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Abstract: The detection of ductile damage by image-based methods is time-consuming and typically
probes only small areas. It is therefore of great interest for various cold forming processes, such as
sheet-bulk metal forming, to develop new methods that can be used during the forming process
and that enable an efficient detection of ductile damage. In the present study, ductile damage in
DC04 was examined using ultrasonic testing. First, different grain sizes were set by heat treatment.
Subsequently, the sheet metal was formed by cold rolling. A clear correlation between the average
void diameter and the measured ultrasonic velocity could be shown. The ultrasonic velocity showed
a clear decrease when the average void size increased because of the increasing forming degree. The
ultrasonic measurements were finally employed to calculate a damage parameter D to determine the
amount of ductile damage in the microstructure for different grain sizes after cold rolling.
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1. Introduction

The process class of sheet-bulk metal forming (SBMF) combines sheet metal forming
with bulk forming operations and enables the production of components with integrated
functional elements [1]. As a result of cold forming, ductile damage in the form of void
formation in the material can occur [2]. These voids can act as crack nucleation sites and
finally lead to premature failure of the component under cyclic loading [3,4]. Various
models used in fracture mechanics, for example, the ∆J-integral approach, utilize void
parameters to calculate the initial crack lengths and then predict the service life of a
component [5]. Knowledge of the position of the voids in the component and their size is
therefore of interest for component design and for planning a metal forming technology
such as SBMF.

In contrast to relatively large defects within the microstructure, which can extend to
several hundred micrometers as, for example, those that are often present when using
processes like additive manufacturing [6] or casting [7], the defects resulting from cold
forming are much smaller. For instance, Besserer et al. reported that the smallest voids
were in the range from 0.00 to 0.02 µm2 (single void area observed in scanning electron
microscopy (SEM) analysis) [3]. Clearly, it is challenging to detect ductile damage in the
form of such small defects resulting from SBMF.

Ductile damage generally describes void formation, void growth and void coalescence
as a result of an increasing degree of deformation [2,8]. In principle, a distinction can
be made between homogeneous void formation in areas of high dislocation densities or
heterogeneous void formation in particles and at grain boundaries [2]. A variety of models
already exist in the literature to predict void formation. The damage mechanics model
proposed by Gurson, Needleman and Tvergaard (GNT) is widely used in this context;
further models are described by Bonora et al. [9]. All these models try to predict void
evolution based on various material-related input variables. A major challenge in the
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validation of these models is the detection of the voids. In contrast to defects close to the
surface, which can be detected by imaging methods such as visual inspection, microscopy
or fringe projection profilometry [10], the voids are located inside the component. One
possibility for determining a void volume fraction is using computer tomography (CT). As
a downside, conventional CT methods typically have a resolution limit of approx. 1 µm.
An advantage is that CT provides for a three-dimensional image of the microstructure [11].

Another method that can be employed to detect defects even in the nanometer range
is SEM imaging [12]. However, this requires the destruction of the component for further
sample preparation and only small areas can be investigated [5]. It should be noted that
the type of sample preparation, such as mechanical polishing, ion polishing or cryogenic
fracturing, can have a substantial effect on the result [13]. Depending on the test method
(CT or SEM), the void volume fraction (three-dimensional) or void area fraction (two-
dimensional) is determined.

An alternative to the determination of the void volume fraction is to initially define
an appropriate damage parameter. This approach is often used in damage mechanics
models to later calculate the void volume fraction. According to Lemaitre [14], a damage
parameter D criterion can be determined based on several different reference parameters X
such as the elastic modulus, the microhardness, the electrical conductivity or the ultrasonic
velocity [14]:

D = 1 −
X2

damaged

X2
initial

(1)

For metallic materials, the elastic modulus is often determined from cyclic load
tests [9,15] or tensile testing. Unfortunately, these tests are time-consuming and they
are also unsuitable for testing finished components due to their destructive nature. Fur-
thermore, when comparing the scatter of the absolute values of the damage parameter
determined by different methods (mechanical tensile tests, resonance frequencies of self-
oscillating specimen, ultrasonic wave propagation velocity and electron microscopy) the
good agreement between the data based on electron microscopy and ultrasonic measure-
ments was noted [16].

The determination of ductile damage by ultrasonic measurement is comparatively
simple and non-destructive. The measurement relies on the well-known relationship
between the acoustic and mechanical properties of metals [17]. With knowledge of the
component thickness, the ultrasonic velocity of the material can be determined accurately
based on time measurement. This method has also been used for non-metallic materials,
for example, for concrete [18,19] or polymers [20]. There is also a large number of studies
on different metals [16,21,22]. For instance, Kennedy et al. studied the influence of the
martensite content on the ultrasonic velocity. It was shown that the ultrasonic velocity
was significantly lower for microstructures containing martensite compared to ferrite-
dominated microstructures [23]. However, other factors influencing the microstructure,
such as the grain size, are often not considered in these investigations. Despite the fact that
studies of changes in the ultrasonic velocity depending on the microstructure have been
conducted for quite a long time [24–26], the details of the relationship between ultrasonic
velocity and the microstructural features remains unclear.

Within the scope of this study, the damage parameter D was determined for different
degrees of deformation and grain sizes by means of ultrasonic testing. In this way, possible
factors in the microstructure influencing the measurement of the ultrasonic velocity were
identified and evaluated.

2. Materials and Methods
2.1. Material

The material used for the study was hot rolled DC04, a steel grade often employed for
conventional sheet cold forming processes like deep-drawing. The chemical composition
was analyzed by spark spectrometry and is given in Table 1.
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Table 1. Chemical composition in wt.-% of DC04.

C Si Mn P S Al Cu Cr Ni Fe

DC04 0.047 0.014 0.225 0.007 0.012 0.072 0.012 0.018 0.010 balance

For the experiments, several grain sizes were set by applying different heat treatments.
The resulting microstructures are shown in Figure 1. Figure 1a represents the initial
condition without additional heat treatment. The average grain size was determined using
the line intercept technique. Grain sizes were determined with a total of 10 lines for each
micrograph. The average grain size for the initial condition was 20 µm, and the Vickers
hardness was 108 HV10. For each hardness measurement, 5 different measuring points
were recorded. The standard deviation of the 5 measurements was less than 1.7% for
each heat treatment condition. The comparatively low hardness of the initial condition
confirmed that no cold forming had occurred during the manufacture of the semi-finished
product, which could lead to initial damage. Figure 1b shows the microstructure after heat
treatment at 850 ◦C for 30 min, followed by cooling in air. The average grain size was
28 µm, and the Vickers hardness was 122 HV10. Figure 1c shows the microstructure after
a heat treatment of 1150 ◦C for a duration of 5 h and cooling in the furnace. The average
grain size was 57 µm, and the Vickers hardness was 109 HV10.
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Figure 1. Micrographs of the three different material conditions of DC04 analyzed: (a) initial condition,
(b) 850 ◦C, 30 min, (c) 1150 ◦C, 5 h.

The speed of sound in the material depends substantially on the volume fraction of
damage caused by deformation of the metal upon processing [27]. To simulate processing,
the three different microstructural conditions obtained after the heat treatments were
subsequently cold-rolled in several passes. The initial thickness of the sheet was h0 = 3 mm;
the initial sheet length was 165 mm. The main forming degrees set were ϕ = 0.1 and ϕ = 0.3.
The logarithmic forming degree was determined according to Equation (2).

ϕ = ln
(

h0

h1

)
(2)

In order to minimize the possible influences of the specimen thickness on the measure-
ment, the specimens were ground to an initial thickness of 2 mm each. Using polyethylene
plates, an increase in the speed of sound with increasing specimen thickness was already
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demonstrated in Zhang et al. [20]. This effect can be attributed to the difference in the wave
front propagation in thicker samples and the density difference between specimen, contact
fluid and air when coupling the ultrasonic signal into the specimen.

2.2. Measuring the Ultrasonic Velocity

The ultrasound measurements were carried out using an Elcometer© FD800DL+
fault detector. Figure 2 depicts the general measurement setup schematically. The ultra-
sonic transducer was placed on the specimen with a contact fluid (UltraSoniX™, Echo
Ultrasonics®, Bellingham, WA, USA). The contact pressure of the transducer was kept
constant at 5 N. The ultrasonic frequency emitted by the transducer was 2.5 MHz. A total
of 5 measurements were performed per measuring point. For each specimen, 5 different
measurement points were placed across the cross-section with a distance of 20 mm. The
measuring points were evenly distributed over the sample cross-section to measure as
large a sample volume as possible. The distance between the measuring points was chosen
so that the measuring areas did not overlap. The ultrasonic velocity v was determined
based on the pulse-echo technique. If the sample thickness t is known and the time of
flight (TOF) s is measured, the speed of the ultrasonic can be determined according to
Equation (3) [28]. Knowing the ultrasonic velocity of the material, a damage parameter D
can then be determined by comparing the initial condition with the cold-rolled conditions,
cf. Equation (1).

v =
2 × t

s
(3)
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2.3. Void Fraction Measurement

Scanning electron microscopy was employed to determine the void area fraction. The
samples were mechanically polished in several stages with a final polish of 1 µm, and then
images were taken with a Zeiss SUPRA 55VP. The total observation area was 24,960 µm2,
resulting from 25 individual backscattered electron (BSE) SEM images, each measuring
26.2 µm × 38.1 µm. The magnification for the SEM images was 3000× in order to find a
good compromise between high resolution and large measured area. The voids could be
clearly distinguished from the rest of the microstructure based on the gray values. The gray
scale analysis was performed using Olympus Stream Enterprise software.

Since scanning electron microscopy can only image a small area compared to ultrasonic
testing, the average void size in the range from 0.02 to 0.2 µm2 was determined in the
subsequent evaluation. By this, it can be excluded that single large voids influenced the
result too much, which would lead to false conclusions when evaluating the average
void size. Based on the use of the average void size, no damage parameter D could be
determined. However, the average void size allowed conclusions to be drawn about the
void development during the forming process. It can therefore be assumed that the damage
parameter D and the average void size correlated with increasing ductile damage.
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3. Results and Discussion
3.1. Ultrasonic Measurement and Damage Parameter

Figure 3 depicts the results of the ultrasonic measurements showing the ultrasonic
velocity as a function of the degree of deformation. The error bars correspond to the
standard deviation of the five individual measurements. The measured values were
approximated by a linear fit based on the sum of the least square errors. The resulting
linear equations are also indicated in Figure 3. For the initial condition (Figure 3a), a slight
decrease in the sonic velocity could be observed with increasing degree of deformation.
The heat-treated specimens showed a similar trend (Figure 3b,c). The absolute values of
the ultrasonic velocities correlated well with measurements on the 304 L stainless steel
performed at 2.25 MHz [29]. The decrease in the ultrasonic velocity with progressive
deformation was also shown in previous investigations after fatigue and creep tests. The
decrease was attributed to the formation of microvoids [30,31].
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It was observed that the initial ultrasonic velocities without any cold forming differed
as well. Thus, a relatively large influence of the grain size on the sonic velocity could
be assumed. Similar effects were shown by Choi et al. for different grain sizes of a
304 L stainless steel, where the ultrasonic velocity was found to decrease linearly with
increasing grain size [29]. An approximately linear decrease in the sonic velocity with
increasing grain size according to the model of Hirsekorn [32] could not be shown since
other microstructural effects, such as the change of the residual stress state, grain size and
dislocation density due to the different heat treatments have an influence on the sonic
velocity too. The influence of residual stresses on sonic velocity has already been shown by
Crecraft [33].

The ultrasonic measurements were employed to determine the damage parameters
for the different material conditions. The damage parameter D based on sonic velocity
measurements was determined using the trend lines and Equation (1). As can be seen
from Table 2, the value of the damage parameter turned out to be more sensitive to the
degree of deformation than what followed from the measurements made earlier at lower
frequencies [16,34]. Nevertheless, the damage parameter D showed good agreement with
previous studies by Gerstein et al. [16].

Table 2. Damage parameter D calculated for the different material conditions based on the ultrasonic
measurements.

Initial Condition 850 ◦C, 30 min 1150 ◦C, 5 h

cold rolling, ϕ = 0.1 0.004 0.008 0.011

cold rolling, ϕ = 0.3 0.013 0.025 0.033
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Figure 4 depicts the relationship between the calculated damage parameters and the
grain size. A logarithmic increase in the damage parameter with increasing grain size can
be seen for both forming degrees. This correlation is consistent with previous studies on
the influence of grain size on ultrasonic velocity [32]. However, it indicates that the grain
size must be taken into account when determining the damage parameter.
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In order to separate possible further influences such as the change in residual stress
state clearly from the effects of void evolution, the three different material states that were
cold rolled with ϕ = 0.3 were subsequently heat treated. Stress relief heat treatment at
600 ◦C for 2 h was carried out. Due to the relatively low temperature, which was well below
the transformation temperature for steel, the subsequent heat treatment was not expected
to change the microstructure or the void volume fraction. Subsequently, the ultrasonic
velocity measurements were repeated. Within the measurements, no relevant changes
from the states that were not heat-treated were observed. The change in the ultrasonic
velocities was ≤±0.25% for all three conditions compared to the cold-rolled states and was
well below the measurement uncertainty. Hence, no considerable influence of the residual
stresses on the ultrasonic velocities could therefore be demonstrated.

3.2. Void Analysis by Scanning Electron Microscopy

Figure 5 shows four representative SEM micrographs that were employed for the void
area fraction measurements. Figure 5a displays the initial condition, where the individual
voids can clearly be seen. Figure 5b depicts the largest defect found in the microstructure
of a deformed sample (1150 ◦C, 5 h, ϕ = 0.3). This large defect was not taken into account
for the determination of the average void size (cf. Section 2), as it could be assumed
that these defects did not arise due to ductile damage but were already present in the
initial condition.

Figure 5c shows the initial state at ϕ = 0.3. In the area with a high grain boundary
density, an increased void volume fraction can be observed. In addition, a slight elongation
of the voids in the rolling direction (RD) can be seen. Figure 5d (1150 ◦C, 5 h, ϕ = 0.3) shows
an area without any grain boundaries and low void volume fraction. The observations are
in good line with investigations according to Goods, who was able to show a heterogeneous
void formation at the grain boundaries (cf. also Figure 6) [2].

Figure 6 shows the average void size for the different material conditions as a function
of the degree of forming. For all conditions, a slight increase in the average void size with
increasing degree of deformation can be seen. For the material states with smaller grain
sizes a stronger increase in the average void sizes can be seen. According to Goods this
can be attributed to a higher heterogeneous void growth at the grain boundaries [2]. In
general, the measured data were subject to a relatively high scatter due to the small area
of measurement. However, the absolute values of the average void sizes showed a good
agreement with previous investigations from Besserer et al. where an average void size of
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approx. 0.05 µm2 was determined for tailored blanks from DC04 that were also formed in a
process similar to cold rolling [3].
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figures: (a) initial condition, (b) 1150 ◦C, 5 h, ϕ = 0.3, (c) initial condition, ϕ = 0.3 with increased void
formation at grain boundaries, (d) 1150 ◦C, 5 h, ϕ = 0.3 with areas with low void volume fraction.
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Figure 6. Evolution of the average void size vs. the degree of deformation: (a) initial condition,
(b) 850 ◦C, 30 min, (c) 1150 ◦C, 5 h.

4. Conclusions

In the present study a clear correlation between the increase in ductile damage and the
degree of deformation was shown. For different grain sizes, a damage parameter D could
be determined from ultrasonic measurements that also correlated with the average void
sizes. The results can be summarized as follows:

• Ultrasonic measurement methodology can cover a much larger area compared to
SEM examinations. The voids cannot be measured directly by ultrasonic due to the
resolution being too low, but the damage parameter D showed a good correlation to
the average void size determined in the SEM examinations.
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• The ultrasonic velocity decreases significantly with increasing deformation. This
effect can be used to determine a damage parameter D according to standard calcula-
tion methods. In further works, the determined damage parameters can be used in
damage mechanics models. Due to the time-of-flight determination of the ultrasonic
velocity, this methodology can currently only be applied to sheet metal strips. For
measurements on components, the methodology has to be extended.

• The grain size shows a significant influence on the ultrasonic velocities, and thus on
the damage parameter D. This effect has to be taken into account when comparing
different heat treatment conditions and grain sizes of the same alloy with regard to
their ductile damage.

• Various factors that characterize the microstructure contribute to the change in the
ultrasonic propagation velocity: the amount of deformation, the presence and type
of heat treatment, the size of the defects, the grain size and configuration of the
samples. However, it was demonstrated that the residual stresses had no influence
on the ultrasonic velocities in the present study. In further investigations, the various
microstructural effects during cold forming and their influence on the ultrasonic
velocities must be more clearly separated from each other.
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