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GIBBS-WILBRAHAM PHENOMENON ON LAGRANGE INTERPOLATION

BASED ON ANALYTIC WEIGHTS ON THE UNIT CIRCLE

E. BERRIOCHOA, A. CACHAFEIRO, J. M. GARCÍA AMOR

Abstract. This paper is devoted to study Lagrange interpolation based on nodal systems consti-
tuted by the roots of para-orthogonal polynomials with respect to analytic weights on the unit circle.
The presented results address, in addition to algorithmic and convergence questions for continuous
and discontinuous functions, a detailed study of the Gibbs-Wilbraham phenomenon.

Key words and phrases: Lagrange interpolation; analytic weights; para-orthogonal polynomials;
unit circle; convergence; piecewise continuous functions; Gibbs-Wilbraham phenomenon.

1. Introduction

In the study of Fourier series related to piecewise continuous functions it appears a peculiar
phenomenon called Gibbs or Gibbs-Wilbraham phenomenon, which states that in the proximity of
the discontinuity points of the function the partial sums of the Fourier series have an oscillatory
behavior. This fact has been discovered and investigated by several mathematicians and physicists,
among which we highlight: H. Wilbraham, A.A. Michelson, A.E.H. Love and J.W. Gibbs (see [12]).

This phenomenon has also been studied in connection with Lagrange interpolation. Indeed
the trigonometric interpolation polynomials related to periodic functions with jump discontinuities
present, for growing order, a Gibbs phenomenon which differs in the overshot/undershot from the
ones appeared for the partial sums of the Fourier series, (see [9], [10] and [11]). Another situation
studied in connection with this phenomenon is the behavior of the Lagrange interpolants for piecewise
continuous functions on the bounded interval by using Chebyshev nodes. The corresponding results
that can be seen in [26], give information about the oscillatory behavior of Lagrange interpolants
and can be adapted to interpolation for piecewise continuous functions on the unit circle by using
equally spaced nodal points. For this last case there are few references and the results are very pre-
dictable. Indeed, they are essentially the same as in the papers of Helmberg and they can be seen in
[20]. The novelty of this last work is the presentation of rigorous proofs of the results. Additionally
we highlight the books [14] and [15] dedicated to this phenomenon as well as [21] and [6], which
are relevant works on the Gibbs-Wilbraham phenomenon for spline approximation interpolation and
generalizations. Other generalizations of splines can be seen in [8].

In the case of Hermite-Fejér interpolation, a seminal work in which piecewise continuous or piece-
wise smooth functions were considered is [19]. Two contributions more recently in this direction are
[1] and [2]. In [1] it is described the behavior of the Hermite-Fejér and Hermite interpolation poly-
nomials related to piecewise continuous functions or piecewise smooth functions on the unit circle
by considering as nodal systems those constituted by the n roots of complex unimodular numbers.
Hence the nodal points are uniformly distributed on the circle. The main result given in this paper
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is concerning the analysis of the Gibbs phenomenon near the discontinuities of the interpolated func-
tion and the obtention of the amplitude of the corresponding Gibbs height. In [2] the same type of
problems were studied but considering as nodal points the zeros of the para-orthogonal polynomials
with respect to measures in the Baxter class and such that the sequence of the first derivative of
the reciprocal of the orthogonal polynomials is uniformly bounded on the circle. In this paper we
have obtained that the Hermite-Fejér interpolants uniformly converge to the piecewise continuous
function far away from the discontinuity points and we have described the oscillatory behavior of the
interpolants near the discontinuities, where a Gibbs-Wilbraham phenomenon appears.

Now, in the present paper we develop one of the lines mentioned in the final considerations of
[2] as possible future lines of research. Thus, we analyze the Lagrange interpolation process for
piecewise continuous functions with suitable properties and by using some general nodal systems
based on analytic measures, which constitutes a novel approach to the Lagrange interpolation the-
ory. Indeed the nodal systems are the zeros of the para-orthogonal polynomials with respect to
analytic weights, whose basic properties have been studied in [4]. In our case a Gibbs phenomenon
appears whose study and knowledge allow us to use this interpolatory process by controlling the error.

The organization of the paper is the following. Section 2 is devoted to introduce the background
and some auxiliary results, which play a fundamental role in the development of the main theorems.
In order to make more readable the paper we give the proofs of the two lemmas in the Appendix
at the end of the paper. In Section 3 we present the Lagrange interpolation problem on the circle
and some results about convergence in case of continuous functions with appropriate modulus of
continuity, as well as a result concerning the rate of convergence in case of smooth functions. Section
4 contains the main results given in Theorems 5 and 6. In the last one we describe the oscillatory
behavior of the interpolation polynomials near the discontinuity points of the piecewise continuous
function. We provide detail proof of the results and the asymptotic amplitude of the Gibbs height.
In Section 5 we have done several numerical experiments in order to present in a graphical way the
main results of this article and finally, we summarize the conclusions and future goals.

2. Background and auxiliary results

Throughout all the paper we consider the following situation. Let ν be an analytic weight on the
unit circle T := {z ∈ C : |z| = 1}, that is, it is associated with an analytic function on an open
annulus with radii 1/r and r, with r < 1, which is positive on T. Let {φn(z)}n≥0 be the monic
orthogonal polynomial sequence related to ν and {φ∗

n(z)}n≥0 the sequence of reversed polynomials,

defined by φ∗
n(z) = znφn(

1
z
), (see [24]). We also consider the para-orthogonal polynomials Wn(z, τ)

defined by Wn(z, τ) = φn(z) + τφ∗
n(z), where τ is a unimodular complex number, ([16]) and we

denote, as usual, by Π(z) the normalized Szegő function related to ν (see [24] for details).
We recall some well known results related to the asymptotic behavior of φn(z), φ

∗
n(z) andWn(z, τ).

A more detailed introduction and proofs of these results can be seen in [4], where they were included
to make the paper self contained.

(i)

lim
n→∞

φ∗
n(z) = Π(z) and φ∗

n(z) = Π(z) +O(rn), both uniformly on T.

lim
n→∞

φn

zn
= Π

(
1

z

)

and φn(z) = znΠ

(
1

z

)

+O(rn), both uniformly on T.
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(ii)

lim
n→∞

(φ∗
n)

′(z) = Π′(z) and (φ∗
n)

′(z) = Π′(z) +O(n2rn), both uniformly on T.

lim
n→∞

φ′
n(z)

nzn−1
= Π

(
1

z

)

and φ′
n(z) = nzn−1Π

(
1

z

)

+O(1), both uniformly on T.

(iii) There exist positive real numbers A and B such that for z ∈ T and for all n we have

|Wn(z, τ)| ≤ A, B ≤ |W ′
n(z, τ)|
n

≤ A, W ′
n(z, τ) = nzn−1Π

(
1

z

)

+O(1). (1)

(iv) The roots of Wn(z, τ) are simple and they belong to T, (see [16]). Moreover, under our
conditions the roots are distributed in the following way. If αj = eiθj and αj+1 = eiθj+1 are
two consecutive zeros of Wn(z, τ) then

|θj − θj+1| =
2π

n
+O(

1

n2
). (2)

In this paper we will use the roots of Wn(z, τ) as nodal system on T to interpolate functions in the
Lagrange sense. For convenience in the sequel we will work with the para-orthogonal polynomials
W2n(z, τ) and for simplicity we will write W2n(z). The odd case corresponding to take W2n+1(z, τ)
could be done in a similar way. Moreover, if we denote by {αj}2n−1

j=0 the zeros of W2n(z) we will
assume that they are numbered in the clockwise sense beginning in α0. Besides, if z and w belong

to T we will write
⌢
z − w to refer to the lenght of the shortest arc joining both points.

Next we present some auxiliary results in relation withW2n(z) of interest in the sequel. Notice that
throughout all the paper we will use the Landau notation: O(an) and o(an), (see [24]) and we assume
{αj}2n−1

j=0 are the zeros of W2n(z). In order to simplify the notation we will use the same notation O
of Landau for different constants. Moreover, notice that the asymptotic properties that we obtain
hold uniformly on T and n, that is, the positive constants are unique for all the circumference and
for all n.

To make the paper more readable, we present the proofs of the following lemmas in a final Appendix
at the end of the work.

Lemma 1. Let {αj}2n−1
j=0 be the nodal system determined by W2n(z). If z ∈ T and α0 and α2n−1 are

the two nodal points closest to z then the following properties hold:

(i) There exists a positive constant C such that
∣
∣
∣
∣

W2n(z)

z − α0

∣
∣
∣
∣
,

∣
∣
∣
∣

W2n(z)

z − α2n−1

∣
∣
∣
∣
≤ 2nC. (3)

(ii) For some positive constant D it holds
∣
∣
∣
∣

W2n(z)

z − αj

∣
∣
∣
∣
,

∣
∣
∣
∣

W2n(z)

z − α2n−1−j

∣
∣
∣
∣
≤ 2nD

j
for j > 0. (4)

(iii) If j ≥ √
n then

z − αj

z − αj+1
= 1 +O

(
1√
n

)

and
z − α2n−j

z − α2n−j−1
= 1 +O

(
1√
n

)

.

In what follows we use the following notation to represent any point z ∈ T by using the first nodal

point α0, that is, z = α0e
−i 2π

2n
d, with d a real number, d ∈ [−n, n]. Moreover we will write arcs to

refer to those determined by two any consecutive roots of W2n(z).
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Lemma 2. Under our conditions the following properties are satisfied

(i) For each pair of consecutive nodes αj and αj+1 it holds

αj+1

αj

= 1 +O
(
1

n

)

and

(
αj+1

αj

)n

= −1 +O
(
1

n

)

. (5)

(ii) If j <
√
n then

(a)

(
αj

α0

)n

= (−1)j
(

1 +O
(
j

n

))

and

(
αj

α0

)2n

= 1 +O
(
j

n

)

. (6)

(b)
(
α2n−1−j

α0

)n

= (−1)j+1

(

1 +O
(
j + 1

n

))

. (7)

(iii) (a) If αj and αj+1 are two consecutive nodes then

W ′
2n(αj)

W ′
2n(αj+1)

= 1 +O
(
1

n

)

.

(b) If j <
√
n

W ′
2n(α0)α0

W ′
2n(αj)αj

= 1 +O
(

1√
n

)

and
W ′

2n(α0)α0

W ′
2n(α2n−1−j)α2n−1−j

= 1 +O
(

1√
n

)

. (8)

(iv) If z = α0e
−i 2π

2n
d and the distance over the circumference between α0 and z is less than the

length of
√
n arcs, ( −√

n ≤ d ≤ √
n ), then

W2n(z)α
n
0 2n

zn W ′
2n(α0)α0

= −2i sin(π d) +O
(

1√
n

)

. (9)

(v) (a) If z = α0e
i 2π
2n

d with 1
2 ≤ d ≤ √

n and j ≤ √
n then

1
(

z

αj

− 1

)

2n

= − i

2π(j + d)
+O

(
1

n

)

. (10)

(b) If z = α0e
−i 2π

2n
d, with −1

2 ≤ d ≤ √
n and j ≤ √

n then

1
(

z

α2n−1−j
− 1

)

2n

=
i

2π(j + d+ 1)
+O

(
1

n

)

. (11)

(vi) If αj and αj+1 are consecutive nodes and their angular distance to z is at least
√
n arcs then

αn
j+1W

′
2n(αj)(z − αj)

αn
jW

′
2n(αj+1)(z − αj+1)

= −1 +O
(

1√
n

)

.
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3. Lagrange interpolation problem. Convergence

In the sequel we study the Lagrange interpolation process on the unit circle taking as nodal system
the para-orthogonal polynomials W2n(z) considered before, that is, the nodal points are the zeros
{αj}2n−1

j=0 of W2n(z). As it is well known we construct the interpolation polynomials in the space of

Laurent polynomials Λ[z] by using the appropriate subspaces Λp,q[z] = span{zk : p ≤ k ≤ q} with
p and q integer numbers such that p ≤ q. Due to the density of Λ[z] in the space of continuous
functions, the natural choices are Λ−n,n−1[z] or Λ−(n−1),n[z] when we use 2n nodes. Thus, if we
take 2n nodes we recall that the Laurent polynomial of Lagrange interpolation related to a function
F defined in T and with nodal system {αj}2n−1

j=0 , L−n,n−1(F, z) ∈ Λ−n,n−1[z], is characterized by
satisfying

L−n,n−1(F,αj) = F (αj) for each j = 0, · · · , 2n − 1.

In the odd case, that is, using 2n + 1 nodes the natural choice is the space Λ−n,n[z].
This polynomial can be expressed in terms of the so called fundamental polynomials of Lagrange

interpolation as follows

L−n,n−1(F, z) =
1

zn

2n−1∑

j=0

W2n(z)

W ′
2n(αj)(z − αj)

αn
j F (αj)

=
W2n(z)

zn

2n−1∑

j=0

αn
j

W ′
2n(αj)(z − αj)

F (αj), (12)

but for our numerical purposes it is more convenient to use the barycentric expression given by

L−n,n−1(F, z) =

2n−1∑

j=0

wj

z − αj
F (αj)

2n−1∑

j=0

wj

z − αj

,

where wj =
αn
j

W ′
2n(αj)

.

One of the advantages of the last expression is its numerical stability (see [13]).

3.1. Convergence of the Laurent polynomial of Lagrange interpolation related to contin-

uous functions. First we establish the Lebesgue constant for the interpolatory Lagrange process
in the next result.

Theorem 1. There exists a positive constant L > 0 such that for every function F bounded on T it
holds that

|L−n,n−1(F, z)| ≤ L ‖ F ‖∞ log n,

for every z ∈ T, where ‖‖∞ denotes the supremum norm on T.

Proof. The result is evident if z is a nodal point. So let us assume that z is an arbitrary point of
T and it is not a nodal point. If we assume that the nodes are ordered in such a way that α0 and
α2n−1 are the two nodal points closest to z, then by applying (12), (4), (3) and (1) we get
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|L−n,n−1(F, z)| =

∣
∣
∣
∣
∣
∣

1

zn

2n−1∑

j=0

W2n(z)

W ′
2n(αj)(z − αj)

αn
j F (αj)

∣
∣
∣
∣
∣
∣

≤
2n−1∑

j=0

∣
∣
∣
∣

W2n(z)

W ′
2n(αj)(z − αj)

F (αj)

∣
∣
∣
∣

≤
n−1∑

j=0

∣
∣
∣
∣

W2n(z)

W ′
2n(αj)(z − αj)

F (αj)

∣
∣
∣
∣
+

2n−1∑

j=n

∣
∣
∣
∣

W2n(z)

W ′
2n(αj)(z − αj)

F (αj)

∣
∣
∣
∣

≤ 2 ‖ F ‖∞




2nC

2nB
+

n−1∑

j=1

2nD

2nB

1

j



 ≤ 2 ‖ F ‖∞ E(1 +

n−1∑

j=1

1

j
) = 2 ‖ F ‖∞ E(1 +Hn−1,1),

where Hn−1,1 is the harmonic number defined by
n−1∑

j=1

1

j
.

Therefore, if we take into account that lim
n→∞

1 +Hn−1,1

log n
= 1, we obtain the result. �

Note 1. The previous theorem states that the norm of the operator L−n,n−1 is, at most, L log n. In
this sense the growth with n of the norm of the images is quite slow and in fact it will be bounded
for some types of functions.

As a consequence of the preceding result we can obtain the uniform convergence of the interpolatory
process when we deal with functions having convenient modulus of continuity. To obtain this result
first we recall an adaptation of Jackson’s theorem about approximation of continuous functions on
T by Laurent polynomials given in [3].

Theorem 2. Let F be a continuous function on T with modulus of continuity w(F, δ). Then there
exists a positive constant M such that for each natural number n there exists a Laurent polynomial
p−n,n−1(z) satisfying

|F (z) − p−n,n−1(z)| < Mw

(

F,
2π

n

)

.

Proof. It can be seen in [3]. �

Theorem 3. Let F be a function continuous on T with modulus of continuity w(F, δ) = o(| log δ|−1).
Then L−n,n−1(F, z) converges uniformly to F on T.

Proof. From the preceding result it is clear that for each n there exists a Laurent polynomial

p−n,n−1(z) such that |F (z) − p−n,n−1(z)| < Mo
(
| log(2π

n
)|−1

)
= M

o(1)

log n− log 2π
, that is, given

ε > 0 then for n large enough it holds that |F (z) − p−n,n−1(z)| <
ǫ

log n
and therefore

|L−n,n−1(F − p−n,n−1, z)| < L ‖ F − p−n,n−1 ‖∞ log n ≤ L
ǫ

log n
log n = Lǫ.

Hence, if we use Theorem 1, we have

|F (z) − L−n,n−1(F, z)| = |F (z)− p−n,n−1(z) + p−n,n−1(z)− L−n,n−1(F, z)|
≤ |F (z) − p−n,n−1(z)|+ |p−n,n−1(z)− L−n,n−1(F, z)|

= |F (z) − p−n,n−1(z)|+ |L−n,n−1(p−n,n−1 − F, z)|,
and thus the result is proved. �
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Note 2. Notice that the preceding theorem is as good as the well known classical results on the
bounded interval. Indeed it is also possible to construct functions for which the Laurent polynomial
interpolatory process diverges. We recall that our interpolation process is closely related to the al-
gebraic interpolation on the bounded interval through the Szegő transformation (see [24]). Therefore
every example of a function for which the interpolants on the bounded interval with Chebyshev nodes
diverge, will give an example of function for which the Laurent interpolants with equally spaced nodes
diverge. These examples can be seen in the papers of Grünwald and Marcinkiewicz, (see [7]and [18])
and the interesting tribute [25].

3.2. Rate of convergence for smooth functions. We want to point out that the results given
in this subsection could be very useful for some applications of the interpolatory process, like the
numerical gaussian integration.

Theorem 4. Let F (z) be a function defined on T.

(i) If F (z) =
∞∑

−∞
Akz

k with |Ak| ≤ K 1
|k|c for k 6= 0, with c > 1 then L−n,n−1(F, z) uniformly

converges to F on T and the rate of convergence is O
(

logn
nc−1

)

.

(ii) If F (z) is an analytic function in an open annulus containing T, then L−n,n−1(F, z) uniformly
converges to F on T. Besides, the rate of convergence is geometric.

Proof. (i) If we write F (z) = F1,n(z) +F2,n(z) with F1,n(z) =
n−1∑

k=−n

Akz
k and F2,n(z) =

−n−1∑

−∞
Akz

k +

∞∑

k=n

Akz
k then it holds that L−n,n−1(F1,n, z) = F1,n(z) and F2,n(z) is such that

|F2,n(z)| ≤
−n−1∑

−∞
|Ak|+

∞∑

k=n

|Ak| ≤ 2

∞∑

k=n

K

kc
= 2K(H(c)−Hn−1,c) ≤

2K

(c− 1)

1

(n− 1)c−1
,

where H(c) denotes the sum of the harmonic series
∑∞

k=1
1
kc

and Hn−1,c is its (n−1)-partial sum. By

applying Theorem 1 we have that |L−n,n−1(F2,n, z)| ≤ L 2
(c−1)

1
(n−1)c−1 log n and therefore the error

of interpolation is

|F (z) − L−n,n−1(F, z)| = |F2,n(z) −L−n,n−1(F2,n, z)| ≤ K1
log n

nc−1
.

Hence the rate of convergence is O
(

logn
nc−1

)

.

(ii) It is obtained in a similar way. Indeed if F (z) =
∞∑

−∞
Akz

k with |Ak| ≤ Pr|k| for some P > 0 and

0 < r < 1, by considering the decomposition of F given before we get that L−n,n−1(F1,n, z) = F1,n(z)
and

|F2,n(z)| ≤
−n−1∑

−∞
|Ak|+

∞∑

k=n

|Ak| ≤ 2P

∞∑

k=n

rk = Qrn.

Then |L−n,n−1(F2,n, z)| ≤ LQrn log n and the error of interpolation is given by

|F (z)− L−n,n−1(F, z)| = |F2,n(z)− L−n,n−1(F2,n, z)| ≤ Trn(1 + log n) ≤ Srn1 ,

for some positive constants T, S and r1 with r < r1 < 1. �
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4. Lagrange interpolation for piecewise continuous functions. Gibbs-Wilbraham

phenomenon

In this section our aim is to study the behavior of the Lagrange interpolants related to piecewise
continuous functions with appropriate modulus of continuity. Without loss of generality we consider
two functions f and g continuous on T, both with good modulus of continuity. If A is an arc contained
in T with extreme points a1 and a2 and length ℓA, we consider the piecewise continuous function
F = fχA + gχT\A, where χA is defined by χA(z) = 1 if z ∈ A and χA(z) = 0 if z /∈ A.

In order to do our analysis first we rewrite the interpolants in a convenient form as follows. Thus,
if we assume that F (z) = f(z) then

L−n,n−1(F, z) − F (z) =

2n−1∑

j=0

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j F (αj)− f(z)

=

2n−1∑

j=0
αj∈A

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j f(αj) +

2n−1∑

j=0
αj∈T\A

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j g(αj)− f(z)

=
2n−1∑

j=0

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j f(αj)−

2n−1∑

j=0
αj∈T\A

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j f(αj)

+

2n−1∑

j=0
αj∈T\A

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j g(αj)− f(z)

=
2n−1∑

j=0

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j f(αj)− f(z) +

2n−1∑

j=0
αj∈T\A

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j (g(αj)− f(αj))

= L−n,n−1(f, z)− f(z) +

2n−1∑

j=0
αj∈T\A

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j (g(αj)− f(αj)) . (13)

For the convergence we are going to consider the following regions in T, like the next Figure 1
shows. In this particular case we have taken a1 = 1, a2 = i and A the shortest arc between a2 and
a1.

(1) Since the extremal points of the arc play the same role, we study the behavior near a2 and
for simplicity we will assume that α0 is the nodal point in A which is closer to a2. Notice that
α0, which depends on n, may be equal or different to a2, which is a difference with respect
to classical and recent references. Moreover, we denote the points of T refering to α0. An
alternative point of view is to consider that the arc A ends (for the interpolatory process) in
α0. This last interpretation connects better with other references.

(2) We denote by In the region of A that is far from T \ A more than
√
n arcs determined by

two any consecutive roots of W2n(z), that is,

In = {z ∈ A : z = α0e
−i 2π

2n
d, d ∈ (

√
n, ℓA

2π

2n
−

√
n]}.
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2

1

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

'

Figure 1. Regions considered in T.

We also consider the region Jn of T \A that is far from A more than
√
n arcs, which can be

defined in a similar way. Since the behavior is similar in both situations we only study the
first case in next Theorem 5.

(3) We consider the regions of A, Kn and K ′
n, which are less than

√
n arcs from the extreme

points of A. The same is considered for T\A. Since in these regions, Ln and L′
n, the behavior

is similar, we only study the behavior of Kn and Ln in Theorem 6.

Theorem 5. Let F = fχA + gχT\A, with f and g continuous functions on T with modulus of

continuity o(| log δ|−1). Then

L−n,n−1(F, z) uniformly converges to F (z) on In ⊂ A.

Proof. By applying Theorem 3 we have that L−n,n−1(f, z) uniformly converges to f(z) on T. Thus,
in order to obtain the result, we have to prove that the last sum in (13)

2n−1∑
j=0

αj∈T\A

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j (g(αj)− f(αj))

converges to 0 uniformly on In.
In this last expression there are nodes αj attained from z turning in the clockwise sense less that π.

The corresponding set of indices is denoted N1. In the same way there are also nodes attained from
z turning in the counterclockwise sense less that π and their indices are N2. Obviously it suffices to
study only one of these sums. So let us study

∑
j∈N1

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j (g(αj)− f(αj)) .
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We gather in pairs the nodes with indices in N1, beginning with the node which is nearest to z. Then
we have

∣
∣
∣
∣
∣
∣

∑

j∈N1

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j (g(αj)− f(αj))

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

W2n(z)

zn

∣
∣
∣
∣

∑

j∈N1

∣
∣
∣
∣

(
αn
j

W ′
2n(αj)(z − αj)

(f(αj)− g(αj)) +
αn
j+1

W ′
2n(αj+1)(z − αj+1)

(f(αj+1)− g(αj+1))

)∣
∣
∣
∣

≤
∣
∣
∣
∣

W2n(z)

zn

∣
∣
∣
∣

∑

j∈N1

∣
∣
∣
∣

(
αn
j

W ′
2n(αj)(z − αj)

+
αn
j+1

W ′
2n(αj+1)(z − αj+1)

)

(f(αj)− g(αj))

∣
∣
∣
∣

︸ ︷︷ ︸

∗

+

∣
∣
∣
∣

W2n(z)

zn

∣
∣
∣
∣

∑

j∈N1

∣
∣
∣
∣

(
αn
j+1

W ′
2n(αj+1)(z − αj+1)

(f(αj+1)− f(αj) + g(αj)− g(αj+1))

)∣
∣
∣
∣
.

︸ ︷︷ ︸

∗∗

Clearly by applying (1) we get that ∗ satisfies

∗ ≤ M
∑

j∈N1

∣
∣
∣
∣

(
αn
j

W ′
2n(αj)(z − αj)

+
αn
j+1

W ′
2n(αj+1)(z − αj+1)

)∣
∣
∣
∣

= M
∑

j∈N1

∣
∣
∣
∣

αn
j

W ′
2n(αj)(z − αj)

∣
∣
∣
∣

∣
∣
∣
∣
∣
1 +

αn
j+1

αn
j

W ′
2n(αj)(z − αj)

W ′
2n(αj+1)(z − αj+1)

∣
∣
∣
∣
∣
. (14)

From (1) we have that 1
|W ′

2n(αj)| ≤
1

2nB and from the proof of (ii) in Lemma 1 we get that 1
|z−αj | ≤

2nE
j

.

Hence it holds
∣
∣
∣
∣

αn
j

W ′
2n(αj)(z − αj)

∣
∣
∣
∣
≤ E

B

1

j
.

Besides, if we apply (vi) in Lemma 2 we have

αn
j+1

αn
j

W ′
2n(αj)(z − αj)

W ′
2n(αj+1)(z − αj+1)

= −1 +O(
1√
n
).

Then

∗ ≤ Q
∑

j∈N1

O
(

1√
n

)

j
,

which goes to 0 as n goes to infinity.

To study ∗∗ we take into account the following facts related to the modulus of continuity of f − g.
Indeed since |αj − αj+1| ≤ 3π

n
then

|f(αj+1)− g(αj+1)− f(αj) + g(αj)| ≤ w(f − g,
3π

n
) ≤ o(| log(3π

n
)|−1) ≈ o(

1

log n
)
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and

∗∗ ≤
∣
∣
∣
∣

W2n(z)

zn

∣
∣
∣
∣

∑

j∈N1

∣
∣
∣
∣

(
αn
j+1

W ′
2n(αj+1)(z − αj+1)

(f(αj+1)− f(αj) + g(αj)− g(αj+1))

)∣
∣
∣
∣

≤ A
∑

j∈N1

(∣
∣
∣
∣

αn
j+1

W ′
2n(αj+1)(z − αj+1)

∣
∣
∣
∣

ε

log n

)

= A
ǫ

log n

∑

j∈N1

∣
∣
∣
∣

αn
j+1

W ′
2n(αj+1)(z − αj+1)

∣
∣
∣
∣

<
Qε

log n

∑

j∈N1

1

j + 1
, (15)

which goes to 0 when n is large enough.
�

Note 3. Notice that as a consequence of (14) and (15) we can state that, under our hypotheses, the
nodes which are at least

√
n arcs far from a point do not significantly contribute to the calculus of the

Lagrange interpolation polynomial at this point, that is, it can be bounded for any arbitrary ǫ > 0.

The second theorem of the present section is devoted to study the behavior of the interpolation
polynomial related to F near the discontinuity points. Since the behavior is similar in both extreme
points of the arc A, we only study the point a2.

We recall that the special function HurwitzLerchPhi[−1, s, d] (see [5]) is defined by

HurwitzLerchPhi[−1, s, d] =
∞∑

j=0

(−1)j

(j + d)s
.

For our purposes we use that corresponding to take s = 1, that is, HurwitzLerchPhi[−1, 1, d] and
for simplicity, we denote it by η(d).

Theorem 6. Let F = fχA + gχT\A, with f and g continuous functions on T with modulus of

continuity o(| log δ|−1) and assume that ℓ1 = lim
z→a2

f(z) 6= lim
z→a2

g(z) = ℓ2. Then

(i) If z = α0e
−i 2π

2n
d, with d ∈ [−1

2 ,
√
n) and n is large enough then

L−n,n−1(F, z) behaves like (ℓ1 − ℓ2)η(1 + d)
sin πd

π
+ ℓ1,

that is, for an arbitrary ε > 0 and n large enough the distance between L−n,n−1(F, z) and

(ℓ1 − ℓ2)η(1 + d) sinπd
π

+ ℓ1 is less than ε.

(ii) If z = α0e
−i 2π

2n
d, with d ∈ (−√

n,−1
2 ] and n is large enough then

L−n,n−1(F, z) behaves like (ℓ1 − ℓ2)η(|d|)
sin π|d|

π
+ ℓ2.

Proof. (i) If we compute the difference L−n,n−1(F, z)− f(z) by applying (13), we get

L−n,n−1(F, z)− f(z)

= L−n,n−1(f, z)− f(z) +

2n−1∑

j=0
αj∈T\A

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j (g(αj)− f(αj)) . (16)

From Theorem 3 we know that L−n,n−1(f, z) uniformly converges to f(z) on T. Hence, to solve our
problem, we have to study the behavior of the last sum in (16) for n large enough. If we take into
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account Note 3, we have to study the behavior of this sum considering only the nodes which are less
than

√
n arcs from a2. Thus we consider

2n−1∑

j=2n−√
n

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j (g(αj)− f(αj))

=
W2n(z)α

n
0 2n

znW ′
2n(α0)α0

×
2n−1∑

j=2n−√
n

αn
j

αn
0

W ′
2n(α0)α0

W ′
2n(αj)αj

1

( z
αj

− 1)2n
(g(αj)− f(αj)) ,

that can be rewritten like

W2n(z)α
n
0 2n

znW ′
2n(α0)α0

×
√
n−1
∑

j=0

αn
2n−1−j

αn
0

W ′
2n(α0)α0

W ′
2n(α2n−1−j)α2n−1−j

1

( z
α2n−1−j

− 1)2n
(g(α2n−1−j)− f(α2n−1−j)) . (17)

If we define h(z) = g(z) − f(z) − ℓ2 + ℓ1 and we take into account that lim
z→a2

h(z) = 0, then given

ε > 0 there exists a neighborhood of a2, Ea2 , such that |h(α2n−1−j)| < ε for those α2n−1−j ∈ Ea2 .
Hence, by applying (9), (7), (8) and (11) of Lemma 2 in (17) we obtain

2n−1∑

j=2n−√
n

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j (g(αj)− f(αj)) =

(

−2i sin(π d) +O
(

1√
n

))

×

√
n−1
∑

j=0

(−1)j+1

(

1 +O
(
j + 1

n

))(

1 +O
(

1√
n

))(
i

2π(j + d+ 1)
+O

(
1

n

))

(h(α2n−1−j) + ℓ2 − ℓ1) .

After doing some calculus we get that the right hand side of the preceding equality is

−2i sin(π d)

√
n−1
∑

j=0

(−1)j+1

[
i

2π(j + d+ 1)
+

i

2π(j + d+ 1)
O
(

1√
n

)

+O
(

1√
n

)]

(h(α2n−1−j) + ℓ2 − ℓ1)

︸ ︷︷ ︸

(∗)

+O
(

1√
n

)
√
n−1
∑

j=0

(−1)j+1

[
i

2π(j + d+ 1)
+

i

2π(j + d+ 1)
O
(

1√
n

)

+O
(

1√
n

)]

(h(α2n−1−j) + ℓ2 − ℓ1)

︸ ︷︷ ︸

(∗∗)

.

It is immediate to see that for n large enough (*) behaves like

−sin(π d)

π
η(1 + d) (ℓ2 − ℓ1) ,

and (**) goes to zero when n tends to ∞. Thus, it follows that for n large enough (i) holds.
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(ii) Proceeding like in (13) we compute the difference L−n,n−1(F, z) − g(z). Thus we have

L−n,n−1(F, z)− g(z) =
2n−1∑

j=0

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j F (αj)− g(z)

=
2n−1∑

j=0
αj∈A

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j f(αj) +

2n−1∑

j=0
αj∈T\A

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j g(αj)− g(z).

Hence

L−n,n−1(F, z)− g(z) =

2n−1∑

j=0
αj∈A

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j f(αj)

+

2n−1∑

j=0

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j g(αj)−

2n−1∑

j=0
αj∈A

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j g(αj)− g(z)

=

2n−1∑

j=0

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j g(αj)− g(z) +

2n−1∑

j=0
αj∈A

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j (f(αj)− g(αj))

= L−n,n−1(g, z) − g(z) +
2n−1∑

j=0
αj∈A

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j (f(αj)− g(αj)) . (18)

From Theorem 3 we know that L−n,n−1(g, z) uniformly converges to g(z) on T. Hence, to solve our
problem, we have to study the behavior of the last sum in (18) for n large enough. If we take into
account Note 3, we have to study the behavior of this sum considering only the nodes which are less
than

√
n arcs from a2. Thus we consider

√
n−1
∑

j=0

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j (f(αj)− g(αj))

=
W2n(z)α

n
02n

znW ′
2n(α0)α0

×
√
n−1
∑

j=0

αn
j

αn
0

W ′
2n(α0)α0

W ′
2n(αj)αj

1

( z
αj

− 1)2n
(f(αj)− g(αj)) . (19)

If we define h(z) = g(z) − f(z) − ℓ2 + ℓ1 and we take into account that lim
z→a2

h(z) = 0, then given

ε > 0 there exists a neighborhood of a2, Ea2 , such that |h(αj)| < ε for those αj ∈ Ea2 . Hence, by
applying (9), (6), (8) and (10) of Lemma 2 in (19) we obtain

√
n−1
∑

j=0

1

zn
W2n(z)

W ′
2n(αj)(z − αj)

αn
j (f(αj)− g(αj)) =

(

−2i sin(π d) +O
(

1√
n

))

×

√
n−1
∑

j=0

(−1)j
(

1 +O
(
j

n

))(

1 +O
(

1√
n

))(

− i

2π(j − d)
+O

(
1

n

))

(−h(αj) + ℓ1 − ℓ2) .
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After doing some calculus we get that the right hand side of the preceding equality is

−2i sin(π d)

√
n−1
∑

j=0

(−1)j
[

− i

2π(j − d)
− i

2π(j − d)
O
(

1√
n

)

+O
(
1

n

)]

(−h(αj) + ℓ1 − ℓ2)

︸ ︷︷ ︸

(∗)

+O
(

1√
n

)
√
n−1
∑

j=0

(−1)j
[

− i

2π(j − d)
− i

2π(j − d)
O
(

1√
n

)

+O
(
1

n

)]

(−h(αj) + ℓ1 − ℓ2)

︸ ︷︷ ︸

(∗∗)

.

It is immediate to see that for n greater enough (∗) behaves like
sin(π d)

π
η(|d|) (ℓ2 − ℓ1) =

sin(π |d|)
π

η(|d|) (ℓ1 − ℓ2) ,

and (∗∗) goes to zero when n tends to ∞. Thus, it follows the result.
�

The behavior of the interpolants near to a2 is plotted in the next Figure 2 for the case ℓ1 = 1,

ℓ2 = 0 and d ∈ [−7, 7]. It is given by 1 + sinπd
π

η(1 + d) and sinπ|d|
π

η(|d|).

-6 -4 -2 2 4 6

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

Figure 2. Approximation of L−n,n−1(F,α0e
−i 2π

2n
d) near to d = 0.

5. Numerical experiments

We have done several numerical experiments in order to present in a graphical way the different
results of the article. In all of them we use a barycentric formula of the second type to compute the
values of the interpolation polynomials.

Example 1. Our first numerical experiment is designed to show in a graphical way the central result
of the article, that is, the existence of a Gibbs-Wilbraham phenomenon near the discontinuities of
a piecewise continuous function. Moreover, the phenomenon can be described in the terms given on
statements of Theorem 6.

To see this behavior we consider a discontinuous test function F given by F (z) = ℜ(z) on the
shortest arc between −i and 1 and defined by 0 elsewhere. In this case a1 = −i, a2 = 1, ℓ1 = 1
and ℓ2 = 0. We also consider the interpolation polynomials L−n,n−1(F, z) and M−n,n−1(F, z)
related to the nodal systems determined by the para-orthogonal polynomials W2n(z, τ) with re-
spect to the Bernstein-Szegő measure, with normalized Szegő function (1 + z

2 )(1 + iz4 )(1 − iz4 ),
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-6 -4 -2 2 4 6

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3. F (z),ℜ(L−20,19(F, z)),ℜ(M−20,19(F, z)) and 1 + η(1 + d) sinπd
π

, (d ∈
[−1

2 , 7]), η(|d|)
sin π|d|

π
, (d ∈ [−7,−1

2)) for z = e−iπd
20 .

taking τ = −1, 1 respectively. We have represented three times the same graphic changing only
the number of nodes, (taking n = 20 in Figure 3, n = 360 and n = 500 in Figure 4; (i) and
(ii), respectively). The illustrations always gather the plots of the test function F (z) (green),
the real part of the interpolation polynomials ℜ(L−n,n−1(F, z)) (red) and ℜ(M−n,n−1(F, z)) (blue)

and the approximations given by ℓ1 + (ℓ1 − ℓ2)
sinπd

π
η(1 + d) = 1 + sinπd

π
η(1 + d), d ∈ [−1

2 , 7] and

ℓ2 + (ℓ1 − ℓ2)
sinπ|d|

π
η(|d|) = sinπ|d|

π
η(|d|), d ∈ [−7,−1

2 ) (black), for z = e−iπd
n . Notice that we do not

consider the imaginary part of the interpolants due to the results given in Theorem 6.

To make the paper more readable we summarize this information in the following table.

Function Description Colour
F(z) Test Function Green

ℜ(z) on the shortest arc between −i and 1 and 0 elsewhere
L−n,n−1(F, z) Interpolation polynomial Red

based on the nodal polynomial W2n = φ2n − φ∗
2n

M−n,n−1(F, z) Interpolation polynomial Blue
based on the nodal polynomial W2n = φ2n + φ∗

2n

1 + sinπd
π

η(1 + d)
sinπ|d|

π
η(|d|) Approximation of L−n,n−1(F, z) stated in Theorem 6 Black

In this way, we can see the two interpolation processes based in different nodal systems in Figure
3 and it can be appreciated a sharp difference with the prediction or approximation given by the
theorem. Moreover, we can point out some difference between the shapes of ℜ(L−n,n−1(F, z))−F (z)
and ℜ(M−n,n−1(F, z)) − F (z).

When n grows the situation must change. Indeed the interpolation polynomials must have the
same shape near the discontinuity and this shape is described by 1+ sinπd

π
η(1+d) on the right. This

evolution can be observed in the first graphic of Figure 4.
Finally, the second graphic of Figure 4 shows that 1 + sinπd

π
η(1 + d) and ℜ(L−n,n−1(F, z)) are

indistinguishable close to 1 and that ℜ(M−n,n−1(F, z)) shares their shape. A similar comment can
be done on the left hand side.
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-6 -
4

-2 2 4 6

-0.20.20.4
0.60.81.01.2(i)
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Figure 4. (i) F (z),ℜ(L−360,359(F, z)),ℜ(M−360,359(F, z)) and 1 + η(1 + d) sinπd
π

for

z = e−i πd
360 , d ∈ [0, 7], (ii) F (z),ℜ(L−500,499(F, z)),ℜ(M−500,499(F, z)) and 1 + η(1 +

d) sin πd
π

for z = e−i πd
500 , d ∈ [0, 7].

Example 2. Our second numerical experiment is designed to present in a graphical way the main
results of the article, that is the global behavior of the Lagrange interpolation polynomial for a piece-
wise continuous function. That behavior includes uniform convergence far away the discontinuities
and the existence of a Gibbs-Wilbraham phenomenon near the discontinuities with a well determined
shape described on statements of Theorem 6. Moreover, all these behaviors are the same for nodal
systems based in different measures of analytical weights.

We have chosen a more variable test function for this example. Indeed we use for the experiment
the function F (z) given by 2+ (1−ℜ(z)) sin 1

1−ℜ(z) on the shortest arc between −i and 1, −2+ (1−
ℜ(z)) sin 1

1−ℜ(z) on the shortest arc between 1 and i and 0 elsewhere. So 1, i and −i are discontinuity

points. We use two different nodal systems with 200 points based on two different analytic measures.
This choice allows to illustrate the oscillatory behavior of the Gibbs-Wilbraham phenomena. The
first measure is just the Bernstein-Szegő measure used in Example 1. The second one is a Rogers-
Szegő measure (RS). We recall that the RS measures (or wrapped Gaussian measures) are one of
the classical examples of measures on the unit circle. These type of measures are analytical weights
on the unit circle. A complete description of the RS measures which depend on a parameter q can
be obtained in [23]. In particular for our example we use q = 0.05 and we take τ = −1 for the
para-orthogonal polynomials. In this situation 1 is a nodal point for both systems.

Figure 5 presents the plots of F (z) (green), ℜ(L−100,99(F, z)) (red) and ℜ(M−100,99(F, z)) (blue),

for z = e−iπd
n on the interval d ∈ [−100, 100]. With arrows we have pointed out the areas of uniform

convergence and with ellipses the areas where the Gibbs-Wilbraham phenomena appears.
Figure 6 presents the plots of F (z) (green), ℜ(L−100,99(F, z)) (red) and ℜ(M−100,99(F, z)) (blue),

for z = e−iπd
n on the interval d ∈ [−7, 7], that is close to 1.

Finally we have plotted in Figure 7 the difference between ℜ(L−100,99(F, z)) − ℜ(M−100,99(F, z))
(black) and ℜ(L−100,99(F, z)) − F (z) (red) on the interval d ∈ [−7, 7], that is close to 1.
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Figure 5. F (z), ℜ(L−100,99(F, z)) and ℜ(M−100,99(F, z)), z = e−iπd
n , d ∈ [−100, 100].
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Figure 6. F (z), ℜ(L−100,99(F, z)) and ℜ(M−100,99(F, z)), z = e−iπd
n , d ∈ [−7, 7].
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Figure 7. ℜ(L−100,99(F, z)) −ℜ(M−100,99(F, z)) and ℜ(L−100,99(F, z)) − F (z).

6. Conclusions

In this article we use nodal systems which are useful for Lagrange interpolation process for contin-
uous or piecewise continuous functions. Indeed we have valid algorithms without stability problems.
The approximation obtained for smooth continuous functions is fast and this is an important rea-
son for using methods based on Lagrange interpolation. When we use Lagrange interpolation for
piecewise continuous functions we obtain an accurate description of where and when the Gibbs phe-
nomenon appears. Following the ideas of Krylov in [17], who knows the error can correct it, that is,
since we know the oscillations caused by the Gibbs phenomenon, we can use them to improve the
convergence. As a consequence of our study we conclude that this phenomenon is more analogous to
Fourier series than Hermite interpolation. Besides, we think that the techniques that we use in the
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article could be used with more general nodal systems without the restriction of being related with
para-orthogonal polynomials.

7. Appendix

In this section we give the proofs of Lemmas 1 and 2.

Proof of Lemma 1. (i) Taking into account that W2n(α0) = 0 and d
dθ

(
W2n

(
eiθ

))
= W ′

2n(z)e
iθi

for z = eiθ, then

|W2n(z)| = |W2n(z)−W2n(α0)| = |W2n(e
iθ)−W2n(e

iθ0)| ≤ max
θ∈[0,2π]

∣
∣
∣
∣

d

dθ

(

W2n

(

eiθ
))

∣
∣
∣
∣
|θ − θ0|

≤ max
z∈T

∣
∣W ′

2n(z)
∣
∣ |z − α0|

π

2
≤ 2nA|z − α0|

π

2
= 2nC|z − α0|.

The second inequality can be obtained in the same way.

(ii) As a consequence of (2) the angular distance between two consecutive nodes is
2π

2n
+O(

1

4n2
)

and therefore the angular distance
⌢
z − αj ≥ j

(
2π

2n
+O(

1

4n2
)

)

.

Since 2
π
(
⌢
z − αj ) ≤ |z − αj | then

1

|z − αj |
≤ π

2

1

⌢
z − αj

≤ π

2

1

j

1
(
2π

2n
+O(

1

4n2
)

) =
2n

j

π

2
(
2π +O( 1

2n)
) ≤ 2n

j
E.

By applying that W2n(z) is bounded on T we get (4).
(iii) Taking into account that

π
2 |z − αj+1| ≥

⌢
z − αj+1 ≥ j

(
2π

2n
+O(

1

4n2
)

)

≥ √
n

(
2π

2n
+O(

1

4n2
)

)

and the fact that αj+1 − αj = O( 1
n
) we have

z − αj

z − αj+1
=

z − αj+1 + αj+1 − αj

z − αj+1
= 1 +

αj+1 − αj

z − αj+1
= 1 +O

(
1√
n

)

.

Proof of Lemma 2. (i) Since |θj − θj+1| = 2π
2n +O( 1

n2 ) then

αj+1

αj
= ei(θj+1−θj) = ei(

2π
2n

+O( 1

n2 )) = 1 +O
(
1

n

)

,

which proves the first part of (5). In the same way

(
αj+1

αj

)n

=
(

ei(θj+1−θj)
)n

=
(

ei(
2π
2n

+O( 1

n2 ))
)n

= (−1)ei nO( 1

n2 ) = (−1)

(

1 +O
(
1

n

))

,

from which it follows the second part of (5). Notice that the asymptotic constants of (5) are inde-
pendent of n and j. Notice that the same result is true for the quotients

αj

αj+1
.
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(ii) (a) By applying the second equality in (5) we have

(
αj

α0

)n

=

(
αj

αj−1

)n(αj−1

αj−2

)n

· · ·
(
α1

α0

)n

=

(

−1 +O
(
1

n

))

· · ·
(

−1 +O
(
1

n

))

︸ ︷︷ ︸

j factors

= (−1)j
(

1 +O
(
1

n

))

· · ·
(

1 +O
(
1

n

))

︸ ︷︷ ︸

j factors

.

Due to Lemma 15.3 in [22] we have that

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(

1 +O
(
1

n

))

· · ·
(

1 +O
(
1

n

))

︸ ︷︷ ︸

j factors

−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤
(

1 +

∣
∣
∣
∣
O
(
1

n

)∣
∣
∣
∣

)

· · ·
(

1 +

∣
∣
∣
∣
O
(
1

n

)∣
∣
∣
∣

)

︸ ︷︷ ︸

j factors

−1

≤ exp

j
∑

1

∣
∣
∣
∣
O
(
1

n

)∣
∣
∣
∣
− 1 ≤ exp

∣
∣
∣
∣
O

(
j

n

)∣
∣
∣
∣
− 1 ≤

∣
∣
∣
∣
O
(
j

n

)∣
∣
∣
∣
, (20)

which implies
(
1 +O

(
1
n

))
· · ·

(
1 +O

(
1
n

))
= 1 + O

(
j
n

)

, and thus the first part of (6) is proved.

Although we maintain the same notation of O
(

j
n

)

in the last equality, the asymptotic constant is

different from the one that appeared en (20). The second part is an immediate consequence of the
first one.
(b) It can be obtained in a similar way.

In the sequel when we apply in an equality the identity
A+B

C +D
=

A

C
+

CB −AD

C(C +D)
, we will use the

notation ⊜ instead of =.

(iii) (a) Since
W ′

2n(αj)

W ′
2n(αj+1)

=
αjW

′
2n(αj)

αj+1W ′
2n(αj+1)

αj+1

αj
, by using (1) and (5) we get

W ′
2n(αj)

W ′
2n(αj+1)

=
2nα2n

j Π(αj) +O(1)

2nα2n
j+1Π(αj+1) +O(1)

αj+1

αj

⊜

[

α2n
j Π(αj)

α2n
j+1Π(αj+1)

+
O(1)2nα2n

j+1Π(αj+1)−O(1)2nα2n
j Π(αj)

2nα2n
j+1Π(αj+1)[2nα2n

j+1Π(αj+1) +O(1)]

](

1 +O
(
1

n

))

=

[(
αj

αj+1

)2n Π(αj)

Π(αj+1)
+O

(
1

n

)](

1 +O
(
1

n

))

=

[(

1 +O
(
1

n

))
Π(αj)

Π(αj+1)
+O

(
1

n

)](

1 +O
(
1

n

))

=

(

1 +O
(
1

n

))

.
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(b) By using the first part of this item

W ′
2n(α0)α0

W ′
2n(αj)αj

=
α0

αj

W ′
2n(α0)

W ′
2n(α1)

· · · W
′
2n(αj−1)

W ′
2n(αj)

=
α0

αj

(

1 +O
(
1

n

))

· · ·
(

1 +O
(
1

n

))

︸ ︷︷ ︸

j factors

=
1
αj

α0

(

1 +O
(
j

n

))

.

Now by taking into account that if j <
√
n then O

(
j
n

)

= O
(

1√
n

)

and by using the fact that

αj

α0
= 1 +O1

(
j
n

)

we get

α0

αj

(

1 +O
(
j

n

))

=
1 +O

(
j
n

)

1 +O1

(
j
n

) ⊜ 1 +
O
(

1√
n

)

1 +O
(

j
n

) ,

which proves (b).
(iv) By applying the properties given in (i) and (ii) at the beginning of section 2 related to the

behavior of φ∗
n(z), φn(z) and their derivatives, we have

W2n(z)α
n
0 2n

zn W ′
2n(α0)α0

=

(

z2nΠ(z) + τΠ(z) +O(r2n)
)

αn
0 2n

zn
(

2nα2n−1
0 Π(α0) +O(1)

)

α0

.

From the fact that W2n(α0) = 0 we obtain τ =
−φ2n(α0)

φ∗
2n(α0)

, that is,

τ =
−α2n

0 Π(α0) +O(r2n)

Π(α0) +O(r2n)
⊜

−α2n
0 Π(α0)

Π(α0)
+O(r2n).

Therefore

W2n(z)α
n
0 2n

zn W ′
2n(α0)α0

=

(

z2nΠ(z) − α2n
0 Π(α0)

Π(α0)
Π(z)

)

αn
0 2n+O(2nr2n)

2nznα2n
0 Π(α0) +O(1)

⊜

z2nΠ(z)− α2n
0 Π(α0)

Π(α0)
Π(z)

znαn
0Π(α0)

+
O(1)

2n
= 2iℑ

(

znΠ(z)

αn
0Π(α0)

)

+
O(1)

2n
.

Now, if we use that Π(z)

Π(α0)
= 1 + Π(z)−Π(α0)

Π(α0)
, Π(α0) 6= 0, and Π(z) is a lipschitz function then

∣
∣
∣
∣
∣

Π(z)−Π(α0)

Π(α0)

∣
∣
∣
∣
∣
≤ K|z − α0| = O(

1√
n
).

Hence

2iℑ
(

znΠ(z)

αn
0Π(α0)

)

+
O(1)

2n

= 2iℑ
((

e−iπd
n

)n
(

1 +O
(

1√
n

)))

+
O(1)

2n
= −2i sin πd+O

(
1√
n

)

.
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(v) (a) By taking into account that αj = α0e
−i( 2π

2n
j+O( j

n2 )) then

1
(

z

αj
− 1

)

2n

=
1




α0e

i2πd
2n

α0e
−i

(

2π
2n

j+O( j

n2 )
) − 1



 2n

=
1

(

e
i
(

2π
2n

(d+j)+O( j

n2 )
)

− 1

)

2n

.

If we take into account that for small values of x it holds eix − 1 = ix+O(x2), then

1
(

z

αj
− 1

)

2n

=
1

(

i
(
2π
2n(d+ j) +O( j

n2 )
)

+O
(
2π
2n(d+ j) +O( j

n2 )
)2

)

2n

=
1

i2π(d + j) +O
(

j
n

)

+O( (d+j)2

n2 )2n
=

1

i2π(d + j) +O( (d+j)2

n
)

=
1

i2π(d+ j)

(

1

1 +O(d+j
n

)

)

=
1

i2π(d + j)

(

1 +O(
d+ j

n
)

)

=
1

i2π(d + j)
+O

(
1

n

)

.

(b) It is obtained in a similar way.
(vi) It is an immediate consequence of the preceding items (i) and (iii) and Lemma 1. Indeed

αn
j+1W

′
2n(αj)(z − αj)

αn
jW

′
2n(αj+1)(z − αj+1)

=
αn
j+1

αn
j

W ′
2n(αj)

W ′
2n(αj+1)

z − αj

z − αj+1

=

(

−1 +O
(
1

n

))(

1 +O
(
1

n

))(

1 +O
(

1√
n

))

,

from which it follows the result.
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Dear Editors:

We want to thank to the referee for their useful comments that have improved this new version of
the paper.

In this version we have taken into account all the comments made by the referee. More precisely:

1.1. References.
We have added the books recommended by the referee, as well as the all the papers except which
are left to the discretion of the authors because they are less related with the subject.

1.2.
The distribution of the nodal points is given in (2). With respect to the question if one of the ends
of the arc A is a point of interpolation, we have added the following explanation before Theorem 5:

”Notice that α0, which depends on n, may be equal or different to a2, which is a difference with
respect to classical and recent references. Moreover, we denote the points of T refering to α0. An
alternative point of view is to consider that the arc A ends (for the interpolatory process) in α0.
This last interpretation connects better with other references.”

1.3.
We have corrected all the remarks related to the grammar or the notation made by the referee.

We have formatted the splitted equalities/inequalities with the corresponding symbols on the left-
hand side.

We have cleared the meaning of reversed polynomials (Section 2) and the set In (page 8) given
their definitions. We have also cleared the statements ”behaves like” in Theorem 6 and ”Following
the ideas of Krylov” in section 6 by adding some short comments.

On behalf of the authors and as the corresponding author, sincerely yours.

Alicia Cachafeiro
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