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Gribov and Zwanziger proposed a modification of Yang-Mills theory in order to cure the Gribov copy
problem. We employ field-dependent BRST transformations to generalize the Gribov-Zwanziger model
from the Landau gauge to general R gauges. The Gribov horizon functional is presented in explicit form,
in both the non-local and local variants. Finally, we show how to reach any given gauge from the Landau
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1. Introduction and summary

It is long known that the covariant quantization of Yang-Mills
theory is beset by the Gribov problem: the existence of infinitely
many discrete gauge copies even after gauge fixing [1]. A natu-
ral remedy, suppressing the field integration outside the Gribov
horizon, is accomplished by adding to the action a Gribov hori-
zon functional [1-5]. The latter, however, is not BRST invariant and
usually chosen in the Landau gauge. For a better understanding of
its effect on the gauge variance of Green’s functions, a knowledge
of the horizon functional in other gauges is desirable [6].

Recently, we have discovered an explicit way to change the
gauge in Faddeev-Popov quantization by effecting a suitable field-
dependent BRST transformation [7]." Here, we utilize this strategy
to define horizon functionals for the non-local and local forms
of the Gribov-Zwanziger model in any R: gauge. At the end
of the Letter, we present the horizon functional in an arbitrary
gauge.

2. Yang-Mills theory with Gribov horizon

Yang-Mills theory with gauge group SU(n) in d spacetime di-
mensions features gauge potentials AfL(x) witha=1,...,n% — 1
and £ =0,1,...,d — 1. The classical action has the standard form
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1 ,
So(A) = -3 / d9x F&, F*Y with
F&, =8, A% — 3, A% + fPCAD AT, (21)

where fe%¢ denote the (totally antisymmetric) structure constants
of the Lie algebra su(n). The action (2.1) is invariant under the
gauge transformations

beb . b b b
SAZ = D/‘i £ with DZ =4 o + fee A/CL. (2.2)

The BRST formulation of the quantum theory extends the field con-
tent to
{¢"} ={A%. B C?.C%) (2.3)

by adding the Nakanishi-Lautrup auxiliary fields as well as the
Faddeev-Popov ghost and antighost fields, in the order above. The
Grassmann parities € and ghost numbers gh are

e(C") =¢e(C) =1, e(A%) =¢(B?) =0,
gh(Af,) =gh(B') =0,  gh(C%)=—gh(C%)=1.

In DeWitt notation [9], the quantum action a la Faddeev and
Popov [10] takes the form

(2.4)

S(¢) = So(A) + CK™ (A)C" + x“(A)B", (2.5)
with the Faddeev-Popov operator
x4 (A)
ab _ cb _ qupab _ sabau ach pc au
K (A)_—SA‘/?L DM_B DM_(S oo, + f AMB (2.6)
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for the gauge-fixing functions x“ of the Landau gauge,

a __allaa
X (A)=0"A),. (2.7)
The action (2.5) is invariant under the BRST transformation [11,12]
85A% =DTCPx,  §C"=B"A,  8B°=0,

1
8§,C% = 5fa”cc”cfx (2.8)

where 2 is an odd constant Grassmann parameter. Introducing the
Slavnov variation sX of any functional X(¢) via

81.X(¢) = (sX(¢))A sothatsX(¢) = MRA(qs) (2.9)

Sph

with the notation

1
{RA(d))} — [Dtllfcb’ 0, ifabccbcc’ Ba} and

e(RA(¢)) = ea+1, (2.10)
the action (2.5) can be written in the compact form
5(¢) = So(A) + sy (¢), (211)

where v (¢) denotes the associated fermionic gauge-fixing func-
tional (in the Landau gauge),

Y () =Cx"(A) =C DM AS,. (212)

The Gribov horizon [1] in the Landau gauge can be taken into
account by adding to the action (2.11) the non-local horizon func-
tional

_1\ad
M(A) = y? f7CAb (K1)™ flec A + y2d(n®—1), (213)
where K~ inverts the (matrix-valued) Faddeev-Popov operator
K®(A) of (2.6) and y € R is the so-called thermodynamic or Gri-
bov parameter [2,3]. The effective action of the Gribov-Zwanziger
model,

Sm(®) = S(@) + M(A) = So(A) + sy (9) + M(A),

is not BRST invariant because

(214)

sM(A,C) = VZfabCdee[ZDZqu(Kfl)ﬂd

b —1\am —1\nd
— ™AL (KT TTKPICI(KTT) T A £0. (215)
In [6], we have investigated the resulting gauge dependence of the
vacuum functional, assuming the existence of a horizon functional
beyond the Landau gauge. With the help of recent results [7] (see

also [8]), we now verify this assumption and propose an explicit
form for such a functional in general Rg gauges.

3. Gribov horizon in R; gauges

The vacuum functional for the Gribov-Zwanziger model is given
by a functional integral,

z Z/D¢expl%(50(/‘\) +59(¢) +M<A>)}. (31)

Let us perform a change of variables which amounts to a particular
field-dependent BRST transformation,

% — ¢ + (s¢p™)As(¢)  with

As(¢)=5“8"(32)_1 (exp{z%Bz} —1), (3.2)

where B? = B?BY. Taking into account the Jacobian and using
In(1+sAg) = 2%32, the vacuum functional then reads [7]

Z=/D¢exp{%(50(/‘\)+5¢g(¢)+Mg(¢))}, (33)

with a shifted fermionic gauge-fixing functional and a modified
horizon functional,

Ve () = ¢ (a“Az +2

Mg (¢) = M(A) + (SM(A, C)) Az (¢), (34)

respectively. The explicit expression for sM(A, C) is given in (2.15).
We have moved away from the Landau gauge and reached a
general Rg gauge. Therefore, we propose

B") and

Mg (¢) = y2 feAb (K1) flec aei 4 2 d(n? 1)

+ y2fabCfcde [ZDZqu (K—1)ad

— fmenAb (K1) KPca (k1))

x AR (B2) " (ean B 1) (3.5)
as the explicit form for the horizon functional in a general Re

gauge. Under further BRST transformations, its Slavnov variation
is

sMz =sM(A, O)[1 —sAz()]. (3.6)

In linear approximation in £ we have Ag(¢) = 2%6“3“ and get

M: = M(A Eyz abc fcde 2quCq I<_l ad
= M)+ E2 pae eteapica (i)

— fmenAb (k1) M KPICa (K1) ACk CEB! (3.7)

still depending on all field variables. For £=0, it smoothly reduces
to the Landau-gauge functional, My = M(A). It is important to note
that our extension (3.5) of the Gribov-Zwanziger model is done
in such a way as to render its vacuum functional gauge invariant.
Indeed, since an infinitesimal change of gauge 6y =i A¢ (in linear
approximation) is merely a field redefinition in the path integral,
we have that

(8M(9)) + (s8¢ (¢)) =0 (3.8)

for expectations values (--
fined by (3.1).

-y in the Gribov-Zwanziger model de-

4. Gribov-Zwanziger action

Originally, the Gribov-Zwanziger model was presented in the
non-local form (2.13) and (2.14) [1,2]. Later, the non-locality was
‘resolved’ by adding auxiliary field variables [3-5]. The resulting
local action is referred to as the Gribov-Zwanziger action and takes
the form (for details, see [13])
562(@)=So(A) +sY (@) + Sy (A, 9,0, 0,0) (41)

where
sy — @ZcKab(pubc _ Cb;zchabwp.bc + ZinabcAZ ((puac + @MHC)
+y2d(n*-1) (4.2)

represents the horizon functional written in local form for the Lan-
dau gauge. The set of fields has been further enlarged to

(9] = o o 055 o . @3)
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The fields ¢ and ¢} are commuting while w7 and @j are an-
ticommuting. The additional fields form BRST doublets [14],

Sy = Wy 8¢y =0,
Sraf =0, 8§D = —@y A (4.4)
The local horizon functional S, is not BRST invariant,
SSV — fadb [¢zcl<dece¢ubc + @ZcheCew;Lbc

+2iy (D CE ("™ + 1) + AT, )] £ 0. (4.5)
Note that in case y =0 the action (4.2) is reduced to
Sy=0=@LKP M — I KD, (4.6)

Then, in the vacuum functional, integration over ¢ and ¢ yields
(det K)~1, while integration over @ and w reproduces detK, so
that in the configuration space {¢} we recover the Yang-Mills vac-
uum functional.

Like in the previous section, we may move to a general Rg
gauge by performing the specific field-dependent BRST transfor-
mation (3.2) in the vacuum functional integral of the Gribov-
Zwanziger model based on the local action (4.1). As a result, the
action gets modified,

S6z(®) > So(A) +sY:(¢) + Sye(P)

where

(4.7)

~a a s a
Ye () =C (3”AM+§B ) and

Sye(@) =Sy (A, 0, 0.0,®)+ (sSy (A, C, 0,9, 0, ®)) At ().
(4.8)
We propose this S,¢ together with (3.2), (4.2) and (4.5) as the

proper extension of the local horizon functional to a general Rg
gauge. Its Slavnov variation reads

Sy =55y (A, C, 0,0, w,®)[1 - 54 ()] (4.9)

In the limit y — 0 we expect the action (4.7) again to produce the
standard Yang-Mills theory. Putting y =0 in (4.8) we get

Sy—0,e = golangb(p"bc — @%ngw”bc where

DP = K™ + fUPKICC AL (). (4.10)

Like at £=0 before, integrating out all auxiliary fields indeed leads
back to the Yang-Mills vacuum functional.

With this information, we may revisit the gauge dependence of
Green’s functions proposed in [6], by taking into account the gauge
variation of source terms to be added in the path integral.

5. Horizon functional in an arbitrary gauge
Although the R gauges were easy to reach, they are not the

only ones accessible by our method. In fact, [7] provides a general
formula for connecting any two gauges in terms of their fermionic

gauge-fixing functionals v: to get from a reference gauge v to a
desired gauge ¥, change the variables inside the generating func-
tional Z(J) by a BRST transformation with a field-dependent pa-
rameter

_ 1
Ay (@) = Y —y0) (s(¥—0)) ](EXD{ES(W—%)} - 1)

1 s 1 1 n
:E(‘”“”O)gm(ﬁs(w‘wO)) : (5.1)

The corresponding change of the horizon functional reads

My (¢) — Mo(¢) = (sMo(#)) Ay (¢). (5.2)

The Gribov-Zwanziger model can now be studied explicitly in an
arbitrary gauge.
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