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a b s t r a c t

A novel representation of reset control systems with a zero-crossing resetting law, in the
framework of hybrid inclusions, is postulated. The well-posedness and stability issues of
the resulting hybrid dynamical system are investigated, with a strong focus on how non-
deterministic behavior is implemented in control practice. Several stability conditions
have been developed by using the eigenstructure of matrices related to the periods of
the reset interval sequences and by using Lyapunov function-based conditions.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Notation: R≥0 is the set of non-negative real numbers, Rn is the n-dimensional Euclidean space, and x = (x1, · · · , xn) ∈
Rn is a column vector; ∥x∥ is the euclidean norm. For a matrix A ∈ Rn

× Rm, ∥A∥ is its spectral norm. B is the closed
unit ball in Rn centered at the origin. Sn = {x ∈ Rn+1

: ∥x∥ = 1} is the unit n-sphere. The set of n× n (positive definite)
symmetric matrices is denoted by Sn. SH(ξ ) is the set of maximal solutions φ to the hybrid system H with φ(0, 0) = ξ .
dom stands for domain, and \ denotes sets difference. On

= Rn
× {1,−1}. In×n is the identity matrix of dimension n× n,

and 0n1×n2 is the null matrix of dimension n1×n2. LTI stands for linear and time-invariant. nρ is the number of controller
states to be reset at a jump.

1. Introduction

Informally speaking, a reset controller is any controller, usually referred to as the base controller, that is equipped with
a mechanism for zeroing some of its states, when some event occurs in the control system. Although the term was coined
in the late 90s by Hollot, Chait and coworkers [1], specifically to describe ‘‘an LTI system with mechanisms and laws to
reset their states to zero’’, the concept was devised much earlier, in the seminal works of Clegg [2] and Horowitz and
coworkers [3,4]. Since then, reset control has considerably evolved by using different resetting laws: the original zero-
crossing of the error [1,5–9], sector-based resetting [10–14], error band [15,16], reset at fixed instants [17,18], Lyapunov
function-based resetting [19], and somehow relaxing the original concept, both including nonlinear base systems and
reset to non-zero values in some cases. This has lead to a fecund research area that has been successfully applied in many
practical applications, and that has opened many relevant topics in control theory and practice.
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In this work, the focus is on reset control with emphasis on the original concept, using an LTI controller that zeroes
its state (fully or partially) when the closed-loop error signal is zero. The main motivation has been to update and
formalize previous work by the authors, developed in the framework of impulsive dynamical systems (IDS), by using
the hybrid dynamical systems framework (HI) of [20,21]. Note that in the IDS framework, resetting laws are based on
the exact crossing of the zero error hypersurface, and there is some fragility in detecting a zero-crossing, especially if
measurement noise is present. Although this robustness problem has been alleviated for a specific class of exogenous
signals [8], it is acknowledged the HI framework is more conclusive for equipping reset control systems with good
structural properties (especially when considering exogenous signals with jump discontinuities) such as continuous-
dependence on initial conditions, closeness of perturbed (due for example to measurement noise) and unperturbed
solutions, asymptotic stability is preserved under small perturbations, etc.

There exist already several relevant works about reset control in the HI framework, most of them based on a sector-
based resetting law (see for example [10–14]). It is important to emphasize that, in general, this resetting law produces
different control solutions in comparison with the zero-crossing resetting law (see Example 3.4 of this manuscript). Here,
t is not argued that one resetting law is superior to the others; they simply are different solutions that may properly
ork in control practice. Thus, the zero-crossing law (which has not been previously addressed in the HI framework)
emands a specific and detailed study on formalization, basic hybrid properties and specific stability criteria.

.1. Background: Hybrid dynamical systems

This work follows the hybrid system framework developed in [21] (and references therein), that following [22], has
een referred to as the Hybrid Inclusions (HI) framework, and the reader is referred to [20,21] for a detailed exposition
f it (see also [23] where hybrid systems with inputs are explicitly analyzed). A hybrid system Hw, with state x ∈ Rn and
nput w ∈ Rm, is given by

Hw :

{
ẋ = f (x,w), (x,w) ∈ C,
x+ = g(x,w), (x,w) ∈ D. (1)

nd is defined by the following data: (i) the flow set C ⊂ Rn
×Rm, (ii) the flow mapping f : Rn

×Rm
→ Rn, (iii) the jump

et D ⊂ Rn
× Rm, and (iv) the jump mapping g : Rn

× Rm
→ Rn.

Hybrid signals are defined as functions on hybrid time domains [21,24]. A hybrid arc x : dom x ↦→ Rn is a hybrid
ignal in which x(·, j) is locally absolutely continuous for each j. A hybrid input w : dom w ↦→ Rm s a hybrid signal in
hich w(·, j) is Lebesgue measurable and locally essentially bounded for each j. A solution to (1) is defined as a pair (x,w),
onsisting of a hybrid arc and a hybrid input with dom x = dom w, that satisfies the dynamics of the hybrid system Hw
see [2–4,7,9,10,12,14,17–21,23–31] for details about solution pairs to hybrid systems with inputs). Note that the jump
et D enables jumps but does not force them if there are points in which it is also possible to flow (a similar argument
pplies to the flow set C); and thus if C are D are not disjoint then for a point (ξ, ψ) ∈ C∩D there may be several solutions
airs (x,w) to Hw with x(0, 0) = ξ , for any hybrid input w with w(0, 0) = ψ .
For Hw, the so-called hybrid basic conditions defined in [21] (see also regularity conditions in [23]) are satisfied if C and
are both closed subsets of Rn

× Rm, and if f and g are continuous functions. These hybrid basic conditions guarantee
hat Hw (without inputs, that is with w = 0) is well posed in the sense that their solution sets inherit several good
tructural properties: upper-semicontinuous dependence with respect to initial conditions; closeness of perturbed (due
o measurement noise, for example) and unperturbed solutions; asymptotic stability is preserved under small enough
erturbations [21], etc.

.2. Organization of the manuscript

This work is mainly devoted to developing a representation of reset control systems, with a zero-crossing resetting law
nd an LTI base system, in the HI framework. The focus is on well-posedness and stability, with a strong motivation to
btain HI models that capture key properties in control practice. In Section 2, starting with a new Clegg integrator model
quipped with an input zero-crossing detection (ZCD) mechanism, a reset controller model based on it is postulated.
ection 3 analyzes closed-loop reset control systems, resulting from the feedback connection between a reset controller
with the ZCD mechanism) and an LTI plant (using plant output measurement). Some basic properties of closed-loop
ybrid systems like well-posedness, existence of solutions, and flow persistence (a concept introduced to guarantee the
xistence of solutions that are unbounded in the t-direction) will be investigated. Also, a deep analysis of how solutions
o the closed-loop hybrid system are related to operation in control practice. To avoid the existence of defective solutions,
standard approach based on time regularization is used. Finally, a reset control system in the HI framework with a zero-
rossing resetting law and time-regularized is postulated. An example, based on a classical case analyzed by Horowitz, is
nvestigated with the proposed model; also, a comparison with a time-regularized reset control system with a sector-based
esetting law is performed. In Section 4, the stability of the proposed reset control system is investigated. A basic result
ill be a reformulation of previous stability results in the HI framework, relating the stability of the closed-loop hybrid
ystem with the stability of a discrete-time system obtained as a Poincaré-like map. Two different stability approaches
re then investigated: one based on the analysis of the reset interval sequences periods that results in analyzing the
igenvalues of different matrices associated with those periods; and the other based on the use of Lyapunov functions
hat finally results in LMIs conditions whose feasibility determines the stability of the reset control system. Moreover,

everal examples, that illustrate the applicability of the proposed results, are developed.
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Fig. 1. A reset control system, with an LTI continuous-time plant and a feedback reset controller. The feedback loop is perturbed by errors both in
the measurement (noise n) and the actuator (disturbance d); r is a reference signal.

Fig. 2. (left) The block CI represents the Clegg integrator with two inputs and a zero-crossing detection; (right) The Clegg integrator with one input
top), and a first order reset element (FORE) (bottom), built upon the block CI.

. From the Clegg integrator to reset controllers

In this work, the main focus is on reset control systems, in which a continuous-time plant is controlled by a reset
ontroller with plant output feedback (see Fig. 1). This feedback control system, that uses plant output measurement, will
e modeled in the HI framework by using (1). More specifically, the plant is LTI, single-input single-output, and described
y the differential equation:

P :

{
ẋp = Apxp + Bpu
yp = Cpxp

(2)

here xp ∈ Rnp is the plant state, u ∈ R the control input, yp ∈ R is the plant output, and Ap, Bp and Cp are matrices
f appropriate dimensions. The reset controller, with continuous state xr ∈ Rnr , will be endowed with a zero-crossing
etection mechanism based on a discrete state q ∈ {1,−1}, being finally (xr , q) ∈ Onr := Rnr × {1,−1} the controller
tate. In the following, the proposed reset controller will be analyzed in detail; since the controller setup will be based
n a modification of the Clegg integrator [2], this is first described.

.1. A Clegg integrator wih a zero-crossing detection mechanism

A basic and well-known reset controller is the Clegg integrator [2,3], which will be adapted in this work by attaching
zero-crossing detection procedure based on the discrete state q ∈ {1,−1}, and also adding an extra input. Besides the
rigger input e ∈ R (usually the error signal in the case of an output feedback control system), the input signal eCI ∈ R is
roposed1 (Fig. 2). Using (1), the result is a new model of the Clegg integrator in the HI framework. It is given by:

CI :

⎧⎪⎨⎪⎩
ẋr = eCI , (xr , q, eCI , e) ∈ C(
x+r
q+

)
=

(
0 0
0 −1

)(
xr
q

)
, (xr , q, eCI , e) ∈ D

(3)

where (xr , q) ∈ O is the CI state, (eCI , e) ∈ R2 is its input, and v = xr is its output, and the flow set C and the jump set D
are given by

C = {(xr , q, eCI , e) ∈ O × R
2
: qe ≤ 0} (4)

1 It is worth noting that the original Clegg integrator is recovered from CI by removing the discrete state q and performing e = e.
CI
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Fig. 3. Zero-crossing detection mechanism: (left) from the initial point A (up), the system flows until a zero-crossing is detected (qe = 0), jumping
o (e, v, q) = (0, 0,−1) (bottom); (right) a perturbation of the error signal at point B makes the system jump from B to C (up), then a zero-crossing
s also detected (qe > 0) and the system jumps to D (bottom); from D the system flows again and finally jumps to (0, 0, 1) (up).

nd

D = {(xr , q, eCI , e) ∈ O × R
2
: qe ≥ 0}, (5)

respectively. Because the CI discrete state q is constant when flowing, its flow equation is not explicitly shown. When
(xr , q, eCI , e) goes from C to D either crossing or jumping through their boundary, a jump of the CI state may be
performed. This ensures the detection of a zero-crossing even if the signal e has jump discontinuities, such as due to
noise measurement n (see Fig. 3), which is a clear advantage over previous reset controllers that have a zero-crossing
resetting law [1,8,32], that only detects zero-crossings when the signal error is continuous.

By using CI as a building block, the two input signals, eCI and e, can be used to model more complex reset controllers.
For example, for the FORE of Fig. 2, eCI = e− v. This capability will be fully exploited by higher-order reset controllers in
the next Section.

2.2. A reset controller with a zero-crossing resetting law

In this work, a reset controller inspired in [1,8,32] is proposed. Here, the new CI is used as a building block, and thus
the reset controller has also attached a zero-crossing detection mechanism. It has a state (xr , q) ∈ Onr and a scalar input
e. Here xr will be referred to as the continuous state and q as the discrete state. Using again (1), it is given by

R :

⎧⎪⎨⎪⎩
ẋr = Arxr + Bre , (xr , q, e) ∈ C(
x+r
q+

)
=

(
Aρ 0
0 −1

)(
xr
q

)
, (xr , q, e) ∈ D

(6)

where the output and control signal is the scalar v = Crxr + Dre, and now the flow and jump sets, C and D, are

C = {(xr , q, e) ∈ Onr × R : qe ≤ 0} (7)

and

D = {(xr , q, e) ∈ Onr × R : qe ≥ 0}, (8)

respectively. Here Ar , Br , Cr , and Dr are real matrices with appropriate dimensions. When a zero-crossing is detected,
some of the controller states are set to zero by using the matrix Aρ (by convention, the last nρ states of xr are set to zero,
while the first nρ̄ = nr − nρ states are kept unchanged). It is given by

Aρ =

(
Inρ̄×nρ̄ 0nρ̄×nρ

)
, (9)
0nρ×nρ̄ 0nρ×nρ

4
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Fig. 4. A block diagram of the reset controller with a zero-crossing resetting law, given by (6), with state (xr , q). Here xr = (x1, . . . , xnρ̄ , xnρ̄+1, . . . , xnr )
and q is the discrete state that is common for all the CI blocks. For a block [M] the output vector is the matrix multiplication of M with the input
vector (thin lines correspond to scalar signals, while thick lines correspond to vector signals).

In the case of a full reset controller nρ = nr , while if nρ < nr then R is a partial reset controller. In addition, Ar , Br , and Cr
are partitioned into blocks with appropriate block dimensions:

Ar =

(
Ar11 Ar12
Ar21 Ar22

)
, Br =

(
Br1
Br2

)
, Cr =

(
Cr1 Cr2

)
(10)

For a block diagram representation of the reset controller R, besides integrator blocks it is sufficient to use the modified
Clegg integrator CI given by (3) as a basic block. A block diagram of R that allows a direct implementation is given in Fig. 4.
It uses as basic blocks nρ̄ (= nr−nρ) integrators and nρ (two-inputs) CIs; note that since the reset controller R is, in general,
partially reset at the reset instants, the last nρ components of the controller state xr that may be reset are attached to
CI blocks, and the first nρ̄ components of xr are attached to integrators. In this case, the input eCIk to the kth CI block,
k = nρ̄ + 1, . . . , nr , is simply obtained by (Fig. 4)

eCI = Ar21xρ̄ + Ar22xρ + Br2e

where eCI = (eCInρ̄+1 , . . . , eCInr ), xρ̄ = (x1, . . . , xnρ̄ ), and xρ = (xnρ̄+1, . . . , xnr ).

3. The closed-loop reset control system

Once the plant and the reset controller are defined, the feedback control system Hcl
w is obtained as a hybrid control

system (see Fig. 1), with the plant output y serving as the feedback signal. Its state is (x , x , q) ∈ On, and is given
p p r

5
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Hcl
w :

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
ẋp
ẋr

)
=

(
Ap − BpDrCp BpCr

−BrCp Ar

)(
xp
xr

)
+

(
BpDr Bp
Br O

)
w , (x, q,w) ∈ Ccl

w(
x+r
q+

)
=

(
Aρ 0
0 −1

)(
xr
q

)
, (x, q,w) ∈ Dcl

w

(11)

where the exogenous input is w = (w1, w2) = (r + n, d), and the flow and jump sets are given by

Ccl
w = {(xp, xr , q,w) ∈ Onp+nr × R

2
: q(w1 − Cpxp) ≤ 0} (12)

and

Dcl
w = {(xp, xr , q,w) ∈ Onp+nr × R

2
: q(w1 − Cpxp) ≥ 0}, (13)

respectively.

3.1. Closed-loop solutions and properties

Following Section 1.1, solutions to Hcl
w are defined as pairs (x,w) satisfying (11), where x is a hybrid arc and w is a

hybrid input. Since Hcl
w satisfies the hybrid basic conditions (the flow and jump maps are continuous, and the flow and

the jump sets are closed), then it directly follows that for the case of no exogenous inputs, that is for w = 0, the system
Hcl

w is well posed and the property of asymptotic stability is robust (see [21] for precise definitions and results).
Now, a key question is to analyze if Hcl

w has also good properties for relevant sets of exogenous inputs. To begin, the
problem of modeling relevant exogenous inputs arises; because the plant is originally continuous-time, it is natural to
assume that exogenous signals only depend on time t and not on j, and thus hybrid inputs w can be considered as given
by setting w(t, j) = w′(t) for all (t, j) ∈ E, for some continuous time signal w′ and any arbitrary time domain E. Moreover,
since exogenous inputs should be relevant in control practice, it will be assumed that w′ is generated by an exosystem
Σ with state xw , that is

Σ :

⎧⎨⎩
ẋw = Awxw

w =

(
Cw1
Cw2

)
xw

(14)

This exosystem will be able to generate signals like steps, ramps, sinusoids, and, in general, Bohl functions. Finally,
it is embedded in the reset control system (11) resulting in the (autonomous) reset control system Hcl with state
(x, q) = (xw, xp, xr , q):

Hcl
:

⎧⎪⎨⎪⎩
ẋ = Ax , (x, q) ∈ Ccl(
x+
q+

)
=

(
AR 0
0 −1

)(
x
q

)
, (x, q) ∈ Dcl

(15)

where the matrices A and AR are given by

A =

( Aw O O
Bp(DrCw1 + Cw2 ) Ap − BpDrCp BpCr

BrCw1 −BrCp Ar

)
, AR =

( I O O
O I O
O O Aρ

)
, (16)

and the flow and jump sets are given by

Ccl
= {(x, q) ∈ On

: qCx ≤ 0} (17)

and

Dcl
= {(x, q) ∈ On

: qCx ≥ 0}, (18)

respectively, where n = nw + np + nr , and C is given by

C =
(
Cw1 −Cp O

)
(19)

The next proposition analyzes the existence of solutions to Hcl and some properties that will be useful in control
practice. For definitions of well-posedness and Zeno solutions, see [21]. Hcl is flow persistent if for any ξ ∈ On there exist
solution φ to Hcl with φ(0, 0) = ξ , such that dom φ is unbounded in the t-direction, that is the set {t ∈ R≥0 : ∃j ∈

N, (t, j) ∈ dom φ} is not upper-bounded.
6
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P
roposition 3.1. Consider the reset control system Hcl as given by (15)–(19), and a point ξ = (x0, q0) ∈ On, then:

1. (Well-posedness) Hcl is well-posed.
2. (Existence of solutions) There exist nontrivial solutions φ to Hcl with φ(0, 0) = ξ , and if φ ∈ SHcl (ξ ), i.e., if φ is a

maximal solution, then it is complete. That is, Hcl is forward complete from On.
3. (Flow persistence) Hcl is flow persistent.

Proof.

1. It directly follows since Hcl satisfies the basic hybrid conditions. Note that Ccl and Dcl are closed, and the functions
f , g : On

→ On, defining the flowing and jumping dynamics, respectively, and given by f ((x, q)) = (Ax, 0) and
g((x, q)) = (ARx,−q), are continuous.

2. If ξ ∈ Ccl
\ Dcl then there exists a nontrivial solution φ with φ(t, 0) = (eAtx0, q0) ∈ Ccl for t ∈ [0, ϵ] and

ϵ = min{t ∈ R+
: CeAtx0 = 0}; in the case that CeAtx0 ̸= 0 for any t > 0 then φ(t, 0) = (eAtx0, q0) ∈ Ccl

for t ∈ [0,∞). Alternatively, if ξ ∈ Dcl then there exists nontrivial solutions φ with φ(0, 1) = (ARx0,−q0) and
φ(0, 0) = ξ .
Moreover, for (x, q) ∈ Dcl it is true that qCx ≥ 0, and since CAR = C then after a jump q+Cx+ = −qCARx = −qCx ≤

0, that is (x+, q+) ∈ Ccl and thus g(Dcl) ⊂ Ccl; since, in addition, any solution to the flow equation ẋ = Ax defined on
an interval, open to the right, can be trivially extended to an interval including the right endpoint, it is concluded
that any maximal solution is complete (by direct application of Prop. 2.10 [21]).

3. Firstly, it is shown that there always exists a solution φ ∈ SHcl (ξ ) whose domain satisfies [0, ε] × {0} ⊂ dom φ or
[0, 0] × {0} ∪ [0, ε] × {1} ⊂ dom φ, for some ε > 0 (that is, the solution flows during some interval [0, ε] after at
most one jump). This is based on the fact that q0CeAtx0, as a mapping from t ∈ R≥0 to R, is a real analytic function
and thus it only has isolated zeros. As a consequence, there are only three possible cases: (i) there exist ε > 0 such
that q0CeAtx0 < 0 for any t ∈ (0, ε], (ii) there exist ε > 0 such that q0CeAtx0 > 0 for any t ∈ (0, ε], (iii) q0CeAtx0 = 0
for any t ≥ 0. In case (i), a solution φ directly exists such that [0, ε] × {0} ⊂ dom φ; in case (ii), after an initial
jump q+0 Cx

+

0 = −q0CARx0 = −q0Cx0 < 0 and thus a solution exists that flow in (0, ε] after an initial jump, that is
[0, 0] × {0} ∪ [0, ε] × {1} ⊂ dom φ; finally, in case (iii), a solution φ with dom φ = [0,∞)× {0} do exist.
From the above property, it follows that, besides solutions that always flow after a finite number of jumps, there
always exist solutions φ ∈ SHcl (ξ ) with an infinite number of jumps at instants tk, k = 0, 1, . . ., where t0 = 0
and tk = ε1 + · · · + εk for k = 1, 2, . . ., and where εk > 0 for k ≥ 1. Thus the only obstacle for Hcl to be flow
persistent is that for any of these flowing-first solutions the corresponding sequence {tk}∞k=0 would converge to
some finite value, resulting in Zeno solutions. But this is not possible since {tk}∞k=0 are not Cauchy sequences; this
follows from [32]-Prop. 2.4. □

3.2. Analysis of defective solutions and time-regularized reset control system

In a reset control system formulated as (15)–(19), in which the hybrid dynamics is due to the controller (the plant
is an LTI continuous-time system), it is important to analyze how the hybrid time domains of solutions, and the non-
deterministic behavior of the system are related to the final operation in control practice. For example, for a hybrid time
domain that consists of the union of intervals I j × j = [tj, tj+1] × j, with 0 = t0 < t1 < t2 = t3 = t4 = t5 < t6 < · · · ,
the solution flows in the time interval [t0, t1], jumps at t1, flows in [t1, t2], then it performs three consecutive jumps,
keeps flowing in [t5, t6] = [t2, t6], performs another jump at t6, etc. From a practical point of view, for solutions to be
implemented in a controller, it is necessary to assume that the controller is able to perform a finite number of consecutive
jumps instantaneously. In addition, it is compulsory that from any point, there always exist solutions that are unbounded
in the t-direction. Otherwise, the control system would only present Zeno solutions (genuinely or eventually discrete)
that are simply unimplementable in practice and are considered defective solutions.

It has been introduced a property, flow persistence, that is useful to analyze whether a reset control system may be
effectively used in control practice regarding the existence of non-defective solutions. It is worth noting that if a control
system is flow persistent, there is always a solution that is unbounded in the t-direction; on the other hand, if it is not flow
persistent, there may exist points from which all solutions are bounded in the t-direction. Thus, while flow persistence is
a necessary property in control practice, it is less clear whether it is a sufficient property; that is, for a given initial point,
is the existence of Zeno solutions besides solutions that are unbounded in the t-direction a problem?. Note that there
are always infinite Zeno solutions starting at the points (0, 1), (0,−1) ∈ Ccl

∩Dcl, besides an infinite number of solutions
unbounded in the t-direction.

Another important aspect regarding the final implementation of the hybrid controller is also related to that non-
deterministic behavior. In principle, the above formulation allows a (finite or infinite) number of different solutions from
some initial points. In practice, it is clear that any realistic controller implementation entails a decision such that a solution
is selected within all the existing solutions. At this point, a possible answer to the above question is that there is no
problem once it is assumed that the controller is able to choose only those solutions that are unbounded in the t-direction.

However, this type of implementation would require some procedure to properly select the implementable solutions.

7
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A more simple and common approach to implementing the non-deterministic behavior is to assume that it is irrelevant
which solution the controller selects, and thus the reset control system would correctly perform for any chosen solution.
This is the approach to be followed in this work, and thus it is necessary to remove all the defective solutions. A standard
way to avoid the existence of defective solutions in hybrid systems is by means of time regularization [10,26]. For the
reset control system Hcl in (15)–(19), this is simply achieved by introducing a timer τ ∈ [0,∞) that prevents the system
from performing two o more consecutive jumps, simply by initializing τ to 0 after a jump, and avoiding performing a
new jump until τ ≥ τm, where τm > 0 is a design parameter (usually referred to as the minimum dwell-time).

A time-regularized reset control system Hcl
τm
, with state (x, q, τ ) ∈ On

× [0,∞), is given by:

Hcl
τm

:

⎧⎨⎩
τ̇ = 1, ẋ = Ax , (x, q, τ ) ∈ Ccl

τm

τ+ = 0,
(
x+
q+

)
=

(
AR 0
0 −1

)(
x
q

)
, (x, q, τ ) ∈ Dcl

τm

(20)

where

Ccl
τm

=
(
Ccl

× [0,∞)
)
∪
(
Dcl

× [0, τm]
)

(21)

and

Dcl
τm

= Dcl
× [τm,∞). (22)

where Ccl and Dcl are defined in (17)–(18).
Moreover, it is considered that the reset control system will always perform a jump at the initial instant. By simplicity,

this is not explicitly described in (20)–(22), it is modeled by assuming that Hcl
τm

is initially at a state ((z, 0), q, 0), where
z ∈ Rn−nρ and q ∈ {1,−1}. That is, the last nρ continuous states of the reset controller and the timer are always initially
at rest.

The following property of Hcl
τm

easily follows since it always jumps from Dcl
τm

to the interior of Ccl
τm
, and then it flows for

at least a time τm > 0. Note that from (21) flow is possible for values (x, q) ∈ Dcl when the timer τ takes values τ ≤ τm.

Corollary 3.2. For any τm > 0, Hcl
τm
, as given by (20)–(22), is flow persistent and does not have Zeno solutions.

In principle, an election of a small value of the minimum dwell-time τm is all that is needed to prevent the existence of
defective solutions. Note, however, that this does not avoid the existence of multiple solutions for some initial conditions,
this is, for example, the case of points (0, 1, 0) and (0,−1, 0). This non-deterministic behavior will be explored in the
next example.

Example 3.3. Consider the reset control system of Fig. 5, composed of a Horowitz reset controller R and a first-order
plant. Its flow persistence for an exogenous input w = r corresponding to a step reference (no disturbances present) will
be analyzed, as will the influence of τm on the reset control system solutions. For some τm > 0, the time regularized reset
control system is given by (20), with state (x, q, τ ) being x = (xw, xp, xr1 , xr2 ), and

A =

⎛⎜⎝0 0 0 0
0 −1 1 1
4 −4 0 0
1 −1 0 0

⎞⎟⎠ , AR =

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞⎟⎠ , C =
(
1 −1 0 0

)
, (23)

Here the reset controller output is v = xr1 + xr2 and the error signal is e = xw − xp. The sets Ccl and Dcl are depicted in
Fig. 5 as green and red regions, respectively, in the e− v planes corresponding to q = 1 and q = −1. Note that the flow
and jump sets are given by (21)–(22), and thus flowing is, in principle, possible in the set Dcl. It is chosen an initial point
A corresponding to a unit step reference, with the controller and plant at rest; then the reset control system flows from
A to B. Because the reset control system is flow persistent, there exist a solution that is unbounded in the t-direction;
this solution is shown in Fig. 5 where jumps from B to C, from D to E, . . . are visible (it is the unique solution for the
initial point A). In this case, the solution is not flowing in the set Dcl since it always flows during a time larger than τm
before jumps are enabled. This is true as far as τm < τ ⋆m ≈ 1.4416; in fact, without time regularization, the reset interval
sequence is periodic with a fundamental period τ ⋆m after the second jump. This simple structure of the reset instants
sequence is common in low-order reset control systems, and in these cases, time regularization would not be necessary
for most initial points. However, as discussed further below, there may be initial points where time regularization must
be used to remove defective solutions.

This is the case of any initial point with x0 = (1, 1, 1, 0), corresponding again to a unit step reference but now
the controller output is initially v = 1 (with the CI initially at rest), it can be easily checked that the initial point
belongs to Ccl

τm
∩ Dcl

τm
; moreover, since Ax0 = 0 and ARx0 = x0 it directly follows that there exists an infinite

number of solutions having one of the following hybrid time domains: [0,∞) × {0}, [0, t1) × {0} ∪ [t1,∞) × {1},
[0, t1] × {0} ∪ [t1, t2] × {1} ∪ [t2,∞) × {2}, . . ., where t1 ∈ [0,∞) and tj+1 ∈ [tj + τm,∞) for j = 1, 2, . . .. That is,
there is an only-flowing solution and an infinite number of solutions that jump a finite or infinite number of times, so all
the solutions are unbounded in the t-direction as far as τm > 0. Finally, note that any solution φ satisfies φ(t, j) = ξ for
any (t, j) ∈ dom φ; informally, all the solutions produce the same values of controller output and error, so it makes no
difference which solution is chosen by the controller.
8
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Fig. 5. Flow persistence: (left) Reset control system with a Horowitz reset controller (taken from [3]); (right) Simulation for a unit step reference,
ith the reset control system initially at point A: (xw, xp, xr1 , xr2 ) = (1, 0, 0, 0), q = −1 and with τ = 0 (solid lines correspond to flows, an dotted

ines to jumps from B to C, from D to E, . . .). (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

.3. Reset controllers with a sector resetting law

Although this work is focused on reset control systems with a zero-crossing resetting law, it is instructive to analyze
ther resetting laws that have been developed in the literature. The sector resetting law was introduced in [33],
nd has been the main approach within the framework of hybrid inclusions, followed and also extended in several
orks [13,34,35].
A basic reset controller with a sector resetting law, and with a state xr and input e, is given by

R :

{
ẋr = Arxr + Bre , (xr , e) ∈ C
x+r = Aρxr , (xr , e) ∈ D (24)

here C = {(xr , e) ∈ Rnr+1
: ev ≥ 0} and D = {(xr , e) ∈ Rnr+1

: ev ≤ 0}, being v = Crxr the controller output. Thus, the
asic jump set D is a sector in the e − v plane, consisting of its second and fourth quadrants. In combination with the
lant (2) and the exosystems (14), and also including time-regularization, the resulting reset control system is given by{

τ̇ = 1, ẋ = Ax , (x, τ ) ∈ Ccl
τm

τ+ = 0, x+ = ARx , (x, τ ) ∈ Dcl
τm

(25)

here the closed-loop state is now (x, τ ) = (xw, xp, xr , τ ), and the flow and jump sets are also given by (21) and (22),
respectively. But now the sets Ccl and Dcl defined by the sector resetting law, are given by

Ccl
= {x ∈ R

n
: xTMx ≥ 0} (26)

and

Dcl
= {x ∈ R

n
: xTMx ≤ 0} (27)

respectively, where

M =

⎛⎝ O O CT
w1

Cr

O O −CT
p Cr

CT
r Cw1 −CT

r Cp O

⎞⎠ (28)

It should be noted that time-regularization may cause solutions to flow in the jump set Dcl, or in the e− v plane to flow
in the sector D. It easily follows that this reset control system is flow persistent and does not have defective solutions.

Example 3.4. A detailed comparison between the proposed zero-crossing resetting law and the sector resetting law is
performed for a case. Consider the reset control system of Fig. 5 with both a zero-crossing resetting law (Example 3.3) and
9



A. Baños and A. Barreiro Nonlinear Analysis: Hybrid Systems 46 (2022) 101259

a
g

l
e

Fig. 6. Zero-crossing and sector resetting laws for Example 3.3: (top) Closed-loop outputs, (botton) Control signals.

sector resetting law. For the sector resetting law, the state is (x, τ ) = (xw, xp, xr1 , xr2 , τ ), and the reset control system is
iven by (25)–(28), with A and AR given by (23), and

M =

⎛⎜⎝0 0 1 1
0 0 −1 −1
1 −1 0 0
1 −1 0 0

⎞⎟⎠ (29)

Figs. 6–7 show a simulation of both reset control systems for τm = 0.2. Fig. 6 shows the step responses, including closed-
oop outputs and control signals. Note that there is an important difference in how both resetting laws perform jumps,
specially in the case in which e < 0 and v > 0 and thus a jump is enabled. In this case, which corresponds, for example,

to the first jump in Fig. 6, the zero-crossing resetting law performs a jump to its flow set and then the solution flows until
the next jump at t ≈ 2.25 s, while the sector resetting law performs a jump to its jump set. This produces chattering
behavior in the sector resetting law; and in fact, the obtained solution would be defective if time-regularization had not
been used. On the other hand, strictly speaking, time-regularization is not necessary for this solution of the zero-crossing
resetting law, and the same solution is obtained with or without time-regularization (as far as τm < τ ⋆m -see Example 3.3).
The control signals and their components are best analyzed in Fig. 7: note that after the first jump, in contrast with the
zero-crossing resetting law, the sector resetting law periodically reset its xr2 state every τm = 0.2 s, until t ≈ 2.45 s. This
is the cause of its chattering, and of its bigger overshoot and undershoot in the step response. The undershoot is worsened
by the fact that when the error signal changes its sign at t ≈ 2.45, xr2 ≈ 0 due to a recent reset. This example shows
that the responses of both resetting laws may be very different in general, and in this case, it is clear that the response
of the zero-crossing resetting law is qualitatively better in terms of tracking error and control signal chattering. Some
quantitative performance figures are shown in Table 1. Note that there is a significant reduction of 15% in the IAE and of
53% in the undershoot percentage when the zero-crossing resetting law is compared with the sector resetting law, and
with slightly better figures in the overshoot percentage and control signal energy. For values of τm < 0.2 the figures for
the sector resetting law are even worse.
10
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δ

i

Table 1
(Example 3.4) Performance figures for the reset control system of Fig. 6 (Horowitz reset controller) with the sector
resetting law and the proposed zero-crossing resetting law. IAE stands for the integral of the tracking error absolute
value, and ∥v − vss∥

2 is a measure of the control signal energy, defined as ∥v − vss∥
2
=
∑

∞

j=0

(∫ tj+1
tj

|v(t, j)− vss|2dt
)
,

where vss = 1 is its the steady-state value.
Resetting law IAE % overshoot % undershoot ∥v − vss∥

Zero-crossing 0.85 32.34 6.20 1.11
Sector 1.00 34.42 13.20 1.15

Fig. 7. Zero-crossing and sector resetting laws for Example 3.3.

4. Stability analysis

The stability of the time-regularized reset control system Hcl
τm

with no exogenous inputs is analyzed in the following.
Reset times-dependent stability criteria will be developed, inspired from previous results developed in [5,32]. The basic
idea of this approach is to analyze stability by using a discrete-time system (a Poincaré-like map), that represents the
sampling of Hcl

τm
at the after-reset instants.

As it is usual in hybrid dynamical systems, stability is referred to sets instead of to a single point. The following stability
definitions are based on [20], note that they are applicable to continuous-time or discrete-time systems as particular
cases of hybrid systems. Consider a generic hybrid system H on Rn. For a set A ⊂ Rn and a vector φ ∈ Rn, the notation
∥φ∥A = min{∥φ − ψ∥ : ψ ∈ A} indicates the distance of φ to A. The set A is stable for H if for each ε > 0 there exist
> 0 such that ∥φ(0, 0)∥A ≤ δ implies ∥φ(t, j)∥A ≤ ε for all solutions φ to H and all (t, j) ∈ dom x. The set A is attractive

f there exists a ball B ⊂ Rn centered at the origin such that for any ξ ∈ B solutions φ to Hcl with φ(0, 0) = ξ converge
to a set A, that is ∥φ(t, j)∥A → 0 as t + j → ∞, where (t, j) ∈ dom φ. The set A is asymptotically stable if it is stable and
attractive, and its basin of attraction is B. If the basin of attraction is Rn then A is globally asymptotically stable.
11
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In the case of the reset control Hcl
τm

given by (20), stability will be referred to the set

A0 = {0} × {1,−1} × [0,∞) (30)

Define for simplicity of notation the matrix J as

J =
(
I(n−nρ )×(n−nρ )
Onρ×(n−nρ )

)
(31)

such that for any z ∈ Rn−nρ , Jz =

(
z
0

)
∈ Rn. It easily follows that AR = JJ⊤, J = ARJ and J⊤ = J⊤AR. Now, the mapping

I : Rn−nρ → R≥0, is defined as

I(z) = min{τ ≥ τm : CeAτ Jz ≥ 0} (32)

Moreover, the following standing assumption will operate in the rest of this work. It is assumed that there exists an upper
bound of I in the cases in which the flow dynamics is unstable. This is justified to avoid cases in which the closed-loop
base system is unstable and it does jump a finite number of times. In these cases, the reset controller would be unable
to stabilize the flow dynamics.

Assumption A. Either the state matrix A in (20) is Hurwitz or the mapping I is upper bounded (that is there exists τM > 0,
that will be referred to as the reset intervals upper bound, such that I(z) ≤ τM for any z ∈ Rn−nρ ).

Here, a Poincaré-like map that gives the evolution from one after-jump state to the next one with a sign change is
postulated. By definition, the discrete-time system DHcl

τm
, with state z ∈ Rn−nρ , is given by

z+ = g(z) = −JT eA·I(z)Jz (33)

It is worth noting that the reset matrix AR is somehow embedded in J , and that the sign change allows one to obtain
the successive reset intervals starting at q = 1 by using the mapping I , which does not explicitly depend on q. Also, to
obtain a simplified dynamic discrete system DHcl

τm
in which the state z only consists of the first n− nρ values of x = Jz.

Some homogeneity properties of the maps I and g easily follow: for any λ > 0 it is true that

(i) I(λz) = I(z)
(ii) g(λz) = λg(z) (34)

roposition 4.1. The set A0 is (globally) asymptotically stable for the reset control system Hcl
τm

if and only if the origin {0} is
globally) asymptotically stable for the discrete-time system DHcl

τm
.

Proof. It is an adaptation of [5]- Proposition 3.1 to the hybrid formalism adopted in this work. Consider solutions z to
DHcl

τm
, given by (33), with z(0) = z0 ∈ Rn−nρ . First, it is important to point out that only solutions φ = (x, q, τ ) to Hcl

τm
,

as given by (20), with φ(0, 0) = ξ = (Jz0, 1, 0) need to be considered. On one hand, it is assumed that Hcl
τm

is initially
at a state (Jz0, q, 0), with z0 ∈ Rn−nρ and q ∈ {−1, 1} (see paragraph after (22)); and, in addition, it easily follows that a
solution φ− to (20) with φ−(0, 0) = (−Jz0,−1, 0) is the additive inverse of the solution φ+ with φ+(0, 0) = (Jz0, 1, 0),
hat is dom φ−

= dom φ+ and φ−(t, j) = −φ+(t, j) for any (t, j) ∈ dom φ+.
(only if ) From (20)–(22) and (33) it follows that the considered solutions φ to Hcl

τm
, with dom φ = [0, t1] × {0} ∪

t1, t2] × {1} ∪ · · · , satisfy

φ(0, 0) = (Jz0, 1, 0)
φ(t1, 1) = (−Jz(1),−1, 0)
φ(t2, 2) = (Jz(2), 1, 0)
. . .

(35)

nd thus ∥φ(tj, j)∥A0 = ∥Jz(j)∥ = ∥z(j)∥ for any j = 0, 1, 2, . . .. Now, by contradiction, if {0} is not stable for DHcl
τm

then
there exists ε > 0 such that for any solution z to DHcl

τm
there exist some j with ∥z(j)∥ > ε, and thus ∥φ(tj, j)∥A0 > ε. As

a result, A0 is not stable for Hcl
τm
. On the other hand, if {0} is not attractive for DHcl

τm
then there will exist a sequence of

values ∥φ(tj, j)∥A0 = ∥z(j)∥, for j = 1, 2, . . . which does not converge to zero, and thus A0 will not be attractive for Hcl
τm
.

(if ) From the flow equation in (20), for a solution φ = (x, q, τ ) with dom φ = [0, t1] × {0} ∪ [t1, t2] × {1} ∪ · · · , it
directly follows that

x(t, j) = eA(t−tj)x(tj, j) (36)

for any (t, j) ∈ dom φ, and thus there exist numbers M > 0 and α ∈ R such that

∥x(t, j)∥ ≤ ∥x(t , j)∥Meα(t−tj) = ∥(−1)j+1Jz(j)∥Meα(t−tj) = ∥z(j)∥Meα(t−tj) (37)
j
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nd thus

∥φ(t, j)∥A0 ≤ ∥z(j)∥Meα(t−tj) (38)

Now, if {0} is stable for DHcl
τm

then it is true that there exists γ > 0 such that ∥z(j)∥ ≤ γ ∥z0∥ = γ ∥ξ∥A0 and thus (38)
esults in (redefining Mγ as γ )

∥φ(t, j)∥A0 ≤ γ eα(t−tj)∥ξ∥A0 (39)

Now, from Assumption A it follows that either α < 0 (when A is a Hurwitz matrix) or t − tj < τM for any (t, j) ∈ dom φ,
and thus stability of the set A0 for Hcl

τm
directly follows. Asymptotic stability is obtained from the fact that for the discrete-

time system DHcl
τm

it is true that ∥z(j)∥ < γλj∥z0∥, for j = 1, 2, . . ., and for any z0 ∈ B and 0 ≤ λ < 1 (here B ⊂ R
np+nρ̂

is a ball centered at the origin). Substituting in (38) and using again the fact that ∥ξ∥A0 = ∥z0∥, it results that

∥φ(t, j)∥A0 ≤ γ λjeα(t−tj)∥ξ∥A0 (40)

and thus, since either α < 0 or t − tj < τM , it directly follows that ∥φ(t, j)∥A0 → 0 as t + j → ∞, where (t, j) ∈ dom φ,
and ξ ∈ (B × {0}) × {1} × {0}. As a result, global asymptotic stability of A0 for Hcl

τm
comes from the global asymptotic

tability of {0} for DHcl
τm
. □

.1. Stability based on periods of the reset interval sequences

It is well known that reset interval sequences have a particularly simple structure in some relevant cases in control
ractice [32]. For nr = nρ (full reset) and a second-order plant, np = 2, reset interval sequences are periodic with some
undamental period ∆ > 0, after the second reset (this is also the case of Example 3.3 with no exogenous inputs as long
as τm is small enough). Note that in these cases, stability can be easily checked by determining whether AReA∆ is a Schur
matrix.

This section will look at how periodic reset interval patterns can be used to obtain stability criteria for the reset control
system Hcl

τm
. It is defined the angle mapping Πg : Sn−nρ−1

→ Sn−nρ−1 as

s+ = Πg (s) =
g(s)
∥g(s)∥

(41)

ith g given by (33). Here, s is the projection of z ∈ Rn−nρ on the unit (n−nρ−1)-sphere Sn−nρ−1, and thus the mapping
g will produce orbits of those projections. A natural form of analyzing periodic interval sequences of the reset control
ystem Hcl

τm
is by analyzing periodic points of Πg . These points will define the periodic structure of the reset interval

sequences, allowing the development of an asymptotic stability criterion.
Some definitions about stability of periodic points follow (see, for example, [36] and [28] for technical details). Firstly,

Π k
g (s) is defined to be the result of applying k times Πg to the point s. The orbit of s under Πg is the set of points

s = Π0
g (s),Πg (s),Π2

g (s), . . . , }. p is a periodic-k point if Π k
g (p) = p and if k is the smaller such positive integer; and

he orbit of p with k points, that is {p,Πg (p), . . . ,Π k−1
g (p)}, is called a periodic-k orbit. For k = 1, p is referred to as

fixed point. Assume that Πg is differentiable in a neighborhood U of a fixed point p and let DΠg (p) be the Jacobian
atrix of Πg at p; the fixed point p is called a sink if DΠg (p) is a Schur matrix, and a source if all eigenvalues of DΠg (p)
ave a magnitude greater than 1. The stable manifold of p, denoted as S(p), is the set of points s ∈ Sn−nρ−1 such that
Π k

g (s) − p∥ → 0 as k → ∞. Analogously, for a periodic-k point p, its periodic-k orbit is a sink (source) if p is a sink
source) for the map Π k

g .

roposition 4.2. Assume that the angle map Πg has a periodic-k point p, being Π k
g differentiable in a neighborhood U of p,

nd that its periodic-k orbit is a sink with stable manifold S(p) = Sn−nρ−1. Then, p is an eigenvector of the matrix

Mp := J⊤eA·I(Π
k−1
g (p))

· · · AReA·I(Πg (p))AReA·I(p)J (42)

corresponding to a real eigenvalue λp, and the set A0 is asymptotically stable for the reset control system Hcl
τm

if and only if
|λp| < 1. Moreover, the basin of attraction of A0 is Rn

× {1,−1} × [0,∞) (stability is global).

Proof. Consider the discrete system DHcl
τm

as given by (33), z0 ∈ Rn−nρ , zj = g j(z0), and also s0 =
z0
∥z0∥

, and sj = Π
j
g (s0),

or j = 1, 2, . . .. From the homogeneity property (34), and (41), it directly follows that

I(zj) = I(sj) (43)

or j = 0, 1, 2, . . .. The proof is particularized for the case in which p is a fixed point of the angle map Πg (that is
= 1); for the cases k = 2, 3, . . ., the proof is similar, using Π k

g instead of Πg in the following reasoning. Now, define
he matrix functions M, δM : Rn−nρ → R(n−nρ )×(n−nρ ), such that M(z) = J⊤eAI(z)J , and thus M(p) = Mp as given by (42),
nd δM(z) = M(z)−M .
p
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Firstly, it will be shown that p is an eigenvector of Mp. Since p is a sink with stable manifold the whole sphere, then
it is true that ∥sj − p∥ → 0 as j → ∞, for any s0 ∈ Sn−nρ . Moreover, since the mapping I is continuous at p (otherwise
Πg would not be differentiable), and thus the mapping M is also continuous at p, it also follows that ∥I(sj)− I(p)∥ → 0
nd finally

∥M(sj)−Mp∥ → 0 (44)

s j → ∞, for any s0 ∈ Sn−nρ . Then, by directly using (33) and (41), two points sj and sj+1 = Πg (sj) are related by

sj+1 = −
M(sj)sj
∥M(sj)sj∥

(45)

or equivalently

M(sj)sj = −∥M(sj)sj∥sj+1 (46)

and finally for j → ∞ it results that

Mpp = −∥Mpp∥p (47)

hat is p is an eigenvector of Mp with eigenvalue λp := −∥Mpp∥, a (non-positive) real number.
Secondly, consider the (unique) orthogonal decomposition of zj as

zj = αjp+ αjδjp⊥ (48)

here p⊥ is a vector perpendicular to p, and αj and δj are real numbers, for any j = 1, 2, . . .. Since it is true that
sj − p∥ → 0 as j → ∞, then it directly follows that δj → 0 as j → ∞. In addition, consider two points zj and

zj+1 = g(zj), for j = 1, 2, . . .. It results that

∥zj+1∥

∥zj∥
=

∥ −M(zj)zj∥
∥zj∥

=
∥(Mp + δMj)(αjp+ αjδjp⊥)∥

∥αjp+ αjδjp⊥∥
→

∥Mpp∥
∥p∥

= |λp| (49)

for j → ∞, where by definition δMj = δM(zj), and it has been used the fact that ∥δMj∥ → 0 as j → ∞ (it easily follows
from (44)).

(if ) If |λp| < 1 then from (49) if follows that for some real number λ such that 0 ≤ |λp| < λ < 1, there exist an integer
N such that ∥zj+1∥ = ∥M(zj)zj∥ < λ∥zj∥, for j ≥ N , and this is true for any point z0. Since, from Assumption A, there
exists Mmax > 0 such that ∥M(z)∥ = ∥JT eAI(z)J∥ ≤ Mmax for any z ∈ Rn−nρ , then it results that

∥zj∥ ≤ ∥M(zj−1)∥∥M(zj−2)∥ · · · ∥M(zN )∥∥M(zN−1)∥ · · · ∥M(z0)∥∥z0∥ ≤ λj−NMN
max∥z0∥ (50)

that is

∥zj∥ ≤ γ λj∥z0∥ (51)

for j ≥ N , where γ = (Mmax/λ)N is a constant. It is also true that ∥zj∥ ≤ (Mmax)j∥z0∥, for j < N . It easily follows that
the origin is globally asymptotically stable for DHcl

τm
and Proposition 4.1 certifies global asymptotic stability of A0 for the

reset control system Hcl
τm
.

(only if ) Consider an initial condition z0 = α0p, where α0 is a non-zero arbitrary number. On the other hand,
M(cp) = M(p) for any constant c. Thus, z1 = −M(z0)z0 = −M(α0p)α0p = −α0M(p)p = −α0λpp, and it is obtained
that zj = (−1)jα0λ

j
pp for j = 1, 2, . . .. Stability of A0 for Hcl

τm
implies stability of the origin for DHcl

τm
, and this implies that

|λp| < 1. □

Note that, in general, the angle map Πg may exhibit several periodic-k points, not necessarily sinks, with different
integer values of k ≥ 1, each with its own stable manifold. For example, in the case in which the point is a source, the
stable manifold is the point itself. The following result follows using similar arguments to the proof of Proposition 4.2

Corollary 4.3. Assume that the angle mapΠg has a finite number of periodic points p1, p2, . . . , pn, with periods k1, k2, . . . , kn,
respectively, and that their stable manifolds satisfy

n⋃
i=1

S(pi) = Sn−nρ−1. (52)

Then, for each i = 1, 2, . . . , n, the point pi is an eigenvector of the matrix

Mpi = AReA·I(Π
ki−1
g (pi)) · · · AReA·I(Πg (pi))AReA·I(pi) (53)

corresponding to a real eigenvalue λpi , and the set A0 is asymptotically stable for the reset control system Hcl
τm

if and only if
|λ | < 1 for any i = 1, 2, . . . , n. Moreover, the basin of attraction of A is Rn

× {1,−1} × [0,∞) (stability is global).
pi 0

14



A. Baños and A. Barreiro Nonlinear Analysis: Hybrid Systems 46 (2022) 101259

f
c
o
t

a

i
t
s

S
z

S
s

h

F
m

M

Note that the angle map Πg defines a (nonlinear) discrete dynamic system given by (40), and its periodic points are
simply the fixed points of the maps Πg (angle map), Π2

g , Π
3
g , etc. Thus, for application of Proposition 4.2 or Corollary 4.3,

first it is needed to compute the fixed points of those maps. This is a basic computational issue in the field of discrete
dynamical systems; see for example [30,36]. Notice that the angle map Πg is defined on an m−dimensional sphere,
where m = n − nρ − 1. For small values of m like m = 1 (the case of Section 4.2) or m = 2 (the case of Section 4.3)
ixed points can be obtained without much computational effort. Note that these cases correspond to relevant practical
ases, for example, m = 1 may correspond to a case with a second order plant and a full reset controller of arbitrary
rder. In general, for larger values of m the computation of fixed points is more involved. However, note that although
he computational burden is a drawback, this is the price paid for having a necessary and sufficient stability condition. In
the following, several cases are analyzed in detail.

4.2. A case study with the Horowitz reset controller

For the Example 3.3 without exogenous inputs, the reset control system Hcl
τm

is given by the matrices A, AR and C
obtained by removing the first column and the first row of the matrices in (23), that is

A =

(
−1 1 1
−4 0 0
−1 0 0

)
, AR =

(1 0 0
0 1 0
0 0 0

)
, C =

(
−1 0 0

)
, (54)

and with a minimum dwell-time τm. Here, stability of the setA0 = {(0, 0, 0)}×{1,−1}×[0,∞) for the reset control system
Hcl
τm

is analyzed. Firstly, Assumption A must be checked. It easily follows since although A has eigenvalues λ1,2 = −
1
2±j

√
19
2

nd λ3 = 0, and thus A is not a Hurwitz matrix, the reset intervals upper bound is τM = τm +
2π
√
19

(details are omitted by
brevity). Now, for application of Proposition 4.1/Cor. 4.2, firstly note that m = n−nρ−1 = 1, and thusΠg maps values of s
n the unit circle S1. By simplicity, using the parametrization s = (cos(θ ), sin(θ )), for θ ∈ (−π, π], it is possible to redefine
he angle map (with some abuse of notation) as Πg : (−π, π] → (−π, π], and θ+ = Πg (θ ), with s = (cos(θ ), sin(θ )) and
+
= (cos(θ+), sin(θ+)) in (40), and from where periodic points at θ = pi, i = 1, . . . , n can be easily obtained.
Moreover, for the computation of the matrices Mpi , i = 1, . . . , n, the evaluation of I at the periodic points of Πg at

1 may also be simplified in an analogous manner, by redefining the mapping as I : (−π, π] → R≥0 obtaining I(θ ) with
= (cos(θ ), sin(θ )) in (31). Fig. 8 depicts the graphs of Πg and I for two different values of τm.
For τm = 0.25, Πg has a unique periodic point, it is a fixed point at p = π/2, which is a sink with a basin of attraction

(π/2) = (−π, π] (corresponding to the unit circle). Direct application of Proposition 4.2 results in the reset control
ystem Hcl

0.25 being globally asymptotically stable, since I(p) = I(π/2) = 2π/
√
19 and

Mp = J⊤eA·I(p)J =
(
−0.4863 0

0 −0.1891

)
(55)

as an eigenvector (cos(p), sin(p)) = (0, 1) with corresponding eigenvalue −0.1891.
For τm = 1.35, the mapping Πg exhibits a more complex structure (Fig. 8). Πg has three fixed points: p1 ≈ 0.5322,

p2 ≈ 1.4246, and p3 = π/2. Both p1 and p3 are sinks, while p2 is a source. Their basins of attraction are S(p1) = [d, p2),
S(p2) = {p2} and S(p3) = (−π, d) ∪ (p2, π], where both Πg and I have a jump discontinuity at θ = d (see Fig. 8-right).
inally, I(p1) = I(p2) = τm = 1.35 and I(p3) = 2π/

√
19. As a result, since S(p1) ∪ S(p2) ∪ S(p3) = (−π, π], and the three

atrices

Mp1 = J⊤eA·I(p1)J =
(
−0.5222 0.0463
−0.1850 −0.1808

)
, (56)

p2 = Mp1 , and Mp3 = AReA·I(p3) = Mp (as given in (55)) are Schur matrices (and thus all eigenvalues are strictly inside
the unit circle), it also follows that Hcl

1.35 is globally asymptotically stable.
As expected, τm has a strong influence on the periodic point patterns. Although, in principle, a small value τm is all that

is required to avoid defective solutions in control practice, and following the above analysis, it is not difficult to show that
Hcl
τm

is globally asymptotically stable for any τm < 1.35, it is illustrative to analyze how the periodic point patterns change
for increasing values of it. Although an exhaustive analysis is out of scope of this work and it will be given elsewhere,
there are several bifurcation points delimiting zones with one sink, with two sinks plus a source, with periodic-2 sinks,
with periodic-3 sinks, etc. To conclude the example, a case with periodic-3 sinks is analyzed in the following.

For τm = 2, there are three periodic-3 points (Fig. 9). They are p1 ≈ −1.5494, p2 ≈ −0.2162, and p3 = π/2. For p1, its
periodic-3 orbit {p1,Πg (p1),Π2

g (p1)} = {p1, p3, p2} is a sink and, in addition, I(p1) ≈ 2.9042, and I(p3) = I(p2) = τm = 2,
and

Mp1 = J⊤eA·I(p2)AReA·I(p3)AReA·I(p1)J = 10−2
·

(
−2.2711 0.0337
0.0011 −3.8597

)
, (57)

is a Schur matrix. For p2 and p3, its periodic-3 orbits are {p2, p1, p3} and {p3, p2, p1}, respectively. They are also sinks, and
the matrices Mp2 = J⊤eA·I(p3)AReA·I(p1)AReA·I(p2)J , and M(p3) = J⊤eA·I(p1)AReA·I(p2)AReA·I(p3)J can be easily checked to be Schur
matrices. Finally, applying Corollary 4.3, and using the fact that the union of the three basins of attraction is (−π, π], it
results that Hcl is globally asymptotically stable.
2
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Fig. 8. Graphs of the maps Πg (top) and I (bottom) for the reset control system of Example 3.3: (left) τm = 0.25 and τM ≈ 1.69; Πg has only a
periodic point (a fixed point) at p =

π
2 , and a jump discontinuity at d = π +

1
2 (1−

√
19

tan(
√
19
8 )

); (right) τm = 1.35 and τM ≈ 2.79; Πg has three fixed

oints at p1 ≈ 0.5322, p2 ≈ 1.4246, and p3 = π/2, and a jump discontinuity at d = −π +
1
2 (1−

√
19

tan(
√
19
2 ·1.35)

).

.3. A case with chaotic sequences of reset intervals

Obviously, Proposition 4.2–Corollary 4.3 are useful in practice for those cases in which periodic orbits of Πg can
be found with a reasonable effort, like in the cases analyzed above. Although this is the case in many practical cases,
even some low-order reset control systems may exhibit extraordinarily complex periodic point patterns that make their
application elusive, motivating the investigation of alternative stability criteria. The following describes a reset control
system consisting of a FORE and a third-order plant that produces chaotic sequences of reset intervals.

Consider the time-regularized reset control system Hcl
0.1, as given by (20) with τm = 0.1 and

A =

⎛⎜⎝0 0 3.5 5
1 0 −4.3 1
0 1 −1 0
0 0 −1 −1

⎞⎟⎠ , AR =

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞⎟⎠ , C =
(
0 0 −1 0

)
, (58)

This reset control system, with state (x, q, τ ) = (xp, xr , q, τ ), is the feedback composition of a FORE with state (xr , q)
and a third order plant with state xp = (x1, x2, x3). Here, the mapping Πg : S2 → S2 has an invariant set T =

{( t√
1+t2

, 1√
1+t2

, 0) ∈ S2 : t ∈ [−3, 4]}, that is Πg (T ) ⊂ T .

Again, the mapsΠg and I are particularized to T and reparameterized (with some abuse of notation) asΠg : [−3, 4] →
−3, 4], and I : [−3, 4] → R≥0 (their graphs are shown Fig. 10-left), being a point of the circle T represented by t instead
f s = ( t√

1+t2
, 1√

1+t2
, 0). In this case, since the mapping Πg is continuous on the interval [−3, 4] and has periodic-3

oints (see Fig. 10), then it turns out that Πg has periodic-k points for any k = 1, 2, 3, . . ., according to Sharkovskii
heorem [36,37]. For example, Fig. 10 shows the graphs of Πg , Π2

g , and Π
3
g , explicitly marking 1 periodic-1 point (a fixed

oint), 2 periodic-2 points, and 6 periodic-3 points. Note that all the periodic points are sources, and in fact this is the
ase for any periodic point since, as it is well known, period 3 implies chaos [27]. As a result, any initial point of Hcl , with
0.1
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Fig. 9. Reset control system of Example 3.3 for τm = 2: (top) Graph of the mapping Π3
g (left), showing the periodic-3 points p1 , p2 , and p3 , and graph

f Πg (right); (bottom) graph of the map I (left), and plot of q(t) ∈ {1,−1} showing the periodicity of the reset intervals (rigth), where I3 = I(p3) = 2,
I2 = I(p2) = 2, and I1 = I(p1) ≈ 2.9042.

ξ ∈ ( t√
1+t2

, 1√
1+t2

, 0, 0) × {1} × {0}, and t ∈ [−3, 4], will produce solutions with chaotic sequences of reset intervals,

aking elusive a direct application of Proposition 4.2–Corollary 4.3.

.4. Reset-times dependent stability conditions: Minimum dwell-time

An alternative approach to stability analysis of Hcl
τm

will be based on the use of Lyapunov functions, with an explicit
consideration of the reset interval sequences τφ = {τ1, τ2, . . .} corresponding to solutions φ = (x, q, τ ) to Hcl

τm
. This

pproach is based on the reset-times dependent stability criteria early developed in [5,32]. The set of all possible reset
nterval sequences is defined as

SHcl
τm

= {τφ = {τ1, τ2, . . .} ⊂ R≥0 : τi = τ (ti, i), (ti, i) ∈ dom φ, φ is a solution to Hcl
τm
} (59)

When A is a Hurwitz matrix, one strategy is to embed the set of reset interval sequences in a larger set Sτm characterized
by the minimum dwell-time τm associated to Hcl

τm
. It is defined as

Sτm = {{τ1, τ2, . . .} ⊂ R≥0 : τi ≥ τm, i = 1, 2, . . .} (60)

nd then stability conditions are considered for any possible reset interval sequence in Sτm . This approach will allow a
irect application of computationally efficient methods imported from the impulsive systems literature. And although,
n principle, results may be conservative due to the fact that SHcl

τm
is a meager set compared to Sτm , since it is clear that

τm ⊃ SHcl
τm
, in practice they may permit the computation of a first value of τm for which stability is guaranteed.

roposition 4.4. Consider the reset control system Hcl
τm

with a Hurwitz matrix A. The set A0 is globally asymptotically stable
or Hcl

τm
if there exist a sequence of positive definite matrices {P1, P2, . . .}, such that

ηI ≤ Pk ≤ ρI

eA
T τkARPk+1AReAτk − Pk ≤ −εI

(61)

olds for k = 1, 2, . . ., for some positive constants η, ρ, and ε, and any {τ , τ , . . .} ∈ S .
1 2 τm
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f
{

Fig. 10. An example of reset control system with a chaotic sequence of reset intervals: graphs of the mapps Πg , Π2
g , and Π

3
g (with marks at the

periodic points), and I .

Proof. Firstly, it is a standard result [30], Th. 23.3) that if (61) holds then the time-dependent quadratic Lyapunov function
V (z, k) = (Jz)TPk(Jz), certifies that every (time-varying) discrete-time system{

z+ = g(z) = −JTAReAτk Jz
k+ = k+ 1 (62)

with {τ1, τ2, . . .} ∈ Sτm , is globally asymptotically stable.
Now, since it is true that I(z) > τm for any z ∈ R

np+nρ̂ (it directly follows from its definition in (32)), and thus the
solution z to DHcl

τm
with z(0) = z0 corresponds with the solution to a discrete-time system like (62) with {τ1, τ2, τ3, . . .} =

{I(z0), I(g(z0)), I(g2(z0)), . . .} ∈ Sτm , then it follows from (61) that (see [30], Th. 23.3)

∥z(k)∥2 = ∥gk(z0)∥2 ≤
ρ

η
λ2k∥z0∥2 (63)

or k ≥ 0, and for some λ < 1. Since the constants ρ, η, and λ do not depend on z0 then it directly follows that the origin
0} is globally asymptotically stable for the discrete time system DHcl

τm
. Application of Proposition 4.1 ends the proof. □

Proposition 4.4 gives a nice and simple connection between stability of the reset control system Hcl
τm

and stability
of impulsive systems with impulses at fixed instants, since condition (61) can be easily linked with the stability of an
impulsive system with impulses at instants tk = tk−1+τk, k = 1, 2, . . .. Moreover, the following Corollary directly follows.

Corollary 4.5. Assume that (61) hold for k = 1, 2, . . ., for η, ρ, ε > 0, and for any {τ1, τ2, . . .} ∈ Sτ⋆m . Then the set A0 is
globally asymptotically stable for Hcl

τm
, for any τm ≥ τ ∗m.

A particular simple instance of (61) is obtained by considering a time independent Lyapunov function, that is Pk = P ,
for any k = 1, 2, . . .. In this case, the procedure for solving (61) is reduced to searching for a matrix P > 0 such that

eA
T τARPAReAτ − P ≤ −εI (64)

for some ε > 0 and any τ ≥ τ ∗m. This problem is well-known in the literature and there are a number of effective
approaches for resolving it [5,25,32,38]. The next result is directly imported from [38].
18
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orollary 4.6. Consider the reset control system Hcl
τm

given by (20). Assume that there exist a differentiable matrix function
R : [0, τ ∗m] → Sn, R(0) > 0, and ε > 0 such that

ATR(0)+ R(0)A < 0
ATR(θ )+ R(θ )A+ Ṙ(θ ) ≤ 0,
ARR(0)AR − R(τ ∗m) ≤ −εI,

(65)

hold for any θ ∈ [0, τ ∗m]. Then, the set A0 is globally asymptotically stable for Hcl
τm
, for any τm ≥ τ ∗m.

This Corollary provides an efficient method for solving the Hcl
τm

stability problem, particularly when searching for the
atrix function R in the set of matrix polynomials with a given degree dR, that is when R(θ ) =

∑dR
i=0 Riθ

i, Ri > 0. In
his case, (65) may be inserted in sum-of-squares conditions, and the problem can be efficiently solved by using some
um-of-squares programming package (e.g. SOSTOOLS [29]).

xample 4.7. This is a classical example of a reset control system, considered in early works about reset control like [1]. It
onsists of a feedback interconnection between a FORE and a second order plant. Here, it is defined as a time-regularized
eset control system Hcl

τm
with

A =

(0 0 1
1 −0.2 1
0 −1 −1

)
, AR =

(1 0 0
0 1 0
0 0 0

)
, C =

(
0 −1 0

)
(66)

nd a minimum dwell-time τm. Since A is a Hurwitz matrix, in fact it has two complex dominant eigenvalues at
1
10 ± j 3

√
11

10 , stability of the set A0 = {0} × {1,−1} × [0,∞) will be investigated using Corollary 4.6. After working with
OSTOOLS, a value of τ ∗m = 0.6145 is obtained, and thus global asymptotic stability is guaranteed for any τm ≥ 0.6145.
As it is expected, the result is somehow conservative. In this case, application of Proposition 4.2 to the values
< τm ≤ 0.6145 yields only one fixed point p = (−1, 0) of the mapping Πg (and no other periodic points); and, in

ddition, I(p) = π
β

where β = 3
√
11
10 . Moreover, the corresponding matrix Mp = J⊤eA

π
β J is easily checked to be a Schur

atrix. As a result, Proposition 4.2 certifies global asymptotic stability of A0 for Hcl
τm

for τm ≤ 0.6145. And a combination
f both results certifies global asymptotic stability for any value of τm > 0.
Interestingly, the application of Proposition 4.2 is less direct for τm > π

β
≈ 3.1574. For increasing values of τm they

ppear two fixed points (one sink and a source), periodic-2 points, etc. (details are omitted for brevity).

.5. Reset-times dependent stability conditions: Ranged dwell-time

If A is not Hurwitz (but reset intervals are bounded by τM according to Assumption A) then the reset interval sequences
set SHcl

τm
, as defined in (59), is embedded in a larger set S[τm,τM ] characterized by a ranged dwell-time. It is defined as

S[τm,τM ] = {{τ1, τ2, . . .} ⊂ R≥0 : τi ∈ [τm, τM ]} (67)

nd it is clear that SHcl
τm

⊂ S[τm,τM ].
The next Proposition is a direct adaptation of Proposition 4.4 and Corollary 4.5 and easily follows.

roposition 4.8. Consider the reset control system Hcl
τm

with a reset intervals upper bound τM > 0. The set A0 is globally
symptotically stable for Hcl

τm
, with [τm, τM ] ⊂ [τ ∗m, τ

∗

M ], if there exist a sequence of positive definite matrices {P1, P2, . . .}, such
hat

ηI ≤ Pk ≤ ρI

eA
T τkARPk+1AReAτk − Pk ≤ −εI

(68)

old for k = 1, 2, . . ., for some positive constants η, ρ, and ε, and any {τ1, τ2, . . .} ∈ S[τ∗m,τ∗M ].

Again, if it is considered a sequence of constant matrices Pk = P > 0 in Proposition 4.8, then some efficient methods in
he literature can be applied. For example, in [32,39] a method for obtaining a set of intervals [τm, τM ] is developed. Also
n [38] a method based on sum-of-squares conditions is given for this case of ranged dwell-time; the following Corollary
s directly based on it.

orollary 4.9. Assume that there exist a differentiable matrix function R : [0, τM ] → Sn, R(0) > 0, and ε > 0 such that

ATR(θ )+ R(θ )A+ Ṙ(θ ) ≤ 0,
ARR(0)AR − R(τ ) ≤ −εI, (69)

old for any θ ∈ [0, τ ∗M ] and any τ ∈ [τ ∗m, τ
∗

M ]. Then the set A0 is globally asymptotically stable for Hcl
τm
, and for any

τ , τ ] ⊂ [τ ∗ , τ ∗ ].
m M m M
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xample 4.10. Consider again the reset control system with the Horowitz reset controller (Fig. 6), described in Section 4.2.
ote that the matrix A is not Hurwitz, since it has an eigenvalue in the closed right half plane, but the reset intervals
pper bound is τM = τm +

2π
√
19
. Using Corollary 4.9, it is discovered that (69) is feasible for τ ∗m = 0.1 and τ ∗M = 37.5 (the

sum of squares tool SOSTOOLS, with a polynomial matrix function R(θ ) =
∑6

i=0 Riθ
i of degree 6, has been used). As a result, A0 is

globally asymptotically stable for Hcl
τm
, and for [τm, τM ] = [τm, τm +

2π
√
19
] ⊂ [0.1, 37.5], that is for any τm such that 0.1 ≤ τm ≤ 36.05.

Here, the result is somehow conservative as expected, note that in Section 4.2 stability is obtained for τm arbitrarily small.

. Conclusions

A new model of the Clegg integrator with an attached error zero-crossing mechanism has been developed. This results
n a reset controller model in the hybrid inclusions framework, equipping the resulting reset control system with good
tructural properties like robustness against measurement noise and robustness in stability. The manuscript has been
ocused on analysis of well-posedness and stability, adapting and extending previous work of the authors to the new
eset model. More specifically, stability has been approached by analyzing the stability of a Poincaré-like map, following
wo paths: a test (necessary and sufficient conditions) based on the eigenvalues of matrices related with periods of reset
nterval sequences, and Lyapunov functions-based sufficient conditions. Both approaches have been analyzed in detail,
ncluding several examples.

On the one hand, although checking eigenvalues is a simple and efficient way to test stability, its applicability depends
n the computation of a finite number of periodic points of a nonlinear map, being the computational burden increasing
ith the number of states that are unchanged at jumps. As an interesting result, it has been formally shown that this

s not always possible since in some cases reset intervals may produce chaotic sequences. As an alternative, Lyapunov
unction-based results may be applied: different results have been obtained for the case in which the base control system
s stable or unstable. Although they may be conservative, these (sufficient) conditions may be efficiently solved by using
um-of squares programming. In practical cases, a combination of both methods may be useful to analyze stability for
ifferent values of minimum dwell-time. As a final conclusion, it is believed that the manuscript gives a solid framework
or reset control systems with a zero-crossing resetting law, that may serve as a basis for new theoretical and practical
dvances.
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