0.01259		$\min(2)=$	2 -> 12	-0.03085	
	min(1)=	4 -> 22	-0.01680		min(3)=	3 -> 25	-0.02362	
	min(2)=	2 -> 17	-0.00763		min(4)=	2 -> 11	-0.01857	
	min(3)=	5 -> 13	-0.00665		min(5)=	4 -> 11	-0.01815	
	min(4)=	5 -> 25	-0.00662		#CIs=36 #CIs>0	=18 #CIs<0=18		
	min(5)=	5 -> 21	-0.00489					
	#CIs=26 #CIs>	0=16 #CIs<0=10		51	Singlet-A2 42.6302	29.08	0.0000	0.000
					max(1)=	4 -> 20	0.70696	
48	Singlet-B2 40.4690	30.64	0.0014	0.000	max(2)=	4 -> 29	0.00786	
	max(1)=	2 -> 14	0.69266		max(3)=	3 -> 22	0.00383	

	max(4)=	5 -> 27	0.00372		$\min(1) =$	4 -> 19	-0.32640	
	max(5)=	2 -> 29	0.00263		min(2)=	3 -> 18	-0.28620	
	$\min(1)=$	3 -> 17	-0.00923		min(3)=	2 -> 15	-0.23623	
	$\min(2)=$	5 -> 18	-0.00446		min(4)=	5 -> 22	-0.19379	
	$\min(3)=$	2 -> 20	-0.00364		min(5)=	5 -> 17	-0.14837	
	$\min(4)=$	3 -> 28	-0.00089		#CIs=43 #CIs>	0=19 #CIs<0=24		
	$\min(5)=$	5 -> 11	-0.00020					
	#CIs=19 #CIs	>0=13 #CIs<0=6		55	Singlet-B2 47.0241	26.37	0.3558	0.000
					$\max(1)=$	3 -> 19	0.69344	
52	Singlet-A1 42.766	3 28.99	0.3607	0.000	$\max(2)=$	3 -> 25	0.02654	
	max(1)=	4 -> 19	0.56600		max(3)=	2 -> 12	0.02362	
	max(2)=	4 -> 21	0.13569		$\max(4)=$	5 -> 29	0.02103	
	max(3)=	5 -> 22	0.12699		$\max(5)=$	4 -> 11	0.01362	
	max(4)=	3 -> 14	0.05355		$\min(1)=$	5 -> 20	-0.11068	
	max(5)=	4 -> 15	0.02704		min(2)=	4 -> 24	-0.03698	
	$\min(1)=$	2 -> 15	-0.29279		min(3)=	2 -> 18	-0.03028	
	$\min(2)=$	3 -> 18	-0.17426		$\min(4)=$	4 -> 14	-0.03028	
	$\min(3)=$	5 -> 17	-0.10626		$\min(5)=$	3 -> 15	-0.02499	
	$\min(4)=$	4 -> 16	-0.10144		#CIs=35 #CIs>	0=18 #CIs<0=17		
	$\min(5)=$	2 -> 13	-0.03243					
	#CIs=43 #CIs	>0=22 #CIs<0=21		56	Singlet-A1 47.2714	26.23	0.2965	0.000
					$\max(1) =$	5 -> 22	0.39363	
53	Singlet-B1 43.757	3 28.33	0.1145	0.000	$\max(2)=$	2 -> 21	0.08596	
	$\max(1)=$	5 -> 21	0.69212		max(3)=	2 -> 6	0.03560	
	max(2)=	4 -> 22	0.05676		$\max(4) =$	4 -> 8	0.02839	
	max(3)=	5 -> 19	0.01071		max(5)=	2 -> 19	0.02639	
	$\max(4)=$	2 -> 10	0.00865		$\min(1)=$	4 -> 21	-0.37873	
	max(5)=	5 -> 9	0.00562		min(2)=	3 -> 18	-0.25834	
	$\min(1)=$	3 -> 20	-0.12990		min(3)=	4 -> 19	-0.21687	
	$\min(2)=$	5 -> 16	-0.01665		$\min(4)=$	5 -> 17	-0.17170	
	$\min(3) =$	2 -> 17	-0.01244		$\min(5)=$	4 -> 16	-0.13721	
	$\min(4)=$	2 -> 22	-0.01132		#CIs=43 #CIs>	0=21 #CIs<0=22		
	$\min(5)=$	5 -> 13	-0.00623					
	#CIs=25 #CIs	>0=11 #CIs<0=14		57	Singlet-B1 47.3841	26.17	0.1902	0.000
					$\max(1)=$	3 -> 20	0.62026	
54	Singlet-A1 44.599	3 27.80	0.1259	0.000	$\max(2)=$	4 -> 22	0.32582	
	max(1)=	4 -> 21	0.41260		max(3)=	5 -> 21	0.08981	
	max(2)=	2 -> 21	0.04761		$\max(4)=$	5 -> 25	0.01873	
	max(3)=	2 -> 6	0.03356		$\max(5)=$	2 -> 17	0.00921	
	$\max(4)=$	5 -> 28	0.02047		$\min(1) =$	5 -> 15	-0.01313	
	max(5)=	4 -> 15	0.01940		$\min(2) =$	5 -> 19	-0.01227	

	min(3)=	5 -> 1	.6 -0	.01145			$\max(4) =$	2 -> 12	0.01002	
	$\min(4) =$	4 -> 2	.8 -0	.01091			max(5)=	4 -> 18	0.00934	
	min(5)=	2 -> 1	.0 -0	.00900			min(1)=	2 -> 18	-0.01892	
	#CIs=26	#CIs>0=14 #CI	s<0=12				min(2)=	2 -> 14	-0.01674	
							min(3)=	3 -> 13	-0.01336	
58	Singlet-A1 4	7.9076	25.88 0	.5313	0.000		$\min(4)=$	4 -> 24	-0.00861	
	max(1)=	5 -> 2	2 0	.53441			min(5)=	4 -> 23	-0.00630	
	max(2)=	4 -> 2	21 0	.38508			#CIs=36 #CIs>0	=18 #CIs<0=18		
	max(3)=	4 -> 1	.6 0	.11178						
	max(4)=	3 -> 1	.8 0	.11138 (60 S	Singlet	-B1 49.7636	24.91	1.0406	0.000
	max(5)=	5 -> 1	.7 0	.10545			max(1)=	4 -> 22	0.62129	
	min(1)=	4 -> 1	.9 -0	.08636			max(2)=	5 -> 15	0.02381	
	min(2)=	3 -> 1	.4 -0	.07030			max(3)=	5 -> 16	0.02359	
	min(3)=	3 -> 2	-0	.06036			max(4)=	5 -> 19	0.02200	
	min(4)=	2 -> 2	-0	.05737			max(5)=	2 -> 10	0.02083	
	min(5)=	2 -> 1	.9 -0	.04030			min(1)=	3 -> 20	-0.30623	
	#CIs=43	#CIs>0=23 #CI	s<0=20				$\min(2)=$	5 -> 21	-0.10925	
							min(3)=	5 -> 25	-0.05403	
59	Singlet-B2 4	9.5809	25.01 0	.0571	0.000		$\min(4)=$	2 -> 17	-0.05347	
	max(1)=	3 -> 2	21 0	.70602			$\min(5)=$	5 -> 31	-0.01513	
	max(2)=	3 -> 1	.5 0	.01107			#CIs=26 #CIs>0	=14 #CIs<0=12		
	max(3)=	5 -> 2	20 0	.01099						

7.2.3 Main contributions from different excited states at CIS approach

#_exc.st	symm	Exc.E Osc	Strength _	f4	< S2** 2>_	Singlet-A2	10.4507		118.64	0.0000	0.000
						max(1	L)=	5 ->	7	0.60811	
1	Singlet-B1	8.7596	141.54	0.0459	0.000	max(2	2)=	5 ->	11	0.20221	
	max(1)=	= 5->	6	0.62825		max(3	3)=	5 ->	17	0.04983	
	max(2)=	= 5->	10	0.28394		max(4	1)=	5 ->	24	0.01332	
	max(3)=	= 5->	16	0.03734		max(8	5)=	5 ->	35	0.00357	
	max(4)=	= 5->	31	0.00598		min(1	L)=	5 ->	12	-0.27743	
	max(5)=	= 5->	30	0.00246		min(2	2)=	5 ->	14	-0.09814	
	min(1)=	= 5->	- 13	-0.11236		min(3	3)=	5 ->	32	-0.00334	
	min(2)=	= 5->	8 -	0.07639		min(4	1)=	3 ->	18	-0.00240	
	min(3)=	= 5->	15 -	0.06447		min(S	5)=	2 ->	29	-0.00173	
	min(4)=	= 5->	- 21	0.01729		#CIs=	=18 #CIs>0=	=9 #C]	[s<0=9		
	min(5)=	= 4 ->	9 -	0.01212							
	#CIs=23	3 #CIs>0=8 #C	Is<0=15		3	Singlet-A1	11.0021		112.69	0.1071	0.000
						max(1	L)=	4 ->	6	0.63565	

	max(2)=	4 -> 10	0.25113		$\max(4)=$	5 -> 23	0.00384	
	max(3)=	4 -> 16	0.01739		$\max(5)=$	2 -> 20	0.00373	
	max(4)=	3 -> 14	0.01514		$\min(1)=$	5 -> 7	-0.30191	
	max(5)=	3 -> 12	0.01127		min(2)=	5 -> 14	-0.18242	
	min(1)=	4 -> 13	-0.12227		min(3)=	5 -> 12	-0.16008	
	min(2)=	5 -> 9	-0.11528		$\min(4)=$	3 -> 9	-0.00832	
	min(3)=	4 -> 15	-0.04943		min(5)=	3 -> 18	-0.00221	
	min(4)=	5 -> 18	-0.02191		#CIs=17 #CIs>	0=9 #CIs<0=8		
	min(5)=	4 -> 21	-0.01857					
	#CIs=40 #CIs>	0=15 #CIs<0=25		7	Singlet-A1 13.5680	91.38	0.0000	0.000
					$\max(1)=$	5 -> 9	0.64194	
4	Singlet-B2 12.6684	97.87	0.0363	0.000	$\max(2)=$	4 -> 8	0.21415	
	$\max(1)=$	4 -> 7	0.63875		max(3) =	4 -> 6	0.13264	
	max(2)=	4 -> 11	0.13686		$\max(4) =$	3 -> 12	0.07246	
	max(3)=	4 -> 17	0.04438		$\max(5)=$	5 -> 18	0.04609	
	$\max(4)=$	3 -> 6	0.01718		$\min(1) =$	3 -> 7	-0.06950	
	max(5)=	3 -> 15	0.01369		$\min(2)=$	4 -> 13	-0.05154	
	$\min(1)=$	4 -> 12	-0.25881		$\min(3)=$	4 -> 10	-0.05098	
	$\min(2)=$	4 -> 14	-0.05847		$\min(4) =$	3 -> 11	-0.04809	
	$\min(3)=$	2 -> 11	-0.01115		$\min(5)=$	4 -> 16	-0.04084	
	$\min(4)=$	2 -> 7	-0.00633		#CIs=40 #CIs>	0=19 #CIs<0=21		
	$\min(5)=$	3 -> 19	-0.00587					
	#CIs=34 #CIs>	0=22 #CIs<0=12		8	Singlet-B1 13.7253	90.33	0.0028	0.000
					$\max(1)=$	5 -> 10	0.54474	
5	Singlet-B1 12.8836	96.23	0.0149	0.000	max(2)=	5 -> 8	0.36545	
	max(1)=	5 -> 8	0.58332		max(3)=	4 -> 9	0.01396	
	max(2)=	5 -> 6	0.20488		$\max(4)=$	2 -> 9	0.00619	
	max(3)=	5 -> 15	0.07595		max(5)=	4 -> 22	0.00579	
	max(4)=	5 -> 25	0.00777		$\min(1)=$	5 -> 6	-0.22749	
	max(5)=	3 -> 20	0.00309		min(2)=	5 -> 15	-0.09445	
	$\min(1)=$	5 -> 10	-0.30898		$\min(3) =$	5 -> 13	-0.08680	
	min(2)=	5 -> 13	-0.09950		$\min(4) =$	5 -> 21	-0.03115	
	$\min(3)=$	5 -> 16	-0.07870		$\min(5) =$	3 -> 20	-0.00753	
	min(4)=	4 -> 9	-0.01301		#CIs=23 #CIs>	0=10 #CIs<0=13		
	min(5)=	5 -> 19	-0.00819					
	#CIs=23 #CIs>	0=12 #CIs<0=11		9	Singlet-B2 14.7596	84.00	0.1622	0.000
					max(1)=	3 -> 6	0.63000	
6	Singlet-A2 13.4466	92.20	0.0000	0.000	$\max(2) =$	3 -> 10	0.27294	
	max(1)=	5 -> 11	0.59031		$\max(3) =$	3 -> 16	0.03319	
	max(2)=	5 -> 17	0.03236		$\max(4) =$	4 -> 14	0.03221	
	max(3)=	5 -> 24	0.01770		max(5)=	2 -> 12	0.01593	

	$\min(1)=$	3 -> 13	-0.10156		$\min(3)=$	4 -> 10	-0.10060	
	min(2)=	3 -> 8	-0.09205		$\min(4) =$	3 -> 14	-0.06389	
	min(3)=	4 -> 11	-0.06495		min(5)=	4 -> 13	-0.06292	
	min(4)=	3 -> 15	-0.04971		#CIs=41 #CIs>0)=21 #CIs<0=20		
	min(5)=	2 -> 7	-0.01485					
	#CIs=32 #0	CIs>0=16 #CIs<0=16		13	Singlet-B1 15.7335	78.80	0.2358	0.000
					max(1) =	5 -> 13	0.66537	
10	Singlet-B1 14.9	9661 82.84	0.0090	0.000	max(2)=	5 -> 8	0.11575	
	max(1)=	4 -> 9	0.68307		max(3)=	5 -> 6	0.09714	
	max(2)=	5 -> 13	0.15723		$\max(4) =$	5 -> 10	0.06988	
	max(3)=	4 -> 18	0.07561		max(5)=	5 -> 21	0.02661	
	max(4)=	5 -> 6	0.04301		min(1)=	4 -> 9	-0.16392	
	max(5)=	5 -> 8	0.02926		min(2)=	5 -> 15	-0.02624	
	min(1)=	5 -> 15	-0.00824		min(3)=	4 -> 18	-0.01546	
	min(2)=	5 -> 16	-0.00811		min(4)=	3 -> 20	-0.00964	
	min(3)=	2 -> 28	-0.00230		min(5)=	5 -> 16	-0.00954	
	$\min(4)=$	2 -> 22	-0.00155		#CIs=25 #CIs>0)=14 #CIs<0=11		
	min(5)=	5 -> 31	-0.00138					
	#CIs=23 #C	CIs>0=15 #CIs<0=8		14	Singlet-A1 15.7372	78.78	0.0256	0.000
					max(1)=	4 -> 10	0.61650	
11	Singlet-A2 15.4	80.47	0.0000	0.000	max(2)=	4 -> 8	0.17460	
	max(1)=	5 -> 12	0.61191		max(3)=	3 -> 12	0.03133	
	max(2)=	5 -> 11	0.28172		$\max(4)=$	5 -> 9	0.02985	
	max(3)=	5 -> 7	0.19743		max(5)=	3 -> 14	0.01904	
	$\max(4)=$	5 -> 14	0.03333		$\min(1) =$	4 -> 6	-0.25581	
	max(5)=	5 -> 32	0.00278		$\min(2)=$	4 -> 15	-0.11425	
	min(1)=	5 -> 17	-0.07776		$\min(3)=$	3 -> 7	-0.06418	
	min(2)=	5 -> 24	-0.00666		$\min(4)=$	4 -> 13	-0.05068	
	min(3)=	5 -> 35	-0.00234		$\min(5)=$	3 -> 11	-0.03187	
	$\min(4)=$	5 -> 27	-0.00122		#CIs=40 #CIs>0)=15 #CIs<0=25		
	min(5)=	5 -> 23	-0.00080					
	#CIs=19 #C	CIs>0=11 #CIs<0=8		15	Singlet-B2 15.9655	77.66	0.1960	0.000
					max(1)=	4 -> 11	0.63282	
12	Singlet-A1 15.5	5618 79.67	0.0269	0.000	max(2)=	3 -> 6	0.07824	
	max(1)=	4 -> 8	0.57809		max(3)=	3 -> 15	0.03434	
	max(2)=	3 -> 7	0.27203		$\max(4) =$	4 -> 17	0.03209	
	max(3)=	3 -> 11	0.12373		max(5)=	5 -> 20	0.01834	
	$\max(4)=$	3 -> 17	0.04115		$\min(1) =$	4 -> 7	-0.21697	
	$\max(5)=$	4 -> 6	0.02522		$\min(2)=$	4 -> 12	-0.15568	
	min(1)=	3 -> 12	-0.17389		$\min(3)=$	4 -> 14	-0.13131	
	min(2)=	5 -> 9	-0.15136		min(4)=	3 -> 13	-0.02863	

	$\min(5)=$	3 -> 8	-0.01830					
	#CIs=34 #CIs	>0=20 #CIs<0=14		19	Singlet-A2 19.145	7 64.76	0.0000	0.000
					$\max(1)=$	3 -> 9	0.70306	
16	Singlet-B2 17.338	3 71.51	0.0078	0.000	$\max(2)=$	3 -> 18	0.07278	
	max(1)=	4 -> 12	0.62464		max(3)=	5 -> 14	0.01330	
	max(2)=	4 -> 11	0.23694		$\max(4)=$	5 -> 11	0.01184	
	max(3)=	4 -> 7	0.21147		$\max(5)=$	3 -> 22	0.00346	
	max(4)=	4 -> 14	0.04462		$\min(1)=$	5 -> 12	-0.00607	
	max(5)=	3 -> 6	0.01592		$\min(2)=$	5 -> 17	-0.00354	
	$\min(1)=$	4 -> 17	-0.07803		$\min(3)=$	2 -> 29	-0.00273	
	$\min(2)=$	3 -> 10	-0.01703		$\min(4)=$	5 -> 7	-0.00200	
	$\min(3)=$	4 -> 24	-0.00764		$\min(5)=$	5 -> 24	-0.00164	
	$\min(4)=$	3 -> 8	-0.00527		#CIs=18 #CIs	>0=11 #CIs<0=7		
	$\min(5)=$	2 -> 7	-0.00513					
	#CIs=34 #CIs	>0=17 #CIs<0=17		20	Singlet-B2 19.173	0 64.67	0.0189	0.000
					$\max(1) =$	3 -> 8	0.56403	
17	Singlet-A1 17.534	8 70.71	0.0339	0.000	$\max(2)=$	3 -> 6	0.22703	
	max(1)=	4 -> 13	0.40651		$\max(3)=$	3 -> 15	0.06856	
	max(2)=	4 -> 8	0.24658		$\max(4)=$	2 -> 11	0.01950	
	max(3)=	4 -> 6	0.07958		$\max(5)=$	3 -> 25	0.00519	
	$\max(4)=$	3 -> 12	0.06108		$\min(1) =$	3 -> 10	-0.33970	
	max(5)=	4 -> 21	0.03034		$\min(2)=$	3 -> 16	-0.06965	
	$\min(1)=$	3 -> 7	-0.49006		$\min(3)=$	3 -> 13	-0.06051	
	$\min(2)=$	5 -> 9	-0.12969		$\min(4)=$	4 -> 11	-0.02918	
	$\min(3)=$	4 -> 10	-0.05437		$\min(5) =$	4 -> 14	-0.01775	
	$\min(4)=$	4 -> 15	-0.02547		#CIs=33 #CIs	>0=12 #CIs<0=21		
	$\min(5)=$	3 -> 14	-0.01832					
	#CIs=41 #CIs	>0=26 #CIs<0=15		21	Singlet-B2 19.983	2 62.04	0.2440	0.000
					$\max(1) =$	3 -> 10	0.53455	
18	Singlet-A1 17.696	5 70.06	0.0067	0.000	$\max(2)=$	3 -> 8	0.40143	
	max(1)=	4 -> 13	0.55292		$\max(3) =$	4 -> 11	0.05526	
	max(2)=	3 -> 7	0.38995		$\max(4) =$	4 -> 14	0.03717	
	max(3)=	4 -> 10	0.12599		$\max(5)=$	2 -> 12	0.02623	
	$\max(4)=$	5 -> 9	0.10510		$\min(1)=$	3 -> 6	-0.18860	
	max(5)=	4 -> 6	0.07262		$\min(2)=$	3 -> 13	-0.07845	
	min(1)=	4 -> 8	-0.07216		$\min(3)=$	3 -> 15	-0.07263	
	$\min(2)=$	5 -> 18	-0.02929		$\min(4) =$	3 -> 21	-0.01982	
	$\min(3)=$	4 -> 15	-0.02700		$\min(5)=$	3 -> 19	-0.01230	
	$\min(4)=$	4 -> 16	-0.02532		#CIs=34 #CIs	>0=19 #CIs<0=15		
	min(5)=	3 -> 17	-0.02259					
	#CIs=41 #CIs	>0=14 #CIs<0=27		22	Singlet-A1 20.442	9 60.65	0.2268	0.000

	$\max(1)=$	3 -> 11	0.68186		max(3)=	5 -> 27	0.00309	
	max(2)=	5 -> 9	0.07609		$\max(4)=$	2 -> 29	0.00193	
	max(3)=	4 -> 10	0.05693		max(5)=	3 -> 18	0.00032	
	$\max(4)=$	4 -> 15	0.02959		min(1)=	5 -> 12	-0.12071	
	max(5)=	2 -> 8	0.02204		min(2)=	5 -> 24	-0.04651	
	min(1)=	4 -> 8	-0.08372		min(3)=	5 -> 17	-0.02464	
	min(2)=	3 -> 14	-0.08321		min(4)=	3 -> 9	-0.01695	
	min(3)=	3 -> 7	-0.07509		min(5)=	5 -> 23	-0.01273	
	min(4)=	5 -> 18	-0.04105		#CIs=17 #CIs>0)=5 #CIs<0=12		
	$\min(5)=$	4 -> 16	-0.03452					
	#CIs=38 #CIs>0	0=19 #CIs<0=19		26	Singlet-B1 24.5042	50.60	0.0603	0.000
					max(1)=	5 -> 15	0.68640	
23	Singlet-B2 21.5936	57.42	0.0146	0.000	max(2)=	5 -> 10	0.14307	
	$\max(1)=$	3 -> 13	0.68816		max(3)=	5 -> 25	0.03245	
	$\max(2)=$	3 -> 6	0.09417		$\max(4) =$	3 -> 20	0.02433	
	max(3)=	3 -> 8	0.08007		max(5)=	5 -> 21	0.01642	
	$\max(4)=$	3 -> 10	0.06493		$\min(1)=$	5 -> 16	-0.06138	
	max(5)=	4 -> 14	0.05304		min(2)=	5 -> 19	-0.02465	
	min(1)=	3 -> 15	-0.02446		$\min(3)=$	5 -> 8	-0.02375	
	$\min(2)=$	4 -> 12	-0.01946		$\min(4) =$	2 -> 9	-0.01869	
	$\min(3)=$	3 -> 16	-0.01646		$\min(5)=$	4 -> 22	-0.01563	
	$\min(4)=$	2 -> 7	-0.01594		#CIs=26 #CIs>0)=14 #CIs<0=12		
	min(5)=	2 -> 11	-0.01132					
	#CIs=34 #CIs>0	0=21 #CIs<0=13		27	Singlet-B2 25.6603	48.32	0.1368	0.000
					max(1)=	4 -> 14	0.67300	
24	Singlet-A1 22.3774	55.41	0.0038	0.000	max(2)=	4 -> 11	0.12166	
	$\max(1)=$	3 -> 12	0.66336		max(3)=	3 -> 19	0.02661	
	$\max(2)=$	3 -> 7	0.13470		max(4)=	2 -> 17	0.01065	
	max(3)=	4 -> 8	0.09661		$\max(5)=$	2 -> 23	0.00927	
	$\max(4)=$	5 -> 18	0.07963		$\min(1)=$	4 -> 12	-0.09940	
	max(5)=	4 -> 16	0.05954		min(2)=	3 -> 15	-0.09057	
	$\min(1)=$	5 -> 9	-0.09606		$\min(3)=$	3 -> 10	-0.07164	
	$\min(2)=$	4 -> 10	-0.05992		$\min(4) =$	3 -> 13	-0.05417	
	$\min(3)=$	4 -> 15	-0.05554		$\min(5)=$	5 -> 20	-0.04144	
	$\min(4)=$	4 -> 13	-0.04185		#CIs=35 #CIs>0)=13 #CIs<0=22		
	$\min(5)=$	3 -> 17	-0.03172					
	#CIs=38 #CIs>(0=24 #CIs<0=14		28	Singlet-A1 26.6329 max(1)=	46.55 4 -> 15	0.0014 0.68371	0.000
25	Singlet-A2 22.6302	54.79	0.0000	0.000	max(2)=	4 -> 10	0.12677	
	max(1)=	5 -> 14	0.67160		max(3)=	3 -> 12	0.06187	
	max(2)=	5 -> 11	0.17631		max(4)=	5 -> 18	0.05178	

	max(5)=	4 -> 25	0.03802		min(2)=	2 -> 8	-0.07473	
	min(1)=	3 -> 14	-0.05265		$\min(3) =$	2 -> 15	-0.05155	
	min(2)=	3 -> 11	-0.04027		$\min(4) =$	5 -> 9	-0.01481	
	min(3)=	5 -> 9	-0.02890		min(5)=	3 -> 12	-0.00787	
	min(4)=	2 -> 6	-0.02531		#CIs=40 #0	CIs>0=25 #CIs<0=15		
	min(5)=	2 -> 10	-0.02402					
	#CIs=41 #CIs>	0=25 #CIs<0=16		32	Singlet-B1 33.7	7190 36.77	0.0231	0.000
					$\max(1)=$	5 -> 16	0.69503	
29	Singlet-A1 29.8738	41.50	0.1879	0.000	max(2)=	5 -> 8	0.07297	
	max(1)=	3 -> 14	0.67362		max(3)=	5 -> 15	0.06835	
	max(2)=	5 -> 18	0.10998		$\max(4) =$	5 -> 21	0.04478	
	max(3)=	3 -> 11	0.10357		max(5)=	3 -> 20	0.01845	
	$\max(4)=$	4 -> 16	0.08018		$\min(1) =$	4 -> 18	-0.03435	
	max(5)=	4 -> 15	0.05176		min(2)=	5 -> 10	-0.03166	
	min(1)=	3 -> 12	-0.05647		min(3)=	5 -> 19	-0.02252	
	min(2)=	4 -> 19	-0.04197		$\min(4) =$	2 -> 9	-0.02200	
	min(3)=	2 -> 6	-0.03766		$\min(5)=$	5 -> 25	-0.01923	
	$\min(4)=$	5 -> 9	-0.03354		#CIs=25 #0	CIs>0=13 #CIs<0=12		
	min(5)=	3 -> 24	-0.02298					
	#CIs=41 #CIs>	0=20 #CIs<0=21		33	Singlet-B2 33.7	36.71	0.0051	0.000
					max(1)=	2 -> 7	0.62408	
30	Singlet-B2 31.0714	39.90	0.3134	0.000	max(2)=	2 -> 11	0.19587	
	max(1)=	3 -> 15	0.67968		max(3)=	5 -> 20	0.03739	
	max(2)=	3 -> 10	0.11095		$\max(4) =$	2 -> 17	0.03603	
	max(3)=	4 -> 14	0.09533		max(5)=	4 -> 17	0.02389	
	max(4)=	2 -> 11	0.03544		$\min(1) =$	2 -> 12	-0.24456	
	max(5)=	3 -> 25	0.02414		$\min(2) =$	2 -> 14	-0.07528	
	min(1)=	5 -> 20	-0.06814		$\min(3) =$	3 -> 15	-0.03298	
	min(2)=	3 -> 16	-0.06393		$\min(4) =$	4 -> 14	-0.01900	
	min(3)=	4 -> 17	-0.04064		$\min(5) =$	3 -> 19	-0.01492	
	min(4)=	2 -> 14	-0.03912		#CIs=33 #0	CIs>0=20 #CIs<0=13		
	min(5)=	2 -> 12	-0.02993					
	#CIs=35 #CIs>	0=14 #CIs<0=21		34	Singlet-A1 35.2	2181 35.20	0.0045	0.000
					max(1)=	5 -> 18	0.50657	
31	Singlet-A1 32.0963	38.63	0.0133	0.000	max(2)=	2 -> 10	0.06044	
	max(1)=	2 -> 6	0.63250		max(3)=	2 -> 8	0.02961	
	max(2)=	2 -> 10	0.25262		$\max(4)=$	4 -> 10	0.02261	
	max(3)=	5 -> 18	0.11731		max(5)=	5 -> 22	0.01503	
	max(4)=	4 -> 16	0.05076		min(1)=	4 -> 16	-0.46822	
	max(5)=	4 -> 15	0.02899		$\min(2)=$	2 -> 6	-0.07725	
	$\min(1)=$	2 -> 13	-0.09101		$\min(3) =$	4 -> 8	-0.05520	

	min(4)=	5 -> 9	-0.04700		#CIs=41 #CIs>	0=17 #CIs<0=24		
	min(5)=	4 -> 15	-0.04417					
	#CIs=41 #CIs	>0=15 #CIs<0=26		38	Singlet-B2 36.7336	33.75	0.0025	0.000
					$\max(1)=$	2 -> 11	0.60576	
35	Singlet-A2 35.239	4 35.18	0.0000	0.000	$\max(2)=$	5 -> 20	0.03480	
	$\max(1)=$	5 -> 17	0.69875		max(3)=	2 -> 17	0.02424	
	$\max(2)=$	5 -> 12	0.09127		$\max(4) =$	4 -> 17	0.01709	
	max(3)=	5 -> 14	0.04491		$\max(5)=$	2 -> 24	0.01095	
	$\max(4)=$	5 -> 24	0.02428		min(1)=	2 -> 7	-0.27770	
	$\max(5)=$	5 -> 35	0.01103		min(2)=	2 -> 14	-0.16780	
	$\min(1)=$	5 -> 32	-0.02214		$\min(3)=$	2 -> 12	-0.15289	
	min(2)=	5 -> 7	-0.00764		$\min(4)=$	3 -> 15	-0.03692	
	min(3)=	5 -> 23	-0.00494		min(5)=	4 -> 14	-0.01345	
	$\min(4)=$	5 -> 11	-0.00440		#CIs=34 #CIs>	0=18 #CIs<0=16		
	$\min(5)=$	3 -> 18	-0.00405					
	#CIs=19 #CIs	>0=9 #CIs<0=10		39	Singlet-B1 36.7426	33.74	0.0034	0.000
					$\max(1)=$	4 -> 18	0.70094	
36	Singlet-B1 36.301	1 34.15	0.0120	0.000	$\max(2)=$	5 -> 16	0.03300	
	max(1)=	2 -> 9	0.70076		max(3)=	5 -> 21	0.02603	
	max(2)=	2 -> 18	0.07258		$\max(4)=$	4 -> 33	0.02090	
	max(3)=	3 -> 20	0.02840		$\max(5)=$	4 -> 22	0.00959	
	$\max(4)=$	5 -> 15	0.02030		$\min(1)=$	4 -> 9	-0.07683	
	max(5)=	5 -> 16	0.01944		$\min(2)=$	2 -> 9	-0.01632	
	$\min(1)=$	5 -> 19	-0.02955		$\min(3)=$	2 -> 22	-0.00614	
	$\min(2)=$	5 -> 13	-0.01969		$\min(4)=$	2 -> 28	-0.00459	
	$\min(3)=$	4 -> 22	-0.01891		min(5)=	5 -> 25	-0.00272	
	$\min(4)=$	5 -> 25	-0.00675		#CIs=25 #CIs>	0=15 #CIs<0=10		
	$\min(5)=$	5 -> 26	-0.00375					
	#CIs=25 #CIs	>0=15 #CIs<0=10		40	Singlet-A1 36.8413	33.65	0.0009	0.000
					$\max(1)=$	2 -> 10	0.48932	
37	Singlet-A1 36.367	0 34.09	0.0146	0.000	$\max(2)=$	2 -> 8	0.42051	
	$\max(1)=$	2 -> 8	0.54910		max(3)=	4 -> 16	0.18502	
	max(2)=	2 -> 6	0.21403		$\max(4) =$	5 -> 18	0.05012	
	max(3)=	2 -> 15	0.07624		$\max(5)=$	4 -> 8	0.01275	
	$\max(4)=$	3 -> 14	0.02803		$\min(1)=$	2 -> 6	-0.17958	
	$\max(5)=$	5 -> 22	0.02250		min(2)=	2 -> 15	-0.10338	
	$\min(1)=$	2 -> 10	-0.35381		min(3)=	3 -> 17	-0.03379	
	min(2)=	2 -> 13	-0.08652		$\min(4) =$	3 -> 12	-0.02664	
	min(3)=	4 -> 16	-0.06861		$\min(5)=$	3 -> 14	-0.02294	
	$\min(4)=$	2 -> 16	-0.06769		#CIs=41 #CIs>	0=20 #CIs<0=21		
	min(5)=	4 -> 19	-0.03761					

41	Singlet-B2 37.3220	33.22	0.0788	0.000	$\max(2)=$	2 -> 10	0.17107	
	max(1)=	4 -> 17	0.69084		max(3)=	3 -> 14	0.11480	
	max(2)=	4 -> 12	0.08905		$\max(4)=$	3 -> 12	0.08843	
	max(3)=	4 -> 14	0.04788		max(5)=	2 -> 15	0.05726	
	$\max(4)=$	3 -> 15	0.02994		$\min(1)=$	4 -> 16	-0.33921	
	max(5)=	4 -> 24	0.02886		min(2)=	5 -> 18	-0.28845	
	min(1)=	2 -> 12	-0.06707		$\min(3)=$	2 -> 13	-0.19975	
	$\min(2)=$	2 -> 11	-0.04041		$\min(4)=$	2 -> 6	-0.02528	
	min(3)=	2 -> 7	-0.03286		$\min(5)=$	4 -> 19	-0.02193	
	$\min(4)=$	5 -> 20	-0.03012		#CIs=43 #CIs>0	=20 #CIs<0=23		
	$\min(5)=$	3 -> 16	-0.02383					
	#CIs=34 #CIs>0)=18 #CIs<0=16		45	Singlet-B2 40.2449	30.81	0.0363	0.000
					$\max(1) =$	3 -> 16	0.67925	
42	Singlet-A1 38.6380	32.09	0.0004	0.000	max(2)=	2 -> 12	0.08501	
	$\max(1) =$	2 -> 13	0.65792		max(3)=	3 -> 15	0.06213	
	$\max(2)=$	2 -> 6	0.10789		$\max(4) =$	3 -> 8	0.06127	
	max(3)=	2 -> 8	0.08301		$\max(5) =$	2 -> 14	0.04825	
	$\max(4) =$	3 -> 17	0.08141		$\min(1)=$	5 -> 20	-0.12247	
	$\max(5) =$	2 -> 10	0.06139		$\min(2)=$	3 -> 10	-0.03104	
	$\min(1)=$	4 -> 16	-0.14605		$\min(3)=$	3 -> 19	-0.02494	
	$\min(2)=$	5 -> 18	-0.11390		$\min(4) =$	3 -> 25	-0.01723	
	min(3)=	2 -> 15	-0.03051		$\min(5)=$	2 -> 23	-0.01113	
	$\min(4)=$	2 -> 16	-0.01659		#CIs=33 #CIs>0	=22 #CIs<0=11		
	$\min(5)=$	5 -> 22	-0.00695					
	#CIs=40 #CIs>0)=22 #CIs<0=18		46	Singlet-A2 41.1640	30.12	0.0000	0.000
					max(1)=	3 -> 18	0.70202	
43	Singlet-B2 38.7323	32.01	0.0186	0.000	max(2)=	3 -> 22	0.02970	
	max(1)=	2 -> 12	0.61562		max(3)=	3 -> 33	0.01811	
	max(2)=	2 -> 11	0.24977		$\max(4)=$	2 -> 20	0.01617	
	max(3)=	2 -> 7	0.17607		max(5)=	5 -> 17	0.00505	
	max(4)=	4 -> 17	0.07587		$\min(1)=$	3 -> 9	-0.07295	
	max(5)=	2 -> 14	0.03229		min(2)=	4 -> 20	-0.01673	
	$\min(1)=$	3 -> 16	-0.10873		$\min(3)=$	2 -> 29	-0.00612	
	$\min(2)=$	2 -> 17	-0.07037		$\min(4) =$	5 -> 14	-0.00225	
	$\min(3)=$	5 -> 20	-0.04642		$\min(5) =$	5 -> 24	-0.00196	
	$\min(4)=$	3 -> 8	-0.02409		#CIs=19 #CIs>0	=11 #CIs<0=8		
	$\min(5)=$	3 -> 10	-0.01045					
	#CIs=35 #CIs>0)=18 #CIs<0=17		47	Singlet-B1 41.8180	29.65	0.0008	0.000
					$\max(1)=$	5 -> 19	0.70008	
44	Singlet-A1 39.7527	31.19	0.0544	0.000	$\max(2)=$	5 -> 21	0.07691	
	max(1)=	3 -> 17	0.44723		max(3)=	2 -> 9	0.02496	

	max(4)=	5 -> 30	0.02382		$\min(1)=$	2 -> 20	-0.02901	
	max(5)=	5 -> 15	0.02338		min(2)=	3 -> 22	-0.01984	
	min(1)=	5 -> 13	-0.02516		$\min(3) =$	5 -> 17	-0.00404	
	min(2)=	4 -> 22	-0.01895		$\min(4) =$	3 -> 28	-0.00155	
	min(3)=	5 -> 31	-0.00968		$\min(5) =$	5 -> 12	-0.00091	
	min(4)=	4 -> 18	-0.00468		#CIs=19	#CIs>0=12 #CIs<0=7		
	min(5)=	2 -> 28	-0.00075					
	#CIs=26 #CIs>	0=19 #CIs<0=7		51	Singlet-B1 44	.9045 27.61	0.1799	0.000
					max(1)=	5 -> 21	0.68550	
48	Singlet-B2 43.8497	28.27	0.6294	0.000	max(2)=	4 -> 22	0.05002	
	max(1)=	5 -> 20	0.67056		max(3)=	2 -> 18	0.03913	
	max(2)=	3 -> 19	0.14827		$\max(4) =$	5 -> 10	0.02225	
	max(3)=	3 -> 16	0.10714		$\max(5)=$	5 -> 26	0.01838	
	$\max(4)=$	3 -> 15	0.07597		$\min(1) =$	3 -> 20	-0.12507	
	max(5)=	2 -> 12	0.06606		$\min(2)=$	5 -> 19	-0.07038	
	$\min(1)=$	3 -> 25	-0.02200		$\min(3) =$	5 -> 16	-0.04001	
	min(2)=	2 -> 11	-0.01317		$\min(4) =$	5 -> 13	-0.03376	
	min(3)=	4 -> 11	-0.01310		$\min(5) =$	4 -> 18	-0.02401	
	$\min(4)=$	3 -> 10	-0.01190		#CIs=26	#CIs>0=11 #CIs<0=15		
	min(5)=	2 -> 24	-0.01105					
	#CIs=35 #CIs>	0=23 #CIs<0=12		52	Singlet-B2 45	.9796 26.97	0.0095	0.000
					$\max(1)=$	2 -> 14	0.67546	
49	Singlet-A1 44.4780	27.88	0.3529	0.000	$\max(2)=$	2 -> 11	0.16138	
	max(1)=	4 -> 19	0.54294		$\max(3) =$	3 -> 15	0.01766	
	max(2)=	4 -> 21	0.28533		$\max(4) =$	4 -> 23	0.01378	
	max(3)=	5 -> 22	0.10177		$\max(5)=$	3 -> 10	0.01057	
	max(4)=	2 -> 15	0.05775		$\min(1) =$	2 -> 12	-0.10786	
	max(5)=	3 -> 14	0.04971		min(2)=	3 -> 16	-0.04498	
	$\min(1)=$	3 -> 17	-0.25462		$\min(3) =$	2 -> 24	-0.03800	
	min(2)=	4 -> 16	-0.13944		$\min(4) =$	2 -> 17	-0.02782	
	min(3)=	5 -> 18	-0.12350		min(5)=	4 -> 17	-0.02396	
	$\min(4)=$	4 -> 13	-0.03786		#CIs=35 :	#CIs>0=17 #CIs<0=18		
	min(5)=	2 -> 13	-0.03007					
	#CIs=43 #CIs>	0=24 #CIs<0=19		53	Singlet-A1 46	.2190 26.83	0.2598	0.000
					$\max(1) =$	2 -> 15	0.35197	
50	Singlet-A2 44.8370	27.65	0.0000	0.000	$\max(2) =$	4 -> 21	0.26330	
	max(1)=	4 -> 20	0.70534		$\max(3) =$	2 -> 10	0.14142	
	max(2)=	4 -> 29	0.02893		$\max(4) =$	2 -> 25	0.02856	
	max(3)=	3 -> 18	0.01829		$\max(5) =$	5 -> 28	0.02179	
	max(4)=	2 -> 29	0.00567		$\min(1) =$	4 -> 19	-0.36965	
	$\max(5) =$	5 -> 27	0.00497		$\min(2) =$	3 -> 17	-0.30946	

	$\min(3)=$	5 -> 22	-0.13103		1	min(5)=	5 -> 16	-0.01731	
	$\min(4)=$	4 -> 16	-0.12079			#CIs=	25 #CIs>0	=16 #CIs<0=9		
	$\min(5)=$	5 -> 18	-0.12025							
	#CIs=43 #CIs>0)=15 #CIs<0=28		57	Singlet	-A1	50.0322	24.78	0.4859	0.000
					1	max(1)=	5 -> 22	0.46561	
54	Singlet-A1 47.2925	26.22	0.0000	0.000	1	max(2)=	2 -> 21	0.04067	
	$\max(1)=$	2 -> 15	0.46747		1	max(3)=	3 -> 12	0.02742	
	$\max(2)=$	5 -> 22	0.23390		1	max(4)=	2 -> 10	0.02302	
	max(3) =	4 -> 19	0.11667		1	max(5)=	4 -> 8	0.02256	
	$\max(4) =$	2 -> 10	0.09411		1	min(1)=	2 -> 15	-0.31405	
	$\max(5)=$	2 -> 25	0.02660		1	min(2)=	3 -> 17	-0.25054	
	$\min(1)=$	4 -> 21	-0.44386		1	min(3)=	4 -> 19	-0.19490	
	$\min(2)=$	3 -> 17	-0.04212		1	min(4)=	5 -> 18	-0.18599	
	$\min(3)=$	2 -> 16	-0.03702		1	min(5)=	4 -> 16	-0.13515	
	$\min(4)=$	5 -> 28	-0.02029			#CIs=	41 #CIs>0	=18 #CIs<0=23		
	$\min(5)=$	2 -> 19	-0.02012							
	#CIs=41 #CIs>0)=21 #CIs<0=20		58	Singlet	-A1	50.7723	24.42	0.5155	0.000
					1	max(1)=	5 -> 22	0.43907	
55	Singlet-B2 48.8593	25.38	0.5023	0.000	1	max(2)=	4 -> 21	0.35649	
	max(1) =	3 -> 19	0.68478		1	max(3)=	3 -> 17	0.22464	
	$\max(2)=$	2 -> 23	0.04075		1	max(4)=	5 -> 18	0.17803	
	max(3)=	3 -> 25	0.03362		1	max(5)=	4 -> 16	0.17007	
	$\max(4) =$	5 -> 29	0.01928		1	min(1)=	3 -> 14	-0.08888	
	$\max(5) =$	4 -> 11	0.01174		1	min(2)=	4 -> 19	-0.07601	
	$\min(1)=$	5 -> 20	-0.13906		1	min(3)=	3 -> 24	-0.06889	
	$\min(2)=$	4 -> 14	-0.04404		1	min(4)=	2 -> 21	-0.06757	
	$\min(3)=$	2 -> 12	-0.03880		1	min(5)=	4 -> 15	-0.04139	
	$\min(4) =$	4 -> 24	-0.03616			#CIs=	42 #CIs>0	=21 #CIs<0=21		
	$\min(5)=$	4 -> 23	-0.03296							
	#CIs=36 #CIs>0)=18 #CIs<0=18		59	Singlet	-B2	51.1934	24.22	0.0677	0.000
					1	max(1)=	3 -> 21	0.70073	
56	Singlet-B1 49.3378	25.13	0.4700	0.000	1	max(2)=	2 -> 17	0.07312	
	$\max(1)=$	3 -> 20	0.66290		1	max(3)=	3 -> 19	0.02049	
	$\max(2)=$	4 -> 22	0.20740		1	max(4)=	3 -> 26	0.01697	
	max(3)=	5 -> 21	0.09872		1	max(5)=	3 -> 10	0.01441	
	$\max(4)=$	2 -> 18	0.04911		1	min(1)=	3 -> 13	-0.03992	
	max(5)=	2 -> 22	0.03564		1	min(2)=	3 -> 16	-0.01375	
	min(1)=	5 -> 15	-0.02663		1	min(3)=	4 -> 24	-0.01175	
	min(2)=	2 -> 9	-0.02621		1	min(4)=	3 -> 30	-0.01132	
	min(3)=	5 -> 19	-0.02558		1	min(5)=	2 -> 14	-0.00923	
	min(4)=	4 -> 28	-0.02424			#CIs=	34 #CIs>0	=18 #CIs<0=16		

					$\min(1) =$	3 -> 20	-0.18318
60	Singlet-B1 52.1627	23.77	1.0346	0.000	$\min(2)=$	2 -> 18	-0.09098
	max(1)=	4 -> 22	0.66714		$\min(3) =$	5 -> 21	-0.07206
	max(2)=	2 -> 9	0.03462		$\min(4) =$	5 -> 25	-0.05107
	max(3)=	5 -> 19	0.03070		$\min(5) =$	2 -> 22	-0.02926
	max(4)=	5 -> 15	0.03017		#CIs=25 #CIs>0	=10 #CIs<0=15	
	max(5)=	5 -> 16	0.02095				

$8 H_2S$

8.1 6-311G(d,p)

8.1.1 Plots

Figure S11: For H₂S molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (bottom) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S11a and S11c) or states (SOS approaches, in Plots S11b and S11d). For α FIOs, three approaches were considered: CPKS (CAM-B3LYP), CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. All elements of the β tensor were recomputed with an error less than 0.02 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

8.1.2 Main contributions from different excited states at TDDFT (CAM-B3LYP) approach

#_exc.st	symm	Exc.E OscStrength	f	<s**2>_</s**2>	$\min(4)=$	8 -> 17	-0.01946	
					$\min(5)=$	6 -> 13	-0.00962	
1	Singlet-A2 6	3.1367 202.04	0.0000	0.000	#states=38	#states>0=18 #sta	tes<0=20	
	max(1)=	9 -> 11	0.70435					
	max(2)=	9 -> 12	0.01945	4	Singlet-A2 9.98	84 124.13	0.0000	0.000
	max(3)=	6 -> 19	0.00681		$\max(1)=$	9 -> 12	0.70624	
	$\max(4) =$	8 -> 19	0.00487		$\max(2)=$	9 -> 22	0.01446	
	max(5)=	9 -> 27	0.00433		max(3) =	9 -> 27	0.00631	
	min(1)=	9 -> 16	-0.06033		$\max(4) =$	6 -> 19	0.00130	
	min(2)=	9 -> 22	-0.00621		$\max(5)=$	9 -> 33	0.00092	
	min(3)=	7 -> 14	-0.00595		$\min(1)=$	9 -> 16	-0.02251	
	$\min(4)=$	8 -> 24	-0.00203		$\min(2)=$	9 -> 11	-0.02132	
	min(5)=	9 -> 23	-0.00147		$\min(3)=$	9 -> 23	-0.00530	
	#states=	=18 #states>0=7 #stat	es<0=11		$\min(4) =$	7 -> 14	-0.00178	
					$\min(5)=$	9 -> 31	-0.00140	
2	Singlet-B1 6	5.6231 187.20	0.0300	0.000	#states=18	#states>0=8 #stat	es<0=10	
	$\max(1)=$	9 -> 10	0.70574					
	max(2)=	9 -> 13	0.03158	5	Singlet-B2 10.01	86 123.75	0.1793	0.000
	max(3)=	9 -> 21	0.01189		max(1)=	8 -> 11	0.68078	
	$\max(4) =$	6 -> 20	0.00537		$\max(2)=$	7 -> 15	0.06911	
	max(5)=	6 -> 14	0.00458		max(3)=	9 -> 19	0.05056	
	min(1)=	9 -> 17	-0.02781		$\max(4)=$	8 -> 12	0.01396	
	min(2)=	9 -> 15	-0.02244		max(5)=	7 -> 13	0.01266	
	min(3)=	7 -> 19	-0.01261		min(1)=	7 -> 10	-0.17246	
	min(4)=	8 -> 20	-0.01088		min(2)=	7 -> 18	-0.02942	
	min(5)=	6 -> 25	-0.00237		$\min(3)=$	6 -> 12	-0.01983	
	#states=	=24 #states>0=15 #sta	tes<0=9		$\min(4)=$	6 -> 11	-0.01752	
					$\min(5)=$	8 -> 16	-0.00745	
3	Singlet-A1 9	9.6042 129.09	0.2275	0.000	#states=32 ;	#states>0=13 #sta	tes<0=19	
	$\max(1)=$	8 -> 10	0.69458					
	max(2)=	7 -> 16	0.02000	6	Singlet-B1 10.47	87 118.32	0.0018	0.000
	max(3)=	8 -> 18	0.00994		$\max(1)=$	9 -> 13	0.70295	
	$\max(4)=$	6 -> 10	0.00497		$\max(2) =$	8 -> 20	0.01254	
	max(5)=	9 -> 20	0.00479		max(3)=	9 -> 26	0.00918	
	min(1)=	7 -> 11	-0.11848		$\max(4) =$	7 -> 19	0.00867	
	min(2)=	9 -> 14	-0.04780		$\max(5)=$	9 -> 17	0.00596	
	min(3)=	8 -> 15	-0.02088		$\min(1)=$	9 -> 15	-0.06523	

	min(2)=	9 -> 10	-0.03329		min(4	1)=	8 -> 26	-0.01105	
	$\min(3)=$	8 -> 14	-0.01451		min(S	5)=	6 -> 18	-0.00936	
	$\min(4)=$	6 -> 14	-0.00557		#stat	tes=37 #sta	ates>0=18 #sta	tes<0=19	
	min(5)=	9 -> 18	-0.00470						
	#states=24 #st	ates>0=9 #state	s<0=15	10	Singlet-B2	12.8738	96.31	0.0017	0.000
					max()	1)=	8 -> 12	0.69998	
7	Singlet-A1 11.6289	106.62	0.0737	0.000	max(2	2)=	8 -> 22	0.01414	
	max(1)=	9 -> 14	0.61895		max(3	3)=	8 -> 27	0.00623	
	$\max(2)=$	6 -> 10	0.03172		max(4	1)=	6 -> 12	0.00507	
	max(3)=	7 -> 16	0.00892		max(5)=	7 -> 30	0.00196	
	$\max(4)=$	6 -> 13	0.00629		min(1)=	7 -> 10	-0.07937	
	$\max(5)=$	7 -> 23	0.00425		min(2	2)=	8 -> 16	-0.03786	
	min(1)=	7 -> 11	-0.27824		min(3	3)=	8 -> 11	-0.03488	
	min(2)=	8 -> 13	-0.16962		min(4	1)=	6 -> 11	-0.02195	
	min(3)=	7 -> 12	-0.09646		min(5)=	7 -> 13	-0.01772	
	$\min(4)=$	9 -> 20	-0.01636		#stat	tes=32 #sta	tes>0=14 #stat	tes<0=18	
	$\min(5)=$	8 -> 18	-0.01285						
	#states=38 #st	ates>0=17 #stat	es<0=21	11	Singlet-B1	13.8437	89.56	0.1843	0.000
					max()	1)=	8 -> 14	0.53160	
8	Singlet-B2 12.0005	103.32	0.6273	0.000	max(2	2)=	6 -> 14	0.01835	
	max(1)=	7 -> 10	0.67641		max(3	3)=	9 -> 18	0.01185	
	max(2)=	8 -> 11	0.16647		max(4	1)=	6 -> 20	0.00908	
	$\max(3)=$	8 -> 12	0.08854		max(5)=	9 -> 21	0.00544	
	$\max(4)=$	7 -> 13	0.07661		min(1)=	9 -> 15	-0.46366	
	$\max(5)=$	8 -> 16	0.02615		min(2	2)=	9 -> 13	-0.03214	
	$\min(1)=$	6 -> 12	-0.02424		min(3	3)=	7 -> 19	-0.02046	
	min(2)=	7 -> 18	-0.01118		min(4	1)=	8 -> 20	-0.01625	
	min(3)=	6 -> 16	-0.01006		min(5)=	9 -> 10	-0.01399	
	$\min(4)=$	7 -> 17	-0.00643		#stat	tes=24 #sta	tes>0=15 #stat	tes<0=9	
	$\min(5)=$	7 -> 21	-0.00473						
	#states=31 #st	ates>0=15 #stat	es<0=16	12	Singlet-A1	13.9451	88.91	0.0047	0.000
					max()	1)=	8 -> 13	0.59095	
9	Singlet-A1 12.5786	98.57	0.4102	0.000	max(2	2)=	9 -> 14	0.19051	
	max(1)=	7 -> 11	0.60443		max(3	3)=	7 -> 11	0.15729	
	max(2)=	9 -> 14	0.20389		max(4	1)=	8 -> 15	0.10214	
	max(3)=	8 -> 10	0.11705		max(5)=	8 -> 10	0.04891	
	$\max(4)=$	8 -> 15	0.10692		min(1)=	7 -> 12	-0.27337	
	max(5)=	9 -> 20	0.03894		min(2	2)=	8 -> 17	-0.01889	
	$\min(1) =$	8 -> 13	-0.25663		min(3	3)=	6 -> 17	-0.01885	
	$\min(2)=$	6 -> 13	-0.02392		min(4	1)=	7 -> 22	-0.01405	
	$\min(3)=$	6 -> 17	-0.01535		min(5)=	7 -> 27	-0.00716	

	#states=38 #st	tates>0=20 #stat	tes<0=18	16	Singlet-A1	16.0085	77.45	0.0009	0.000
					max(L)=	7 -> 12	0.57083	
13	Singlet-B1 14.1832	87.42	0.2250	0.000	max(2	2)=	8 -> 15	0.35091	
	max(1)=	9 -> 15	0.52432		max(3	3)=	8 -> 13	0.17185	
	max(2)=	8 -> 14	0.46534		max(4	1)=	9 -> 14	0.12202	
	max(3)=	9 -> 13	0.05775		max(5)=	6 -> 10	0.04200	
	$\max(4)=$	8 -> 20	0.04483		min(:	L)=	8 -> 18	-0.03258	
	max(5)=	7 -> 19	0.04155		min(2	2)=	9 -> 20	-0.03232	
	$\min(1)=$	6 -> 14	-0.02960		min(3	3)=	8 -> 17	-0.03155	
	min(2)=	9 -> 21	-0.02388		min(4	1)=	7 -> 11	-0.03142	
	min(3)=	9 -> 18	-0.01792		min(S	5)=	7 -> 16	-0.02785	
	min(4)=	6 -> 20	-0.00930		#stat	es=38 #st	ates>0=20 #sta	tes<0=18	
	min(5)= 9 -> 30 -		-0.00580						
	#states=24 #st	tates>0=11 #stat	tes<0=13	17	Singlet-A2	16.2374	76.36	0.0000	0.000
					max()	L)=	7 -> 14	0.70622	
14	Singlet-A2 15.1065	82.07	0.0000	0.000	max(2	2)=	8 -> 19	0.00674	
	max(1)=	9 -> 16	0.70316		max(3	3)=	7 -> 28	0.00559	
	max(2)=	9 -> 11	0.05995		max(4	1)=	9 -> 11	0.00308	
	max(3)=	7 -> 14	0.03194		max(5)=	6 -> 19	0.00217	
	$\max(4)=$	9 -> 12	0.02405		min(L)=	9 -> 16	-0.03229	
	max(5)=	9 -> 22	0.01650		min(2	2)=	7 -> 25	-0.01078	
	min(1)=	9 -> 27	-0.00944		min(3	3)=	8 -> 24	-0.00266	
	min(2)=	6 -> 19	-0.00574		min(4	1)=	9 -> 22	-0.00226	
	min(3)=	8 -> 19	-0.00331		min(5)=	9 -> 31	-0.00055	
	$\min(4)=$	9 -> 31	-0.00254		#stat	ces=18 #st	ates>0=11 #sta	tes<0=7	
	min(5)=	6 -> 24	-0.00074						
	#states=18 #st	tates>0=13 #stat	tes<0=5	18	Singlet-A1	17.0906	72.55	0.0194	0.000
					max()	L)=	8 -> 15	0.58020	
15	Singlet-B2 15.7316	78.81	0.0116	0.000	max(2	2)=	6 -> 17	0.04129	
	max(1)=	7 -> 13	0.69939		max(3	3)=	8 -> 21	0.02503	
	max(2)=	6 -> 12	0.01545		max(4	1)=	6 -> 15	0.01573	
	max(3)=	7 -> 18	0.01182		max(5)=	9 -> 28	0.01180	
	$\max(4)=$	7 -> 21	0.00913		min(L)=	7 -> 12	-0.29133	
	$\max(5)=$	7 -> 26	0.00771		min(2	2)=	8 -> 13	-0.15155	
	min(1)=	7 -> 10	-0.07038		min(3	3)=	9 -> 14	-0.12753	
	min(2)=	7 -> 15	-0.04752		min(4	1)=	7 -> 11	-0.11240	
	min(3)=	6 -> 11	-0.03661		min(5)=	6 -> 10	-0.11115	
	min(4)=	8 -> 16	-0.02901		#stat	ces=38 #st	ates>0=15 #sta	tes<0=23	
	min(5)=	8 -> 11	-0.02597						
	#states=30 #st	tates>0=15 #stat	tes<0=15	19	Singlet-B2	18.0971	68.51	0.0232	0.000
					max()	L)=	8 -> 16	0.61322	

	max(2)=	6 -> 11	0.04170		$\max(4) =$	8 -> 21	0.01715	
	max(3)=	8 -> 11	0.03744		max(5)=	7 -> 22	0.01384	
	max(4)=	8 -> 12	0.03230		min(1)=	7 -> 16	-0.47757	
	max(5)=	7 -> 17	0.01941		min(2)=	7 -> 12	-0.03569	
	min(1)=	7 -> 15	-0.34197		min(3)=	9 -> 14	-0.03327	
	min(2)=	9 -> 19	-0.03225		min(4)=	6 -> 15	-0.02372	
	min(3)=	7 -> 10	-0.02769		min(5)=	8 -> 13	-0.01713	
	min(4)=	6 -> 16	-0.01199		#states=38 #st	tates>0=15 #sta	tes<0=23	
	min(5)=	7 -> 21	-0.01034					
	#states=31 #s [.]	tates>0=23 #sta	tes<0=8	23	Singlet-A1 21.2525	58.34	0.0214	0.000
					max(1)=	7 -> 16	0.49341	
20	Singlet-B2 19.5598	63.39	0.0830	0.000	max(2)=	6 -> 10	0.47400	
	max(1)=	7 -> 15	0.58455		max(3)=	8 -> 15	0.10782	
	max(2)=	8 -> 16	0.32830		max(4)=	7 -> 22	0.04069	
	max(3)=	7 -> 18	0.05383		max(5)=	8 -> 21	0.03142	
	max(4)=	7 -> 13	0.03794		min(1)=	9 -> 14	-0.07346	
	max(5)=	6 -> 12	0.03001		min(2)=	9 -> 20	-0.05997	
	min(1)=	9 -> 19	-0.16164		min(3)=	8 -> 13	-0.05383	
	min(2)=	6 -> 11	-0.12849		min(4)=	7 -> 12	-0.05275	
	min(3)=	8 -> 11	-0.05179		min(5)=	8 -> 18	-0.04297	
	min(4)=	7 -> 17	-0.03429		#states=38 #st	tates>0=19 #sta	tes<0=19	
	min(5)=	7 -> 10	-0.01490					
	#states=32 #s	tates>0=19 #sta	tes<0=13	24	Singlet-B1 21.8636	56.71	0.3016	0.000
					max(1)=	9 -> 17	0.67575	
21	Singlet-B2 20.3042	61.06	0.0094	0.000	max(2)=	9 -> 18	0.19922	
	max(1)=	6 -> 11	0.68751		max(3)=	9 -> 10	0.02422	
	max(2)=	7 -> 15	0.13685		max(4)=	6 -> 14	0.01559	
	max(3)=	7 -> 13	0.04474		max(5)=	9 -> 32	0.00271	
	$\max(4)=$	6 -> 12	0.03842		$\min(1)=$	8 -> 20	-0.04252	
	max(5)=	9 -> 19	0.03037		$\min(2)=$	7 -> 19	-0.02921	
	$\min(1)=$	7 -> 17	-0.04419		$\min(3) =$	9 -> 15	-0.01561	
	min(2)=	6 -> 16	-0.02137		$\min(4) =$	8 -> 14	-0.00465	
	$\min(3)=$	7 -> 10	-0.01536		$\min(5)=$	9 -> 30	-0.00454	
	$\min(4)=$	7 -> 18	-0.01416		#states=24 #st	tates>0=12 #sta	tes<0=12	
	$\min(5)=$	9 -> 24	-0.01097					
	#states=32 #s [.]	tates>0=17 #sta	tes<0=15	25	Singlet-B1 22.2070	55.83	0.0836	0.000
					max(1)=	9 -> 18	0.67695	
22	Singlet-A1 20.5496	60.33	0.0112	0.000	max(2)=	8 -> 20	0.03182	
	max(1)=	6 -> 10	0.50437		max(3)=	7 -> 19	0.03053	
	max(2)=	9 -> 20	0.10029		max(4)=	9 -> 15	0.02227	
	max(3)=	8 -> 18	0.06266		$\max(5) =$	9 -> 26	0.00924	

	$\min(1)=$	9 -> 17	-0.19484		$\min(3)=$	6 -> 17	-0.01203	
	min(2)=	6 -> 14	-0.03095		$\min(4) =$	7 -> 11	-0.01009	
	min(3)=	9 -> 21	-0.01205		$\min(5) =$	8 -> 29	-0.00957	
	min(4)=	9 -> 10	-0.00936		#states=38	#states>0=23 #sta	tes<0=15	
	min(5)=	9 -> 29	-0.00813					
	#states=	23 #states>0=12 #sta	tes<0=11	29	Singlet-A1 24.75	506 50.09	0.0000	0.000
					max(1)=	9 -> 20	0.49323	
26	Singlet-B2 23	52.26	0.1220	0.000	max(2)=	7 -> 16	0.03197	
	max(1)=	6 -> 12	0.66374		max(3)=	8 -> 29	0.00782	
	max(2)=	9 -> 19	0.23393		$\max(4) =$	7 -> 12	0.00622	
	max(3)=	8 -> 16	0.01576		max(5)=	6 -> 18	0.00606	
	$\max(4) =$	7 -> 10	0.01525		$\min(1) =$	8 -> 18	-0.47452	
	max(5)=	7 -> 15	0.00961		min(2)=	6 -> 13	-0.17269	
	min(1)=	6 -> 11	-0.05142		$\min(3) =$	7 -> 11	-0.01531	
	min(2)=	7 -> 17	-0.03099		$\min(4) =$	7 -> 22	-0.01018	
	min(3)=	6 -> 16	-0.01705		$\min(5) =$	6 -> 15	-0.01010	
	min(4)=	7 -> 13	-0.00840		#states=38	#states>0=19 #sta	tes<0=19	
	min(5)=	6 -> 23	-0.00388					
	#states=	30 #states>0=14 #sta	tes<0=16	30	Singlet-B1 24.92	49.75	0.0307	0.000
					max(1)=	6 -> 14	0.69740	
27	Singlet-A1 24	.1684 51.30	0.0713	0.000	max(2)=	8 -> 20	0.08917	
	max(1)=	6 -> 13	0.66567		max(3)=	7 -> 19	0.04966	
	max(2)=	9 -> 20	0.21278		$\max(4) =$	9 -> 15	0.02526	
	max(3)=	7 -> 16	0.02262		max(5)=	9 -> 18	0.01986	
	$\max(4) =$	8 -> 15	0.00974		$\min(1) =$	9 -> 21	-0.04497	
	max(5)=	7 -> 11	0.00833		min(2)=	9 -> 17	-0.01376	
	min(1)=	8 -> 17	-0.09676		$\min(3) =$	6 -> 25	-0.00751	
	min(2)=	6 -> 10	-0.02571		$\min(4) =$	6 -> 20	-0.00558	
	min(3)=	8 -> 18	-0.01770		$\min(5) =$	9 -> 10	-0.00209	
	min(4)=	8 -> 13	-0.01367		#states=23	#states>0=12 #sta	tes<0=11	
	min(5)=	7 -> 12	-0.01223					
	#states=	37 #states>0=17 #sta	tes<0=20	31	Singlet-B2 25.47	48.67	0.1569	0.000
					max(1)=	9 -> 19	0.56675	
28	Singlet-A1 24	.5575 50.49	0.0459	0.000	max(2)=	7 -> 18	0.34208	
	max(1)=	8 -> 17	0.69727		max(3)=	7 -> 15	0.08740	
	max(2)=	6 -> 13	0.09223		$\max(4) =$	8 -> 16	0.07374	
	max(3)=	6 -> 15	0.04423		max(5)=	7 -> 17	0.02337	
	$\max(4) =$	9 -> 20	0.03082		$\min(1) =$	6 -> 12	-0.20767	
	max(5)=	8 -> 13	0.02263		min(2)=	8 -> 11	-0.04970	
	min(1)=	8 -> 18	-0.01368		$\min(3) =$	8 -> 22	-0.04715	
	min(2)=	8 -> 21	-0.01333		$\min(4) =$	6 -> 11	-0.02610	

	min(5)=	7 -> 21	-0.02543		<pre>#states=38 #states>0=18 #states<0=20</pre>				
	#states=32 #st	tates>0=17 #stat	tes<0=15						
				35	Singlet-B1 27.9258	44.40	0.1019	0.000	
32	Singlet-A2 26.7526	46.34	0.0000	0.000	max(1)=	8 -> 20	0.61956		
	max(1)=	8 -> 19	0.70688		max(2)=	9 -> 21	0.18128		
	max(2)=	9 -> 16	0.00406		max(3)=	9 -> 17	0.02993		
	max(3)=	9 -> 33	0.00140		max(4)=	7 -> 24	0.00588		
	max(4)=	9 -> 31	0.00038		max(5)=	9 -> 30	0.00514		
	max(5)=	7 -> 28	0.00036		min(1)=	7 -> 19	-0.28231		
	min(1)=	8 -> 24	-0.01287		min(2)=	6 -> 14	-0.04621		
	$\min(2)=$	6 -> 19	-0.00908		$\min(3)=$	9 -> 15	-0.01943		
	$\min(3)=$	7 -> 14	-0.00658		$\min(4)=$	9 -> 13	-0.01017		
	$\min(4)=$	9 -> 22	-0.00466		$\min(5)=$	6 -> 20	-0.00921		
	$\min(5)=$	9 -> 11	-0.00458		#states=24 #st	ates>0=12 #stat	tes<0=12		
	#states=18 #st	tates>0=8 #state	es<0=10						
				36	Singlet-B2 29.0272	42.71	0.1140	0.000	
33	Singlet-B2 26.8165	46.23	0.0452	0.000	max(1)=	6 -> 16	0.66893		
	max(1)=	7 -> 17	0.70232		max(2)=	7 -> 18	0.19743		
	max(2)=	7 -> 15	0.04531		max(3)=	6 -> 12	0.04546		
	max(3)=	6 -> 12	0.03676		$\max(4)=$	6 -> 11	0.03486		
	$\max(4)=$	6 -> 11	0.03374		max(5)=	8 -> 11	0.02117		
	max(5)=	6 -> 16	0.02727		min(1)=	9 -> 19	-0.07958		
	min(1)=	7 -> 18	-0.02880		min(2)=	7 -> 15	-0.04690		
	min(2)=	8 -> 11	-0.01260		$\min(3)=$	8 -> 16	-0.02622		
	$\min(3)=$	7 -> 26	-0.00957		$\min(4)=$	7 -> 17	-0.01932		
	$\min(4)=$	9 -> 24	-0.00946		$\min(5)=$	7 -> 30	-0.00900		
	$\min(5)=$	8 -> 27	-0.00576		#states=32 #st	ates>0=16 #stat	tes<0=16		
	#states=31 #st	tates>0=16 #stat	tes<0=15						
				37	Singlet-A1 29.2152	42.44	1.1948	0.000	
34	Singlet-A1 27.1740	45.63	0.0998	0.000	max(1)=	8 -> 18	0.48614		
	max(1)=	6 -> 15	0.68058		max(2)=	9 -> 20	0.41615		
	max(2)=	6 -> 13	0.03474		max(3)=	6 -> 15	0.17512		
	max(3)=	6 -> 10	0.02516		$\max(4)=$	7 -> 16	0.11052		
	max(4)=	7 -> 11	0.02156		max(5)=	8 -> 15	0.07562		
	max(5)=	9 -> 14	0.01439		min(1)=	6 -> 13	-0.12333		
	$\min(1)=$	8 -> 18	-0.13433		min(2)=	7 -> 22	-0.11234		
	$\min(2)=$	9 -> 20	-0.09980		$\min(3)=$	8 -> 21	-0.10008		
	$\min(3)=$	7 -> 16	-0.04832		$\min(4) =$	7 -> 11	-0.07222		
	$\min(4)=$	8 -> 17	-0.04678		$\min(5)=$	8 -> 10	-0.02790		
	min(5)=	6 -> 17	-0.03046		#states=38 #st	ates>0=23 #stat	tes<0=15		

#_exc.st	symm E	xc.E OscStrength	f	<\$**2>_	min(5)= 8	-> 21	-0.01313	
					#stat	es=36 #state	s>0=20 #stat	es<0=16	
1	Singlet-A2 6.	5858 188.26	0.0000	0.000					
	max(1)=	9 -> 11	0.68473	4	Singlet-A2	10.6850	116.04	0.0000	0.000
	max(2)=	9 -> 16	0.15654		max(1)= 9	-> 12	0.69713	
	max(3)=	9 -> 22	0.01734		max(2)= 9	-> 11	0.09295	
	max(4)=	7 -> 14	0.00533		max(3)= 9	-> 22	0.03202	
	max(5)=	7 -> 20	0.00230		max(4)= 9	-> 28	0.01743	
	min(1)=	9 -> 12	-0.07773		max(5)= 9	-> 23	0.01093	
	min(2)=	9 -> 28	-0.01399		min(1)= 9	-> 16	-0.06207	
	min(3)=	9 -> 23	-0.00575		min(2)= 8	-> 19	-0.00429	
	min(4)=	6 -> 24	-0.00478		min(3)= 6	-> 19	-0.00422	
	min(5)=	6 -> 19	-0.00109		min(4)= 7	-> 20	-0.00136	
	#states=1	7 #states>0=10 #stat	ces<0=7		min(5)= 7	-> 27	-0.00045	
					#stat	es=16 #state	s>0=10 #stat	es<0=6	
2	Singlet-B1 7.3	3651 168.34	0.0293	0.000					
	max(1)=	9 -> 10	0.69679	5	Singlet-B2	10.8617	114.15	0.3294	0.000
	max(2)=	9 -> 13	0.05818		max(1)= 8	-> 11	0.68080	
	max(3)=	9 -> 21	0.00753		max(2)= 7	-> 10	0.10204	
	max(4)=	9 -> 26	0.00566		max(3)= 8	-> 16	0.09296	
	max(5)=	9 -> 29	0.00506		max(4)= 7	-> 18	0.04348	
	min(1)=	9 -> 15	-0.07391		max(5)= 6	-> 12	0.02506	
	min(2)=	9 -> 17	-0.06890		min(1)= 7	-> 15	-0.07779	
	min(3)=	8 -> 20	-0.01783		min(2)= 8	-> 12	-0.06554	
	min(4)=	7 -> 19	-0.01594		min(3)= 9	-> 19	-0.05814	
	min(5)=	8 -> 14	-0.01013		min(4)= 7	-> 13	-0.02140	
	#states=2	2 #states>0=14 #stat	ces<0=8		min(5)= 7	-> 21	-0.01613	
					#stat	es=30 #state	s>0=15 #stat	es<0=15	
3	Singlet-A1 10.	4995 118.09	0.3246	0.000					
	max(1)=	8 -> 10	0.68556	6	Singlet-B1	11.1118	111.58	0.0028	0.000
	max(2)=	7 -> 11	0.05393		max(1)= 9	-> 13	0.69731	
	max(3)=	7 -> 12	0.03096		max(2)= 9	-> 26	0.02083	
	max(4)=	7 -> 16	0.02463		max(3)= 9	-> 29	0.01391	
	max(5)=	8 -> 18	0.00874		max(4)= 9	-> 21	0.01318	
	min(1)=	9 -> 14	-0.12854		max(5)= 7	-> 19	0.00973	
	min(2)=	8 -> 15	-0.06941		min(1)= 9	-> 15	-0.08998	
	min(3)=	8 -> 17	-0.05471		min(2)= 9	-> 10	-0.06723	
	min(4)=	6 -> 13	-0.02563		min(3)= 9	-> 18	-0.00870	

8.1.3 Main contributions from different excited states at CIS approach

	$\min(4) =$	6 -> 20	-0.00619		#stat	es=34 #stat	tes>0=15 #stat	ces<0=19	
	$\min(5)=$	6 -> 14	-0.00349						
	#states=21 #s	tates>0=10 #sta [.]	tes<0=11	10	Singlet-B2	13.8864	89.28	0.0418	0.000
					max(1)= (3 -> 12	0.65398	
7	Singlet-A1 12.2558	101.16	0.0237	0.000	max(2)= {	3 -> 11	0.10921	
	max(1)=	9 -> 14	0.62332		max(3)= 7	7 -> 15	0.03021	
	max(2)=	7 -> 11	0.22171		max(4)= 8	3 -> 22	0.02657	
	max(3)=	8 -> 10	0.10470		max(5)= 6	3 -> 11	0.02025	
	$\max(4)=$	7 -> 16	0.04615		min(1)= 7	7 -> 10	-0.22128	
	$\max(5)=$	6 -> 10	0.02881		min(2)= 8	3 -> 16	-0.08366	
	min(1)=	8 -> 13	-0.18241		min(3)= 7	7 -> 13	-0.03516	
	$\min(2)=$	7 -> 12	-0.11430		min(4)= 9	9 -> 19	-0.01324	
	min(3)=	7 -> 22	-0.01541		min(5)= 6	8 -> 16	-0.01071	
	min(4)=	8 -> 21	-0.01539		#stat	es=26 #stat	tes>0=15 #stat	ces<0=11	
	min(5)=	9 -> 20	-0.01534						
	#states=33 #s [.]	tates>0=14 #sta	tes<0=19	11	Singlet-B1	14.6024	84.91	0.1917	0.000
					max(1)= (3 -> 14	0.57188	
8	Singlet-B2 12.8484	96.50	0.6319	0.000	max(2)= 6	3 -> 14	0.02306	
	max(1)=	7 -> 10	0.64037		max(3)= (3 -> 27	0.01721	
	max(2)=	8 -> 12	0.23951		max(4)= 9	9 -> 18	0.01592	
	max(3)=	7 -> 13	0.13566		max(5)= 9	9 -> 17	0.00826	
	$\max(4)=$	6 -> 11	0.01482		min(1)= 9	9 -> 15	-0.40764	
	max(5)=	9 -> 19	0.01473		min(2)= 9	9 -> 13	-0.05529	
	min(1)=	8 -> 11	-0.07216		min(3)= 9	9 -> 10	-0.03066	
	min(2)=	7 -> 15	-0.05929		min(4)= 8	3 -> 20	-0.02703	
	min(3)=	6 -> 12	-0.05095		min(5)= 7	7 -> 19	-0.01888	
	$\min(4)=$	7 -> 17	-0.04315		#stat	es=22 #stat	tes>0=11 #stat	ces<0=11	
	$\min(5)=$	6 -> 22	-0.01094						
	#states=29 #s ⁻	tates>0=15 #sta	tes<0=14	12	Singlet-A1	15.0230	82.53	0.0624	0.000
					max(1)= (3 -> 13	0.55913	
9	Singlet-A1 13.6624	90.75	0.4377	0.000	max(2)= 9	9 -> 14	0.20483	
	max(1)=	7 -> 11	0.58606		max(3)= 8	3 -> 15	0.11323	
	max(2)=	8 -> 13	0.33292		max(4)= 8	3 -> 10	0.07694	
	max(3)=	7 -> 16	0.07521		max(5)= 9	9 -> 20	0.02621	
	max(4)=	6 -> 13	0.02747		min(1)= 7	7 -> 11	-0.27715	
	max(5)=	8 -> 26	0.01669		min(2)= 7	7 -> 12	-0.21317	
	$\min(1)=$	9 -> 14	-0.11802		min(3)= 7	7 -> 22	-0.02652	
	min(2)=	8 -> 15	-0.09211		min(4)= 6	8 -> 17	-0.02498	
	$\min(3)=$	7 -> 12	-0.08284		min(5)= (3 -> 17	-0.02454	
	$\min(4)=$	8 -> 10	-0.07602		#stat	es=36 #stat	tes>0=17 #stat	ces<0=19	
	$\min(5)=$	9 -> 20	-0.04588						

13	Singlet-B1 15.0892	82.17	0.3497	0.000	max(2)=	8 -> 11	0.03639	
	max(1)=	9 -> 15	0.55687		max(3)=	6 -> 11	0.02536	
	max(2)=	8 -> 14	0.41379		max(4)=	7 -> 21	0.02406	
	max(3)=	9 -> 13	0.07593		max(5)=	7 -> 18	0.01921	
	max(4)=	9 -> 10	0.06299		min(1)=	7 -> 10	-0.13665	
	max(5)=	8 -> 20	0.05776		min(2)=	9 -> 19	-0.03357	
	min(1)=	6 -> 14	-0.03077		min(3)=	7 -> 15	-0.02057	
	min(2)=	9 -> 18	-0.02858		min(4)=	8 -> 12	-0.01820	
	min(3)=	8 -> 25	-0.01303		min(5)=	8 -> 16	-0.01751	
	min(4)=	9 -> 30	-0.01140		#states=27 #st	ates>0=14 #stat	ces<0=13	
	min(5)=	6 -> 20	-0.01103					
	#states=22 #st	ates>0=10 #stat	es<0=12	17	Singlet-A2 17.5608	70.60	0.0000	0.000
					max(1)=	7 -> 14	0.70593	
14	Singlet-A2 16.1920	76.57	0.0000	0.000	max(2)=	7 -> 27	0.01561	
	max(1)=	9 -> 16	0.68481		max(3)=	7 -> 20	0.01196	
	max(2)=	9 -> 12	0.07979		max(4)=	8 -> 19	0.01105	
	max(3)=	9 -> 22	0.03659		max(5)=	6 -> 24	0.00488	
	max(4)=	7 -> 14	0.02087		min(1)=	7 -> 25	-0.02345	
	max(5)=	7 -> 20	0.00394		min(2)=	9 -> 16	-0.02107	
	min(1)=	9 -> 11	-0.14917		min(3)=	6 -> 19	-0.00897	
	min(2)=	9 -> 28	-0.02258		min(4)=	9 -> 12	-0.00511	
	min(3)=	9 -> 23	-0.00754		min(5)=	8 -> 24	-0.00412	
	min(4)=	9 -> 31	-0.00508		#states=16 #st	ates>0=6 #state	es<0=10	
	min(5)=	6 -> 24	-0.00448					
	#states=15 #st	ates>0=9 #state	es<0=6	18	Singlet-A1 18.4442	67.22	0.0525	0.000
					max(1)=	8 -> 15	0.52475	
15	Singlet-A1 17.0097	72.89	0.0006	0.000	max(2)=	7 -> 11	0.09097	
	max(1)=	7 -> 12	0.52676		max(3)=	8 -> 21	0.04737	
	max(2)=	8 -> 15	0.42837		$\max(4)=$	6 -> 17	0.04519	
	max(3)=	8 -> 13	0.12368		$\max(5)=$	8 -> 10	0.03741	
	$\max(4)=$	7 -> 11	0.08776		$\min(1)=$	7 -> 12	-0.39045	
	max(5)=	9 -> 14	0.08552		min(2)=	9 -> 14	-0.15935	
	min(1)=	8 -> 18	-0.04567		min(3)=	8 -> 13	-0.15024	
	min(2)=	9 -> 20	-0.04442		$\min(4)=$	7 -> 16	-0.07807	
	min(3)=	8 -> 17	-0.03462		$\min(5)=$	8 -> 18	-0.03334	
	$\min(4)=$	6 -> 15	-0.02922		#states=37 #st	ates>0=18 #stat	ces<0=19	
	min(5)=	6 -> 17	-0.01887					
	#states=36 #st	ates>0=22 #stat	es<0=14	19	Singlet-B2 19.4648	63.70	0.0170	0.000
					max(1)=	8 -> 16	0.61072	
16	Singlet-B2 17.1768	72.18	0.0381	0.000	max(2)=	8 -> 12	0.08582	
	max(1)=	7 -> 13	0.68943		max(3)=	7 -> 18	0.04182	

	max(4)=	7 -> 17	0.02978		min(1)=	8 -> 20	-0.03162	
	max(5)=	8 -> 22	0.02737		min(2)=	7 -> 19	-0.02276	
	min(1)=	7 -> 15	-0.31294		min(3)=	8 -> 14	-0.01301	
	min(2)=	8 -> 11	-0.10696		$\min(4) =$	9 -> 30	-0.01280	
	min(3)=	7 -> 10	-0.06738		min(5)=	9 -> 21	-0.01019	
	$\min(4)=$	9 -> 19	-0.03711		#states=23 #st	tates>0=13 #stat	tes<0=10	
	min(5)=	7 -> 21	-0.01860					
	#states=29 #st	tates>0=17 #sta	tes<0=12	23	Singlet-B2 23.2098	53.42	0.0020	0.000
					max(1)=	6 -> 11	0.67826	
20	Singlet-B2 20.6228	60.12	0.1434	0.000	max(2)=	6 -> 16	0.13457	
	max(1)=	7 -> 15	0.60606		max(3)=	7 -> 15	0.04326	
	max(2)=	8 -> 16	0.30223		max(4)=	7 -> 17	0.01610	
	max(3)=	7 -> 10	0.04738		max(5)=	8 -> 16	0.01539	
	max(4)=	7 -> 18	0.03086		$\min(1)=$	9 -> 19	-0.10357	
	max(5)=	7 -> 13	0.02800		$\min(2)=$	6 -> 12	-0.08538	
	$\min(1)=$	9 -> 19	-0.17337		$\min(3)=$	7 -> 13	-0.02411	
	$\min(2)=$	6 -> 11	-0.06650		$\min(4) =$	8 -> 12	-0.02148	
	$\min(3)=$	7 -> 17	-0.02562		$\min(5)=$	6 -> 28	-0.00878	
	$\min(4)=$	6 -> 16	-0.01600		#states=31 #st	tates>0=14 #stat	tes<0=17	
	$\min(5)=$	7 -> 26	-0.01249					
	#states=31 #st	tates>0=19 #sta	tes<0=12	24	Singlet-B1 23.2490	53.33	0.0912	0.000
					max(1)=	9 -> 18	0.67944	
21	Singlet-A1 22.4841	55.14	0.0044	0.000	max(2)=	8 -> 20	0.04431	
	max(1)=	7 -> 16	0.66850		max(3)=	7 -> 19	0.03545	
	max(2)=	8 -> 15	0.05812		max(4)=	9 -> 15	0.02539	
	max(3)=	8 -> 17	0.03117		max(5)=	9 -> 26	0.02399	
	max(4)=	7 -> 22	0.02442		$\min(1)=$	9 -> 17	-0.17843	
	max(5)=	6 -> 21	0.01377		$\min(2)=$	6 -> 14	-0.03089	
	$\min(1)=$	9 -> 20	-0.14210		$\min(3)=$	9 -> 29	-0.02282	
	min(2)=	6 -> 10	-0.10299		$\min(4)=$	9 -> 10	-0.01832	
	$\min(3)=$	7 -> 11	-0.07685		$\min(5)=$	9 -> 21	-0.00711	
	$\min(4)=$	8 -> 18	-0.06477		#states=22 #st	tates>0=12 #stat	tes<0=10	
	$\min(5)=$	6 -> 13	-0.04927					
	#states=36 #s1	tates>0=17 #sta	tes<0=19	25	Singlet-A1 23.9737	51.72	0.0267	0.000
					max(1)=	6 -> 10	0.68376	
22	Singlet-B1 22.9087	54.12	0.2891	0.000	max(2)=	7 -> 16	0.10727	
	max(1)=	9 -> 17	0.67671		max(3)=	6 -> 13	0.04879	
	max(2)=	9 -> 18	0.18405		max(4)=	8 -> 15	0.03537	
	max(3)=	9 -> 10	0.06453		max(5)=	9 -> 20	0.03218	
	max(4)=	6 -> 14	0.04007		$\min(1)=$	6 -> 15	-0.10323	
	max(5)=	6 -> 27	0.01071		min(2)=	9 -> 14	-0.04660	

	min(3)=	6 -> 17	-0.02330			min(5	5)=	7 -> 29	-0.00514	
	min(4)=	9 -> 25	-0.02039			#stat	ces=30 #st	ates>0=20 #st	ates<0=10	
	min(5)=	8 -> 13	-0.01979							
	#states=38 #st	tates>0=22 #stat	ces<0=16	29	Singlet	:-B2	27.3836	45.28	0.0244	0.000
						max(1	L)=	6 -> 12	0.60364	
26	Singlet-A1 25.7829	48.09	0.0246	0.000		max(2	2)=	6 -> 11	0.04340	
	max(1)=	9 -> 20	0.53598			max(3	3)=	7 -> 10	0.04293	
	max(2)=	8 -> 17	0.06690			max(4	1)=	8 -> 22	0.02612	
	max(3)=	7 -> 16	0.06441			max(5	5)=	6 -> 23	0.01654	
	$\max(4)=$	6 -> 13	0.03817			min(1	L)=	9 -> 19	-0.25686	
	$\max(5)=$	8 -> 29	0.01684			min(2	2)=	7 -> 18	-0.24109	
	$\min(1)=$	8 -> 18	-0.44563			min(3	3)=	7 -> 15	-0.05294	
	$\min(2)=$	6 -> 10	-0.04562			min(4	1)=	8 -> 11	-0.03880	
	min(3)=	9 -> 25	-0.02035			min(5	5)=	7 -> 17	-0.02469	
	$\min(4)=$	8 -> 26	-0.01530			#stat	ces=30 #st	ates>0=16 #st	ates<0=14	
	$\min(5)=$	6 -> 15	-0.01423							
	#states=32 #st	tates>0=18 #stat	ces<0=14	30	Singlet	-A1	27.4499	45.17	0.0862	0.000
						max(1	L)=	6 -> 13	0.68473	
27	Singlet-A1 25.9826	47.72	0.0525	0.000		max(2	2)=	8 -> 18	0.12654	
	max(1)=	8 -> 17	0.69735			max(3	3)=	7 -> 16	0.06091	
	max(2)=	8 -> 10	0.06052			max(4	1)=	9 -> 20	0.04956	
	max(3)=	8 -> 18	0.05459			max(5	5)=	6 -> 15	0.03752	
	$\max(4)=$	6 -> 13	0.03048			min(1	L)=	6 -> 10	-0.05575	
	$\max(5)=$	8 -> 15	0.02624			min(2	2)=	8 -> 17	-0.03697	
	$\min(1)=$	9 -> 20	-0.04304			min(3	3)=	7 -> 11	-0.01656	
	min(2)=	7 -> 16	-0.03203			min(4	1)=	8 -> 13	-0.01134	
	$\min(3)=$	7 -> 22	-0.01743			min(5	5)=	9 -> 14	-0.00505	
	$\min(4)=$	6 -> 15	-0.01633			#stat	ces=33 #st	ates>0=19 #st	ates<0=14	
	$\min(5)=$	8 -> 21	-0.01496							
	#states=36 #st	tates>0=21 #stat	ces<0=15	31	Singlet	-A2	27.8593	44.50	0.0000	0.000
						max(1	L)=	8 -> 19	0.70440	
28	Singlet-B2 26.2831	47.17	0.4513	0.000		max(2	2)=	7 -> 20	0.04287	
	max(1)=	9 -> 19	0.54843			max(3	3)=	7 -> 25	0.00611	
	max(2)=	6 -> 12	0.32973			max(4	1)=	9 -> 12	0.00475	
	max(3)=	7 -> 18	0.22509			max(5	5)=	7 -> 27	0.00348	
	max(4)=	6 -> 11	0.12144			min(1	L)=	8 -> 24	-0.03651	
	$\max(5)=$	7 -> 15	0.11253			min(2	2)=	6 -> 24	-0.01568	
	$\min(1)=$	8 -> 22	-0.04148			min(3	3)=	9 -> 22	-0.01320	
	$\min(2)=$	9 -> 24	-0.02500			min(4	1) =	7 -> 14	-0.01187	
	min(3)=	7 -> 21	-0.02163			min(5	5)=	9 -> 16	-0.00359	
	min(4)=	6 -> 16	-0.01091			#stat	ces=17 #st	ates>0=9 #sta	tes<0=8	

32	Singlet-B1 28.0712	44.17	0.0259	335.000	Singlet-A1 29.9642	41.38	0.4855	0.000
	max(1)=	6 -> 14	0.68642		$\max(1)=$	6 -> 15	0.58105	
	max(2)=	8 -> 20	0.15865		$\max(2)=$	6 -> 10	0.09990	
	max(3)=	9 -> 15	0.02140		max(3)=	7 -> 22	0.06465	
	$\max(4)=$	7 -> 19	0.02128		$\max(4) =$	6 -> 13	0.05422	
	max(5)=	9 -> 21	0.01638		$\max(5)=$	8 -> 21	0.04070	
	min(1)=	9 -> 17	-0.03629		$\min(1)=$	8 -> 18	-0.29450	
	min(2)=	6 -> 25	-0.02477		min(2)=	9 -> 20	-0.21756	
	min(3)=	9 -> 29	-0.00325		min(3)=	7 -> 16	-0.05893	
	min(4)=	9 -> 32	-0.00303		$\min(4) =$	6 -> 17	-0.03765	
	min(5)=	8 -> 14	-0.00287		min(5)=	8 -> 15	-0.03296	
	#states=23 #s	tates>0=13 #sta	tes<0=10		#states=34 #s	tates>0=14 #sta	tes<0=20	
33	Singlet-B2 28.5619	43.41	0.0609	306.000	Singlet-A1 30.9514	40.06	1.3451	0.000
	max(1)=	7 -> 17	0.69996		$\max(1)=$	8 -> 18	0.41756	
	max(2)=	7 -> 10	0.05014		$\max(2)=$	6 -> 15	0.38131	
	max(3)=	7 -> 15	0.02719		max(3)=	9 -> 20	0.35079	
	$\max(4)=$	6 -> 22	0.02123		$\max(4) =$	7 -> 16	0.11347	
	max(5)=	7 -> 13	0.01600		$\max(5)=$	8 -> 15	0.06554	
	min(1)=	6 -> 16	-0.04718		$\min(1)=$	6 -> 13	-0.13218	
	min(2)=	7 -> 18	-0.04293		min(2)=	8 -> 21	-0.08333	
	min(3)=	7 -> 21	-0.02361		min(3)=	7 -> 22	-0.07424	
	min(4)=	7 -> 26	-0.01829		$\min(4)=$	8 -> 10	-0.02169	
	min(5)=	7 -> 30	-0.01100		$\min(5)=$	9 -> 25	-0.01317	
	#states=32 #s	tates>0=13 #sta	tes<0=19		#states=37 #s	tates>0=22 #sta	tes<0=15	
34	Singlet-B1 29.4276	42.13	0.1699	337.000	Singlet-B2 31.3201	39.59	1.2738	0.000
	max(1)=	8 -> 20	0.61419		$\max(1)=$	7 -> 18	0.60533	
	max(2)=	9 -> 21	0.18257		$\max(2)=$	8 -> 22	0.13722	
	max(3)=	9 -> 17	0.03571		max(3)=	6 -> 12	0.10996	
	$\max(4)=$	6 -> 20	0.01659		$\max(4) =$	7 -> 21	0.10270	
	max(5)=	7 -> 24	0.01149		$\max(5)=$	7 -> 17	0.03935	
	min(1)=	7 -> 19	-0.25679		$\min(1)=$	9 -> 19	-0.26592	
	min(2)=	6 -> 14	-0.13514		min(2)=	8 -> 16	-0.10003	
	min(3)=	9 -> 15	-0.04316		min(3)=	8 -> 11	-0.06017	
	min(4)=	8 -> 25	-0.02617		min(4)=	7 -> 15	-0.05849	
	min(5)=	9 -> 18	-0.01927		min(5)=	7 -> 13	-0.03313	
	#states=22 #s	tates>0=9 #stat	es<0=13		#states=32 #s	tates>0=15 #sta ⁺	tes<0=17	

8.2 6-311++G(d,p)

8.2.1 Plots

Figure S12: For H₂S molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (bottom) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S12a and S12c) or states (SOS approaches, in Plots S12b and S12d). For α FIOs, three approaches were considered: CPKS (CAM-B3LYP), CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. All elements of the β tensor were recomputed with an error less than 0.02 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

8.2.2 Main contributions from different excited states at TDDFT (CAM-B3LYP) approach

#_exc.st	symm	Exc.E	OscS	Strength	f	_<\$**2>_	Single	t-B1	7.9539	155.8	38 0.0256	0.000
								max(1)	=	9 -> 13	0.70336	
1	Singlet-B1	5.8982		210.21	0.0486	0.000		max(2)	=	9 -> 19	0.06468	
	max(1)=	=	9 ->	10	0.68903			max(3)	=	9 -> 15	0.01784	
	max(2)=	=	9 ->	19	0.01598			max(4)	=	8 -> 14	0.01081	
	max(3)=	=	9 ->	27	0.00650			max(5)	=	9 -> 10	0.00506	
	max(4):	=	6 ->	26	0.00364			min(1)	=	9 -> 17	-0.02254	
	max(5)=	=	6 ->	20	0.00262			min(2)	=	9 -> 21	-0.01111	
	min(1)=	=	9 ->	17	-0.15758			min(3)	=	8 -> 33	-0.00125	
	min(2)=	=	9 ->	24	-0.01260			min(4)	=	7 -> 30	-0.00120	
	min(3)=	=	9 ->	13	-0.01112			min(5)	=	8 -> 20	-0.00110	
	min(4)=	=	9 ->	15	-0.00952			#CIs=3	0 #CIs>0	=16 #CIs<0=1	13	
	min(5)=	=	7 ->	25	-0.00731							
	#CIs=30	0 #CIs>0)=16 #C	CIs<0=13		5	Single	t-A1	8.2969	149.4	4 0.0178	0.000
								max(1)	=	9 -> 14	0.68625	
2	Singlet-A2	6.0526		204.84	0.0000	0.000		max(2)	=	8 -> 17	0.03457	
	max(1)=	=	9 ->	11	0.57869			max(3)	=	9 -> 20	0.02136	
	max(2):	=	9 ->	22	0.03410			max(4)	=	7 -> 16	0.01664	
	max(3)=	=	6 ->	25	0.00671			max(5)	=	8 -> 15	0.01396	
	max(4)=	=	8 ->	25	0.00469			min(1)	=	8 -> 10	-0.15111	
	max(5)=	=	9 ->	34	0.00412			min(2)	=	8 -> 13	-0.03731	
	min(1)=	=	9 ->	12	-0.35211			min(3)	=	7 -> 11	-0.03663	
	min(2)=	=	9 ->	16	-0.20026			min(4)	=	8 -> 19	-0.02913	
	min(3)=	=	9 ->	28	-0.00594			min(5)	=	7 -> 18	-0.02161	
	min(4)=	=	7 ->	14	-0.00450			#CIs=4	9 #CIs>0	=19 #CIs<0=2	26	
	min(5)=	=	7 ->	20	-0.00368							
	#CIs=2:	1 #CIs>0)=7 #CI	s<0=13		6	Single	t-A1	8.8803	139.6	62 0.1538	0.000
								max(1)	=	8 -> 10	0.67052	
3	Singlet-A2	7.6518		162.03	0.0000	0.000		max(2)	=	9 -> 14	0.14764	
	max(1)=	=	9 ->	12	0.60616			max(3)	=	7 -> 12	0.04488	
	max(2)=	=	9 ->	11	0.35473			max(4)	=	7 -> 16	0.03557	
	max(3)=	=	9 ->	18	0.07047			max(5)	=	8 -> 23	0.00473	
	max(4)=	=	7 ->	14	0.00394			min(1)	=	8 -> 17	-0.13181	
	max(5)=	=	9 ->	28	0.00377			min(2)	=	8 -> 13	-0.06874	
	min(1)=	=	9 ->	16	-0.04178			min(3)	=	7 -> 11	-0.05081	
	min(2)=	=	8 ->	25	-0.00083			min(4)	=	8 -> 15	-0.01756	
	min(3)=	=	7 ->	26	-0.00060			min(5)	=	6 -> 13	-0.01121	
	min(4)= 7 -> 20	20	-0.00059			#CIs=4	9 #CIs>0	=21 #CIs<0=2	25			
	min(5)=	=	9 ->	29	-0.00059							
	#CIs=2:	1 #CIs>0)=8 #CI	ls<0=12		7	Single	t-B1	9.2056	134.6	68 0.2307	0.000
								max(1)	=	9 -> 15	0.52238	

	max(2)=	8 -> 14	0.04840		$\max(4) =$	7 -> 21	0.03816	
	max(3)=	6 -> 14	0.02020		max(5)=	8 -> 18	0.02081	
	$\max(4)=$	9 -> 27	0.01406		min(1)=	8 -> 12	-0.22991	
	max(5)=	9 -> 19	0.01366		min(2)=	8 -> 16	-0.11479	
	min(1)=	9 -> 17	-0.46048		min(3)=	7 -> 10	-0.10629	
	min(2)=	9 -> 10	-0.09871		$\min(4)=$	7 -> 15	-0.05686	
	min(3)=	9 -> 13	-0.02946		min(5)=	7 -> 23	-0.02450	
	$\min(4)=$	9 -> 24	-0.02694		#CIs=40 #CIs>0	=13 #CIs<0=26		
	min(5)=	7 -> 25	-0.02588					
	#CIs=30 #CIs>	0=18 #CIs<0=11		11	Singlet-B2 10.5179	117.88	0.0059	0.000
					max(1)=	8 -> 12	0.60674	
8	Singlet-A2 9.6474	128.52	0.0000	0.000	max(2)=	8 -> 11	0.25824	
	$\max(1)=$	9 -> 16	0.67365		max(3)=	7 -> 10	0.23335	
	max(2)=	9 -> 11	0.19582		$\max(4)=$	8 -> 18	0.06229	
	max(3)=	7 -> 14	0.00404		$\max(5)=$	7 -> 15	0.01864	
	$\max(4)=$	9 -> 28	0.00257		$\min(1)=$	7 -> 17	-0.06214	
	max(5)=	7 -> 20	0.00191		min(2)=	8 -> 16	-0.04493	
	$\min(1)=$	9 -> 12	-0.06665		$\min(3)=$	9 -> 25	-0.01410	
	min(2)=	9 -> 22	-0.05697		$\min(4)=$	7 -> 21	-0.00973	
	min(3)=	9 -> 18	-0.01235		$\min(5)=$	6 -> 11	-0.00838	
	min(4)=	6 -> 25	-0.00306		#CIs=40 #CIs>0	=26 #CIs<0=13		
	min(5)=	8 -> 25	-0.00197					
	#CIs=21 #CIs>	0=12 #CIs<0=9		12	Singlet-A1 10.9492	113.24	0.0197	0.000
					max(1)=	8 -> 13	0.69040	
9	Singlet-B1 9.7084	127.71	0.1949	0.000	max(2)=	7 -> 16	0.04826	
	$\max(1)=$	9 -> 17	0.50990		max(3)=	8 -> 10	0.04678	
	max(2)=	9 -> 15	0.47159		$\max(4) =$	9 -> 14	0.04365	
	max(3)=	9 -> 10	0.12419		max(5)=	8 -> 19	0.03299	
	$\max(4) =$	8 -> 14	0.03115		$\min(1)=$	7 -> 11	-0.11307	
	max(5)=	9 -> 24	0.01831		min(2)=	9 -> 20	-0.04585	
	$\min(1)=$	9 -> 19	-0.02227		$\min(3)=$	7 -> 18	-0.02607	
	min(2)=	8 -> 26	-0.00575		$\min(4) =$	8 -> 17	-0.01265	
	min(3)=	7 -> 25	-0.00415		min(5)=	6 -> 17	-0.00987	
	min(4)=	6 -> 33	-0.00191		#CIs=49 #CIs>0	=22 #CIs<0=25		
	min(5)=	7 -> 30	-0.00183					
	#CIs=30 #CIs>	0=18 #CIs<0=11		13	Singlet-B1 11.0167	112.54	0.0021	0.000
					max(1)=	8 -> 14	0.70172	
10	Singlet-B2 9.8143	126.33	0.1778	0.000	max(2)=	8 -> 20	0.06167	
	max(1)=	8 -> 11	0.63905		max(3)=	8 -> 26	0.01052	
	max(2)=	7 -> 17	0.08951		$\max(4)=$	9 -> 17	0.00758	
	max(3)=	9 -> 25	0.04407		max(5)=	7 -> 25	0.00750	
	$\min(1)=$	9 -> 15	-0.05793		$\min(3)=$	8 -> 19	-0.04425	
----	--------------------	----------------	----------	-------	--------------------	----------------	----------	-------
	min(2)=	9 -> 19	-0.01041		$\min(4)=$	7 -> 16	-0.02658	
	$\min(3)=$	9 -> 13	-0.00811		min(5)=	7 -> 22	-0.01615	
	$\min(4)=$	9 -> 27	-0.00702		#CIs=49 #CIs>	0=21 #CIs<0=24		
	min(5)=	6 -> 20	-0.00316					
	#CIs=29 #CIs>	0=12 #CIs<0=17		17	Singlet-B2 12.6563	97.96	0.0166	0.000
					$\max(1)=$	8 -> 16	0.67087	
14	Singlet-B2 11.0882	111.82	0.3185	0.000	max(2)=	8 -> 11	0.13550	
	$\max(1)=$	7 -> 10	0.64118		max(3)=	7 -> 15	0.12728	
	$\max(2)=$	8 -> 16	0.06923		$\max(4)=$	7 -> 13	0.04392	
	max(3)=	7 -> 13	0.04248		max(5)=	7 -> 23	0.01539	
	$\max(4)=$	8 -> 11	0.03188		$\min(1)=$	7 -> 10	-0.07585	
	$\max(5)=$	7 -> 19	0.02242		$\min(2)=$	7 -> 17	-0.05973	
	min(1)=	8 -> 12	-0.26208		$\min(3)=$	8 -> 22	-0.04188	
	min(2)=	7 -> 17	-0.09176		$\min(4) =$	7 -> 21	-0.03211	
	min(3)=	7 -> 15	-0.05217		$\min(5)=$	9 -> 25	-0.02836	
	min(4)=	6 -> 12	-0.01974		#CIs=40 #CIs>	0=24 #CIs<0=14		
	min(5)=	8 -> 22	-0.01522					
	#CIs=40 #CIs>	0=17 #CIs<0=21		18	Singlet-A1 12.7242	97.44	0.1884	0.000
					max(1)=	8 -> 17	0.51398	
15	Singlet-A1 11.5622	107.23	0.0120	0.000	max(2)=	8 -> 15	0.11440	
	max(1)=	8 -> 15	0.48634		max(3)=	9 -> 20	0.10137	
	$\max(2)=$	7 -> 12	0.16657		$\max(4)=$	8 -> 10	0.08893	
	max(3)=	7 -> 16	0.08374		max(5)=	8 -> 19	0.02376	
	$\max(4)=$	9 -> 20	0.03104		$\min(1) =$	7 -> 11	-0.41039	
	$\max(5)=$	6 -> 23	0.00855		$\min(2)=$	7 -> 12	-0.17228	
	$\min(1)=$	7 -> 11	-0.33339		$\min(3) =$	8 -> 13	-0.05511	
	$\min(2)=$	8 -> 17	-0.31842		$\min(4) =$	9 -> 14	-0.03861	
	min(3)=	8 -> 10	-0.08846		min(5)=	7 -> 18	-0.02366	
	$\min(4) =$	8 -> 13	-0.05918		#CIs=49 #CIs>	0=30 #CIs<0=17		
	$\min(5)=$	8 -> 21	-0.04967					
	#CIs=49 #CIs>	0=26 #CIs<0=19		19	Singlet-A1 13.0752	94.82	0.1975	0.000
					max(1)=	7 -> 12	0.65892	
16	Singlet-A1 12.2341	101.34	0.0886	0.000	max(2)=	8 -> 17	0.24161	
	max(1)=	8 -> 15	0.49266		max(3)=	7 -> 18	0.02474	
	max(2)=	7 -> 11	0.42887		$\max(4) =$	7 -> 22	0.02070	
	max(3)=	8 -> 17	0.22323		max(5)=	6 -> 13	0.01790	
	$\max(4)=$	8 -> 10	0.09374		$\min(1) =$	8 -> 15	-0.05552	
	$\max(5)=$	8 -> 13	0.06661		$\min(2)=$	9 -> 26	-0.04094	
	$\min(1)=$	9 -> 20	-0.05449		$\min(3)=$	8 -> 23	-0.03548	
	min(2)=	7 -> 12	-0.04808		$\min(4) =$	7 -> 16	-0.02258	

	min(5)=	6 -> 10	-0.01628					
	#CIs=49 #CIs	>0=24 #CIs<0=23		23	Singlet-B2 14	.3271 86.54	0.1762	0.000
					max(1)=	7 -> 15	0.67788	
20	Singlet-B2 13.191	.3 93.99	0.0003	0.000	max(2)=	9 -> 25	0.04252	
	max(1)=	7 -> 13	0.69749		max(3)=	8 -> 18	0.03449	
	max(2)=	7 -> 15	0.06639		$\max(4)=$	7 -> 10	0.03337	
	max(3)=	7 -> 19	0.05696		max(5)=	8 -> 11	0.02817	
	max(4)=	6 -> 12	0.01613		$\min(1)=$	8 -> 16	-0.13150	
	max(5)=	7 -> 24	0.00914		$\min(2)=$	7 -> 17	-0.08719	
	min(1)=	8 -> 16	-0.05932		$\min(3)=$	7 -> 13	-0.07336	
	min(2)=	7 -> 10	-0.03602		$\min(4) =$	8 -> 12	-0.06517	
	$\min(3)=$	8 -> 11	-0.01658		$\min(5)=$	8 -> 22	-0.02567	
	$\min(4)=$	6 -> 11	-0.01500		#CIs=40 #	#CIs>0=16 #CIs<0=23		
	$\min(5)=$	7 -> 21	-0.01194					
	#CIs=40 #CIs	>0=20 #CIs<0=18		24	Singlet-B1 14	7434 84.09	0.0012	0.000
					max(1)=	9 -> 19	0.70081	
21	Singlet-A2 13.269	93.44	0.0000	0.000	max(2)=	9 -> 17	0.03232	
	max(1)=	7 -> 14	0.70381		max(3)=	8 -> 26	0.01141	
	max(2)=	7 -> 20	0.06498		max(4)=	8 -> 14	0.01006	
	max(3)=	8 -> 25	0.00308		max(5)=	9 -> 32	0.00952	
	max(4)=	9 -> 11	0.00167		$\min(1)=$	9 -> 13	-0.06448	
	max(5)=	6 -> 25	0.00143		$\min(2)=$	9 -> 21	-0.05497	
	min(1)=	9 -> 18	-0.01854		$\min(3)=$	9 -> 10	-0.00980	
	min(2)=	9 -> 16	-0.00596		$\min(4)=$	8 -> 20	-0.00731	
	$\min(3)=$	9 -> 22	-0.00457		$\min(5)=$	9 -> 23	-0.00542	
	$\min(4)=$	9 -> 12	-0.00373		#CIs=30 #	#CIs>0=13 #CIs<0=16		
	$\min(5)=$	7 -> 31	-0.00189					
	#CIs=21 #CIs	>0=10 #CIs<0=11		25	Singlet-B2 14	.8207 83.66	0.2415	0.000
					max(1)=	7 -> 17	0.68011	
22	Singlet-A2 14.025	88.40	0.0000	0.000	max(2)=	7 -> 10	0.11999	
	max(1)=	9 -> 18	0.70263		max(3)=	7 -> 15	0.10272	
	max(2)=	9 -> 28	0.02116		$\max(4)=$	8 -> 16	0.06026	
	max(3)=	7 -> 14	0.01835		max(5)=	8 -> 12	0.04516	
	$\max(4)=$	9 -> 22	0.01648		$\min(1)=$	8 -> 18	-0.04790	
	max(5)=	9 -> 16	0.01646		min(2)=	7 -> 19	-0.04553	
	min(1)=	9 -> 12	-0.06344		min(3)=	8 -> 11	-0.03767	
	min(2)=	9 -> 11	-0.02973		min(4)=	9 -> 25	-0.02276	
	min(3)=	9 -> 29	-0.00574		min(5)=	6 -> 11	-0.01335	
	min(4)=	8 -> 25	-0.00106		#CIs=40 #	#CIs>0=24 #CIs<0=14		
	min(5)=	7 -> 26	-0.00058					
	#CIs=21 #CIs	>0=13 #CIs<0=7		26	Singlet-A1 14	9766 82.79	0.0638	0.000

	$\max(1)=$	7 -> 16	0.65021		max(3)=	8 -> 26	0.03964	
	max(2)=	9 -> 20	0.24160		$\max(4)=$	7 -> 25	0.03951	
	max(3)=	7 -> 11	0.10509		max(5)=	9 -> 24	0.01438	
	$\max(4)=$	8 -> 17	0.03890		min(1)=	8 -> 20	-0.14525	
	max(5)=	8 -> 19	0.01197		min(2)=	9 -> 23	-0.03525	
	min(1)=	8 -> 15	-0.03894		min(3)=	9 -> 17	-0.02302	
	min(2)=	7 -> 18	-0.03694		min(4)=	6 -> 20	-0.02017	
	min(3)=	9 -> 26	-0.02848		min(5)=	6 -> 14	-0.01276	
	$\min(4)=$	7 -> 22	-0.02824		#CIs=30 #CIs>0	0=11 #CIs<0=18		
	min(5)=	8 -> 21	-0.02399					
	#CIs=49 #CIs	>0=25 #CIs<0=22		30	Singlet-A2 17.8273	69.55	0.0000	0.000
					max(1)=	9 -> 22	0.70340	
27	Singlet-A1 15.909	7 77.93	0.0247	0.000	max(2)=	9 -> 16	0.06399	
	$\max(1)=$	9 -> 20	0.60937		max(3)=	9 -> 12	0.01214	
	$\max(2)=$	8 -> 13	0.07183		$\max(4)=$	9 -> 34	0.01176	
	max(3)=	6 -> 10	0.06076		max(5)=	7 -> 14	0.00567	
	$\max(4)=$	7 -> 11	0.05139		min(1)=	9 -> 18	-0.01720	
	max(5)=	8 -> 21	0.04047		min(2)=	9 -> 28	-0.01491	
	$\min(1)=$	7 -> 16	-0.22814		$\min(3) =$	9 -> 11	-0.01220	
	$\min(2)=$	8 -> 19	-0.22674		$\min(4)=$	7 -> 20	-0.01049	
	min(3)=	7 -> 18	-0.06616		min(5)=	7 -> 26	-0.00272	
	$\min(4)=$	8 -> 17	-0.05976		#CIs=21 #CIs>0	0=9 #CIs<0=12		
	$\min(5)=$	6 -> 17	-0.05210					
	#CIs=49 #CIs	>0=24 #CIs<0=23		31	Singlet-B1 18.0813	68.57	0.0000	0.000
					max(1)=	8 -> 20	0.68834	
28	Singlet-B2 16.973	4 73.05	0.0039	0.000	max(2)=	9 -> 21	0.14149	
	max(1)=	8 -> 18	0.69812		max(3)=	8 -> 26	0.02785	
	max(2)=	8 -> 22	0.04963		$\max(4)=$	7 -> 25	0.02197	
	max(3)=	7 -> 17	0.04650		max(5)=	9 -> 19	0.01889	
	$\max(4)=$	8 -> 16	0.03778		min(1)=	8 -> 14	-0.06142	
	max(5)=	6 -> 12	0.01871		min(2)=	9 -> 27	-0.01308	
	min(1)=	8 -> 12	-0.04793		min(3)=	6 -> 14	-0.01257	
	$\min(2)=$	8 -> 11	-0.03995		$\min(4) =$	9 -> 23	-0.01196	
	min(3)=	9 -> 25	-0.02765		min(5)=	6 -> 20	-0.00896	
	$\min(4)=$	7 -> 15	-0.02096		#CIs=30 #CIs>0	0=11 #CIs<0=17		
	min(5)=	7 -> 21	-0.01447					
	#CIs=40 #CIs	>0=25 #CIs<0=14		32	Singlet-A1 18.2286	68.02	0.0018	0.000
					max(1)=	8 -> 19	0.61500	
29	Singlet-B1 17.568	8 70.57	0.0355	0.000	max(2)=	9 -> 20	0.14251	
	$\max(1)=$	9 -> 21	0.68589		max(3)=	6 -> 10	0.12815	
	max(2)=	9 -> 19	0.05225		max(4)=	7 -> 11	0.05560	

	max(5)=	9 -> 26	0.04037		min(2):	= 6 -> 16	-0.12975	
	min(1)=	7 -> 18	-0.25068		min(3)	= 7 -> 21	-0.07301	
	min(2)=	7 -> 16	-0.08313		min(4)	= 8 -> 22	-0.04728	
	min(3)=	6 -> 17	-0.06013		min(5)	= 7 -> 13	-0.01771	
	min(4)=	7 -> 22	-0.04421		#CIs=4	0 #CIs>0=22 #CIs<0=1	.7	
	min(5)=	8 -> 24	-0.02106					
	#CIs=49 #CIs	>0=24 #CIs<0=23		36	Singlet-A1	20.2517 61.2	2 0.0156	0.000
					$\max(1)$	= 8 -> 21	0.54533	
33	Singlet-A1 19.495	1 63.60	0.0055	0.000	max(2):	= 7 -> 18	0.32908	
	max(1)=	6 -> 10	0.53889		max(3):	= 8 -> 19	0.13990	
	max(2)=	7 -> 18	0.43630		max(4):	= 9 -> 20	0.08104	
	max(3)=	8 -> 19	0.05832		max(5):	= 8 -> 15	0.02891	
	max(4)=	6 -> 19	0.01720		min(1)	= 6 -> 10	-0.23773	
	max(5)=	9 -> 20	0.01635		min(2):	= 8 -> 23	-0.06646	
	$\min(1)=$	6 -> 17	-0.10752		min(3)	= 9 -> 26	-0.06539	
	min(2)=	8 -> 21	-0.04274		$\min(4)$	= 8 -> 17	-0.02542	
	min(3)=	6 -> 15	-0.01735		min(5)	= 8 -> 24	-0.02512	
	min(4)=	8 -> 24	-0.01223		#CIs=4	9 #CIs>0=23 #CIs<0=2	:4	
	min(5)=	6 -> 24	-0.01051					
	#CIs=49 #CIs	>0=25 #CIs<0=22		37	Singlet-A2	20.3124 61.0	4 0.0000	0.000
					max(1):	= 7 -> 20	0.70381	
34	Singlet-B2 19.915	4 62.26	0.0003	0.000	max(2):	= 9 -> 22	0.01113	
	max(1)=	7 -> 19	0.58715		max(3):	= 7 -> 33	0.01006	
	max(2)=	6 -> 12	0.19697		max(4):	= 8 -> 25	0.00891	
	max(3)=	6 -> 16	0.09757		max(5):	= 7 -> 26	0.00337	
	$\max(4)=$	8 -> 22	0.03689		min(1)	= 7 -> 14	-0.06501	
	max(5)=	7 -> 17	0.02564		min(2):	= 7 -> 31	-0.00971	
	$\min(1)=$	6 -> 11	-0.31257		min(3)	= 8 -> 30	-0.00232	
	$\min(2)=$	7 -> 13	-0.05920		min(4):	= 9 -> 16	-0.00139	
	$\min(3)=$	9 -> 25	-0.05005		min(5):	= 9 -> 28	-0.00134	
	$\min(4)=$	8 -> 28	-0.01000		#CIs=2	1 #CIs>0=11 #CIs<0=1	.0	
	$\min(5)=$	7 -> 10	-0.00931					
	#CIs=40 #CIs	>0=25 #CIs<0=14		38	Singlet-A1	20.7269 59.8	2 0.0042	0.000
					max(1):	= 8 -> 21	0.42217	
35	Singlet-B2 20.176	8 61.45	0.0024	0.000	max(2):	= 6 -> 10	0.34541	
	$\max(1)=$	6 -> 11	0.52639		max(3):	= 7 -> 22	0.12348	
	max(2)=	7 -> 19	0.37951		$\max(4)$:	= 7 -> 16	0.05906	
	max(3)=	9 -> 25	0.04692		max(5):	= 6 -> 17	0.05689	
	$\max(4) =$	7 -> 17	0.04440		min(1)	= 7 -> 18	-0.34743	
	max(5)=	8 -> 18	0.02637		min(2)	= 8 -> 19	-0.18501	
	$\min(1) =$	6 -> 12	-0.21867		min(3):	= 9 -> 20	-0.13622	

$\min(4)=$	-0.02604		#CIs=40 #CIs>0	=40 #CIs>0=14 #CIs<0=25				
min(5)=	7 -> 11	-0.02602						
#CIs=49 #CIs>	0=20 #CIs<0=27		40	Singlet-B2 21.4084	57.91	0.0128	0.000	
				max(1)=	6 -> 12	0.63167		
Singlet-B2 20.9056	59.31	0.0121	0.000	max(2)=	6 -> 11	0.29795		
max(1)=	8 -> 22	0.68155		max(3)=	7 -> 21	0.06648		
max(2)=	7 -> 21	0.12328		max(4)=	6 -> 18	0.05626		
max(3)=	9 -> 25	0.10096		max(5)=	9 -> 25	0.03342		
max(4)=	6 -> 11	0.05097		min(1)=	7 -> 19	-0.04818		
max(5)=	8 -> 16	0.04340		min(2)=	6 -> 16	-0.01384		
min(1)=	8 -> 18	-0.03953		min(3)=	7 -> 17	-0.00918		
min(2)=	7 -> 23	-0.03637		min(4)=	8 -> 18	-0.00881		
min(3)=	6 -> 12	-0.03596		min(5)=	7 -> 23	-0.00781		
min(4)=	7 -> 17	-0.02271		#CIs=40 #CIs>0)=17 #CIs<0=22			
min(5)=	6 -> 16	-0.00929						
	<pre>min(4)= min(5)= #CIs=49 #CIs> Singlet-B2 20.9056 max(1)= max(2)= max(3)= max(4)= max(5)= min(1)= min(2)= min(2)= min(3)= min(4)= min(4)= min(5)=</pre>	<pre>min(4)= 9 -> 14 min(5)= 7 -> 11 #CIs=49 #CIs>0=20 #CIs<0=27 Singlet-B2 20.9056 59.31 max(1)= 8 -> 22 max(2)= 7 -> 21 max(3)= 9 -> 25 max(4)= 6 -> 11 max(5)= 8 -> 16 min(1)= 8 -> 18 min(2)= 7 -> 23 min(3)= 6 -> 12 min(4)= 7 -> 17 min(5)= 6 -> 16</pre>	<pre>min(4)= 9 -> 14 -0.02604 min(5)= 7 -> 11 -0.02602 #CIs=49 #CIs>0=20 #CIs<0=27</pre> Singlet-B2 20.9056 59.31 0.0121 max(1)= 8 -> 22 0.68155 max(2)= 7 -> 21 0.12328 max(3)= 9 -> 25 0.10096 max(4)= 6 -> 11 0.05097 max(5)= 8 -> 16 0.04340 min(1)= 8 -> 18 -0.03953 min(2)= 7 -> 23 -0.03637 min(3)= 6 -> 12 -0.03596 min(4)= 7 -> 17 -0.02271 min(5)= 6 -> 16 -0.00929	<pre>min(4)= 9 -> 14 -0.02604 min(5)= 7 -> 11 -0.02602 #CIs=49 #CIs>0=20 #CIs<0=27 40</pre> Singlet-B2 20.9056 59.31 0.0121 0.000 max(1)= 8 -> 22 0.68155 max(2)= 7 -> 21 0.12328 max(3)= 9 -> 25 0.10096 max(4)= 6 -> 11 0.05097 max(5)= 8 -> 16 0.04340 min(1)= 8 -> 18 -0.03953 min(2)= 7 -> 23 -0.03637 min(3)= 6 -> 12 -0.03596 min(4)= 7 -> 17 -0.02271 min(5)= 6 -> 16 -0.00929	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

8.2.3 Main contributions from different excited states at CIS approach

#_exc.st	symm	Exc.E Osc.	_Strength	f<	<s**2>_</s**2>	n	nin(2)=		9 ->	15	-0.13769	
						n	nin(3)=		9 ->	23	-0.03448	
1	Singlet-A2	6.5227	190.08	0.0000	0.000	n	nin(4)=		9 ->	21	-0.02287	
	max(1)=	= 9->	> 16	0.49044		n	nin(5)=		9 ->	12	-0.02260	
	max(2)=	= 9->	> 14	0.42062		#	#CIs=29	#CIs>0=	=12 #0	CIs<0=17		
	max(3)=	= 9->	> 28	0.01715								
	max(4)=	= 9->	> 18	0.00637	3	Singlet-	-A2	8.3178		149.06	0.0000	0.000
	max(5)=	= 7 ->	> 13	0.00368		n	nax(1)=		9 ->	11	0.58575	
	min(1):	= 9->	> 11	-0.26651		n	nax(2)=		9 ->	14	0.37733	
	min(2)=	= 9->	> 22	-0.10463		n	nax(3)=		9 ->	18	0.11920	
	min(3)=	= 9->	> 34	-0.01290		n	nax(4)=		9 ->	28	0.01130	
	min(4)=	= 6 ->	> 30	-0.00472		n	nax(5)=		9 ->	22	0.01018	
	min(5)=	= 7 ->	> 31	-0.00163		n	nin(1)=		9 ->	16	-0.00501	
	#CIs=2:	1 #CIs>0=14 #	#CIs<0=7			n	nin(2)=		9 ->	29	-0.00210	
						n	nin(3)=		6 ->	25	-0.00208	
2	Singlet-B1	6.5983	187.90	0.0563	0.000	n	nin(4)=		8 ->	25	-0.00197	
	max(1)=	= 9->	> 10	0.64239		n	nin(5)=		9 ->	37	-0.00070	
	max(2)=	= 9->	> 19	0.03151		#	#CIs=21	#CIs>0=	=11 #C	Us<0=10		
	max(3)=	= 9->	> 35	0.00433								
	max(4)=	= 9->	> 36	0.00367	4	Singlet-	-B1	8.5688		144.69	0.0265	0.000
	max(5)=	= 9->	> 27	0.00300		n	nax(1)=		9 ->	12	0.69437	
	min(1)=	= 9->	> 17	-0.25373		п	nax(2)=		9 ->	19	0.11305	

	max(3)=	9 -> 15	0.04461		max(5)=	8 -> 26	0.03578	
	$\max(4)=$	8 -> 13	0.01975		$\min(1) =$	9 -> 15	-0.42620	
	max(5)=	9 -> 10	0.01443		min(2)=	8 -> 13	-0.06070	
	min(1)=	9 -> 17	-0.03483		min(3)=	6 -> 13	-0.02250	
	min(2)=	9 -> 21	-0.03267		$\min(4) =$	8 -> 20	-0.02142	
	$\min(3)=$	8 -> 26	-0.00181		$\min(5) =$	6 -> 20	-0.01703	
	$\min(4)=$	6 -> 26	-0.00178		#CIs=30 #CIs	>0=13 #CIs<0=16		
	$\min(5)=$	6 -> 31	-0.00132					
	#CIs=29 #CIs	>0=17 #CIs<0=12		8	Singlet-A2 10.340	8 119.90	0.0000	0.000
					max(1)=	9 -> 14	0.41724	
5	Singlet-A1 8.886	9 139.51	0.0244	0.000	max(2)=	9 -> 22	0.10332	
	max(1)=	9 -> 13	0.67763		max(3)=	9 -> 18	0.01948	
	max(2)=	9 -> 20	0.07299		$\max(4)=$	9 -> 34	0.00695	
	max(3)=	8 -> 17	0.06454		max(5)=	6 -> 30	0.00228	
	$\max(4)=$	8 -> 15	0.04310		min(1)=	9 -> 16	-0.48695	
	max(5)=	7 -> 16	0.03246		min(2)=	9 -> 11	-0.27861	
	$\min(1)=$	8 -> 10	-0.15225		$\min(3)=$	9 -> 28	-0.00698	
	min(2)=	7 -> 11	-0.03594		min(4)=	9 -> 29	-0.00195	
	min(3)=	8 -> 19	-0.03526		min(5)=	7 -> 26	-0.00131	
	$\min(4)=$	7 -> 18	-0.02893		#CIs=21 #CIs	>0=8 #CIs<0=13		
	$\min(5)=$	8 -> 12	-0.02525					
	#CIs=47 #CIs	>0=26 #CIs<0=21		9	Singlet-B1 10.386	0 119.38	0.1375	0.000
					max(1)=	9 -> 15	0.53651	
6	Singlet-A1 9.810	6 126.38	0.1925	0.000	max(2)=	9 -> 17	0.36504	
	$\max(1)=$	8 -> 10	0.62489		max(3)=	9 -> 10	0.26624	
	max(2)=	9 -> 13	0.16583		$\max(4)=$	9 -> 23	0.05257	
	max(3)=	7 -> 16	0.03883		max(5)=	8 -> 13	0.03795	
	$\max(4)=$	7 -> 14	0.03184		$\min(1)=$	9 -> 19	-0.03860	
	$\max(5)=$	7 -> 11	0.00980		$\min(2)=$	9 -> 12	-0.01574	
	$\min(1)=$	8 -> 17	-0.22837		$\min(3) =$	9 -> 35	-0.00415	
	min(2)=	8 -> 15	-0.12285		$\min(4) =$	9 -> 32	-0.00260	
	$\min(3)=$	8 -> 12	-0.09917		$\min(5) =$	9 -> 36	-0.00256	
	$\min(4)=$	8 -> 23	-0.02744		#CIs=30 #CIs	>0=20 #CIs<0=9		
	$\min(5)=$	6 -> 12	-0.01853					
	#CIs=47 #CIs	>0=19 #CIs<0=28		10	Singlet-B2 10.681	3 116.08	0.3373	0.000
					max(1)=	8 -> 16	0.40596	
7	Singlet-B1 9.912	4 125.08	0.3483	0.000	max(2)=	8 -> 14	0.40382	
	$\max(1)=$	9 -> 17	0.53366		max(3)=	7 -> 15	0.03284	
	max(2)=	9 -> 10	0.12544		$\max(4)=$	6 -> 11	0.01902	
	max(3)=	9 -> 21	0.07785		max(5)=	6 -> 18	0.01743	
	$\max(4) =$	9 -> 12	0.05906		$\min(1) =$	8 -> 11	-0.39084	

	min(2)=	7 -> 17	-0.07921		min(4)=	9 -> 27	-0.00431	
	min(3)=	8 -> 22	-0.05494		min(5)=	9 -> 19	-0.00324	
	min(4)=	7 -> 21	-0.05129		#CIs=29	#CIs>0=12 #CIs<0=17		
	min(5)=	9 -> 25	-0.05098					
	#CIs=39 #CIs>	0=25 #CIs<0=14		14	Singlet-B2 1	2.1946 101.67	0.3237	0.000
					max(1)=	7 -> 10	0.60063	
11	Singlet-B2 11.3469	109.27	0.0061	0.000	max(2)=	7 -> 12	0.06986	
	max(1)=	8 -> 11	0.49666		max(3)=	7 -> 19	0.06028	
	max(2)=	8 -> 14	0.42610		max(4)=	8 -> 16	0.02002	
	max(3)=	7 -> 10	0.20797		max(5)=	6 -> 16	0.01014	
	max(4)=	8 -> 18	0.11406		min(1)=	7 -> 17	-0.22526	
	max(5)=	8 -> 16	0.03385		min(2)=	8 -> 14	-0.20293	
	min(1)=	7 -> 17	-0.10755		min(3)=	8 -> 11	-0.13718	
	min(2)=	7 -> 15	-0.02332		min(4)=	7 -> 15	-0.12838	
	min(3)=	9 -> 25	-0.01713		min(5)=	6 -> 11	-0.02808	
	min(4)=	7 -> 21	-0.01680		#CIs=39	#CIs>0=18 #CIs<0=21		
	min(5)=	6 -> 11	-0.01480					
	#CIs=39 #CIs>	0=22 #CIs<0=16		15	Singlet-A1 1	2.5694 98.64	0.0002	0.000
					max(1)=	8 -> 17	0.46224	
12	Singlet-A1 11.7640	105.39	0.0130	0.000	max(2)=	7 -> 11	0.11189	
	max(1)=	8 -> 12	0.68494		max(3)=	8 -> 21	0.10632	
	max(2)=	8 -> 10	0.09164		max(4)=	8 -> 10	0.09383	
	max(3)=	8 -> 19	0.08109		max(5)=	7 -> 22	0.03225	
	max(4)=	7 -> 16	0.07525		min(1)=	8 -> 15	-0.45146	
	max(5)=	9 -> 13	0.04747		min(2)=	7 -> 16	-0.16463	
	min(1)=	7 -> 11	-0.05168		min(3)=	7 -> 14	-0.14176	
	min(2)=	9 -> 20	-0.05038		$\min(4)=$	8 -> 23	-0.00950	
	min(3)=	7 -> 18	-0.02623		min(5)=	9 -> 20	-0.00835	
	$\min(4)=$	7 -> 22	-0.02377		#CIs=47	#CIs>0=22 #CIs<0=25		
	min(5)=	8 -> 21	-0.01438					
	#CIs=47 #CIs>	0=21 #CIs<0=26		16	Singlet-A1 1	3.3328 92.99	0.0645	0.000
					max(1)=	8 -> 15	0.46535	
13	Singlet-B1 11.8629	104.51	0.0055	0.000	max(2)=	7 -> 11	0.32126	
	max(1)=	8 -> 13	0.69367		max(3)=	8 -> 17	0.18482	
	max(2)=	8 -> 20	0.11096		max(4)=	8 -> 10	0.17879	
	max(3)=	9 -> 17	0.02142		max(5)=	8 -> 23	0.04971	
	max(4)=	7 -> 25	0.01109		min(1)=	7 -> 16	-0.22566	
	max(5)=	8 -> 26	0.00988		min(2)=	7 -> 14	-0.22559	
	min(1)=	9 -> 15	-0.07336		min(3)=	9 -> 20	-0.05126	
	min(2)=	9 -> 12	-0.01404		min(4)=	8 -> 19	-0.04961	
	min(3)=	6 -> 26	-0.00436		min(5)=	6 -> 12	-0.01471	

	#CIs=48 #CIs>	0=24 #CIs<0=23		20	Singlet-A2 14.587	70 85.00	0.0000	0.000
					$\max(1) =$	7 -> 13	0.69796	
17	Singlet-B2 13.5681	91.38	0.0366	0.000	$\max(2)=$	7 -> 20	0.11248	
	max(1)=	8 -> 14	0.32443		max(3)=	7 -> 26	0.00596	
	max(2)=	8 -> 22	0.09473		$\max(4) =$	8 -> 25	0.00525	
	max(3)=	7 -> 10	0.06733		$\max(5)=$	7 -> 31	0.00521	
	$\max(4)=$	7 -> 17	0.04674		$\min(1) =$	9 -> 16	-0.00456	
	$\max(5)=$	7 -> 21	0.03721		$\min(2)=$	9 -> 14	-0.00449	
	min(1)=	8 -> 16	-0.54074		$\min(3)=$	6 -> 25	-0.00423	
	min(2)=	8 -> 11	-0.26899		$\min(4) =$	9 -> 11	-0.00319	
	min(3)=	7 -> 15	-0.09863		min(5)=	9 -> 22	-0.00304	
	min(4)=	7 -> 12	-0.02071		#CIs=21 #CIs	s>0=10 #CIs<0=11		
	min(5)=	7 -> 23	-0.01363					
	#CIs=39 #CIs>	0=15 #CIs<0=23		21	Singlet-B2 14.614	6 84.84	0.0010	0.000
					$\max(1)=$	7 -> 12	0.68744	
18	Singlet-A1 13.6718	90.69	0.3968	0.000	$\max(2)=$	7 -> 15	0.09721	
	max(1)=	8 -> 17	0.40246		max(3)=	7 -> 19	0.09134	
	max(2)=	8 -> 15	0.23207		$\max(4) =$	6 -> 14	0.02397	
	max(3)=	7 -> 16	0.20686		$\max(5)=$	8 -> 14	0.02176	
	$\max(4)=$	8 -> 10	0.19007		$\min(1) =$	7 -> 10	-0.07295	
	max(5)=	9 -> 20	0.16130		$\min(2)=$	8 -> 16	-0.03018	
	min(1)=	7 -> 11	-0.37018		$\min(3) =$	7 -> 21	-0.02906	
	min(2)=	8 -> 12	-0.07097		$\min(4) =$	8 -> 11	-0.02359	
	min(3)=	9 -> 13	-0.06362		$\min(5)=$	7 -> 17	-0.02095	
	$\min(4)=$	7 -> 18	-0.04802		#CIs=39 #CIs	>0=22 #CIs<0=17		
	min(5)=	9 -> 26	-0.02918					
	#CIs=48 #CIs>	0=31 #CIs<0=16		22	Singlet-A2 14.766	84 83.96	0.0000	0.000
					$\max(1)=$	9 -> 18	0.69305	
19	Singlet-A1 14.2641	86.92	0.1355	0.000	$\max(2)=$	9 -> 22	0.04602	
	$\max(1)=$	7 -> 14	0.51662		max(3)=	9 -> 28	0.04395	
	$\max(2)=$	7 -> 11	0.42603		$\max(4)=$	9 -> 16	0.01981	
	max(3)=	7 -> 16	0.16742		$\max(5)=$	9 -> 34	0.01715	
	$\max(4)=$	8 -> 17	0.11107		$\min(1)=$	9 -> 11	-0.09065	
	max(5)=	7 -> 18	0.08091		$\min(2)=$	9 -> 14	-0.08078	
	$\min(1)=$	9 -> 26	-0.04262		$\min(3)=$	9 -> 29	-0.01071	
	$\min(2)=$	6 -> 10	-0.02424		$\min(4)=$	6 -> 25	-0.00489	
	$\min(3)=$	6 -> 21	-0.01428		$\min(5)=$	8 -> 25	-0.00470	
	$\min(4)=$	7 -> 22	-0.01373		#CIs=21 #CIs	>0=11 #CIs<0=9		
	min(5)=	8 -> 23	-0.00971					
	#CIs=48 #CIs>	0=21 #CIs<0=26		23	Singlet-B1 15.450	80.25	0.0006	0.000
					$\max(1)=$	9 -> 19	0.68763	

	max(2)=	9 -> 17	0.05786		$\max(4) =$	9 -> 13	0.05265	
	max(3)=	9 -> 35	0.02229		$\max(5)=$	8 -> 19	0.05120	
	$\max(4)=$	9 -> 32	0.02053		$\min(1)=$	7 -> 16	-0.41110	
	max(5)=	9 -> 15	0.01883		$\min(2)=$	9 -> 20	-0.40704	
	min(1)=	9 -> 12	-0.11482		$\min(3)=$	7 -> 11	-0.22906	
	min(2)=	9 -> 21	-0.09230		min(4)=	8 -> 12	-0.01831	
	min(3)=	9 -> 10	-0.01394		min(5)=	9 -> 33	-0.01294	
	$\min(4)=$	6 -> 26	-0.00680		#CIs=49 #CIs>	0=25 #CIs<0=22		
	$\min(5)=$	9 -> 39	-0.00208					
	#CIs=30 #CIs>	0=14 #CIs<0=15		27	Singlet-A1 16.8777	73.46	0.0853	0.000
					$\max(1)=$	9 -> 20	0.48422	
24	Singlet-B2 15.5161	79.91	0.3631	0.000	$\max(2)=$	7 -> 14	0.18679	
	$\max(1)=$	7 -> 17	0.45545		max(3)=	8 -> 12	0.09887	
	$\max(2)=$	8 -> 16	0.13245		$\max(4)=$	8 -> 21	0.06091	
	max(3)=	7 -> 12	0.10126		$\max(5)=$	7 -> 22	0.03031	
	$\max(4)=$	7 -> 21	0.07148		$\min(1)=$	7 -> 16	-0.37106	
	$\max(5)=$	7 -> 10	0.06620		$\min(2)=$	8 -> 19	-0.24936	
	min(1)=	7 -> 15	-0.49512		min(3)=	8 -> 17	-0.08455	
	min(2)=	8 -> 18	-0.05767		$\min(4)=$	9 -> 13	-0.03978	
	min(3)=	9 -> 25	-0.05562		min(5)=	7 -> 18	-0.03846	
	$\min(4)=$	7 -> 24	-0.02477		#CIs=48 #CIs>	0=23 #CIs<0=24		
	min(5)=	6 -> 16	-0.01968					
	#CIs=39 #CIs>	0=22 #CIs<0=17		28	Singlet-B2 17.9748	68.98	0.0145	0.000
					$\max(1)=$	8 -> 18	0.68190	
25	Singlet-B2 16.0080	77.45	0.1302	0.000	$\max(2)=$	7 -> 17	0.09406	
	$\max(1)=$	7 -> 15	0.45665		max(3)=	8 -> 22	0.07850	
	$\max(2)=$	7 -> 17	0.43819		$\max(4) =$	8 -> 16	0.05028	
	max(3)=	7 -> 10	0.28284		$\max(5)=$	8 -> 28	0.03581	
	$\max(4)=$	7 -> 23	0.04826		$\min(1) =$	8 -> 11	-0.08703	
	$\max(5)=$	7 -> 21	0.03647		$\min(2)=$	8 -> 14	-0.07103	
	$\min(1)=$	7 -> 19	-0.08412		$\min(3)=$	9 -> 25	-0.03976	
	$\min(2)=$	8 -> 18	-0.07901		$\min(4) =$	8 -> 29	-0.00906	
	min(3)=	6 -> 16	-0.01208		min(5)=	7 -> 19	-0.00605	
	min(4)=	7 -> 12	-0.01007		#CIs=38 #CIs>	0=23 #CIs<0=15		
	min(5)=	7 -> 32	-0.00693					
	#CIs=40 #CIs>	0=19 #CIs<0=20		29	Singlet-B1 18.6697	66.41	0.0598	0.000
					$\max(1)=$	9 -> 21	0.64725	
26	Singlet-A1 16.1480	76.78	0.0166	0.000	$\max(2)=$	9 -> 19	0.09579	
	$\max(1)=$	7 -> 14	0.30409		max(3)=	8 -> 26	0.05518	
	$\max(2)=$	7 -> 22	0.07599		$\max(4) =$	9 -> 24	0.04728	
	max(3)=	7 -> 18	0.06333		max(5)=	7 -> 25	0.04344	

	min(1)=	8 -> 20	-0.23127		min(3)=	8 -> 12	-0.05243	
	min(2)=	9 -> 17	-0.07871		$\min(4) =$	7 -> 22	-0.05164	
	min(3)=	9 -> 23	-0.03743		$\min(5)=$	8 -> 17	-0.04092	
	min(4)=	6 -> 20	-0.01985		#CIs=49 #CIs>	0=24 #CIs<0=23		
	min(5)=	9 -> 36	-0.01244					
	#CIs=29 #CIs>	0=12 #CIs<0=17		33	Singlet-A1 21.1122	58.73	0.0139	0.000
					$\max(1)=$	7 -> 18	0.54241	
30	Singlet-A2 18.9977	65.26	0.0000	0.000	$\max(2)=$	8 -> 21	0.36841	
	max(1)=	9 -> 22	0.68842		max(3)=	8 -> 19	0.19227	
	max(2)=	9 -> 16	0.14728		$\max(4)=$	9 -> 20	0.09807	
	max(3)=	9 -> 34	0.02703		$\max(5)=$	8 -> 15	0.04426	
	max(4)=	6 -> 30	0.00485		min(1)=	9 -> 26	-0.06394	
	max(5)=	7 -> 13	0.00460		$\min(2)=$	8 -> 23	-0.05659	
	min(1)=	9 -> 18	-0.04861		$\min(3) =$	8 -> 17	-0.05002	
	min(2)=	9 -> 28	-0.03300		$\min(4) =$	7 -> 11	-0.04866	
	min(3)=	8 -> 25	-0.00660		min(5)=	7 -> 14	-0.04314	
	min(4)=	9 -> 29	-0.00606		#CIs=49 #CIs>	0=25 #CIs<0=22		
	min(5)=	9 -> 37	-0.00514					
	#CIs=21 #CIs>	0=8 #CIs<0=13		34	Singlet-B2 21.5193	57.62	0.0041	0.000
					$\max(1)=$	7 -> 19	0.68470	
31	Singlet-B1 19.0207	65.18	0.0035	0.000	$\max(2)=$	7 -> 17	0.08298	
	max(1)=	8 -> 20	0.65655		max(3)=	7 -> 15	0.05569	
	max(2)=	9 -> 21	0.22658		$\max(4)=$	6 -> 16	0.05139	
	max(3)=	7 -> 25	0.03447		$\max(5)=$	6 -> 14	0.04631	
	max(4)=	8 -> 26	0.03269		$\min(1)=$	7 -> 12	-0.10098	
	max(5)=	9 -> 24	0.02881		min(2)=	9 -> 25	-0.04436	
	min(1)=	8 -> 13	-0.10860		min(3)=	7 -> 21	-0.03604	
	min(2)=	9 -> 17	-0.03139		$\min(4) =$	7 -> 24	-0.02160	
	min(3)=	6 -> 26	-0.01069		min(5)=	7 -> 10	-0.01446	
	min(4)=	9 -> 15	-0.00857		#CIs=39 #CIs>	0=23 #CIs<0=16		
	min(5)=	9 -> 36	-0.00517					
	#CIs=29 #CIs>	0=13 #CIs<0=15		35	Singlet-A2 21.7805	56.92	0.0000	0.000
					$\max(1)=$	7 -> 20	0.69685	
32	Singlet-A1 19.3606	64.04	0.0057	0.000	$\max(2)=$	7 -> 33	0.02330	
	max(1)=	8 -> 19	0.60591		$\max(3)=$	7 -> 31	0.02098	
	max(2)=	9 -> 20	0.17066		$\max(4)=$	7 -> 26	0.01511	
	max(3)=	7 -> 11	0.06404		$\max(5)=$	8 -> 25	0.01491	
	max(4)=	7 -> 14	0.05160		min(1)=	7 -> 13	-0.11293	
	max(5)=	9 -> 26	0.03822		min(2)=	6 -> 25	-0.01006	
	min(1)=	7 -> 18	-0.25028		min(3)=	8 -> 30	-0.00474	
	min(2)=	7 -> 16	-0.13781		$\min(4) =$	9 -> 18	-0.00455	

	min(5	5)=	9 ->	28	-0.00298		n	nax(5)	=	6 -> :	12	0.04296	
	#CIs=	=21 #CIs>0)=11 #0	CIs<0=10			n	nin(1)	=	6 -> 3	17	-0.21465	
							n	nin(2)	=	6 -> 3	15	-0.10396	
36	Singlet-A1	21.9704		56.43	0.0001	0.000	n	nin(3)	=	9 -> 2	20	-0.06308	
	max(1)=	8 ->	21	0.56708		n	nin(4)	=	7 -> :	18	-0.05537	
	max(2	2)=	7 ->	22	0.06851		n	nin(5)	=	8 -> :	19	-0.04711	
	max(3	3)=	6 ->	17	0.06815		#	#CIs=4	9 #CIs>0	=22 #C	Is<0=25		
	max(4	1)=	7 ->	16	0.06610								
	max(5	5)=	8 ->	27	0.05054	39	Singlet-	-B2	23.1222		53.62	0.0003	0.000
	min(1)=	7 ->	18	-0.33552		r	nax(1)	=	6 -> :	16	0.46672	
	min(2	2)=	6 ->	10	-0.12972		r	nax(2)	=	6 -> :	14	0.40758	
	min(3	3)=	9 ->	20	-0.10719		r	nax(3)	=	7 -> 2	23	0.01291	
	min(4	1)=	8 ->	19	-0.08926		r	nax(4)	=	7 -> :	17	0.00920	
	min(5	5)=	8 ->	17	-0.07249		r	nax(5)	=	7 -> 2	27	0.00741	
	#CIs=	=49 #CIs>0	=20 #0	CIs<0=27			r	nin(1)	=	6 -> :	11	-0.30483	
							п	nin(2)	=	6 -> 2	22	-0.08648	
37	Singlet-B2	22.2530		55.72	0.0070	0.000	п	nin(3)	=	9 -> 2	25	-0.08632	
	max(1)=	8 ->	22	0.67426		п	nin(4)	=	7 -> :	19	-0.07349	
	max(2	2)=	8 ->	16	0.11639		r	nin(5)	=	8 -> 2	22	-0.03450	
	max(3	3)=	9 ->	25	0.11134		#	#CIs=3	88 #CIs>0	=16 #C	Is<0=22		
	max(4	1)=	7 ->	21	0.06162								
	max(5	5)=	6 ->	14	0.04432	40	Singlet-	-B1	23.2765		53.27	0.0099	0.000
	min(1)=	8 ->	18	-0.07692		п	nax(1)	=	9 -> 2	24	0.64169	
	min(2	2)=	7 ->	17	-0.03774		п	nax(2)	=	6 -> 3	13	0.01962	
	min(3	3)=	7 ->	23	-0.03600		r	nax(3)	=	9 -> 3	35	0.01888	
	min(4	1)=	8 ->	28	-0.02761		п	nax(4)	=	6 -> 2	20	0.01100	
	min(5	5)=	6 ->	28	-0.01376		п	nax(5)	=	9 -> 2	27	0.00959	
	#CIs=	=39 #CIs>0)=20 #0	CIs<0=19			п	nin(1)	=	9 -> 2	23	-0.28361	
							r	nin(2)	=	9 -> 2	21	-0.05587	
38	Singlet-A1	23.1118		53.65	0.0167	0.000	п	nin(3)	=	8 -> 2	26	-0.03849	
	max(1)=	6 ->	10	0.63434		п	nin(4)	=	7 -> 2	25	-0.03128	
	max(2	2)=	8 ->	21	0.10634		r	nin(5)	=	9 -> 3	32	-0.02920	
	max(3	3)=	7 ->	22	0.10216		#	#CIs=3	80 #CIs>C	=17 #C	Is<0=12		
	max(4	1)=	9 ->	26	0.05384								

9 NH_3

9.1 6-311G(d,p)

9.1.1 Plots

Figure S13: For NH₃ molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (bottom) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S13a and S13c) or states (SOS approaches, in Plots S13b and S13d). For α FIOs, three approaches were considered: CPKS (CAM-B3LYP), CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. All elements of the β tensor were recomputed with an error less than 0.02 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

9.2 6-311++G(d,p)

9.2.1 Plots

Figure S14: For NH₃ molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (bottom) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S14a and S14c) or states (SOS approaches, in Plots S14b and S14d). For α FIOs, three approaches were considered: CPKS (CAM-B3LYP), CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. All elements of the β tensor were recomputed with an error less than 0.12 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

10 F-CC-H

10.1 6-311G(d,p)

10.1.1 Plots

Figure S15: For $F-C \equiv C-H$ molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (bottom) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S15a and S15c) or states (SOS approaches, in Plots S15b and S15d). For α FIOs, three approaches were considered: CPKS (CAM-B3LYP), CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. All elements of the β tensor were recomputed with an error less than 0.03 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

10.2.1 Plots

Figure S16: For $F-C\equiv C-H$ molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (bottom) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S16a and S16c) or states (SOS approaches, in Plots S16b and S16d). For α FIOs, three approaches were considered: CPKS (CAM-B3LYP), CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. All elements of the β tensor were recomputed with an error less than 0.03 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

11 $HCCCF_3$

11.1 6-311G(d,p)

11.1.1 Plots

Figure S17: For $H-C\equiv C-CF_3$ molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S17a and S17b) or states (SOS approaches, in Plots S17c and S17d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S17e and S17f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.20 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

Figure S17: (continued) For $H-C=C-CF_3$ molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S17a and S17b) or states (SOS approaches, in Plots S17c and S17d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S17e and S17f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.20 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(e) CPKS- and CPHF-FIOs decomposition of (f) TDDFT- and CIS-SOS decomposition of β_{ZZZ} between MOs 5 and 40. β_{ZZZ} between states 1 and 200.

11.2.1 Plots

Figure S18: For H–C=C–CF₃ molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S18a and S18b) or states (SOS approaches, in Plots S18c and S18d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S18e and S18f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.20 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

Figure S18: (continued) For $H-C \equiv C-CF_3$ molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S18a and S18b) or states (SOS approaches, in Plots S18c and S18d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S18e and S18f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.20 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(e) CPKS- and CPHF-FIOs decomposition of (f) TDDFT- and CIS-SOS decomposition of β_{ZZZ} between MOs 5 and 50. β_{ZZZ} between states 1 and 200.

12 CN-CC-H

12.1 6-311G(d,p)

12.1.1 Plots

Figure S19: For CN-C=C-H molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S19a and S19b) or states (SOS approaches, in Plots S19c and S19d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S19e and S19f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.13 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

Figure S19: (continued) For CN-C=C-H molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S19a and S19b) or states (SOS approaches, in Plots S19c and S19d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S19e and S19f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.13 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(e) CPKS- and CPHF-FIOs decomposition of (f) TDDFT- and CIS-SOS decomposition of β_{ZZZ} between MOs 5 and 25. β_{ZZZ} between states 5 and 100.

12.2.1 Plots

Figure S20: For CN-C=C-H molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S20a and S20b) or states (SOS approaches, in Plots S20c and S20d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S20e and S20f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.13 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

Figure S20: (continued) For CN-C=C-H molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S20a and S20b) or states (SOS approaches, in Plots S20c and S20d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S20e and S20f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.13 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(e) CPKS- and CPHF-FIOs decomposition of (f) TDDFT- and CIS-SOS decomposition of β_{ZZZ} between MOs 5 and 40. β_{ZZZ} between states 5 and 100.

13 CN-CC-CC-H

13.1 6-311G(d,p)

13.1.1 Plots

Figure S21: For $CN-C \equiv C-C \equiv C-H$ molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S21a and S21b) or states (SOS approaches, in Plots S21c and S21d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S21e and S21f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.12 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

Figure S21: (continued) For $CN-C \equiv C-C \equiv C-H$ molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S21a and S21b) or states (SOS approaches, in Plots S21c and S21d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S21e and S21f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.12 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(e) CPKS- and CPHF-FIOs decomposition of (f) TDDFT- and CIS-SOS decomposition of β_{ZZZ} between MOs 5 and 40. β_{ZZZ} between states 5 and 175.

13.2.1 Plots

Figure S22: For CN-C=C-C=C-H molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S22a and S22b) or states (SOS approaches, in Plots S22c and S22d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S22e and S22f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.24 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

Figure S22: (continued) For $CN-C\equiv C-C\equiv C-H$ molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S22a and S22b) or states (SOS approaches, in Plots S22c and S22d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S22e and S22f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.24 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(e) CPKS- and CPHF-FIOs decomposition of (f) TDDFT- and CIS-SOS decomposition of β_{ZZZ} between MOs 5 and 40. β_{ZZZ} between states 5 and 175.

14 CN-CC-CC-CC-H

14.1 6-311G(d,p)

14.1.1 Plots

Figure S23: For CN-C=C-C=C-C=C-H molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S23a and S23b) or states (SOS approaches, in Plots S23c and S23d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S23e and S23f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.41 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

Figure S23: (continued) For $CN-C \equiv C-C \equiv C-C \equiv C-H$ molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S23a and S23b) or states (SOS approaches, in Plots S23c and S23d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S23e and S23f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.41 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(e) CPKS- and CPHF-FIOs decomposition of (f) TDDFT- and CIS-SOS decomposition of β_{ZZZ} between MOs 10 and 55. β_{ZZZ} between states 1 and 60.

14.2.1 Plots

Figure S24: For $CN-C \equiv C-C \equiv C-C \equiv C-H$ molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S24a and S24b) or states (SOS approaches, in Plots S24c and S24d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S24e and S24f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.21 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

Figure S24: (continued) For $CN-C \equiv C-C \equiv C-C \equiv C-H$ molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S24a and S24b) or states (SOS approaches, in Plots S24c and S24d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S24e and S24f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.21 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(e) CPKS- and CPHF-FIOs decomposition of (f) TDDFT- and CIS-SOS decomposition of β_{ZZZ} between MOs 10 and 70. β_{ZZZ} between states 1 and 70.

15 *p*-cyanoaniline

15.1 6-311G(d,p)

15.1.1 Plots

Figure S25: For *p*-cyanoaniline molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S25a and S25b) or states (SOS approaches, in Plots S25c and S25d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S25d and S25f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.11 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

Figure S25: (continued) For *p*-cyanoaniline molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S25a and S25b) or states (SOS approaches, in Plots S25c and S25d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S25d and S25f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.11 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(e) CPKS- and CPHF-FIOs decomposition of (f) TDDFT- and CIS-SOS decomposition of β_{ZZZ} between MOs 15 and 50. β_{ZZZ} between states 1 and 250.

15.2.1 Plots

Figure S26: For *p*-cyanoaniline molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S26a and S26b) or states (SOS approaches, in Plots S26c and S26d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S26d and S26f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.11 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

Figure S26: (continued) For *p*-cyanoaniline molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S26a and S26b) or states (SOS approaches, in Plots S26c and S26d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S26d and S26f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.11 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(e) CPKS- and CPHF-FIOs decomposition of (f) TDDFT- and CIS-SOS decomposition of β_{ZZZ} between MOs 15 and 50. β_{ZZZ} between states 1 and 250.

16 *p*-nitroaniline

16.1 6-311G(d,p)

16.1.1 Plots

Figure S27: For *p*-nitroaniline molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S27a and S27b) or states (SOS approaches, in Plots S27c and S27d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S27e and S27f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.37 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.
Figure S27: (continued) For *p*-nitroaniline molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S27a and S27b) or states (SOS approaches, in Plots S27c and S27d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S27e and S27f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.37 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

 β_{ZZZ} between MOs 15 and 50. β_{ZZZ} between states 1 and 250.

16.1.2 Main contributions from different excited states at TDDFT (CAM-B3LYP) approach

#_exc.st	symm	Exc.E	OscS	trength	f	_ <s**2>_</s**2>							
						2	Singlet-A	,	4.5920		270.00	0.3670	0.000
1	Singlet-A"	4.1147		301.32	0.0000	0.000	max	x(1)=	:	36 ->	37	0.68965	
	max(1)=	- :	34 ->	37	0.67431	L	max	x(2)=	:	35 ->	38	0.10043	
	max(2)=	= :	27 ->	40	0.01118	3	max	x(3)=	:	31 ->	40	0.04187	
	max(3)=	- :	26 ->	37	0.01054	ł	max	x(4)=	:	31 ->	39	0.03005	
	max(4)=	- :	30 ->	37	0.00937	7	max	x(5)=	:	29 ->	37	0.01343	
	max(5)=	- :	27 ->	39	0.00637	7	miı	n(1)=		31 ->	37	-0.09692	
	min(1)=	- :	34 ->	40	-0.17798	3	miı	n(2)=	:	30 ->	50	-0.02180	
	min(2)=	- :	34 ->	39	-0.10948	3	miı	n(3)=	:	32 ->	47	-0.01837	
	min(3)=	- :	34 ->	46	-0.02774	ł	miı	n(4)=		32 ->	37	-0.01730	
	min(4)=	- :	27 ->	37	-0.01731	L	miı	n(5)=		34 ->	45	-0.01695	
	min(5)=	= ;	34 ->	42	-0.01418	3	#C:	Is=23	84 #CIs	>0=10	51 #CIs<0=	1061	
	#CIs=21	L95 #CIs	>0=781	#CIs<0=80	03								

S-144

3	Singlet-A' 4.642	29 267.04	0.0004	0.000	max(2)=	31 -> 39	0.11595	
	max(1)=	32 -> 37	0.67546		max(3)=	35 -> 38	0.05525	
	max(2)=	25 -> 37	0.02320		$\max(4) =$	31 -> 37	0.03750	
	max(3)=	28 -> 37	0.01979		max(5)=	29 -> 39	0.01269	
	max(4)=	36 -> 37	0.01789		$\min(1) =$	36 -> 40	-0.16744	
	max(5)=	29 -> 37	0.01470		min(2)=	31 -> 40	-0.06675	
	min(1)=	32 -> 40	-0.17158		$\min(3) =$	36 -> 42	-0.04391	
	min(2)=	32 -> 39	-0.10632		$\min(4) =$	31 -> 42	-0.04329	
	min(3)=	32 -> 46	-0.02523		$\min(5) =$	35 -> 41	-0.04238	
	min(4)=	25 -> 40	-0.01736		#CIs=2380	#CIs>0=1048 #CIs<0	=994	
	min(5)=	32 -> 42	-0.01392					
	#CIs=2370 #0	CIs>0=920 #CIs<0=9	932	7	Singlet-A' 6.0	6277 187.07	0.0327	0.000
					max(1)=	36 -> 40	0.53002	
4	Singlet-A" 4.939	97 251.00	0.0078	0.000	max(2)=	35 -> 38	0.42128	
	max(1)=	36 -> 38	0.56495		max(3)=	31 -> 37	0.11707	
	max(2)=	33 -> 37	0.06008		$\max(4)=$	36 -> 39	0.09771	
	max(3)=	22 -> 38	0.01137		max(5)=	32 -> 47	0.03359	
	max(4)=	33 -> 40	0.01077		$\min(1) =$	31 -> 39	-0.05435	
	max(5)=	35 -> 68	0.00757		$\min(2)=$	33 -> 38	-0.05033	
	min(1)=	35 -> 37	-0.39877		$\min(3) =$	36 -> 37	-0.04930	
	$\min(2)=$	35 -> 40	-0.11204		$\min(4) =$	29 -> 37	-0.04028	
	min(3)=	35 -> 39	-0.05993		$\min(5) =$	31 -> 40	-0.02849	
	min(4)=	31 -> 38	-0.04252		#CIs=2386	#CIs>0=1091 #CIs<0	=1029	
	min(5)=	35 -> 42	-0.01043					
	#CIs=2284 #0	CIs>0=938 #CIs<0=1	1006	8	Singlet-A" 6.	184.92	0.1439	0.000
					$\max(1) =$	33 -> 37	0.69091	
5	Singlet-A" 5.800	00 213.77	0.0805	0.000	max(2)=	32 -> 54	0.04678	
	max(1)=	35 -> 37	0.57965		max(3)=	32 -> 50	0.04168	
	max(2)=	36 -> 38	0.39505		$\max(4) =$	34 -> 53	0.03616	
	max(3)=	33 -> 37	0.06330		max(5)=	34 -> 55	0.03615	
	max(4)=	31 -> 38	0.04339		$\min(1) =$	36 -> 38	-0.08037	
	max(5)=	35 -> 56	0.01607		min(2)=	31 -> 38	-0.06296	
	min(1)=	35 -> 40	-0.04377		$\min(3) =$	34 -> 51	-0.05866	
	min(2)=	35 -> 39	-0.02591		$\min(4) =$	33 -> 40	-0.02648	
	min(3)=	36 -> 41	-0.01366		$\min(5) =$	33 -> 39	-0.02329	
	min(4)=	26 -> 48	-0.01303		#CIs=2286	#CIs>0=998 #CIs<0=9	977	
	min(5)=	27 -> 48	-0.01253					
	#CIs=2288 #0	CIs>0=941 #CIs<0=1	1005	9	Singlet-A" 7.3	1817 172.64	0.0007	0.000
					$\max(1)=$	36 -> 41	0.66631	
6	Singlet-A' 6.264	42 197.92	0.0016	0.000	max(2)=	31 -> 41	0.10009	
	max(1)=	36 -> 39	0.66406		max(3)=	35 -> 40	0.02612	

	max(4)=	35 -> 44	0.02377		$\min(1) =$	36 -> 42	-0.15049	
	max(5)=	36 -> 52	0.01737		min(2)=	28 -> 37	-0.02735	
	min(1)=	35 -> 39	-0.13953		min(3)=	31 -> 37	-0.02660	
	min(2)=	36 -> 43	-0.10302		min(4)=	26 -> 38	-0.02507	
	min(3)=	35 -> 42	-0.07181		min(5)=	30 -> 38	-0.02437	
	min(4)=	31 -> 43	-0.06226		#CIs=2377	/#CIs>0=924 #CIs<0=	958	
	min(5)=	36 -> 45	-0.02544					
	#CIs=2279 #	CIs>0=896 #CIs<0=	=941	13	Singlet-A" 7.	5448 164.33	0.0000	0.000
					max(1)=	30 -> 37	0.66268	
10	Singlet-A' 7.18	97 172.45	0.4941	0.000	max(2)=	32 -> 38	0.16383	
	max(1)=	35 -> 38	0.53271		max(3)=	30 -> 40	0.11088	
	max(2)=	36 -> 42	0.08728		$\max(4)=$	30 -> 39	0.05602	
	max(3)=	36 -> 46	0.03948		max(5)=	26 -> 40	0.03096	
	$\max(4)=$	28 -> 49	0.02864		$\min(1)=$	26 -> 37	-0.08087	
	max(5)=	30 -> 50	0.02776		$\min(2)=$	27 -> 37	-0.05126	
	min(1)=	36 -> 40	-0.36762		$\min(3)=$	25 -> 38	-0.04847	
	min(2)=	31 -> 37	-0.19607		$\min(4)=$	26 -> 46	-0.02996	
	min(3)=	36 -> 39	-0.12175		$\min(5)=$	18 -> 37	-0.02679	
	min(4)=	36 -> 37	-0.09733		#CIs=2246	6 #CIs>0=914 #CIs<0=	880	
	min(5)=	31 -> 40	-0.04234					
	#CIs=2383 #	CIs>0=1034 #CIs<()=1070	14	Singlet-A' 7.	6230 162.64	0.0391	0.000
					max(1)=	31 -> 37	0.63006	
11	Singlet-A' 7.42	28 167.03	0.0220	0.000	max(2)=	35 -> 38	0.09946	
	max(1)=	36 -> 42	0.66257		max(3)=	28 -> 37	0.08293	
	max(2)=	34 -> 38	0.15575		$\max(4) =$	36 -> 37	0.07994	
	max(3)=	31 -> 37	0.06325		max(5)=	31 -> 40	0.03923	
	max(4)=	36 -> 39	0.05626		$\min(1) =$	36 -> 40	-0.20456	
	max(5)=	36 -> 49	0.04302		$\min(2)=$	29 -> 37	-0.10439	
	min(1)=	35 -> 38	-0.07269		$\min(3)=$	36 -> 39	-0.10260	
	min(2)=	35 -> 41	-0.06998		$\min(4) =$	33 -> 38	-0.08697	
	min(3)=	31 -> 39	-0.05663		$\min(5) =$	36 -> 42	-0.04849	
	min(4)=	36 -> 44	-0.05501		#CIs=2384	#CIs>0=984 #CIs<0=	1104	
	min(5)=	31 -> 44	-0.04814					
	#CIs=2382 #	CIs>0=1044 #CIs<()=1007	15	Singlet-A" 7.	7354 160.28	0.0001	0.000
					max(1)=	32 -> 38	0.67753	
12	Singlet-A' 7.44	34 166.57	0.0007	0.000	max(2)=	19 -> 38	0.02657	
	max(1)=	34 -> 38	0.68458		max(3)=	27 -> 37	0.02113	
	max(2)=	27 -> 38	0.04068		$\max(4) =$	27 -> 46	0.01497	
	max(3)=	35 -> 41	0.01889		max(5)=	17 -> 38	0.01420	
	max(4)=	36 -> 44	0.01465		$\min(1) =$	30 -> 37	-0.16407	
	$\max(5)=$	31 -> 39	0.01255		min(2)=	28 -> 38	-0.05006	

	min(3)) =	34 ->	40	-0.04518			max(4)	=	29 ->	41	0.05276	
	$\min(4)$) =	29 ->	38	-0.03759			max(5)	=	35 ->	47	0.03375	
	min(5)) =	25 ->	38	-0.03612			min(1)	=	35 ->	40	-0.36951	
	#CIs=2	2267 #CI	s>0=826	6 #CIs<0=8	384			min(2)	=	36 ->	43	-0.13542	
								min(3)	=	31 ->	38	-0.09207	
16	Singlet-A"	7.8651		157.64	0.0993	0.000		min(4)	=	36 ->	45	-0.06702	
	max(1)) =	35 ->	40	0.47058			min(5)	=	31 ->	43	-0.05483	
	max(2)) =	35 ->	39	0.40130			#CIs=2	281 #CI:	s>0=93	2 #CIs<0=9	910	
	max(3)) =	31 ->	38	0.29149								
	max(4)) =	36 ->	38	0.12151	19	Singlet	t-A'	8.2584		150.13	0.0072	0.000
	max(5)) =	36 ->	41	0.08271			max(1)	=	30 ->	38	0.69695	
	min(1)) =	35 ->	37	-0.05165			max(2)	=	34 ->	38	0.02548	
	min(2)) =	33 ->	40	-0.02993			max(3)	=	29 ->	37	0.02274	
	min(3)) =	33 ->	39	-0.02822			max(4)	=	28 ->	37	0.02218	
	$\min(4)$) =	30 ->	49	-0.01664			max(5)	=	30 ->	67	0.02019	
	min(5)) =	27 ->	48	-0.01563			min(1)	=	25 ->	37	-0.05918	
	#CIs=2	2287 #CI	s>0=979	9 #CIs<0=9	975			min(2)	=	25 ->	46	-0.05514	
								min(3)	=	35 ->	41	-0.04625	
17	Singlet-A'	7.9323		156.30	0.0001	0.000		min(4)	=	18 ->	38	-0.02335	
	max(1)) =	33 ->	38	0.69822			min(5)	=	36 ->	44	-0.02257	
	max(2)) =	31 ->	37	0.09378			#CIs=2	365 #CI:	s>0=88	3 #CIs<0=9	926	
	max(3)) =	35 ->	38	0.03286								
	$\max(4)$) =	36 ->	40	0.01651	20	Singlet	t-A"	8.2595		150.11	0.0000	0.000
	max(5)) =	32 ->	42	0.01537			max(1)	=	34 ->	40	0.55705	
	min(1)) =	22 ->	37	-0.01804			max(2)	=	34 ->	39	0.34114	
	min(2)) =	34 ->	43	-0.01095			max(3)	=	34 ->	37	0.21020	
	min(3)) =	22 ->	46	-0.00934			max(4)	=	34 ->	46	0.11978	
	$\min(4)$) =	33 ->	43	-0.00677			max(5)	=	32 ->	38	0.05640	
	min(5)) =	34 ->	41	-0.00641			min(1)	=	26 ->	37	-0.04796	
	#CIs=2	2377 #CI	s>0=976	6 #CIs<0=9	971			min(2)	=	28 ->	38	-0.02493	
								min(3)	=	21 ->	37	-0.02372	
18	Singlet-A"	8.1246		152.60	0.0000	0.000		min(4)	=	29 ->	38	-0.01843	
	max(1)) =	35 ->	39	0.45817			min(5)	=	26 ->	40	-0.01467	
	max(2)) =	35 ->	42	0.30658			#CIs=2	255 #CI:	s>0=84	6 #CIs<0=8	385	
	max(3)) =	36 ->	41	0.11483								

16.1.3 Main contributions from different excited states at CIS approach

#_exc.st ___symm___ Exc.E Osc._Strength ___f___<Sb**2>_ Singlet-A" 5.5098 225.03 0.0000 0.000
max(1)= 33 -> 37 0.58784

	max(2)=	33 -> 41	0.05815		$\max(4) =$	35 -> 46	0.01616	
	max(3)=	33 -> 47	0.05713		max(5)=	22 -> 38	0.01370	
	$\max(4)=$	27 -> 42	0.03547		$\min(1) =$	32 -> 38	-0.03869	
	$\max(5)=$	33 -> 44	0.02378		min(2)=	29 -> 38	-0.03234	
	$\min(1)=$	33 -> 42	-0.36190		min(3)=	34 -> 37	-0.02463	
	$\min(2)=$	33 -> 39	-0.05465		$\min(4) =$	36 -> 66	-0.01699	
	min(3)=	33 -> 46	-0.05187		min(5)=	35 -> 47	-0.01625	
	min(4)=	33 -> 92	-0.04773		#states=1	243 #states>0=638 #	states<0=608	5
	min(5)=	27 -> 37	-0.03918					
	#states=936	#states>0=500 #st	tates<0=436	5	Singlet-A' 7.3	3223 169.33	0.0023	0.000
					max(1)=	36 -> 39	0.64341	
2	Singlet-A' 5.707	79 217.22	0.3688	0.000	max(2)=	32 -> 39	0.19934	
	$\max(1)=$	36 -> 37	0.63296		max(3)=	31 -> 39	0.06652	
	$\max(2)=$	36 -> 42	0.09732		max(4)=	29 -> 39	0.05574	
	max(3)=	32 -> 42	0.05243		max(5)=	32 -> 37	0.04943	
	$\max(4)=$	32 -> 47	0.02898		$\min(1) =$	35 -> 40	-0.09036	
	max(5)=	32 -> 39	0.02407		min(2)=	36 -> 41	-0.08159	
	min(1)=	35 -> 38	-0.24506		$\min(3) =$	32 -> 41	-0.07216	
	min(2)=	32 -> 37	-0.09776		$\min(4) =$	29 -> 41	-0.04635	
	min(3)=	31 -> 37	-0.03827		$\min(5) =$	32 -> 42	-0.02954	
	$\min(4)=$	29 -> 42	-0.03238		#states=1	237 #states>0=606 #	states<0=631	1
	min(5)=	32 -> 46	-0.03001					
	#states=1569	9 #states>0=810 #s	states<0=759	6	Singlet-A" 7.4	4245 166.99	0.1003	0.000
					$\max(1) =$	35 -> 37	0.47927	
3	Singlet-A' 5.846	53 212.07	0.0001	0.000	max(2)=	34 -> 37	0.31672	
	$\max(1)=$	31 -> 37	0.56145		max(3)=	33 -> 53	0.03411	
	$\max(2)=$	32 -> 42	0.10947		$\max(4) =$	34 -> 41	0.02654	
	max(3)=	31 -> 41	0.05369		max(5)=	35 -> 42	0.02202	
	$\max(4)=$	31 -> 47	0.05100		min(1)=	36 -> 38	-0.34403	
	max(5)=	28 -> 37	0.04833		min(2)=	34 -> 42	-0.16032	
	min(1)=	31 -> 42	-0.33298		min(3)=	36 -> 40	-0.03537	
	min(2)=	32 -> 37	-0.18679		min(4)=	34 -> 39	-0.02745	
	min(3)=	31 -> 39	-0.05136		min(5)=	30 -> 49	-0.01941	
	$\min(4)=$	25 -> 42	-0.04556		#states=1	511 #states>0=734 #	states<0=777	7
	min(5)=	31 -> 46	-0.04288	_				
	#states=1129	9 #states>0=554 #s	states<0=575	7	Singlet-A' 7.0	6171 162.77	0.8431	0.000
					max(1)=	35 -> 38	0.57447	
4	Singlet-A" 5.860	211.55	0.0093	0.000	max(2)=	36 -> 37	0.24933	
	$\max(1) =$	36 -> 38	0.55319		max(3)=	32 -> 42	0.08185	
	$\max(2) =$	35 -> 37	0.40760		$\max(4) =$	36 -> 41	0.04127	
	$\max(3) =$	35 -> 42	0.13750		max(5)=	29 -> 37	0.03859	

	min(1)=	36 -> 42	-0.26216			min(3)) =	32 ->	37	-0.10099	
	min(2)=	32 -> 37	-0.04104			min(4)) =	35 ->	38	-0.09470	
	min(3)=	29 -> 46	-0.03809			min(5)) =	36 ->	44	-0.08983	
	$\min(4) =$	32 -> 47	-0.03222			#state	es=1381 #	state	s>0=695 #:	states<0=686	5
	min(5)=	35 -> 40	-0.02944								
	#states=14	497 #states>0=746 #	states<0=751	11	Single	et-A'	8.6676		143.04	0.2843	0.000
						max(1)) =	36 ->	42	0.53589	
8	Singlet-A" 8.0	0297 154.41	0.5747	0.000		max(2)) =	32 ->	37	0.28404	
	max(1)=	34 -> 37	0.49417			max(3)) =	35 ->	38	0.22981	
	max(2)=	36 -> 40	0.21626			max(4)) =	36 ->	41	0.14066	
	max(3)=	36 -> 38	0.21187			max(5)) =	31 ->	37	0.09234	
	$\max(4)=$	32 -> 38	0.05888			min(1)) =	29 ->	37	-0.07116	
	max(5)=	32 -> 40	0.05388			min(2)) =	35 ->	40	-0.06031	
	min(1)=	35 -> 37	-0.24062			min(3)) =	36 ->	46	-0.06008	
	min(2)=	34 -> 42	-0.21080			min(4)) =	32 ->	39	-0.05625	
	$\min(3)=$	35 -> 39	-0.08995			min(5)) =	36 ->	44	-0.05621	
	$\min(4)=$	36 -> 43	-0.06050			#state	es=1589 #	state	s>0=808 #:	states<0=781	
	$\min(5)=$	35 -> 41	-0.04964								
	#states=1	565 #states>0=837 #	states<0=728	12	Single	et-A"	9.0484		137.02	0.0097	0.000
						max(1)) =	35 ->	41	0.42280	
9	Singlet-A" 8.	1873 151.43	0.1561	0.000		max(2)) =	35 ->	39	0.37819	
	max(1)=	36 -> 40	0.53804			max(3)) =	36 ->	40	0.21023	
	max(2)=	35 -> 37	0.13588			max(4)) =	29 ->	40	0.10646	
	max(3)=	32 -> 40	0.12651			max(5)) =	32 ->	40	0.03901	
	max(4)=	34 -> 42	0.07477			min(1)) =	36 ->	43	-0.23315	
	max(5)=	35 -> 44	0.05043			min(2)) =	36 ->	45	-0.15818	
	$\min(1)=$	35 -> 39	-0.23817			min(3)) =	32 ->	43	-0.12828	
	min(2)=	34 -> 37	-0.17936			min(4)) =	32 ->	45	-0.06225	
	$\min(3)=$	35 -> 41	-0.17678			min(5)) =	31 ->	43	-0.04259	
	$\min(4) =$	36 -> 43	-0.10495			#state	es=1112 #	state	s>0=559 #:	states<0=553	3
	$\min(5)=$	36 -> 38	-0.09972								
	#states=14	439 #states>0=694 #	states<0=745	13	Single	et-A"	9.4584		131.08	0.0001	0.000
						max(1)) =	30 ->	37	0.62707	
10	Singlet-A' 8.4	4423 146.86	0.0443	0.000		max(2)) =	30 ->	42	0.20653	
	max(1)=	36 -> 41	0.60649			max(3)) =	25 ->	38	0.08646	
	max(2)=	36 -> 39	0.09661			max(4)) =	26 ->	47	0.07326	
	max(3)=	36 -> 49	0.07681			max(5)) =	26 ->	42	0.06247	
	$\max(4)=$	32 -> 41	0.04884			min(1)) =	31 ->	38	-0.08043	
	max(5)=	36 -> 57	0.03479			min(2)) =	26 ->	37	-0.07234	
	min(1)=	35 -> 40	-0.18959			min(3)) =	26 ->	46	-0.06514	
	min(2)=	36 -> 42	-0.10571			min(4)) =	18 ->	37	-0.06292	

	$\min(5)=$	27 -> 37	-0.05227							
	#states=1177	7 #states>0=581 #	states<0=596	17	Singlet-	Α"	9.9934	124.07	0.0538	0.000
					m	ax(1)=	= 35 -	> 42	0.31484	
14	Singlet-A' 9.570	129.56	0.0321	0.000	m	ax(2)=	= 32 -	> 40	0.12946	
	max(1)=	35 -> 40	0.53968		m	ax(3)=	= 35 -	> 39	0.07920	
	max(2)=	36 -> 41	0.21176		m	ax(4)=	= 35 -	> 47	0.07183	
	max(3)=	36 -> 44	0.19202		m	ax(5)=	= 29 -	> 38	0.04884	
	$\max(4)=$	30 -> 38	0.15759		m	in(1)=	= 36 -	> 43	-0.40473	
	max(5)=	35 -> 43	0.15757		m	in(2)=	= 35 -	> 41	-0.28927	
	$\min(1)=$	32 -> 41	-0.13994		m	in(3)=	= 32 -	> 38	-0.17211	
	min(2)=	36 -> 47	-0.06309		m	in(4)=	= 36 -	> 40	-0.16871	
	$\min(3)=$	36 -> 46	-0.06235		m	in(5)=	= 36 -	> 45	-0.10903	
	$\min(4)=$	32 -> 39	-0.05651		#	states	s=1321 #stat	es>0=647 #s	tates<0=674	1
	min(5)=	31 -> 41	-0.04790							
	#states=1053	3 #states>0=529 #	states<0=524	18	Singlet-	A' 1	0.0448	123.43	0.0418	0.000
					m	ax(1)=	= 32 -	> 37	0.53182	
15	Singlet-A" 9.844	125.94	0.0088	0.000	m	ax(2)=	= 32 -	> 42	0.18720	
	max(1)=	36 -> 43	0.35496		m	ax(3)=	= 31 -	> 37	0.16067	
	max(2)=	35 -> 42	0.31945		m	ax(4)=	= 28 -	> 37	0.08075	
	max(3)=	35 -> 39	0.31872		m	ax(5)=	= 36 -	> 37	0.07715	
	$\max(4)=$	36 -> 40	0.23643		m	in(1)=	= 36 -	> 42	-0.28445	
	max(5)=	36 -> 45	0.09520		m	in(2)=	= 35 -	> 38	-0.14260	
	$\min(1)=$	32 -> 38	-0.22183		m	in(3)=	= 29 -	> 37	-0.06647	
	min(2)=	35 -> 41	-0.11590		m	in(4)=	= 36 -	> 46	-0.04413	
	$\min(3)=$	32 -> 40	-0.07422		m	in(5)=	= 22 -	> 42	-0.04243	
	$\min(4)=$	35 -> 37	-0.07377		#	states	s=1556 #stat	es>0=769 #s	states<0=787	7
	min(5)=	31 -> 38	-0.06564							
	#states=1277	7 #states>0=634 #	states<0=643	19	Singlet-	A" 1	0.1433	122.23	0.0055	0.000
					m	ax(1)=	= 35 -	> 41	0.37503	
16	Singlet-A' 9.847	125.91	0.0037	0.000	m	ax(2)=	= 35 -	> 42	0.33782	
	max(1)=	30 -> 38	0.64910		m	ax(3)=	= 35 -	> 44	0.11629	
	max(2)=	25 -> 37	0.09071		m	ax(4)=	= 35 -	> 48	0.06013	
	max(3)=	25 -> 46	0.06155		m	ax(5)=	= 29 -	> 43	0.05686	
	$\max(4)=$	32 -> 41	0.02758		m	in(1)=	= 35 -	> 39	-0.38699	
	max(5)=	19 -> 37	0.02354		m	in(2)=	= 32 -	> 38	-0.20323	
	$\min(1)=$	35 -> 40	-0.15095		m	in(3)=	= 31 -	> 38	-0.07251	
	min(2)=	25 -> 47	-0.06939		m	in(4)=	= 35 -	> 37	-0.06022	
	min(3)=	33 -> 38	-0.06715		m	in(5)=	= 35 -	> 46	-0.04214	
	min(4)=	28 -> 37	-0.06247		#	states	s=1218 #stat	es>0=618 #s	states<0=600)
	min(5)=	27 -> 38	-0.05452							
	#states=1242	2 #states>0=622 #	states<0=620	20	Singlet-	A" 1	0.4551	118.59	0.0429	0.000

$\max(1)=$	28 -> 38	0.41404	$\min(2)=$	26 -> 37	-0.11425
max(2)=	32 -> 38	0.30771	$\min(3)=$	27 -> 47	-0.07235
max(3)=	35 -> 42	0.15807	$\min(4)=$	30 -> 37	-0.06792
$\max(4)=$	27 -> 37	0.14279	$\min(5)=$	21 -> 37	-0.04397
max(5)=	29 -> 38	0.13131	#states=1360	#states>0=681 #	states<0=679
min(1)=	31 -> 38	-0.30491			

$16.2 \quad 6-311 + +G(d,p)$

16.2.1 Plots

Figure S28: For *p*-nitroaniline molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S28a and S28b) or states (SOS approaches, in Plots S28c and S28d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S28e and S28f as well (bottom). All elements of the β tensor were recomputed with an error less than 1.00 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

Figure S28: (continued) For p-nitroaniline molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S28a and S28b) or states (SOS approaches, in Plots S28c and S28d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S28e and S28f as well (bottom). All elements of the β tensor were recomputed with an error less than 1.00 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

 β_{ZZZ} between states 1 and 250.

16.2.2Main contributions from different excited states at TDDFT (CAM-**B3LYP**) approach

#_exc.st	symm	Exc.E Osc	Strength	f	<\$**2>_					
					2	Singlet-A'	4.4033	281.57	0.3807	0.000
1	Singlet-A"	4.0380	307.04	0.0000	0.000	max(1)	= 36	-> 37	0.68961	
	max(1)=	= 34 ->	37	0.67514		max(2)	= 35	-> 39	0.09295	
	max(2)=	= 34 ->	51	0.04697		max(3)	= 31	-> 43	0.05405	
	max(3)=	= 34 ->	47	0.03502		max(4)	= 36	-> 43	0.02201	
	max(4)=	= 34 ->	55	0.03023		max(5)	= 29	-> 37	0.01632	
	max(5)=	= 34 ->	38	0.02310		min(1)	= 31	-> 37	-0.09702	
	min(1)=	= 34 ->	43	-0.19017		min(2)	= 31	-> 55	-0.01284	
	min(2)=	= 34 ->	44	-0.02750		min(3)	= 30	-> 64	-0.01111	
	min(3)=	= 34 ->	88	-0.01996		min(4)	= 30	-> 90	-0.01042	
	min(4)=	= 34 ->	41	-0.01990		min(5)	= 29	-> 43	-0.01023	
	min(5)=	= 34 ->	70	-0.01800		#CIs=2	983 #CIs>0=	1335 #CIs<0=	1343	
	#CIs=27	'62 #CIs>0=99	4 #CIs<0=10	22						

3	Singlet-A'	4.6012	269.46	0.0005	0.000		max(2)=	36 -> 39	0.41501	
	max(1)	= 32 ->	37	0.67632			max(3)=	33 -> 37	0.08803	
	max(2)	= 32 ->	• 51	0.04506			$\max(4)=$	35 -> 47	0.04140	
	max(3)	= 32 ->	47	0.03300			max(5)=	31 -> 39	0.03590	
	$\max(4)$	= 32 ->	55	0.02868			min(1)=	35 -> 43	-0.03629	
	max(5)	= 25 ->	37	0.02423			$\min(2)=$	33 -> 43	-0.01788	
	min(1)	= 32 ->	43 -	0.18398			$\min(3)=$	29 -> 49	-0.01043	
	min(2)	= 32 ->	- 44 -	0.02653			$\min(4) =$	35 -> 63	-0.00994	
	min(3)	= 32 ->	88 -	0.02030			$\min(5)=$	30 -> 76	-0.00968	
	min(4)	= 32 ->	41 -	0.01939			#CIs=2854 #CI	s>0=1277 #CIs<0=	1244	
	min(5)	= 25 ->	43 -	0.01768						
	#CIs=2	927 #CIs>0=11	.52 #CIs<0=11	.23	7	Single	t-A" 6.1467	201.71	0.0000	0.000
							max(1)=	36 -> 40	0.66365	
4	Singlet-A"	4.8452	255.89	0.0038	0.000		max(2)=	36 -> 53	0.12893	
	max(1)	= 36 ->	39	0.54751			$\max(3)=$	31 -> 40	0.05851	
	max(2)	= 33 ->	37	0.05185			$\max(4) =$	36 -> 46	0.05195	
	max(3)	= 35 ->	47	0.05100			$\max(5)=$	36 -> 39	0.03825	
	$\max(4)$	= 35 ->	55	0.02119			$\min(1)=$	36 -> 42	-0.11042	
	max(5)	= 35 ->	63	0.01279			$\min(2)=$	35 -> 38	-0.10476	
	min(1)	= 35 ->	37 -	0.42106			$\min(3)=$	31 -> 42	-0.04446	
	min(2)	= 35 ->	43 -	0.10818			$\min(4)=$	35 -> 41	-0.04142	
	min(3)	= 36 ->	40 -	0.04074			$\min(5)=$	33 -> 37	-0.02922	
	min(4)	= 31 ->	- 39 -	0.03949			#CIs=2853 #CI	s>0=1172 #CIs<0=	1186	
	min(5)	= 36 ->	- 58 -	0.03053						
	#CIs=2	854 #CIs>0=12	217 #CIs<0=12	280	8	Single	t-A' 6.2617	198.00	0.0013	0.000
							$\max(1)=$	36 -> 43	0.50496	
5	Singlet-A'	5.3620	231.23	0.0020	0.000		max(2)=	36 -> 41	0.38669	
	max(1)	= 36 ->	38	0.67834			max(3)=	35 -> 39	0.23111	
	max(2)	= 31 ->	38	0.09982			$\max(4)=$	31 -> 37	0.12674	
	max(3)	= 36 ->	· 50	0.08541			$\max(5)=$	36 -> 44	0.05491	
	$\max(4)$	= 36 ->	45	0.08150			$\min(1) =$	36 -> 52	-0.06324	
	max(5)	= 31 ->	50	0.02506			$\min(2)=$	35 -> 40	-0.04274	
	min(1)	= 36 ->	48 -	0.06907			$\min(3) =$	33 -> 39	-0.03313	
	min(2)	= 36 ->	41 -	0.04091			$\min(4) =$	36 -> 37	-0.03080	
	min(3)	= 31 ->	41 -	0.03789			$\min(5)=$	36 -> 55	-0.02845	
	$\min(4)$	= 36 ->	- 52 -	0.03591			#CIs=2983 #CI	s>0=1331 #CIs<0=	1372	
	min(5)	= 35 ->	40 -	0.03430						
	#CIs=2	974 #CIs>0=12	235 #CIs<0=12	213	9	Single	t-A' 6.3706	194.62	0.0086	0.000
							$\max(1)=$	36 -> 41	0.55650	
6	Singlet-A"	5.5921	221.71	0.0721	0.000		max(2)=	36 -> 45	0.08250	
	max(1)	= 35 ->	37	0.56127			max(3)=	36 -> 59	0.05380	

	$\max(4) =$	36 -> 38	0.02285		min(1))= 36 ->	> 50 -0	.13576
	max(5)=	33 -> 39	0.02265		min(2))= 36 -2	> 38 -0	.04860
	min(1)=	36 -> 43	-0.34025		min(3))= 36 -2	> 41 -0	.04205
	min(2)=	35 -> 39	-0.18111		min(4))= 31 -2	> 48 -0	.03759
	min(3)=	36 -> 52	-0.08849		min(5))= 36 -2	> 48 -0	.03572
	$\min(4)=$	31 -> 37	-0.07197		#CIs=2	2971 #CIs>0=12	234 #CIs<0=123	5
	$\min(5)=$	31 -> 38	-0.05881					
	#CIs=2984 #	CIs>0=1376 #CIs<0	=1313	13	Singlet-A"	7.0142	176.76 0	.0019 0.000
					max(1))= 35 ->	> 38 0	.62903
10	Singlet-A" 6.45	72 192.01	0.1724	0.000	max(2))= 35 -2	> 41 0	.22546
	max(1)=	33 -> 37	0.68122		max(3))= 36 ->	> 40 0	.09845
	max(2)=	34 -> 96	0.05025		max(4))= 35 -2	> 45 0	.09103
	max(3)=	34 -> 44	0.03938		max(5))= 36 -2	> 46 0	.04799
	$\max(4)=$	34 -> 48	0.03795		min(1))= 36 -2	> 42 -0	.10323
	max(5)=	32 -> 90	0.03702		min(2))= 35 -2	> 52 -0	.08787
	$\min(1)=$	36 -> 39	-0.08917		min(3))= 35 ->	> 48 -0	.06013
	$\min(2)=$	33 -> 43	-0.06393		min(4))= 35 ->	→ 43 -0	.04093
	$\min(3)=$	31 -> 39	-0.05969		min(5))= 33 ->	> 38 -0	.04007
	$\min(4) =$	35 -> 37	-0.04034		#CIs=2	2845 #CIs>0=10)93 #CIs<0=1103	3
	$\min(5) =$	34 -> 54	-0.03209					
	#CIs=2856 #	CIs>0=1256 #CIs<0	=1264	14	Singlet-A"	7.1298	173.89 0	.0001 0.000
					max(1))= 36 ->	> 42 0	.63959
11	Singlet-A' 6.94	34 178.56	0.5070	0.000	max(2))= 36 -2	> 40 0	.14774
	max(1)=	35 -> 39	0.61556		max(3))= 35 ->	> 38 0	.11679
	max(2)=	31 -> 55	0.02354		max(4))= 36 ->	> 56 0	.08620
	max(3)=	36 -> 70	0.02034		max(5))= 35 ->	> 45 0	.03191
	max(4)=	27 -> 86	0.01854		min(1))= 36 ->	× 46 −0	.14068
	max(5)=	36 -> 61	0.01844		min(2))= 35 ->	> 41 -0	.07388
	$\min(1)=$	36 -> 43	-0.26399		min(3))= 31 ->	> 40 -0	.06385
	min(2)=	31 -> 37	-0.13989		min(4))= 35 ->	> 43 -0	.05714
	min(3)=	36 -> 37	-0.08901		min(5))= 36 ->	× 67 −0	.04713
	min(4)=	36 -> 51	-0.07876		#CIs=2	2837 #CIs>0=11	150 #CIs<0=1154	4
	min(5)=	31 -> 43	-0.07366					
	#CIs=2984 #	CIs>0=1274 #CIs<0	=1375	15	Singlet-A"	7.4100	167.32 0	.0000 0.000
					max(1))= 30 ->	> 37 0	.67688
12	Singlet-A' 6.97	79 177.68	0.0040	0.000	max(2))= 30 ->	> 43 0	.10821
	max(1)=	36 -> 44	0.51090		max(3))= 32 ->	> 39 0	.08552
	max(2)=	36 -> 45	0.42854		max(4))= 26 ->	> 37 0	.08246
	max(3)=	35 -> 40	0.11198		max(5))= 27 ->	> 37 0	.05401
	max(4)=	36 -> 65	0.05676		min(1))= 30 ->	→ 47 -0	.05384
	max(5)=	35 -> 53	0.03004		min(2))= 25 ->	> 39 -0	.04243

	mi	in(3)=	26 ->	43	-0.03745			$\max(4) =$	31 ->	> 41	0.08042	
	mi	in(4)=	30 ->	63	-0.02272			$\max(5)=$	36 ->	> 62	0.07406	
	mi	in(5)=	30 ->	55	-0.02160			min(1)=	36 ->	> 44	-0.34822	
	#C	CIs=2810 #CIs	s>0=114	7 #CIs<0=1	170			min(2)=	35 ->	> 40	-0.17109	
								min(3)=	36 ->	> 48	-0.09933	
16	Singlet-A	A' 7.4219		167.05	0.0052	0.000		$\min(4) =$	36 ->	> 41	-0.07089	
	ma	ax(1)=	34 ->	39	0.51139			min(5)=	36 ->	> 38	-0.06655	
	ma	ax(2)=	36 ->	43	0.13467			#CIs=2983 #C	Is>0=13	352 #CIs<0=:	1276	
	ma	ax(3)=	36 ->	45	0.10919							
	ma	ax(4)=	29 ->	37	0.05526	19	Single	t-A" 7.512	5	165.04	0.1146	0.000
	ma	ax(5)=	33 ->	39	0.04262			max(1)=	35 ->	> 43	0.57148	
	mi	in(1)=	31 ->	37	-0.41041			max(2)=	35 ->	> 41	0.27311	
	mi	in(2)=	36 ->	44	-0.07501			max(3)=	31 ->	> 39	0.17692	
	mi	in(3)=	28 ->	37	-0.07433			$\max(4)=$	36 ->	> 49	0.12499	
	mi	in(4)=	35 ->	40	-0.06690			$\max(5)=$	36 ->	> 42	0.11060	
	mi	in(5)=	36 ->	37	-0.05811			$\min(1)=$	35 ->	> 38	-0.05084	
	#C	CIs=2984 #CIs	s>0=136	5 #CIs<0=1	343			min(2)=	35 ->	> 37	-0.04955	
								min(3)=	35 ->	> 52	-0.04762	
17	Singlet-A	A' 7.4309		166.85	0.0069	0.000		$\min(4) =$	31 ->	> 40	-0.04005	
	ma	ax(1)=	34 ->	39	0.47294			$\min(5)=$	33 ->	> 43	-0.03767	
	ma	ax(2)=	31 ->	37	0.46124			#CIs=2856 #C	Is>0=12	268 #CIs<0=:	1254	
	ma	ax(3)=	36 ->	37	0.06585							
	ma	ax(4) =	36 ->	44	0.05242	20	Single	t-A' 7.519	9	164.87	0.0472	0.000
	ma	ax(5)=	35 ->	39	0.05097			max(1)=	36 ->	> 47	0.64074	
	mi	in(1)=	36 ->	43	-0.14697			max(2)=	35 ->	> 40	0.21820	
	mi	in(2)=	29 ->	37	-0.09327			max(3) =	36 ->	> 44	0.07051	
	mi	in(3)=	36 ->	45	-0.08373			$\max(4)=$	35 ->	> 39	0.05217	
	mi	in(4)=	33 ->	39	-0.04826			$\max(5)=$	36 ->	> 51	0.04827	
	mi	in(5)=	34 ->	40	-0.03174			$\min(1)=$	36 ->	> 45	-0.10077	
	#C	CIs=2985 #CIs	s>0=138	8 #CIs<0=1	324			$\min(2)=$	36 ->	> 50	-0.04312	
								$\min(3)=$	31 ->	> 41	-0.03790	
18	Singlet-A	A' 7.4595		166.21	0.0389	0.000		$\min(4) =$	31 ->	> 37	-0.03734	
	ma	ax(1)=	36 ->	45	0.47267			$\min(5)=$	36 ->	> 52	-0.02799	
	ma	ax(2)=	36 ->	47	0.19990			#CIs=2980 #C	Is>0=13	355 #CIs<0=:	1283	
	ma	ax(3)=	31 ->	37	0.18109							

16.2.3 Main contributions from different excited states at CIS approach

#_exc.st ___symm___ Exc.E Osc._Strength ___f___<S**2>_ Singlet-A" 5.4601 227.07 0.0000 0.000
max(1)= 32 -> 40 0.56057

	max(2)=	32 -> 46	0.21314		max(4)=	31 -> 51	0.15770	
	max(3)=	32 -> 59	0.20856		max(5)=	31 -> 49	0.10335	
	max(4)=	32 -> 51	0.16403		$\min(1) =$	31 -> 50	-0.13834	
	max(5)=	32 -> 49	0.10395		min(2)=	31 -> 85	-0.08107	
	min(1)=	32 -> 50	-0.14314		$\min(3)=$	33 -> 40	-0.07846	
	min(2)=	32 -> 85	-0.08570		$\min(4) =$	31 -> 39	-0.06999	
	min(3)=	32 -> 39	-0.06996		min(5)=	31 -> 61	-0.03180	
	min(4)=	32 -> 61	-0.03493		#CIs=267	7 #CIs>0=1235 #CIs<0	=1213	
	min(5)=	32 -> 52	-0.02717					
	#CIs=2523 #0	CIs>0=1143 #CIs<0=	=1128	5	Singlet-A' 6	.0323 205.53	0.0036	0.000
					max(1)=	36 -> 37	0.62829	
2	Singlet-A' 5.53	20 224.12	0.3691	0.000	max(2)=	36 -> 45	0.15624	
	max(1)=	36 -> 40	0.61814		max(3)=	33 -> 37	0.11191	
	max(2)=	36 -> 37	0.07568		$\max(4)=$	36 -> 64	0.03261	
	max(3)=	35 -> 44	0.06593		max(5)=	33 -> 50	0.02337	
	$\max(4)=$	35 -> 58	0.05880		$\min(1)=$	36 -> 52	-0.12608	
	max(5)=	33 -> 77	0.02798		min(2)=	36 -> 47	-0.12334	
	min(1)=	35 -> 43	-0.21217		min(3)=	36 -> 40	-0.08206	
	min(2)=	36 -> 39	-0.10936		min(4)=	35 -> 38	-0.06464	
	min(3)=	36 -> 49	-0.09839		min(5)=	33 -> 39	-0.05356	
	$\min(4)=$	33 -> 40	-0.09761		#CIs=2840	0 #CIs>0=1304 #CIs<0	=1317	
	min(5)=	36 -> 59	-0.07120					
	#CIs=2897 #0	CIs>0=1389 #CIs<0=	=1383	6	Singlet-A" 6	.7357 184.07	0.0030	0.000
					$\max(1)=$	36 -> 38	0.60907	
3	Singlet-A" 5.73	95 216.02	0.0062	0.000	max(2)=	36 -> 53	0.17128	
	max(1)=	36 -> 43	0.52167		max(3)=	33 -> 38	0.06875	
	max(2)=	35 -> 40	0.38920		$\max(4) =$	35 -> 52	0.06733	
	max(3)=	36 -> 38	0.03241		max(5)=	36 -> 44	0.04821	
	max(4)=	36 -> 57	0.03108		$\min(1) =$	35 -> 37	-0.20201	
	max(5)=	35 -> 65	0.02952		min(2)=	36 -> 41	-0.10169	
	min(1)=	36 -> 44	-0.14860		$\min(3) =$	35 -> 40	-0.08146	
	min(2)=	36 -> 58	-0.11972		$\min(4) =$	35 -> 39	-0.07873	
	min(3)=	35 -> 49	-0.09802		$\min(5)=$	33 -> 41	-0.04583	
	min(4)=	35 -> 59	-0.08874		#CIs=270	5 #CIs>0=1281 #CIs<0	=1231	
	min(5)=	35 -> 39	-0.05974					
	#CIs=2735 #0	CIs>0=1259 #CIs<0=	=1311	7	Singlet-A' 6	.9208 179.15	0.0115	0.000
					$\max(1) =$	36 -> 39	0.62081	
4	Singlet-A' 5.80	59 213.55	0.0005	0.000	max(2)=	36 -> 45	0.16666	
	max(1)=	31 -> 40	0.55976		max(3)=	36 -> 40	0.11158	
	max(2)=	31 -> 46	0.20766		$\max(4) =$	36 -> 61	0.08302	
	max(3)=	31 -> 59	0.19698		$\max(5) =$	36 -> 60	0.06382	

	min(1)=	36 -> 50	-0.14421			$\min(3) =$	35 ->	52	-0.09551	
	min(2)=	36 -> 51	-0.08616			min(4)=	35 ->	47	-0.08585	
	min(3)=	33 -> 37	-0.07892			$\min(5)=$	35 ->	51	-0.07931	
	min(4)=	35 -> 38	-0.06887			#CIs=2664	4 #CIs>0=12	20 #CIs<0=	=1235	
	min(5)=	29 -> 37	-0.03420							
	#CIs=2844	#CIs>0=1325 #CIs<0	=1322	11	Single	t-A' 7	.5006	165.30	0.0092	0.000
						$\max(1)=$	36 ->	45	0.45034	
8	Singlet-A" 7.0	174.77	0.1002	0.000		max(2)=	35 ->	38	0.26614	
	max(1)=	35 -> 40	0.47223			max(3)=	36 ->	52	0.12928	
	max(2)=	34 -> 40	0.28945			$\max(4)=$	35 ->	53	0.08970	
	max(3)=	34 -> 46	0.09456			$\max(5)=$	36 ->	64	0.08536	
	$\max(4)=$	36 -> 38	0.07751			$\min(1)=$	36 ->	42	-0.34821	
	max(5)=	34 -> 59	0.07741			$\min(2)=$	36 ->	39	-0.10921	
	min(1)=	36 -> 43	-0.33466			$\min(3)=$	36 ->	37	-0.09211	
	min(2)=	35 -> 39	-0.10578			$\min(4) =$	36 ->	46	-0.09183	
	min(3)=	34 -> 50	-0.05909			$\min(5)=$	36 ->	50	-0.07922	
	$\min(4)=$	35 -> 46	-0.04391			#CIs=2824	4 #CIs>0=12	95 #CIs<0=	=1307	
	min(5)=	34 -> 39	-0.03449							
	#CIs=2764	#CIs>0=1334 #CIs<0	=1311	12	Single	t-A" 7	.6771	161.50	0.4758	0.000
						$\max(1)=$	34 ->	40	0.44373	
9	Singlet-A' 7.3	168.71	0.6163	0.000		max(2)=	36 ->	43	0.17733	
	max(1)=	35 -> 43	0.46680			max(3)=	34 ->	46	0.12478	
	max(2)=	36 -> 46	0.32288			$\max(4)=$	34 ->	59	0.10269	
	max(3)=	36 -> 40	0.18878			$\max(5)=$	34 ->	49	0.09601	
	max(4)=	36 -> 49	0.18059			$\min(1)=$	36 ->	41	-0.29941	
	max(5)=	36 -> 59	0.13681			$\min(2)=$	35 ->	40	-0.18282	
	min(1)=	35 -> 44	-0.13310			$\min(3) =$	36 ->	38	-0.11498	
	min(2)=	35 -> 58	-0.09137			$\min(4) =$	35 ->	37	-0.10557	
	min(3)=	33 -> 40	-0.08952			$\min(5)=$	34 ->	50	-0.08083	
	min(4)=	36 -> 39	-0.05736			#CIs=277:	1 #CIs>0=13	51 #CIs<0=	=1304	
	min(5)=	36 -> 50	-0.05735							
	#CIs=2892	#CIs>0=1373 #CIs<0	=1399	13	Single	t-A" 7	.7719	159.53	0.2152	0.000
						max(1)=	36 ->	41	0.52931	
10	Singlet-A" 7.4	165.82	0.0000	0.000		max(2)=	34 ->	40	0.24608	
	max(1)=	35 -> 37	0.50125			max(3) =	36 ->	38	0.14201	
	max(2)=	35 -> 39	0.31202			$\max(4)=$	36 ->	43	0.12393	
	max(3)=	36 -> 38	0.20028			$\max(5)=$	35 ->	37	0.10787	
	$\max(4)=$	35 -> 45	0.15582			$\min(1) =$	35 ->	40	-0.16573	
	max(5)=	36 -> 44	0.08418			$\min(2)=$	36 ->	44	-0.14958	
	min(1)=	36 -> 41	-0.13539			$\min(3) =$	33 ->	38	-0.06021	
	min(2)=	35 -> 50	-0.11241			min(4)=	33 ->	44	-0.05106	

	$\min(5)=$	36 -> 68	-0.05081						
	#CIs=2772 #0	CIs>0=1318 #CIs<0	=1328	17	Singlet-A'	8.2644	150.02	0.2966	0.000
					max	(1)=	35 -> 43	0.20136	
14	Singlet-A' 7.781	16 159.33	0.2110	0.000	max	(2)=	33 -> 40	0.19315	
	max(1)=	36 -> 46	0.50483		max	(3)=	36 -> 46	0.16526	
	max(2)=	36 -> 45	0.20155		max	(4)=	36 -> 50	0.10622	
	max(3)=	36 -> 42	0.12923		max	(5)=	36 -> 45	0.05643	
	$\max(4)=$	35 -> 44	0.09358		min	(1)=	36 -> 49	-0.54999	
	$\max(5)=$	35 -> 48	0.08210		min	(2)=	36 -> 59	-0.16457	
	min(1)=	35 -> 43	-0.29792		min	(3)=	36 -> 51	-0.13190	
	min(2)=	36 -> 40	-0.14992		min	(4)=	35 -> 44	-0.05889	
	min(3)=	33 -> 40	-0.13218		min	(5)=	29 -> 40	-0.04521	
	$\min(4)=$	36 -> 51	-0.06724		#CI	s=2885 #CIs	>0=1381 #CIs<0	=1352	
	min(5)=	36 -> 47	-0.05133						
	#CIs=2891 #0	CIs>0=1357 #CIs<0	=1385	18	Singlet-A"	8.2945	149.48	0.0011	0.000
					max	(1)=	35 -> 39	0.51715	
15	Singlet-A' 7.988	85 155.20	0.0398	0.000	max	(2)=	35 -> 40	0.13513	
	$\max(1)=$	35 -> 38	0.53063		max	(3)=	36 -> 41	0.13071	
	$\max(2)=$	36 -> 37	0.16237		max	(4)=	35 -> 61	0.06443	
	max(3)=	35 -> 53	0.15578		max	(5)=	35 -> 47	0.06388	
	$\max(4)=$	36 -> 39	0.14934		min	(1)=	35 -> 37	-0.34594	
	$\max(5)=$	36 -> 46	0.11778		min	(2)=	35 -> 42	-0.14199	
	min(1)=	36 -> 45	-0.28426		min	(3)=	35 -> 50	-0.13977	
	min(2)=	33 -> 39	-0.06547		min	(4)=	35 -> 51	-0.10355	
	min(3)=	36 -> 42	-0.06364		min	(5)=	33 -> 38	-0.03193	
	$\min(4)=$	36 -> 62	-0.05141		#CI	s=2716 #CIs	>0=1269 #CIs<0	=1260	
	min(5)=	33 -> 37	-0.03875						
	#CIs=2783 #0	CIs>0=1290 #CIs<0	=1260	19	Singlet-A"	8.5058	145.76	0.0033	0.000
					max	(1)=	35 -> 45	0.49950	
16	Singlet-A' 8.169	99 151.76	0.0072	0.000	max	(2)=	35 -> 52	0.14012	
	$\max(1)=$	36 -> 42	0.51288		max	(3)=	35 -> 56	0.10254	
	$\max(2)=$	35 -> 38	0.24333		max	(4)=	35 -> 64	0.07537	
	$\max(3)=$	36 -> 45	0.19098		max	(5)=	35 -> 65	0.06999	
	$\max(4)=$	35 -> 41	0.08936		min	(1)=	35 -> 42	-0.27621	
	$\max(5)=$	36 -> 62	0.07853		min	(2)=	36 -> 44	-0.19296	
	min(1)=	36 -> 46	-0.20932		min	(3)=	35 -> 46	-0.13266	
	min(2)=	36 -> 47	-0.19989		min	(4)=	35 -> 39	-0.12101	
	min(3)=	36 -> 37	-0.05265		min	(5)=	36 -> 41	-0.08612	
	min(4)=	36 -> 67	-0.04304		#CI	s=2733 #CIs	>0=1252 #CIs<0	=1299	
	min(5)=	36 -> 65	-0.03742						
	#CIs=2826 #0	CIs>0=1303 #CIs<0	=1307	20	Singlet-A"	8.7087	142.37	0.0164	0.000

max(1)=	36 -> 44	0.39478	$\min(2)=$	34 -> 40	-0.05794
max(2)=	36 -> 48	0.37400	$\min(3)=$	36 -> 38	-0.05773
max(3)=	35 -> 45	0.25623	$\min(4)=$	36 -> 75	-0.04844
$\max(4)=$	35 -> 46	0.22651	min(5)=	35 -> 69	-0.03570
max(5)=	36 -> 41	0.10705	#CIs=2770 #CI	s>0=1307 #CIs<0=	1315
min(1)=	35 -> 39	-0.10682			

17 *m*-nitroaniline

17.1 6-311G(d,p)

17.1.1 Plots

Figure S29: For *m*-nitroaniline molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S29a and ??) or states (SOS approaches, in Plots S29b and ??). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S29c and ?? as well (bottom). All elements of the β tensor were recomputed with an error less than 0.10 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(b) CPKS- and CPHF-FIOs decomposition of β_{ZZZ} into MOs.

Figure S29: (continued) For *m*-nitroaniline molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S29a and ??) or states (SOS approaches, in Plots S29b and ??). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S29c and ?? as well (bottom). All elements of the β tensor were recomputed with an error less than 0.37 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

 β_{ZZZ} between MOs 15 and 55.

18 *p*-methoxy-nitrobenzene

18.1 6-311G(d,p)

18.1.1 Plots

Figure S30: For *p*-methoxy-nitrobenzene molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S30a and S30b) or states (SOS approaches, in Plots S30c and S30d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S30e and S30f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.51 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

Figure S30: (continued) For *p*-methoxy-nitrobenzene molecule and 6-311G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S30a and S30b) or states (SOS approaches, in Plots S30c and S30d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S30e and S30f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.51 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(e) CPKS- and CPHF-FIOs decomposition of (f) TDDFT- and CIS-SOS decomposition of β_{ZZZ} between MOs 20 and 70. β_{ZZZ} between states 1 and 250.

18.1.2 Main contributions from different excited states at TDDFT (CAM-B3LYP) approach

#_exc.st	symm	Exc.E Osc	Strength	f	_ <s**2>_</s**2>	#CIs=22	65 #CIs>0=849	9 #CIs<0=81	9	
1	Singlet-A"	4.1023	302.23	0.0000	20.000	Singlet-A"	4.6149	268.66	0.0001	0.000
	max(1)=	= 38	-> 41	0.67368		max(1)=	36 ->	41	0.67564	
	max(2)=	= 38	-> 42	0.02078		max(2)=	36 ->	42	0.01993	
	max(3)=	= 30	-> 41	0.01671		max(3)=	31 ->	43	0.01869	
	max(4)=	= 35	-> 43	0.01198		max(4)=	28 ->	43	0.01613	
	max(5)=	= 29	-> 41	0.00843		max(5)=	29 ->	41	0.01013	
	min(1)=	= 38	-> 43	-0.20915		$\min(1) =$	36 ->	43	-0.20131	
	min(2)=	= 38	-> 52	-0.02528		min(2)=	31 ->	41	-0.02534	
	min(3)=	= 35	-> 41	-0.02455		min(3)=	36 ->	52	-0.02263	
	min(4)=	= 30	-> 43	-0.01284		$\min(4) =$	28 ->	41	-0.01770	
	min(5)=	= 38	->101	-0.01049		min(5)=	30 ->	41	-0.01316	

	#CIs=2	2276 #CIs>0=9	21 #CIs<0=9	901	6	Single	t-A'	6.7020		185.00	0.1597	0.000
							max(1)=		37 ->	41	0.63153	
3	Singlet-A'	4.8366	256.35	0.3324	0.000		max(2)=		40 ->	43	0.15679	
	max(1)	= 40 -	> 41	0.68850			max(3)=		34 ->	41	0.05029	
	max(2)	= 34 -	> 43	0.04889			max(4)=		39 ->	41	0.03565	
	max(3)	= 32 -	> 41	0.02924			max(5)=		38 ->	62	0.02688	
	max(4)	= 36 -	> 53	0.01721			min(1)=		39 ->	42	-0.20550	
	max(5)	= 38 -	> 51	0.01583			min(2)=		40 ->	42	-0.11877	
	min(1)	= 39 -	> 42	-0.10676			min(3)=		39 ->	43	-0.05829	
	min(2)	= 34 -	> 41	-0.09180			$\min(4) =$		38 ->	57	-0.05788	
	min(3)	= 32 -	> 43	-0.02268			min(5)=		34 ->	42	-0.04164	
	$\min(4)$	= 36 -	> 45	-0.01367			#CIs=35	13 #CIs	>0=159	02 #CIs<0=	=1538	
	min(5)	= 35 -	> 56	-0.01241								
	#CIs=3	3510 #CIs>0=1	483 #CIs<0=	=1566	7	Single	t-A'	6.7415		183.91	0.1247	0.000
							max(1)=		39 ->	42	0.50139	
4	Singlet-A'	5.0828	243.93	0.0011	0.000		max(2)=		37 ->	41	0.26366	
	max(1)	= 39 -	> 41	0.52452			max(3)=		40 ->	41	0.06912	
	max(2)	= 40 -	> 42	0.45028			max(4)=		32 ->	41	0.05114	
	max(3)	= 39 -	> 43	0.12534			max(5)=		34 ->	43	0.04716	
	max(4)	= 37 -	> 41	0.05425			min(1)=		40 ->	43	-0.38820	
	max(5)	= 40 -	> 43	0.01601			min(2)=		34 ->	41	-0.09085	
	min(1)	= 34 -	> 42	-0.04868			min(3)=		39 ->	43	-0.03049	
	min(2)	= 39 -	> 42	-0.01687			min(4)=		38 ->	57	-0.02533	
	min(3)	= 39 -	> 48	-0.01053			min(5)=		40 ->	42	-0.01811	
	$\min(4)$	= 40 -	> 41	-0.00987			#CIs=35	15 #CIs	>0=156	51 #CIs<0=	=1594	
	min(5)	= 39 -	> 76	-0.00756								
	#CIs=3	3497 #CIs>0=1	444 #CIs<0=	=1530	8	Single	t-A"	7.2821		170.26	0.0000	0.000
							max(1)=		35 ->	41	0.61418	
5	Singlet-A'	5.9952	206.81	0.0892	0.000		max(2)=		35 ->	43	0.17491	
	max(1)	= 40 -	> 42	0.49975			max(3)=		38 ->	43	0.04769	
	max(2)	= 37 -	> 41	0.12410			$\max(4)=$		38 ->	41	0.03530	
	max(3)	= 39 -	> 43	0.11675			max(5)=		29 ->	43	0.03053	
	max(4)	= 32 -	> 41	0.01387			min(1)=		33 ->	41	-0.26577	
	max(5)	= 38 -	> 45	0.01105			min(2)=		29 ->	41	-0.05835	
	min(1)	= 39 -	> 41	-0.46933			min(3)=		36 ->	42	-0.05006	
	min(2)	= 39 -	> 42	-0.02469			min(4)=		31 ->	41	-0.04116	
	min(3)	= 34 -	> 41	-0.01961			min(5)=		38 ->	42	-0.03996	
	$\min(4)$	= 39 -	> 64	-0.01757			#CIs=22	81 #CIs	>0=100	04 #CIs<0=	=997	
	min(5)	= 38 -	> 57	-0.01691								
	#CIs=3	3508 #CIs>0=1	542 #CIs<0=	=1489	9	Single	t-A'	7.3195		169.39	0.4348	0.000
							max(1)=		40 ->	43	0.47634	

	max(2)=	39 -> 42	0.41656		$\max(4)=$	28 -> 42	0.03514	
	max(3)=	34 -> 41	0.27191		$\max(5)=$	30 -> 42	0.02439	
	max(4)=	40 -> 41	0.09293		$\min(1) =$	38 -> 43	-0.05242	
	max(5)=	34 -> 43	0.04124		$\min(2)=$	36 -> 43	-0.03813	
	min(1)=	32 -> 41	-0.04631		$\min(3)=$	36 -> 41	-0.03198	
	min(2)=	37 -> 42	-0.03911		$\min(4) =$	21 -> 42	-0.02791	
	min(3)=	40 -> 52	-0.03158		$\min(5)=$	38 -> 52	-0.02717	
	min(4)=	34 -> 52	-0.02720		#CIs=2272 #0	CIs>0=961 #CIs<0=	902	
	min(5)=	36 -> 53	-0.02650					
	#CIs=3505 #	#CIs>0=1528 #CIs<0	=1521	13	Singlet-A' 7.830	9 158.33	0.0612	0.000
					$\max(1)=$	34 -> 41	0.58382	
10	Singlet-A" 7.46	586 166.01	0.0000	0.000	$\max(2)=$	34 -> 43	0.07720	
	max(1)=	38 -> 42	0.69198		$\max(3) =$	40 -> 41	0.07164	
	max(2)=	35 -> 42	0.07191		$\max(4) =$	40 -> 42	0.02889	
	max(3)=	35 -> 41	0.03536		$\max(5)=$	40 -> 52	0.01755	
	$\max(4)=$	31 -> 41	0.02301		$\min(1)=$	40 -> 43	-0.29090	
	max(5)=	40 -> 45	0.02240		$\min(2)=$	32 -> 41	-0.16931	
	min(1)=	40 -> 44	-0.06014		$\min(3)=$	37 -> 42	-0.13082	
	min(2)=	30 -> 42	-0.04222		$\min(4)=$	39 -> 42	-0.10273	
	min(3)=	33 -> 41	-0.03507		$\min(5)=$	39 -> 43	-0.04538	
	$\min(4)=$	38 -> 43	-0.03244		#CIs=3510 #0	CIs>0=1517 #CIs<0	=1498	
	min(5)=	38 -> 41	-0.03056					
	#CIs=2278 #	#CIs>0=960 #CIs<0=	902	14	Singlet-A' 7.959	155.77	0.1890	0.000
					$\max(1)=$	39 -> 43	0.63604	
11	Singlet-A" 7.51	165.03	0.0155	0.000	$\max(2)=$	37 -> 42	0.08477	
	max(1)=	40 -> 44	0.66539		max(3)=	34 -> 41	0.05477	
	max(2)=	34 -> 44	0.06977		$\max(4)=$	37 -> 43	0.03654	
	max(3)=	38 -> 42	0.06432		$\max(5)=$	37 -> 41	0.01815	
	$\max(4)=$	34 -> 45	0.04359		$\min(1)=$	34 -> 42	-0.21352	
	max(5)=	40 -> 46	0.03712		$\min(2)=$	40 -> 42	-0.17111	
	min(1)=	40 -> 45	-0.16458		$\min(3)=$	40 -> 43	-0.04024	
	min(2)=	39 -> 44	-0.09140		$\min(4)=$	39 -> 48	-0.02797	
	min(3)=	39 -> 46	-0.05065		$\min(5)=$	39 -> 41	-0.02716	
	$\min(4)=$	40 -> 66	-0.01977		#CIs=3509 #0	CIs>0=1525 #CIs<0	=1477	
	$\min(5)=$	40 -> 51	-0.01947					
			053	15	Singlet-A' 7.970	155.56	0.0015	0.000
	#CIs=2278 #	#CIs>0=953 #CIs<0=	900					
	#CIs=2278 #	#CIs>0=953 #CIs<0=	300		max(1)=	37 -> 42	0.68495	
12	#CIs=2278 # Singlet-A" 7.73	¢CIs>0=953 #CIs<0= 384 160.22	0.0000	0.000	max(1)= max(2)=	37 -> 42 34 -> 41	0.68495 0.13032	
12	#CIs=2278 # Singlet-A" 7.73 max(1)=	¢CIs>0=953 #CIs<0= 384 160.22 36 -> 42	0.0000	0.000	<pre>max(1)= max(2)= max(3)=</pre>	37 -> 42 34 -> 41 40 -> 42	0.68495 0.13032 0.02240	
12	#CIs=2278 # Singlet-A" 7.73 max(1)= max(2)=	#CIs>0=953 #CIs<0= 384 160.22 36 -> 42 31 -> 42	0.0000 0.69305 0.06138	0.000	<pre>max(1)= max(2)= max(3)= max(4)=</pre>	37 -> 42 34 -> 41 40 -> 42 34 -> 43	0.68495 0.13032 0.02240 0.02117	

	min(1)=	39 -> 43	-0.08931		max(3)=	= 38 -> 41	0.19536	
	min(2)=	39 -> 42	-0.03473		max(4)=	= 38 -> 52	0.10676	
	min(3)=	37 -> 43	-0.02219		max(5)=	= 38 -> 42	0.05201	
	min(4)=	32 -> 41	-0.02016		min(1)=	= 30 -> 41	-0.09128	
	min(5)=	24 -> 41	-0.01735		min(2)=	= 26 -> 41	-0.03753	
	#CIs=3512 #0	CIs>0=1454 #CIs<0=	=1436		min(3)=	= 25 -> 41	-0.03567	
					min(4)=	= 40 -> 45	-0.03295	
16	Singlet-A" 8.048	154.04	0.0029	0.000	min(5)=	= 35 -> 52	-0.02818	
	max(1)=	35 -> 42	0.63529		#CIs=22	283 #CIs>0=989 #CIs<0=	=983	
	max(2)=	38 -> 43	0.03758					
	max(3)=	36 -> 42	0.02602	19	Singlet-A"	8.3200 149.02	0.0020	0.000
	max(4)=	35 -> 43	0.02493		max(1)=	= 39 -> 44	0.45209	
	max(5)=	38 -> 41	0.01536		max(2)=	= 40 -> 45	0.23296	
	min(1)=	33 -> 42	-0.28015		max(3)=	= 40 -> 44	0.14028	
	min(2)=	38 -> 42	-0.07496		max(4)=	= 40 -> 49	0.12169	
	min(3)=	28 -> 52	-0.04642		max(5)=	= 39 -> 46	0.05302	
	min(4)=	28 -> 41	-0.04135		min(1)=	= 39 -> 45	-0.32054	
	min(5)=	33 -> 41	-0.02624		min(2)=	= 40 -> 46	-0.27199	
	#CIs=2277 #0	CIs>0=974 #CIs<0=9	940		min(3)=	= 34 -> 46	-0.06695	
					min(4)=	= 40 -> 50	-0.05688	
17	Singlet-A" 8.102	10 153.05	0.0049	0.000	min(5)=	= 34 -> 50	-0.03130	
	max(1)=	40 -> 45	0.60894		#CIs=22	281 #CIs>0=995 #CIs<0=	=962	
	max(2)=	40 -> 46	0.14342					
	max(3)=	39 -> 45	0.14131	20	Singlet-A"	8.4095 147.43	0.0001	0.000
	max(4)=	40 -> 44	0.11644		max(1)=	= 33 -> 41	0.53185	
	max(5)=	34 -> 44	0.09018		max(2)=	= 35 -> 41	0.20826	
	min(1)=	39 -> 44	-0.20381		max(3)=	= 35 -> 43	0.17436	
	min(2)=	40 -> 50	-0.06878		max(4)=	= 29 -> 41	0.12321	
	min(3)=	40 -> 53	-0.04256		max(5)=	= 33 -> 43	0.10802	
	min(4)=	34 -> 50	-0.04134		min(1)=	= 38 -> 43	-0.21945	
	min(5)=	32 -> 46	-0.03640		min(2)=	= 36 -> 43	-0.13569	
	#CIs=2282 #0	CIs>0=974 #CIs<0=3	1001		min(3)=	= 30 -> 41	-0.10369	
					min(4)=	= 31 -> 41	-0.07894	
18	Singlet-A" 8.196	69 151.26	0.0000	0.000	min(5)=	= 38 -> 41	-0.06440	
	max(1)=	38 -> 43	0.61220		#CIs=22	278 #CIs>0=1075 #CIs<0)=1011	
	max(2)=	33 -> 41	0.21891					

18.1.3 Main contributions from different excited states at CIS approach

#_exc.st	symm	Exc.E	OscSt	rength	f	_<\$ <u>\$</u> **2>_	Single	t-A'	6.0167		206.07	0.0085	0.000
								max(1)) =	40 ->	42	0.48970	
1	Singlet-A"	5.4890	2	225.88	0.0000	0.000		max(2)) =	39 ->	41	0.46178	
	max(1)=		37 -> 43	1	0.58235			max(3)) =	40 ->	41	0.11220	
	max(2)=		37 -> 46	6	0.36535			max(4)) =	39 ->	48	0.03575	
	max(3)=		37 ->103	1	0.04189			max(5)) =	32 ->	42	0.02833	
	max(4)=		37 -> 42	2	0.03832			min(1)) =	39 ->	46	-0.14255	
	max(5)=		30 -> 43	1	0.03673			min(2)) =	39 ->	42	-0.06232	
	min(1)=		34 -> 43	1	-0.07416			min(3)) =	40 ->	46	-0.03830	
	min(2)=		37 -> 53	3	-0.07198			min(4)) =	35 ->	42	-0.03114	
	min(3)=		34 -> 46	6	-0.05147			min(5)) =	40 ->	48	-0.02249	
	min(4)=		36 -> 43	1	-0.03624			#state	es=1870 #	state	s>0=949 #£	states<0=921	
	min(5)=		36 -> 98	В	-0.02687								
	#states	s=840 #s	states>0=	=400 #st	ates<0=44	0 5	Single	t-A'	7.5232		164.80	0.0663	0.000
								max(1)) =	38 ->	41	0.39897	
2	Singlet-A"	5.8145	2	213.23	0.0001	0.000		max(2)) =	40 ->	42	0.35179	
	max(1)=		36 -> 43	1	0.59144			max(3)) =	38 ->	46	0.19531	
	max(2)=		36 -> 46	6	0.35599			max(4)) =	36 ->	58	0.02875	
	max(3)=		28 -> 46	6	0.03825			max(5)) =	37 ->	87	0.02740	
	max(4)=		36 ->103	1	0.03774			min(1)) =	39 ->	41	-0.38865	
	max(5)=		36 -> 42	2	0.03751			min(2)) =	37 ->	59	-0.04054	
	min(1)=		36 -> 53	3	-0.06488			min(3)) =	35 ->	42	-0.03109	
	min(2)=		31 -> 43	1	-0.04925			min(4)) =	37 ->	73	-0.02368	
	min(3)=		31 -> 46	6	-0.04465			min(5)) =	37 ->	66	-0.02301	
	min(4)=		37 -> 98	В	-0.02842			#state	es=2181 #	state	s>0=1077 ‡	#states<0=11	.04
	min(5)=		30 -> 43	1	-0.02690								
	#states	s=1029 #	\$states>	0=512 #s	tates<0=5	17 6	Single	t-A'	7.6657		161.74	0.9391	0.000
								max(1)) =	39 ->	42	0.56871	
3	Singlet-A'	5.8919	2	210.43	0.2659	0.000		max(2)) =	40 ->	41	0.27636	
	max(1)=		40 -> 43	1	0.61052			max(3)) =	40 ->	46	0.22247	
	max(2)=		39 -> 46	6	0.03767			max(4)) =	40 ->	42	0.06229	
	max(3)=		40 -> 48	В	0.02787			max(5)) =	32 ->	53	0.04479	
	max(4)=		39 -> 48	В	0.01468			min(1)) =	38 ->	41	-0.08592	
	max(5)=		32 -> 48	В	0.01378			min(2)) =	35 ->	46	-0.07240	
	min(1)=		39 -> 42	2	-0.27165			min(3)) =	35 ->	41	-0.05075	
	min(2)=		35 -> 43	1	-0.09381			min(4)) =	39 ->	41	-0.04565	
	min(3)=		39 -> 43	1	-0.09099			min(5)) =	32 ->	41	-0.03974	
	min(4)=		40 -> 42	2	-0.09079			#state	es=2143 #	state	s>0=1087 ‡	#states<0=10	56
	min(5)=		40 -> 46	6	-0.08810								
	#states	s=2172 ‡	\$states>	0=1083 #	states<0=	10879	Single	t-A'	8.1377		152.36	0.8699	0.000
								max(1)) =	38 ->	41	0.46251	

	max(2)=	39 -> 41	0.31719		max(4)=	39 -> 41	0.02131	
	max(3)=	38 -> 46	0.19474		$\max(5) =$	34 -> 43	0.02061	
	$\max(4) =$	39 -> 42	0.10510		$\min(1) =$	35 -> 41	-0.29035	
	max(5) =	40 -> 41	0.06137		$\min(2) =$	39 -> 42	-0.21885	
	$\min(1) =$	40 -> 42	-0.31141		min(3)=	32 -> 41	-0.11058	
	min(2)=	37 -> 59	-0.04261		$\min(4) =$	40 -> 41	-0.05291	
	$\min(3) =$	37 -> 66	-0.02771		min(5)=	40 -> 48	-0.04139	
	$\min(4) =$	37 -> 65	-0.02510		#states=2	135 #states>0=1117	#states<0=10	018
	min(5)=	37 -> 73	-0.02424					
	#states=2171	. #states>0=1072 #	\$states<0=10	9191	Singlet-A" 9.	2454 134.10	0.0001	0.000
					max(1)=	34 -> 41	0.56076	
8	Singlet-A" 8.647	3 143.38	0.0227	0.000	max(2)=	37 -> 41	0.08002	
	max(1)=	40 -> 43	0.54002		max(3)=	33 -> 46	0.06566	
	max(2)=	35 -> 43	0.08322		max(4)=	28 -> 42	0.06094	
	max(3)=	39 -> 50	0.07128		max(5)=	34 -> 48	0.05118	
	$\max(4)=$	40 -> 52	0.06277		min(1)=	33 -> 41	-0.26131	
	max(5)=	40 -> 45	0.04883		min(2)=	34 -> 46	-0.22610	
	$\min(1)=$	40 -> 44	-0.29367		min(3)=	29 -> 53	-0.08083	
	$\min(2)=$	39 -> 43	-0.22191		$\min(4)=$	29 -> 41	-0.05940	
	$\min(3)=$	39 -> 45	-0.16523		$\min(5)=$	36 -> 42	-0.05801	
	$\min(4)=$	40 -> 50	-0.06307		#states=1	266 #states>0=644 #	states<0=622	2
	$\min(5)=$	40 -> 55	-0.03921					
	#states=1095	5 #states>0=593 #s	states<0=502	12	Singlet-A" 9.	5991 129.16	0.0005	0.000
					max(1)=	40 -> 43	0.36726	
9	Singlet-A" 8.909	9 139.15	0.0001	0.000	max(2)=	40 -> 44	0.30890	
	max(1)=	39 -> 43	0.38454		max(3)=	39 -> 45	0.26705	
	max(2)=	39 -> 52	0.05471		$\max(4)=$	39 -> 43	0.22991	
	max(3)=	39 -> 49	0.04791		max(5)=	40 -> 45	0.21866	
	max(4)=	40 -> 49	0.04709		min(1)=	39 -> 44	-0.13174	
	$\max(5)=$	40 -> 50	0.04512		min(2)=	39 -> 47	-0.10809	
	$\min(1)=$	39 -> 44	-0.40047		min(3)=	32 -> 43	-0.07972	
	$\min(2)=$	40 -> 44	-0.29040		$\min(4)=$	33 -> 42	-0.06650	
	$\min(3)=$	40 -> 45	-0.24405		min(5)=	35 -> 45	-0.04637	
	$\min(4) =$	35 -> 45	-0.08245		#states=1	162 #states>0=593 #	states<0=569	9
	$\min(5) =$	32 -> 45	-0.07836					
	#states=1023	8 #states>0=505 #s	states<0=518	13	Singlet-A" 9.	6814 128.06	0.0502	0.000
					max(1)=	34 -> 42	0.33701	
10	Singlet-A' 8.947	79 138.56	0.2917	0.000	max(2)=	39 -> 45	0.21689	
	max(1)=	40 -> 46	0.56553		max(3)=	39 -> 44	0.17619	
	max(2)=	40 -> 53	0.05479		$\max(4)=$	40 -> 45	0.16607	
	max(3)=	35 -> 53	0.03614		$\max(5)=$	40 -> 52	0.08363	

	min(1)	= 40 -> 4	-0.34549		mir	1(3)=	29 ->	54	-0.02023	
	min(2):	= 33 -> 4	-0.20276		mir	n(4)=	35 ->	46	-0.02008	
	min(3)	= 40 -> 4	-0.14885		mir	n(5)=	30 ->	43	-0.01738	
	min(4):	= 35 -> 4	-0.12033		#st	ates=1891	#state	s>0=968 #	states<0=923	3
	min(5)	= 40 -> 4	.3 -0.10712							
	#state:	s=1286 #states>	0=615 #states<0=6	71 17	Singlet-A	10.344	1	119.86	0.0320	0.000
					max	(1)=	35 ->	41	0.54493	
14	Singlet-A"	9.7815	126.75 0.0046	0.000	max	(2)=	40 ->	46	0.28334	
	max(1):	= 34 -> 4	.2 0.44076		max	(3)=	32 ->	41	0.17849	
	max(2):	= 40 -> 4	.4 0.17112		max	(4)=	40 ->	41	0.07830	
	max(3):	= 40 -> 4	.11986		max	(5)=	24 ->	46	0.04531	
	max(4):	= 37 -> 4	.2 0.09907		mir	n(1)=	35 ->	46	-0.19056	
	max(5):	= 35 -> 4	.3 0.08598		mir	n(2)=	39 ->	42	-0.10950	
	$\min(1)$:	= 33 -> 4	-0.26005		mir	1(3)=	40 ->	53	-0.08082	
	min(2):	= 40 -> 4	-0.24336		mir	n(4)=	35 ->	42	-0.06437	
	min(3):	= 39 -> 4	-0.20851		mir	n(5)=	39 ->	46	-0.04269	
	$\min(4)$:	= 39 -> 4	-0.13004		#st	ates=2101	#state	s>0=1061	#states<0=10	040
	min(5):	= 39 -> 4	-0.07889							
	#state:	s=1345 #states>	0=688 #states<0=6	57 18	Singlet-A'	10.452	3	118.61	0.0000	0.000
					max	(1)=	36 ->	42	0.34733	
15	Singlet-A"	10.0305	123.61 0.0001	0.000	max	(2)=	31 ->	42	0.23736	
	max(1):	= 40 -> 4	5 0.45114		max	(3)=	33 ->	41	0.23233	
	max(2):	= 34 -> 4	2 0.06004		max	(4)=	30 ->	42	0.16546	
	max(3):	= 32 -> 4	.3 0.05436		max	(5)=	34 ->	41	0.10761	
	max(4):	= 39 -> 5	0.05320		mir	n(1)=	30 ->	41	-0.22885	
	max(5):	= 40 -> 4	4 0.03495		mir	n(2)=	40 ->	51	-0.17485	
	min(1):	= 39 -> 4	-0.29857		mir	1(3)=	26 ->	41	-0.13565	
	min(2):	= 39 -> 4	4 -0.28953		mir	n(4)=	34 ->	46	-0.09912	
	min(3)	= 40 -> 5	-0.15475		mir	1(5)=	33 ->	42	-0.08241	
	$\min(4)$:	= 39 -> 4	-0.13526		#st	ates=1546	#state	s>0=775 #	states<0=771	L
	min(5)	= 40 -> 4	-0.12113							
	#state:	s=1234 #states>	0=603 #states<0=6	31 19	Singlet-A'	10.503	Ð	118.04	0.0000	0.000
					max	(1)=	40 ->	51	0.44010	
16	Singlet-A'	10.0659	123.17 0.1781	0.000	max	(2)=	35 ->	51	0.21498	
	max(1):	= 39 -> 4	6 0.62218		max	(3)=	36 ->	42	0.17584	
	max(2):	= 35 -> 4	.2 0.21246		max	(4)=	40 ->	50	0.15036	
	max(3):	= 39 -> 4	1 0.10398		max	(5)=	31 ->	42	0.14499	
	max(4):	= 32 -> 4	2 0.09787		mir	n(1)=	40 ->	47	-0.13417	
	max(5):	= 40 -> 4	2 0.09364		mir	1(2)=	39 ->	43	-0.11072	
	min(1)	= 39 -> 4	-0.08816		mir	n(3)=	39 ->	44	-0.10335	
	min(2):	= 34 -> 4	-0.02394		mir	n(4)=	40 ->	44	-0.09769	

	$\min(5)=$	35 -> 43	-0.07781		$\max(5)=$	30 -> 41	0.14460
	#states=1558	#states>0=761 #st	tates<0=797		$\min(1)=$	33 -> 41	-0.21356
					min(2)=	29 -> 42	-0.17358
20	Singlet-A" 10.6873	116.01	0.0008	0.000	$\min(3) =$	30 -> 42	-0.14985
	max(1)=	31 -> 42	0.28813		$\min(4) =$	26 -> 42	-0.13181
	max(2)=	31 -> 41	0.25985		$\min(5) =$	40 -> 51	-0.10522
	max(3)=	37 -> 42	0.25573		#states=1429	#states>0=729	#states<0=700
	max(4)=	36 -> 42	0.16339				

$18.2 \quad 6-311 + +G(d,p)$

18.2.1 Plots

Figure S31: For *p*-methoxy-nitrobenzene molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S31a and S31b) or states (SOS approaches, in Plots S31c and S31d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S31e and S31f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.51 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(a) CPKS-, CPHF- and UPHF-FIOs decomposi- (b) TDDFT- and CIS-SOS decomposition of α_{ZZ} tion of α_{ZZ} into MOs. into states.

(c) CPKS- and CPHF-FIOs decomposition of (d) TDDFT- and CIS-SOS decomposition of β_{ZZZ} into MOs. β_{ZZZ} into states.

Figure S31: (continued) For *p*-methoxy-nitrobenzene molecule and 6-311++G(d,p) basis set, variation of α_{ZZ} (top) and β_{ZZZ} (middle) with respect to the number of orbitals (FIOs decomposition presented in this work, in Plots S31a and S31b) or states (SOS approaches, in Plots S31c and S31d). For α FIOs, three approaches were considered: CPKS, CPHF and UPHF. For β FIOs, the results of CPKS and CPHF approaches are provided. Besides, a shorten range of number of orbitals/states can be seen in Plots S31e and S31f as well (bottom). All elements of the β tensor were recomputed with an error less than 0.51 au in the case of the FIOs. For SOS approach, TDDFT (CAM-B3LYP) and CIS methods were employed. Recomputed values of α_{ZZ} and β_{ZZZ} for the different approaches are included in each plot. HOMO (H) and LUMO (L) are represented by blue and pink dotted lines, respectively.

(e) CPKS- and CPHF-FIOs decomposition of (f) TDDFT- and CIS-SOS decomposition of β_{ZZZ} between MOs 20 and 70. β_{ZZZ} between states 1 and 250.

18.2.2 Main contributions from different excited states at TDDFT (CAM-B3LYP) approach

#_exc.st	symm	mm Exc.E OscStrength		trength	f <s**2>_</s**2>		#CIs=2799 #CIs>0=1065 #CIs<0=1120					
1	Singlet-A"	4.0301		307.65	0.0000	20.000	Singlet-A"	4.5769		270.89	0.0004	0.000
	max(1)=	= 38	8 -> 4	41	0.67612	2	max(1)=	36 ->	41	0.67784	
	max(2)=	= 38	8 -> 4	46	0.07207	,	max(2)=	36 ->	46	0.06939	
	max(3)=	= 38	8 -> !	58	0.03313	3	max(3)=	36 ->	58	0.03143	
	max(4)=	= 38	8 -> 4	43	0.02194	ł	max(4)=	36 ->	43	0.02109	
	max(5)=	= 38	8 -> 9	97	0.01694	ł	max(5)=	28 ->	41	0.01886	
	min(1)=	= 38	8 -> 4	48	-0.18123	3	min(1)=	36 ->	48	-0.17439	
	min(2)=	= 38	5 -> 4	41	-0.02622	2	min(2)=	31 ->	41	-0.02686	
	min(3)=	= 38	8 -> !	57	-0.02058	3	min(3)=	36 ->	57	-0.01969	
	min(4)=	= 30	0 -> 4	41	-0.01747	,	min(4)=	28 ->	48	-0.01439	
	min(5)=	= 38	8 -> !	54	-0.01287	,	min(5)=	36 ->	54	-0.01247	

	#CIs=2815	#CIs>0=1204 #CIs<0=	=1114	6	Singlet-A"	6.3456	195.39	0.0153	0.000
					max(1)	= 40	-> 42	0.64733	
3	Singlet-A' 4.	6655 265.75	0.3377	0.000	max(2)	= 40	-> 45	0.13022	
	max(1)=	40 -> 41	0.68869		max(3)	= 40	-> 44	0.12554	
	max(2)=	34 -> 48	0.04650		max(4)	= 40	-> 56	0.10508	
	max(3)=	32 -> 41	0.03304		max(5)	= 40	-> 50	0.10036	
	max(4)=	36 -> 75	0.01424		min(1)	= 39	-> 42	-0.04343	
	max(5)=	37 -> 43	0.01117		min(2)	= 40	-> 51	-0.03984	
	min(1)=	39 -> 43	-0.09737		min(3)	= 34	-> 45	-0.03592	
	min(2)=	34 -> 41	-0.09645		$\min(4)$	= 40	-> 60	-0.02224	
	min(3)=	32 -> 48	-0.01966		min(5)	= 40	-> 52	-0.01912	
	min(4)=	34 -> 43	-0.01226		#CIs=2	2811 #CIs>0=	1190 #CIs<0=	=1090	
	min(5)=	37 -> 86	-0.01198						
	#CIs=4451	#CIs>0=2002 #CIs<0=	=1980	7	Singlet-A'	6.4800	191.33	0.1925	0.000
					max(1)	= 37	-> 41	0.66115	
4	Singlet-A' 4.	9848 248.72	0.0013	0.000	max(2)	= 40	-> 48	0.06831	
	max(1)=	39 -> 41	0.55676		max(3)	= 39	-> 41	0.06545	
	max(2)=	40 -> 43	0.41162		$\max(4)$	= 38	->109	0.04083	
	max(3)=	39 -> 48	0.10910		max(5)	= 34	-> 41	0.03239	
	$\max(4)=$	37 -> 41	0.04036		min(1)	= 40	-> 43	-0.14305	
	max(5)=	40 -> 48	0.02276		$\min(2)$	= 39	-> 43	-0.08166	
	min(1)=	34 -> 43	-0.04580		min(3)	= 39	-> 48	-0.05865	
	min(2)=	39 -> 46	-0.04157		$\min(4)$	= 37	-> 48	-0.05592	
	min(3)=	39 -> 65	-0.02292		min(5)	= 34	-> 43	-0.04068	
	min(4)=	39 -> 53	-0.01856		#CIs=4	451 #CIs>0=	1950 #CIs<0=	=2013	
	min(5)=	39 -> 43	-0.01781						
	#CIs=4453	#CIs>0=1940 #CIs<0=	=1950	8	Singlet-A'	6.5823	188.36	0.0921	0.000
					max(1)	= 39	-> 43	0.49637	
5	Singlet-A' 5.	8296 212.68	0.0727	0.000	max(2)	= 40	-> 46	0.22150	
	max(1)=	40 -> 43	0.52325		max(3)	= 37	-> 41	0.11606	
	max(2)=	37 -> 41	0.16026		max(4)	= 40	-> 41	0.05619	
	max(3)=	39 -> 48	0.11622		max(5)	= 32	-> 41	0.05603	
	$\max(4) =$	40 -> 46	0.02045		min(1)	= 40	-> 48	-0.39922	
	max(5)=	32 -> 41	0.01426		$\min(2)$	= 34	-> 41	-0.11344	
	min(1)=	39 -> 41	-0.42632		min(3)	= 39	-> 48	-0.01776	
	$\min(2)=$	39 -> 53	-0.03907		$\min(4)$	= 40	-> 58	-0.01445	
	$\min(3) =$	39 -> 43	-0.02866		min(5)	= 34	-> 74	-0.01399	
	$\min(4) =$	39 -> 46	-0.02284		#CIs=4	454 #CIs>0=	2010 #CIs<0=	=2032	
	$\min(5)=$	34 -> 41	-0.02225						
	#CIs=4451	#CIs>0=1933 #CIs<0=	=2027	9	Singlet-A"	6.8634	180.64	0.0001	0.000
					max(1)	= 40	-> 44	0.60394	

	max(2)=	40 -> 50	0.17378		$\max(4)=$	38 -> 41	0.03411	
	max(3)=	39 -> 42	0.15203		$\max(5) =$	28 -> 43	0.02925	
	max(4)=	40 -> 47	0.12851		$\min(1) =$	33 -> 41	-0.27420	
	max(5)=	40 -> 49	0.08067		$\min(2)=$	29 -> 41	-0.06219	
	$\min(1)=$	40 -> 42	-0.14861		$\min(3) =$	35 -> 46	-0.06137	
	min(2)=	40 -> 60	-0.09906		$\min(4) =$	31 -> 41	-0.04126	
	min(3)=	40 -> 45	-0.05847		$\min(5) =$	36 -> 43	-0.03636	
	min(4)=	40 -> 71	-0.03000		#CIs=2818 #	#CIs>0=1239 #CIs<0	=1272	
	min(5)=	40 -> 56	-0.02663					
	#CIs=2819 #	CIs>0=1195 #CIs<0	=1172	13	Singlet-A" 7.23	331 171.41	0.0004	0.000
					$\max(1)=$	39 -> 42	0.49158	
10	Singlet-A" 7.07	175.15	0.0021	0.000	max(2)=	39 -> 45	0.25476	
	max(1)=	40 -> 45	0.61872		max(3)=	39 -> 44	0.14370	
	max(2)=	40 -> 44	0.10334		$\max(4)=$	40 -> 42	0.13192	
	max(3)=	39 -> 44	0.05688		$\max(5)=$	39 -> 56	0.09789	
	max(4)=	40 -> 61	0.05206		$\min(1) =$	40 -> 50	-0.25576	
	max(5)=	40 -> 56	0.04704		$\min(2) =$	40 -> 47	-0.17130	
	min(1)=	40 -> 49	-0.14969		$\min(3) =$	40 -> 45	-0.12935	
	$\min(2)=$	40 -> 50	-0.13099		$\min(4) =$	40 -> 49	-0.05762	
	min(3)=	40 -> 47	-0.11137		$\min(5) =$	40 -> 55	-0.04840	
	$\min(4)=$	40 -> 42	-0.09398		#CIs=2820 #	#CIs>0=1230 #CIs<0	=1195	
	$\min(5)=$	40 -> 59	-0.09289					
	#CIs=2814 #	CIs>0=1193 #CIs<0	=1195	14	Singlet-A" 7.30	169.66	0.0004	0.000
					$\max(1) =$	40 -> 50	0.41409	
11	Singlet-A' 7.15	49 173.29	0.4820	0.000	$\max(2)=$	39 -> 42	0.30174	
	max(1)=	39 -> 43	0.45938		max(3)=	40 -> 47	0.25805	
	max(2)=	40 -> 48	0.42136		$\max(4)=$	40 -> 45	0.16131	
	max(3)=	34 -> 41	0.24928		max(5)=	39 -> 45	0.13968	
	$\max(4)=$	40 -> 41	0.09324		$\min(1)=$	40 -> 44	-0.27780	
	max(5)=	34 -> 48	0.04544		$\min(2)=$	40 -> 52	-0.06599	
	$\min(1)=$	40 -> 46	-0.13900		$\min(3) =$	39 -> 44	-0.05174	
	min(2)=	40 -> 54	-0.04478		$\min(4) =$	40 -> 42	-0.05164	
	min(3)=	32 -> 41	-0.04055		$\min(5) =$	34 -> 42	-0.04168	
	$\min(4)=$	40 -> 53	-0.04017		#CIs=2818 #	#CIs>0=1275 #CIs<0	=1211	
	$\min(5)=$	34 -> 43	-0.02576					
	#CIs=4448 #	CIs>0=1978 #CIs<0	=1989	15	Singlet-A' 7.42	167.00	0.0118	0.000
					$\max(1)=$	40 -> 46	0.61644	
12	Singlet-A" 7.16	173.08	0.0001	0.000	max(2)=	40 -> 48	0.25621	
	max(1)=	35 -> 41	0.61247		max(3)=	34 -> 46	0.05892	
	max(2)=	35 -> 48	0.15640		$\max(4)=$	34 -> 54	0.02950	
	max(3)=	38 -> 48	0.03829		$\max(5) =$	40 -> 65	0.02038	

	$\min(1)=$	40 -> 53	-0.15894		max(3)=	40 -> 53	0.09348	
	min(2)=	40 -> 58	-0.09569		$\max(4) =$	39 -> 53	0.04460	
	min(3)=	39 -> 43	-0.06345		max(5)=	40 -> 41	0.03375	
	$\min(4) =$	39 -> 46	-0.05092		$\min(1) =$	39 -> 46	-0.32247	
	$\min(5)=$	40 -> 70	-0.03678		min(2)=	40 -> 48	-0.15014	
	#CIs=4431 #	CIs>0=1770 #CIs<0=	=1825		$\min(3) =$	40 -> 43	-0.13385	
					$\min(4) =$	34 -> 43	-0.13256	
16	Singlet-A" 7.47	66 165.83	0.0000	0.000	$\min(5) =$	32 -> 41	-0.07470	
	$\max(1)=$	38 -> 43	0.69260		#CIs=444	3 #CIs>0=1926 #CIs<0	=1995	
	$\max(2)=$	35 -> 43	0.07815					
	max(3)=	30 -> 43	0.04095	19	Singlet-A" 7	.7200 160.60	0.0130	0.000
	$\max(4)=$	38 -> 46	0.03919		max(1)=	39 -> 44	0.45546	
	max(5)=	31 -> 41	0.02549		max(2)=	40 -> 47	0.30224	
	$\min(1)=$	33 -> 41	-0.03325		max(3)=	40 -> 49	0.28181	
	min(2)=	38 -> 41	-0.03220		$\max(4) =$	39 -> 50	0.10045	
	min(3)=	38 -> 54	-0.02708		max(5)=	40 -> 52	0.09736	
	min(4)=	36 -> 48	-0.02334		min(1)=	40 -> 50	-0.19210	
	min(5)=	33 -> 43	-0.02161		min(2)=	40 -> 51	-0.08793	
	#CIs=2812 #	CIs>0=1204 #CIs<0=	=1163		$\min(3) =$	39 -> 60	-0.07783	
					$\min(4) =$	40 -> 42	-0.07371	
17	Singlet-A' 7.64	96 162.08	0.0893	0.000	$\min(5) =$	40 -> 44	-0.07293	
	$\max(1)=$	34 -> 41	0.53837		#CIs=281	5 #CIs>0=1227 #CIs<0	=1255	
	$\max(2)=$	39 -> 46	0.18040					
	max(3)=	40 -> 46	0.10485	20	Singlet-A" 7	.7763 159.44	0.0171	0.000
	$\max(4)=$	40 -> 43	0.08529		$\max(1)=$	39 -> 44	0.39781	
	max(5)=	40 -> 41	0.07290		max(2)=	40 -> 50	0.33177	
	$\min(1)=$	39 -> 48	-0.23496		max(3)=	40 -> 51	0.08126	
	min(2)=	40 -> 48	-0.20826		$\max(4) =$	39 -> 50	0.07246	
	min(3)=	32 -> 41	-0.16141		max(5)=	40 -> 55	0.07031	
	min(4)=	39 -> 43	-0.08881		min(1)=	40 -> 47	-0.38169	
	min(5)=	37 -> 43	-0.06543		min(2)=	40 -> 52	-0.12976	
	#CIs=4451 #	CIs>0=2034 #CIs<0=	=1954		$\min(3) =$	39 -> 42	-0.11391	
					$\min(4) =$	39 -> 60	-0.06045	
18	Singlet-A' 7.69	03 161.22	0.1834	0.000	min(5)=	40 -> 45	-0.05422	
	max(1)=	39 -> 48	0.48646		#CIs=281	8 #CIs>0=1243 #CIs<0	=1216	
	max(2)=	34 -> 41	0.25947					

18.2.3 Main contributions from different excited states at CIS approach

#_exc.st	symm	Exc.E Osc	Strength	f	< S4 **2>_	Single	t-A'	5.9273		209.18	0.0051	0.000
							max(1)=	=	40 ->	49	0.46402	
1	Singlet-A"	5.4417	227.84	0.0000	0.000		max(2)=	=	39 ->	→ 55	0.11611	
	max(1)=	37	-> 44	0.56394			max(3)=	=	40 ->	→ 57	0.07390	
	max(2)=	37	-> 55	0.21093			max(4)=	=	40 ->	→ 52	0.06926	
	max(3)=	37	-> 53	0.16581			max(5)=	=	40 ->	· 69	0.06310	
	max(4)=	37	-> 77	0.08136			min(1)=	=	39 ->	44	-0.46429	
	max(5)=	37	-> 52	0.08087			min(2)=	=	40 ->	44	-0.09742	
	min(1)=	37	-> 60	-0.17457			min(3)=	=	39 ->	• 65	-0.09139	
	min(2)=	37	-> 65	-0.12725			min(4)=	=	40 ->	68	-0.06034	
	min(3)=	37	-> 45	-0.07900			min(5)=	=	39 ->	49	-0.04954	
	min(4)=	34	-> 44	-0.07854			#CIs=42	237 #CIs	>0=19	021 #CIs<0=	=2079	
	min(5)=	37	-> 95	-0.07442								
	#CIs=26	12 #CIs>0=	1158 #CIs<()=1156	5	Single	t-A"	6.9182		179.21	0.0204	0.000
							max(1)=	=	40 ->	• 41	0.53951	
2	Singlet-A'	5.7590	215.29	0.2717	0.000		max(2)=	=	40 ->	43	0.29808	
	max(1)=	40	-> 44	0.61076			max(3)=	=	40 ->	48	0.15344	
	max(2)=	39	-> 49	0.24810			max(4)=	=	40 ->	→ 54	0.12210	
	max(3)=	40	-> 49	0.07286			max(5)=	=	40 ->	• 61	0.05593	
	max(4)=	40	-> 65	0.07161			min(1)=	=	40 ->	• 50	-0.16048	
	max(5)=	39	-> 52	0.04367			min(2)=	=	40 ->	▶ 56	-0.13192	
	min(1)=	35	-> 44	-0.09621			min(3)=	=	39 ->	42	-0.07691	
	min(2)=	39	-> 44	-0.07625			min(4)=	=	40 ->	42	-0.06092	
	min(3)=	40	-> 55	-0.07272			min(5)=	=	39 ->	41	-0.05089	
	min(4)=	40	-> 45	-0.07159			#CIs=26	666 #CIs	>0=12	213 #CIs<0=	=1210	
	min(5)=	35	-> 55	-0.03788								
	#CIs=43	23 #CIs>0=	2038 #CIs<()=2064	6	Single	t-A'	7.2310		171.46	0.0443	0.000
							max(1)=	=	38 ->	44	0.40097	
3	Singlet-A"	5.7760	214.66	0.0004	0.000		max(2)=	=	38 ->	5 5	0.15162	
	max(1)=	36	-> 44	0.57446			max(3)=	=	38 ->	· 53	0.08027	
	max(2)=	36	-> 55	0.20997			max(4)=	=	38 ->	• 68	0.04275	
	max(3)=	36	-> 53	0.16263			max(5)=	=	38 ->	52	0.04169	
	max(4)=	36	-> 52	0.07995			min(1)=	=	39 ->	→ 44	-0.37360	
	max(5)=	36	-> 77	0.07250			min(2)=	=	40 ->	49	-0.34379	
	min(1)=	36	-> 60	-0.16891			min(3)=	=	38 ->	60	-0.07751	
	min(2)=	36	-> 65	-0.12044			min(4)=	=	38 ->	65	-0.06061	
	min(3)=	36	-> 45	-0.07973			min(5)=	=	38 ->	45	-0.05084	
	$\min(4)=$	36	-> 95	-0.07176			#CIs=42	276 #CIs	>0=20)20 #CIs<0=	=2056	
	min(5)=	36	-> 49	-0.04839								
	#CIs=26	67 #CIs>0=	1210 #CIs<()=1215	7	Single	t-A"	7.3532		168.61	0.0003	0.000
							max(1)=	=	39 ->	• 41	0.38704	

	max(2)=	39 -> 43	0.28650		$\max(4) =$	40 -> 54	0.12104	
	max(3)=	40 -> 43	0.12592		max(5)=	40 -> 48	0.11890	
	$\max(4)=$	39 -> 54	0.09573		min(1)=	40 -> 41	-0.29797	
	max(5)=	40 -> 48	0.07344		min(2)=	40 -> 51	-0.18154	
	min(1)=	40 -> 42	-0.40149		min(3)=	39 -> 43	-0.09425	
	min(2)=	39 -> 56	-0.13192		$\min(4)=$	40 -> 58	-0.09237	
	$\min(3)=$	40 -> 59	-0.11795		min(5)=	35 -> 41	-0.08849	
	min(4)=	40 -> 41	-0.11630		#CIs=2677	#CIs>0=1239 #CIs<0	=1223	
	min(5)=	39 -> 50	-0.07058					
	#CIs=2655 #	CIs>0=1188 #CIs<0	=1184	11	Singlet-A' 7.8	317 158.31	0.8939	0.000
					max(1)=	38 -> 44	0.43510	
8	Singlet-A' 7.46	07 166.18	0.8529	0.000	max(2)=	39 -> 44	0.31852	
	max(1)=	39 -> 49	0.52800		max(3)=	40 -> 49	0.29890	
	max(2)=	40 -> 45	0.12052		max(4)=	38 -> 55	0.14301	
	max(3)=	40 -> 49	0.10690		max(5)=	38 -> 53	0.07932	
	$\max(4)=$	40 -> 65	0.10093		min(1)=	39 -> 49	-0.10908	
	$\max(5)=$	38 -> 44	0.08678		min(2)=	38 -> 60	-0.08179	
	min(1)=	40 -> 44	-0.23406		min(3)=	40 -> 45	-0.07872	
	min(2)=	40 -> 55	-0.19049		min(4)=	39 -> 52	-0.07098	
	min(3)=	40 -> 53	-0.10875		min(5)=	39 -> 53	-0.05942	
	$\min(4)=$	39 -> 45	-0.08302		#CIs=4294	#CIs>0=2031 #CIs<0	=2056	
	$\min(5)=$	40 -> 52	-0.07993					
	#CIs=4316 #	CIs>0=2025 #CIs<0	=2083	12	Singlet-A" 7.8	498 157.94	0.0028	0.000
					max(1)=	39 -> 42	0.36451	
9	Singlet-A" 7.69	34 161.16	0.0023	0.000	max(2)=	40 -> 48	0.35346	
	$\max(1)=$	40 -> 42	0.47577		max(3)=	39 -> 59	0.11836	
	max(2)=	39 -> 41	0.31673		max(4)=	39 -> 41	0.11813	
	max(3)=	39 -> 43	0.23904		max(5)=	40 -> 54	0.09701	
	$\max(4) =$	40 -> 41	0.14332		min(1)=	40 -> 43	-0.26168	
	$\max(5)=$	39 -> 54	0.11718		min(2)=	40 -> 50	-0.25083	
	$\min(1)=$	39 -> 50	-0.11336		min(3)=	39 -> 43	-0.07811	
	$\min(2)=$	40 -> 48	-0.09826		$\min(4) =$	39 -> 48	-0.05394	
	$\min(3)=$	39 -> 56	-0.08577		min(5)=	40 -> 82	-0.05046	
	$\min(4)=$	39 -> 51	-0.04678		#CIs=2692	#CIs>0=1264 #CIs<0	=1220	
	min(5)=	35 -> 46	-0.04517					
	#CIs=2694 #	CIs>0=1211 #CIs<0	=1231	13	Singlet-A' 8.0	037 154.91	0.0064	0.000
					max(1)=	40 -> 45	0.58291	
10	Singlet-A" 7.80	93 158.77	0.0137	0.000	max(2)=	40 -> 44	0.14178	
	max(1)=	40 -> 43	0.44909		max(3)=	40 -> 55	0.08463	
	max(2)=	40 -> 47	0.24365		max(4)=	40 -> 49	0.07134	
	max(3)=	40 -> 42	0.14855		max(5)=	35 -> 45	0.04660	

	min(1)=	40 -> 52	-0.19725		min((3)= 39 -	-> 51	-0.13080	
	min(2)=	40 -> 53	-0.19655		min((4)= 40 -	-> 42	-0.11140	
	min(3)=	39 -> 49	-0.11713		min((5)= 39 -	-> 62	-0.07575	
	min(4)=	40 -> 60	-0.10028		#CIs	s=2681 #CIs>0=1	1234 #CIs<0	=1224	
	min(5)=	40 -> 57	-0.08786						
	#CIs=4179 #	CIs>0=1931 #CIs<0	=1928	17	Singlet-A'	8.5830	144.45	0.3249	0.000
					max((1)= 40 -	-> 55	0.52281	
14	Singlet-A" 8.19	09 151.37	0.0290	0.000	max((2)= 39 -	-> 49	0.22491	
	max(1)=	39 -> 42	0.43307		max((3)= 40 -	-> 52	0.10998	
	max(2)=	40 -> 50	0.21093		max((4)= 39 -	-> 52	0.09261	
	max(3)=	40 -> 41	0.17001		max((5)= 40 -	-> 57	0.06617	
	$\max(4)=$	40 -> 43	0.13250		min((1)= 35 -	-> 44	-0.23292	
	max(5)=	39 -> 59	0.11765		min((2)= 40 -	-> 65	-0.16409	
	min(1)=	40 -> 48	-0.26679		min((3)= 40 -	-> 60	-0.10900	
	min(2)=	39 -> 43	-0.14822		min((4)= 39 -	-> 45	-0.09423	
	$\min(3)=$	39 -> 48	-0.12208		min((5)= 32 -	-> 44	-0.09161	
	min(4)=	40 -> 42	-0.11948		#CIs	s=4300 #CIs>0=2	2034 #CIs<0	=2073	
	min(5)=	40 -> 54	-0.10381						
	#CIs=2713 #	CIs>0=1270 #CIs<0	=1241	18	Singlet-A"	8.6446	143.42	0.0123	0.000
					max((1)= 40 -	-> 47	0.49541	
15	Singlet-A" 8.42	94 147.09	0.0003	0.000	max((2)= 40 -	-> 46	0.32563	
	max(1)=	40 -> 46	0.55741		max((3)= 40 -	-> 41	0.12348	
	max(2)=	40 -> 51	0.13526		max((4)= 40 -	-> 62	0.09108	
	max(3)=	40 -> 64	0.11410		max((5)= 40 -	-> 63	0.06750	
	$\max(4)=$	40 -> 43	0.11244		min((1)= 40 -	-> 43	-0.18706	
	max(5)=	39 -> 41	0.09334		min((2)= 40 -	-> 51	-0.11391	
	$\min(1)=$	40 -> 47	-0.26919		min((3)= 39 -	-> 42	-0.11307	
	min(2)=	39 -> 43	-0.11028		min((4)= 40 -	-> 42	-0.10609	
	$\min(3)=$	39 -> 47	-0.08316		min((5)= 40 -	-> 54	-0.09694	
	$\min(4)=$	40 -> 41	-0.07283		#CIs	s=2727 #CIs>0=1	1223 #CIs<0	=1264	
	min(5)=	35 -> 50	-0.05311						
	#CIs=2711 #	CIs>0=1249 #CIs<0	=1257	19	Singlet-A"	8.6824	142.80	0.0009	0.000
					max((1)= 39 -	-> 43	0.34062	
16	Singlet-A" 8.52	88 145.37	0.0049	0.000	max((2)= 39 -	-> 47	0.30103	
	max(1)=	39 -> 48	0.46032		max((3)= 39 -	-> 42	0.22707	
	max(2)=	39 -> 54	0.14575		max((4)= 40 -	-> 46	0.16421	
	max(3)=	39 -> 56	0.08654		max((5)= 39 -	-> 54	0.09044	
	$\max(4)=$	39 -> 75	0.08463		min((1)= 39 -	-> 41	-0.35398	
	max(5)=	39 -> 59	0.07813		min((2)= 39 -	-> 51	-0.15009	
	min(1)=	39 -> 50	-0.30107		min((3)= 39 -	-> 58	-0.07170	
	min(2)=	39 -> 43	-0.25453		min((4)= 40 -	-> 42	-0.06026	
	$\min(5)=$	39 -> 50	-0.05533		max(5)=	39 -> 69	0.03783		
----	-----------------------------------	------------	----------	-------	-------------	-----------------------------------	----------	--	
	#CIs=2699 #CIs>0=1227 #CIs<0=1238				$\min(1)=$	39 -> 53	-0.27774		
					$\min(2)=$	40 -> 52	-0.20099		
20	Singlet-A' 8.69	992 142.52	0.0135	0.000	$\min(3) =$	39 -> 52	-0.18626		
	max(1)=	39 -> 45	0.52645		$\min(4) =$	39 -> 57	-0.08587		
	max(2)=	39 -> 49	0.13107		$\min(5) =$	40 -> 49	-0.06516		
	$\max(3) = 40 \rightarrow 55$		0.09209		#CIs=4215 #	#CIs=4215 #CIs>0=1984 #CIs<0=1977			
	max(4)=	40 -> 57	0.04490						