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Abstract: Polarons, quasiparticles resulting from the interaction between an impurity and the collec-
tive excitations of a medium, play a fundamental role in physics, mainly because they represent an
essential building block for understanding more complex many-body phenomena. In this manuscript,
we study the spectral properties of a single impurity mixed with identical bosons in a one-dimensional
lattice with power-law hopping. In particular, based on the so-called T-matrix approximation, we
show the existence of well-defined quasiparticle branches for several tunneling ranges and for both
repulsive and attractive impurity-boson interactions. Furthermore, we demonstrate the persistence
of the attractive polaron branch when the impurity-boson bound state is absorbed into the two-
body continuum and that the attractive polaron becomes more robust as the range of the hopping
increases. The results discussed here are relevant for the understanding of the equilibrium properties
of quantum systems with power-law interactions.
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1. Introduction

The study of a single impurity immersed in a many-body quantum system is one of
the central topics in condensed matter physics that continuously reveals new intriguing
phenomena. The polaron concept, originally proposed by Landau and Pekar [1,2] to de-
scribe the screening of electrons in a crystal, provides a useful approach to understanding
nontrivial many-body properties. In recent years, the polaron idea has not only been
used to describe electrons in solids but also impurities dressed by spin fluctuations [3,4],
bound electron-hole pairs in semiconductors [5,6], hybrid impurities of light-matter na-
ture [7,8], and to describe highly imbalanced mixtures in ultracold quantum gases [9–12],
among others. Furthermore, the vast relevance of the polaron concept has recently en-
couraged the development of studies that explore the physics of impurities in more exotic
scenarios. For instance, bipolarons (bound states between two polarons) [13–17], dipolar
polarons [18–21], and charge polarons [22–25].

The introduction of optical lattices and optical tweezers on various experimental
platforms has motivated the study of impurity physics beyond the homogeneous space
scenario. Furthermore, the incorporation of quantum gas microscopy in lattice experiments
has opened unique opportunities for the study of polarons since it allows the exploration of
in situ properties, providing detailed and more accurate spatial information. Several studies
have addressed the lattice polaron problem. In particular, the transport of impurities in one-
dimensional lattices has been addressed within the weak and strong-coupling regime [26–32]
and variational schemes have been employed to describe polarons and bipolarons in one-
dimensional lattices [33]. More recently, the effects of the superfluid to Mott-insulator
transition of two-dimensional bosons on the polaron physics have been analyzed for weak
boson-impurity interactions [34], and a non-self-consistent T-matrix approximation has
been employed to describe single impurities and the formation of bipolarons in square
lattices [17].
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Most of the current studies on lattice polarons consider short-range couplings, either
contact interactions or nearest-neighbor hoppings, overlooking the effects of longer-range
couplings. An interesting question is to study the physics of lattice polarons when the
nearest-neighbor tunneling is replaced with a hopping whose amplitude follows a power
law. This modification is of particular interest since power-law interactions arise in several
quantum simulation platforms, such as trapped ions [35,36], polar molecules [37,38], Ry-
dberg atoms [39], nuclear spins in solid-state systems [40], and atoms in photonic crystal
waveguides [41]. Recently, the physics of quantum systems with long-range interactions
has attracted plenty of attention [42]. In particular, it has been shown that power-law
couplings lead to new Lieb-Robinson bounds for quantum information dynamics [43],
exotic spin dynamics [44–46], multifractality and intriguing localization properties in the
presence of a quasiperiodic potential [47–50], and modifications in both the superfluid to
Mott-insulator transition and the Bose–Einstein condensation [51–54].

In this manuscript, we study the spectral properties of a single impurity mixed with
identical bosons in a one-dimensional lattice with power-law hopping. To this end, we
first examine the scattering problem of a single impurity and a single boson, based on the
so-called T−matrix formalism, we show the effects of the range of the hopping on the
two-body bound state. In particular, we illustrate the dependence of the energy of the
dimer on the power of the hopping and the stability of the repulsively and attractively
bound states. Afterward, we modify the two-body T−matrix to include the effects of a
BEC and study the emergence of well-defined quasiparticle branches for different hopping
ranges within the non-self-consistent approximation. It is important to mention that this
approximation allows us to study the quasiparticle properties in a non-perturbative manner
and treat strong and weak impurity-boson interactions within the same scheme. Within this
approach, we analyze the spectral properties of the polarons and their dependence on
the power of the hopping. In particular, we show the existence of polaron branches for
repulsive and attractive interactions, we illustrate that the polaron branch for attractive
interactions is well-defined even when the impurity-boson bound state disappears and
that as the range of the hopping increases, the attractive polaron becomes more robust.
The results here discussed go beyond previous findings, in the sense that they explore the
consequences of the range of the hopping on the spectral properties of one-dimensional
polarons. Furthermore, they are relevant for current experiments in quantum systems with
power-law couplings.

This manuscript is organized as follows. In Section 2, we provide the model employed
to describe single-impurity physics. Section 3 presents a brief summary of the main
properties of a single particle moving in a lattice with power-law hopping. Then, Section 4
focuses on the two-body problem of an impurity atom and a Bose atom. In Section 5, we
provide the main results of an impurity immersed in a Bose–Einstein condensate (BEC).
Finally, in Section 6, we summarize and discuss our results.

2. Model

We consider a mobile impurity mixed with identical bosons in a one-dimensional
lattice of length L and with inter-site couplings decaying as a power law with power α.
For simplicity, we consider the same power law for the bosons and the impurity. In the
second quantization formalism, the Hamiltonian that describes the above system is given
as follows

Ĥ = −tB ∑
i,j 6=i

1
|i− j|α b̂†

i b̂j +
UB
2 ∑

i
b̂†

i b̂†
i b̂i b̂i − µB ∑

i
b̂†

i b̂i

− tI ∑
i,j 6=i

1
|i− j|α ĉ†

i ĉj + UBI ∑
i

b̂†
i ĉ†

i ĉi b̂i,
(1)

where b̂i (b̂†
i ) and ĉi (ĉ†

i ) annihilates (creates) a boson and an impurity at site i, the tunneling
amplitude between nearest neighbors is tB for the bosons and tI for the impurities, UB > 0
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is the on-site boson-boson repulsion, µB is the chemical potential of the bosons, and UBI
is the on-site interaction between the bosons and the impurity. In contrast to the on-site
boson-boson interaction, through the manuscript, we shall consider repulsive and attractive
boson-impurity interactions. For simplicity, we set h̄ and the lattice constant a to unity,
and consider the case of equal nearest-neighbor tunneling amplitudes, that is tB = tI = t.
It is important to mention here that case tB 6= tI is also relevant as it considers the scenario
where the bosons and the impurity have different masses. The inclusion of power-law hops
increases the mobility of the particles in comparison with usual nearest-neighbor models.
In particular, it has been shown [55] that for α > 2 the single-particle propagation across
the lattice is ballistic, that is, strongly bounded by the group velocity. For α < 2 faster-
than-ballistic propagation occurs. It is important to mention that from a thermodynamic
point of view [42], 1/|i− j|α hops in one-dimensional lattices are considered long-range
when α < 1 whereas short-range when α > 1. Through the manuscript, we consider α > 1,
only. Finite-size approaches such as density matrix renormalization group calculations can
address the impurity problem with long-range hoppings.

3. Single-Particle Physics

Before entering into the study of an impurity immersed in a BEC, it is convenient
to briefly summarize the main characteristics of a single particle moving in a lattice with
power-law hopping. The single-particle Hamiltonian is given as follows

Ĥ = −t ∑
i 6=j

1
|i− j|α b̂†

i b̂j. (2)

The above Hamiltonian can be easily diagonalized using the Fourier transform operators

b̂k =
1√
L

∑
j

e−ikj b̂j

b̂†
k =

1√
L

∑
j

eikj b̂†
j ,

(3)

k ∈ [−π, π] being the quasi-momentum within the first Brillouin zone. This procedure
gives rise to the single-particle lattice dispersion

ε̃α
k = −t[Liα(eik) + Liα(e−ik)], (4)

where Liα(z) = ∑∞
n=1 zn/nα is the polylogarithm function of order α. Notice that ε̃α

k is
symmetric in k−space ε̃α

k = ε̃α
−k, and that is always real since is of the form z + z∗ with

z a complex number and z∗ its complex conjugate. Furthermore, for α � 1, the lattice
dispersion approaches to the well-known result of a lattice with nearest-neighbor hop-
ping, that is ε̃α→∞

k ' −2t cos k. Using that Liα(1) = ζ(α) with ζ(α) = ∑∞
n=1 1/nα the

Riemann zeta function, one can recognize that the energy of the zero-momentum mode is
ε̃α

k=0 = −2tζ(α). Since ζ(α) converges when the real part of α is greater than one, finite
energies in the thermodynamic limit L → ∞ are obtained when α > 1. To be consistent
with the latter, we shall focus our attention on α > 1 only. It is worth mentioning that the
case α < 1 may also display interesting behavior since the particles can move along the
whole lattice through energetically close processes. As previously mentioned, finite-size
density matrix renormalization group calculations can address the impurity problem with
long-range hoppings. Through the rest of the manuscript, we consider εα

k = ε̃α
k − ε̃α

k=0, that
is, we choose the state of zero energy to be the state of zero momentum. In the upper panels
of Figure 1, we illustrate the lattice dispersion as a function of the quasi-momentum k for
several values of α, the NN case corresponds to a lattice with nearest-neighbor hopping.
As one can notice, for nearest-neighbor hops, the dispersion is a smooth function of k,
while it becomes sharp-pointed at k = 0 as α decreases. The abrupt behavior of εα

k brings
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as a consequence that the derivative of the dispersion relation at k = 0, that is the group
velocity of the k = 0 mode, is undefined for α ≤ 2, and thus resulting in a supersonic-
like propagation [55]. Another fundamental property that is affected by the presence of
power-law hopping is the density of states (DOS) ρα(ω) = − 1

π=m[∑k(ω − εα
k + iη)−1],

where =m denotes the imaginary part, and η is a positive infinitesimal number that is
included by hand to properly visualize the density of states (for the numerical calculations
we take η = 0.01). The lower panels of Figure 1 show the DOS as a function of the energy
ω. To visualize all the panels in the same range of values, in the lower panels of Figure 1,
we use the bandwidth ∆α = εα

k=π = ε̃α
k=π − ε̃α

k=0 for each α. As α decreases, the DOS
loses its symmetry at the band edges, becoming smaller at the bottom of the band. That
is, low-energy states become less dense compared to high-energy states. Consequently,
the transition rate between single-particle eigenstates due to a perturbation of the Hamil-
tonian in Equation (2) decreases as the range of the hopping increases. As we will see
later, the asymmetric behavior of the density of states has consequences on the physics of
the polaron.

−π −π/2 0 π/2 π

k

−2

−1

0

1

2

ε̃ k
/t

NN

(a)

−π −π/2 0 π/2 π

k

−2

−1

0

1

2
α = 3

(b)
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(h)

Figure 1. Panels (a–d) show the lattice dispersion ε̃k/t as a function of the quasi-momentum in the
first Brillouin zone k ∈ [−π, π]. Panels (e–h) illustrate the density of states ρ as function of ω/∆α

with ∆α = εα
k=π = ε̃α

k=π − ε̃α
k=0 the lattice bandwidth. Panels (a,e) are associated with a lattice with

nearest-neighbor hopping.

4. Two-Body Scattering

In this section, we focus on the scattering of an impurity atom and a single boson in
an empty lattice. To this end, we employ two different but equivalent approaches, the T -
matrix method and the wave function approach. The first scheme has the advantage of
directly obtaining the spectral properties without the need to explicitly calculate the wave
function of the system. On the other hand, as its name suggests, the wave function method
focuses mainly on obtaining the two-body wave function, and therefore the two-body
spatial properties are easier to obtain.

We begin by discussing the T -matrix approach, the Hamiltonian of the two-body
system can be rewritten as follows

Ĥtwo = Ĥ0 + V̂

Ĥ0 = −t ∑
i,j 6=i

1
|i− j|α b̂†

i b̂j − t ∑
i,j 6=i

1
|i− j|α ĉ†

i ĉj

V̂ = UBI ∑
i

b̂†
i ĉ†

i ĉi b̂i.

(5)
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Ĥ0 is the non-interacting component of the system whereas V̂ couples the two particles by
the on-site interaction. Using the above expressions, the equation of the scattering matrix
T takes the simple form

T̂ = V̂ + V̂
1

ω− Ĥ0 + iη
T̂ . (6)

For general potentials V̂, Equation (6) cannot be simplified any further, and one has to
resort to numerical methods. However, for on-site interactions, one can straightforwardly
obtain an explicit expression of the scattering matrix T and thus simplify the numerical
task. Using the momentum space representation, the scattering matrix T is given as follows:

T (P, ω) =
UBI

1−UBIΠ(P, ω)
, (7)

where Π(P, ω) is the pair propagator in an empty lattice which is given as follows:

Π(P, ω) =
1
L ∑

k

1
ω− εα

BP/2+k − εα
IP/2−k

. (8)

It is important to mention, that for on-site interactions, the scattering matrix T of the
two-body problem depends on the total center-of-mass momentum P and on the energy ω
of the pair only. The subscripts B and I in the above expressions indicate boson and impurity
species, respectively. In Figure 2, we plot the spectral function AT = −2=mT (k = 0, ω)
as a function of UBI and ω for several values of α. In each panel, the dashed white lines
enclose the two-body scattering continuum which due to the ∆α = εα

k=π factor is within the
region 0 ≤ ω ≤ 2 for all values of α. As it is well-known, the poles of the scattering matrix
T are associated with bound states, in this context, a bound state between one boson and
one impurity. Unlike the continuum scenario where the two-body scattering continuum
is bounded from below, in lattice systems, the continuum is bounded above and below,
and thus the T matrix shows bound states for both negative and positive interactions.
The former states are called attractively bound pairs and the latter repulsively bound pairs.
In contrast to attractive dimers, a repulsively bound pair is not the ground state of the
two-body system. However, due to energy constraints, the repulsively bound dimer is
unable to decay by converting the interaction energy into kinetic energy, and therefore
the repulsively bound state is dynamically stable. Repulsively bound pairs have been
experimentally demonstrated in ultracold atomic gases confined in optical lattices with
nearest-neighbor hoppings [56]. As one can see in Figure 2, the branch of repulsively
bound states is pushed towards the continuum as α decreases however, it is not absorbed.
In contrast, the branch of attractively bound dimers is incorporated into the continuum
as the range of the hopping increases. It is important to mention that in this scenario, no
bound state solution exists for k = 0. As shown in Figure 2d, when α = 1.5 there is no
bound state branch for −8 < UBI < 0.

To conclude this section, we investigate the spatial behavior of the two-body states.
To this end, we explicitly calculate the wave function Ψtwo of the system. The pair wave
function can be written as follows:

|Ψtwo〉 = ∑
i,j

eikRψk(r)b̂†
i ĉ†

j |0〉, (9)

where R = (i + j)/2 and r = |i − j| are the center-of-mass and relative coordinates,
respectively, and ψk(r) is the relative coordinate wave function, which depends on the
center-of-mass momentum k. After using the above ansatz in the Schrödinger equation
Ĥtwo|Ψtwo〉 = E|Ψtwo〉, one can obtain the following equation for the coefficients of the
relative wave function.

−2t
∞

∑
`=1

1
`α

cos
(

k`
2

)
[ψk(r + `) + ψk(r− `)] + UBIψk(0)δr0 = Eψk(r) (10)
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where δij is the Kronecker delta. Equation (10) can be numerically solved using standard
linear algebra packages. In Figure 3, we illustrate the square modulus of ψk=0 as a function
of the relative coordinate r for several power-law hops. Upper panels are associated with
repulsively bound pairs, whereas lower panels correspond to attractively bound dimers.
As can be seen, the spatial nature of the repulsively and attractively bound states is quite
different as the range of the hopping increases. In particular, we show that the relative
wave function for α = 1.5 is delocalized and clearly nonvanishing at large distances. That
is, the lowest energy eigenstate for α = 1.5 ceases to be a bound state, as previously
mentioned in the T-matrix analysis. The absence of bound states turns out to be a direct
consequence of the unbounded dispersion as α→ 1. The incorporation into the continuum
and disappearance of bound state branches has been also observed in spin and disordered
systems with power-law couplings [45,50].

4

2

0

−2

ω
/∆

N
N

(a) NN

Continuum

ω
/∆

3

(b) α = 3

Continuum

−8 −4 0 4 8
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0

−2

ω
/∆

2

(c) α = 2

Continuum

−8 −4 0 4 8

UBI/t

ω
/∆

3/
2

(d) α = 1.5

Continuum

Figure 2. Spectral function AT = −2=mT (k = 0, ω) as a function of the interaction strength UBI

and the energy ω for vanishing quasi-momentum k. In each panel, the dashed white lines enclose
the two-body scattering continuum. (a) Spectral function for nearest-neighbor hopping, (b) α = 3,
(c) α = 2, and (d) α = 3/2.
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Figure 3. Square modulus of the zero center-of-mass momentum wave function vs. the relative
distance r. Upper panels are associated with repulsively bound pairs UBI/t = 4, whereas lower
panels correspond to attractively bound dimers UBI/t = −4. (a,e) consider nearest-neighbor hopping,
(b,f) α = 3, (c,g) α = 2, and (d,h) α = 3/2.
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5. Impurity in a Bose–Einstein Condensate

We now analyze the physics of a single impurity immersed in the BEC and the
formation of the polaron. The spectral properties of an impurity with quasi-momentum k
can be described by the impurity Green’s function [57]

GI(k, ω) =
1

ω− εα
Ik − Σ(k, ω)

(11)

where Σ(k, ω) is the self-energy of the impurity. The self-energy represents the contri-
bution to the energy of the impurity due to the interactions between the impurity and
its environment (the BEC). Due to the great complexity of many-body systems, an exact
calculation of the self-energy is not feasible, for this reason, one has to make certain ap-
proximations. To calculate the self-energy, we employ the T-matrix approximation which
has been successfully used to describe Bose polaron experiments [10,12,58–60]. As a first
approximation, it is reasonable to expect that the T-matrix approach would be able to cap-
ture the effects of power-law tunneling on the elemental properties of the polaron. Other
numerical schemes, such as self-consistent approaches [61–63] or density matrix renor-
malization group methods [64], could provide more accurate results. Within the T-matrix
approximation, the self-energy of the impurity is simply the product of the matrix TBEC
and the equilibrium density of the bosons n0, that is Σ(k, ω) = n0TBEC(k, ω). In contrast to
the two-body problem, the scattering matrix TBEC has to include the presence of the BEC.
To do so, we assume that the BEC can be accurately described by the Bogoliubov theory.
This procedure gives the chemical potential µB = −2tζ(α) + n0UB, the excitation spectrum

Eα
k =

√
εα

Bk(ε
α
Bk + 2n0UB), and the modified two-particle propagator

ΠBEC(P, ω) =
1
L ∑

k

u2
k

ω− εα
IP−k − Eα

k
, (12)

where uk is the usual Bogoliubov coherence factor

u2
k =

1
2

(
1 +

εα
Bk + n0UB

Eα
k

)
. (13)

The substitution of ΠBEC(P, ω) into Equation (4) gives the scattering matrix TBEC.
As expected, for UB = 0, the scattering matrix TBEC is identical to the two-body scat-
tering matrix T . Before proceeding to show our results, let us briefly comment on the
approximations we have made so far. The T-matrix approximation of the self-energy is a
non-self-consistent approach since it takes into account the bare (non-interacting) impurity
propagator in Equation (12). It is important to mention that this approximation allows us
to study the quasiparticle properties in a non-perturbative manner and treat strong and
weak interactions within the same scheme. Moreover, the non-self-consistent approxima-
tion is restricted to permit the binding of a single boson to the impurity, excluding the
formation of bosonic clusters around the impurity [61]. This restriction can be removed
using the self-consistent scheme, however, such an analysis lies beyond the scope of this
manuscript. In this manuscript, we shall focus our attention on the non-self-consistent
approximation only.

In Figure 4, we plot the spectral function of the polaron AI = −2=mGI(k = 0, ω) as
a function of the impurity-boson interaction UBI for vanishing quasi-momentum k = 0
and several values of the power α. In each panel, the yellow curve is associated with the
energy of the dimer states, that is the poles of the T matrix shown in Figure 2, the white
dashed lines enclose the Bogoliubov continuum with energies εα

Ik + Eα
−k, which is essentially

indistinguishable from the two-particle continuum. For the numerical calculations, we
take the value n0 = 1 and UB/t = 0.02. The reason for considering a small boson-boson
interaction is to ensure that the bosonic system is far from the transition to the Mott phase.
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The Mott transition in one-dimensional lattices with nearest-neighbors hops takes place
around the value (UB/t)c ≈ 3.2 [65,66]. Furthermore, in Ref. [51] the authors study the
effects of power-law hops in the Bose-Hubbard model and show that the Mott phase is
shrunk in the (µ/UB, t/UB) space as the range of the hopping increases. In other words,
the critical interaction for the insulator transition increases. Taking into account the above
results, it is reasonable to assume that UB/t = 0.02 is within the superfluid regime. In all
numerical calculations, it was ensured that the spectral function was properly normalized

1
2π

∫ ∞

−∞
dω A(k = 0, ω) = 1. (14)

As one can notice from Figure 4, there are well-defined quasi-particle branches for both
positive and negative interactions. The poles of GI(k, ω) are associated with the energies of
the polaron EPk. This energy can be found by solving the following self-consistent equation

Eα
Pk = εα

Ik +<e[Σ(k, Eα
Pk)], (15)

where <e denotes the real part. For UBI/t > 0, the quasiparticle has a higher energy than
the repulsive dimer and, like the latter, it is dynamically stable since there are no available
states in which it can decay by converting the interaction energy into kinetic energy. As the
range of the hopping increases, the energy of the impurity approaches the energy of the
dimer for small UBI/t, that is, the polaron becomes a dimer into a BEC. For UBI/t < 0,
the quasiparticle branch has a smaller energy than the attractively bound pair. Remarkably,
the attractive polaron is still well-defined even when the attractively bound pair is already
absorbed into the continuum (see Figure 4d). This quasiparticle branch is the lattice
analog of the attractive polaron in continuum gases that smoothly evolves into a damped
repulsive polaron for positive impurity-boson interaction. Furthermore, as α decreases,
the broadening of the attractive polaron inside the Bogoliubov continuum is reduced. This
can be physically understood from the asymmetry of the density of states (see Figure 1d).
As the range of the hopping increases, the density of available states into which the polaron
can decay decreases, and therefore the broadening of the impurity inside the Bogoliubov
continuum is reduced.
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Figure 4. Spectral function of the impurity AI = −2=mGI(k = 0, ω) as a function of the interaction
strength UBI and the energy ω. We consider n0 = 1 and UB/t = 0.02. The dashed white lines
enclose the Bogoliubov continuum, the yellow curve is associated with the energy of the dimer states.
(a) Spectral function for nearest-neighbor hopping, (b) α = 3, (c) α = 2, and (d) α = 3/2.
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Within the quasiparticle picture and in the vicinity of a pole, the impurity Green’s
function in Equation (11) can be approximated as follows [57]

GI(k, ω) =
Zk

ω− EPk + iγk
+ Gincoh, (16)

where Zk is the quasiparticle residue, γk is the damping rate, and Gincoh describes the
incoherent scattering events that have no corresponding poles. The first term in GI is
also called the coherent part since it corresponds to a coherently propagating particle,
the polaron, at least for times t < 1/γk. One can confirm this scenario by taking the time
Fourier transform∫ ∞

−∞
dωe−iωt Zk

ω− EPk + iγk
∼ Zkexp(−i(EPk − iγk)t). (17)

As one can notice, the integration of the coherent part of GI is just a decaying
plane wave with lifetime 1/γk, with a particle weight given by the quasiparticle residue.
The value of the residue indicates the spectral weight of the quasiparticle, when Zk vanishes,
the quasiparticle disappears. In terms of the self-energy, the residue, and the damping rate
are given as follows

Z−1
k =

(
1− ∂<e[Σ(k, Ek)]

∂ω

)∣∣∣∣
ω=EPk

,

γk = −Zk=m[Σ(k, Ek)].
(18)

In Figure 5, we show the residue and damping rate of a zero-quasi-momentum polaron
as a function of the impurity-boson interaction for several values of α. As one can notice,
the residue of the repulsive branch decreases as the range of the hopping increases, this
behavior is in agreement with the previous observation that the polaron branch is pushed
towards the bound state branch. Since Z0 � 1, it is not possible to discern this branch in
current experiments. In stark contrast, the residue of the attractive branch increases when
the hopping range increases, making the polaron picture more robust and feasible to be
observed. Physically, one can understand the strengthening of the polaron as a consequence
of the increased mobility of the impurity as the tunneling range increases. In this scenario,
collisions become less relevant. Furthermore, as previously pointed out, the density of
available states into which the polaron can decay decreases as the range of the hopping
increases. In Figure 5b, we illustrate the damping rate of the repulsive polaron branch as
a function of the impurity-boson interaction for several values of α. As one can notice,
the damping does not change significantly with the tunneling range. It is important to
mention that within the non-self-consistent approach, the attractive polaron acquires a
finite damping. However, since the attractive polaron is the ground state of the system,
this damping is strictly an artifact of the approximation. A self-consistent treatment would
remove this issue.
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Figure 5. (a) Quasiparticle residue as a function of the impurity-boson interaction for vanishing
crystal momentum k = 0 and several values of the power hopping α. (b) Damping rate as a function
of the impurity-boson interaction for vanishing crystal momentum k = 0 and several values of the
power hopping α.

6. Conclusions

In recent years, great progress has been made in the implementation of power-law
couplings in fully controllable quantum systems of trapped ions, Rydberg atoms, and pho-
tons in crystal waveguides. These developments have opened up exciting possibilities for
the study of single and many-body physics beyond the short-range scenario. In partic-
ular, impurity physics is a subject that, despite being of great interest and that has been
constantly evolving, remains mostly explored considering short-range couplings and thus
omitting the effects of longer-range couplings.

In this manuscript, we have investigated the formation and spectral properties of a
mobile impurity mixed with identical bosons in a one-dimensional lattice with power-law
hopping. To this end, we first address the scattering problem of a single impurity and a
single boson. By means of the T-matrix formalism, which for the two-body problem is
an exact approach, we show that as the range of the hopping increases, the attractively
bound pair branch approaches the two-body continuum and then disappears as it becomes
incorporated by the scattering region. In contrast, the repulsively bound state branch stays
out of the continuum. Afterward, we consider the problem of an impurity immersed in a
BEC. Since this is a many-body problem that lacks an exact solution, we resort to several
approximations. First, we assume that the bosons can be described by the Bogoliubov
approximation and calculate the self-energy of the impurity within the non-self-consistent
approximation of the T-matrix. In this approach, the two-body scattering matrix is modified
to include the effects of the BEC on the impurity. It is important to mention that this
approximation allows us to study the quasiparticle properties in a non-perturbative manner
and treat strong and weak interactions within the same scheme. Using the non-self-
consistent approximation of the T-matrix, we illustrate the effects of tunneling range on the
impurity dressed by the BEC excitations. In particular, we show the existence of polaron
branches for repulsive and attractive interactions. Furthermore, we illustrate that the
polaron branch for attractive interactions is well-defined even when the impurity-boson
bound state disappears. By calculating the quasiparticle residue, we demonstrate that as
the hopping range increases, the residue of the attractive polaron increases, that is the
polaron becomes more robust. One can understand the strengthening of the quasiparticle
as a consequence of the increased mobility of the impurity as the tunneling range increases.

Many-body physics in quantum systems with power-law interactions is of current
theoretical interest and is under development on several experimental platforms. Making
the exploration of the physics of systems with power-law couplings feasible and interesting.
In particular, the physics of impurities. We expect that our work will trigger further
theoretical analysis as, for instance, the determination of the polaron properties using
density matrix renormalization group techniques, the fate of the bipolaron formation
beyond nearest-neighbor hops, and the role of the superfluid-Mott transition of the bosonic
environment on the transport properties of the polaron, among others.
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