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Abstract: This work presents a robust non-deterministic free vibration analysis for engineering
structures with random field parameters in the frame of stochastic finite element method. For this,
considering the randomness and spatial correlation of structural physical parameters, a parameter
setting model based on random field theory is proposed to represent the random uncertainty of
parameters, and the stochastic dynamic characteristics of different structural systems are then an-
alyzed by incorporating the presented parameter setting model with finite element method. First,
Gauss random field theory is used to describe the uncertainty of structural material parameters, the
random parameters are then characterized as the standard deviation and correlation length of the
random field, and the random field parameters are then discretized with the Karhunen–Loeve ex-
pansion method. Moreover, based on the discretized random parameters and finite element method,
structural dynamic characteristics analysis is addressed, and the probability distribution density
function of the random natural frequency is estimated based on multi-dimensional kernel density
estimation method. Finally, the random field parameters of the structures are quantified by using the
maximum likelihood estimation method to verify the effectiveness of the proposed method and the
applicability of the constructed model. The results indicate that (1) for the perspective of maximum
likelihood estimation, the parameter setting at the maximum value point is highly similar to the input
parameters; (2) the random field considering more parameters reflects a more realistic structure.

Keywords: free vibration; random field; Karhunen–Loeve expansion; multi-dimensional kernel
density estimation; random dynamic characteristic

1. Introduction

Structural dynamic characteristics, including the natural frequency and natural mode,
as a crucial indicator for the vibrational properties of engineering structures [1], have been
widely realized and studied for many years. With the help of finite element method (FEM),
the structural dynamic characteristic can be adequately dealt with by investigating the
generalized eigenvalue and eigenvector problems [2–4]. For example, Gorman and Yu [4]
reviewed the method of superposition in vibration analysis of plates and shells, especially
focusing on the Gorman method for accurate establishment of eigenvalues and mode
shapes in free vibration analysis of rectangular plates. Although the system variables of
the concerned structures are broadly accounted for as deterministic, it has been demon-
strated that the fluctuation, i.e., uncertainties, of these parameters inevitably and inherently
correlated to the structural modelling and analysis process [5–7]. The complexity of the
actual structural material properties and various random errors during the manufacturing
process will result in uncertainty of the structural parameters, such as vibration of the
machine tool, random variation in the temperature during processing, etc., which will cause
uncertainty among a group of structural components with the same nominal size that are
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manufactured with the same material and the same processing method [8] and ultimately
lead to random fluctuation of material properties around the mean value and a certain
correlation between the fluctuation and machining dimension direction [9,10]. In addition,
a group of structural members with the same nominal size, because of the uncertainty
of their material parameters, may have similar but different dynamic characteristics [11].
The existence of such uncertainties intrinsically has an influence on the believability of
the analyzing results of the structural dynamic behaviors [12–14]. Hence, it is urgent to
develop an uncertain free vibration analysis framework for more effective and meaningful
estimation on the structural dynamic characteristics.

In general, uncertain dynamic characteristic analysis is implemented with probabilis-
tic/stochastic approaches, which are based on the theory of probability or statistics [15–19].
Wan [15] used low-order statistical moments to adopt to characterize the uncertainty of
modal frequencies of two bridges with assumed normally and uniformly distributed pa-
rameters. Liu et al [16] presented a probabilistic boundary element method for analysis
of the statistics of structural eigenvalues and eigenvectors with random shape parame-
ters. Consequently, in most of the literature listed above, the relevant uncertainties of the
structural parameters are modelled as random discrete variables with predefined statistical
information, such as mean values and variance. Over the past decade, stochastic finite ele-
ment methods (SFEM) have been paid much attention and have been applied to structural
analysis of static responses [20,21] or dynamic responses analysis [22–24], in which struc-
tural response problems were addressed by SFEM by incorporating probabilistic strategies
within the FEM. Numerous computational procedures have been developed for solving
the random static problems [25,26], as well as other engineering applications, including
reliability problems [27]. Normally, there are two categories to implement SFEM: simulation
approaches (e.g., the Monte-Carlo method), which are capable of offering the probabilistic
features of the concerned structural responses based on the statistics of samples obtained
from the simulation [28–30]; and non-simulation methods, which approach the statistical
characteristics of the structural outputs by carrying out various numerical methods [31].
Development of SFEM in structural engineering, however, has not yet deeply and ade-
quately extended to eigenvalue problems despite their importance in many applications,
including the dynamic response of structures.

Moreover, admitting the universal application of SFEM, the creditability of such
stochastic processes is conditional to the availability of the statistical information of the
concerned uncertainties in practical engineering applications [32]. Especially, the research
on characterization of structural uncertainty and modification of structural parameters
mainly focuses on expansion of some structural or material parameters, such as elastic
modulus, the moment of inertia, thickness, etc., and inputting the mean values and mean
variances of these discrete random variables into the structural system for uncertainty
analysis. Such constructed models are not very complex and comparatively easy to resolve
in most cases but cannot accurately reflect the real uncertainty existing in input parameters
and output outcomes of the actual structural system, although various effective methods
can be used for stochastic finite element analysis, as listed above. In fact, there are many
factors that affect the uncertainty of structural material parameters, resulting in the random
distribution of material parameters in the structural space. For example, manufacturing
processes can easily lead to spatial variations in the load and material properties, such as
moduli and density. When rolling steel plates, the runout of the rolling head presents a
trigonometric function law, which will inevitably cause uneven thickness of the structure
and then variation in random physical parameters with structural spatial sizes. With the
robust progress of uncertainty analysis, SFEM has been escalated with consideration of
the spatial dependency of uncertain system parameters by incorporating the theory of
random field with structural static analysis [6,10,33,34] or dynamic analysis of simple
one-dimensional random field [35,36]. Moreover, there is still a lack of verification methods
for SFEM with random field. In most cases, the Monte-Carlo method is used for such a
purpose, but it definitely and inevitably has the disadvantage of absolute dependence on
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the amount of samples [37–40]. Hence, it is very crucial and urgent to build an effective
analysis model of free vibration for the structure with random field and to develop a new
verification method regarding the presented model.

Aiming at the uncertainty of structural material parameters, a method used of struc-
tural dynamic characteristics analysis and the corresponding verification are presented in
the context of stochastic finite element method by incorporating the theory of random field
with the finite element method. First, the uncertainty of structural material parameters is
represented by the parameter setting model of random field theory, and the uncertainty of
structural parameters is quantified with the random field model based on Gauss kernel
function. Then, the simulation and discretization of the parameter setting model of ran-
dom field are implemented with Karhunen–Loeve expansion method, and the structural
dynamic characteristics are analyzed in the frame of finite element method, followed by
acquisition of the probability distribution density function of the natural frequency by
using the multi-dimensional kernel density estimation method. Afterwards, the input
parameters of the model are quantified and verified by the maximum likelihood estimation
method after comparing the experimental results with the simulation results. Finally, two
examples are, respectively, used as one-dimensional and two-dimensional cases of random
fields to validate the applicability and effectiveness of the proposed method.

2. Representation of the Uncertainty with Random Field

The errors of machining, heat treatment, and material itself may cause uncertainty
of the structural system. These errors are usually small and independent. According to
central limit theorem, the distribution of many independent and small random variables
follow a Gaussian distribution. Actually, the assumption of Gaussian distribution is easy to
calculate and the corresponding problems can be solved. In this work, Gauss random field
model is used to describe the uncertainty of material parameters of structural system.

2.1. Gauss Random Field Model

Gauss random field has two characteristics: (1) its mathematical expectation µ and vari-
ance σ2 are constants independent of position coordinates; i.e., mω(xi) = µ, Dω(xi) = σ2,
whereby ω(xi) is a random number and xi represents a point in space; (2) its autocovari-
ance function is uniquely related to the relative position distance of two points in the
random field but not to the absolute position coordinate of two points; i.e., autocovariance
Cω(xi, xi + τ) = Cω(τ) = σ2ρ(τ), whereby τ is the relative distance between two points,
and ρ(τ) is the autocorrelation function of the random field. In addition, another important
parameter of Gaussian random field is the correlation distance L, which indicates that the
parameters within the correlation distance have obvious correlation. The key to establish a
random field is to construct its covariance matrix.

In the framework of finite element, the continuous Gauss random field needs to be
discretized into random variable vector for the following structural dynamic analysis. There
are several commonly used discretization methods for Gauss random field, i.e., spectrum
representation, Karhunen–Loeve expansion (K-L expansion), and so on.

2.2. Karhunen–Loeve Expansion

Karhunen–Loeve expansion has been widely applied to the continuous process [31].
Essentially, a random field is decomposed into a series of uncorrelated random variables
and certain coefficients, such as eigenfunctions and eigenvalues, by using the K-L expansion.
K-L expansion has the following advantages: it has the characteristics of mean square
convergence for any type of random field; compared with other discretization methods,
when the finite terms of expansion are the same, K-L expansion has the minimum mean
square error [6]. In the K-L expansion, a random field H(x, θ) can be expanded into a
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group of countable and orthogonal random variables; i.e., H(x, θ) can be expanded into a
combination of the random scalars ξn(θ). The specific development process is as follows [1]:

H(x, θ) = 〈E(x)〉+
m

∑
n=0

ξn(θ)
√

λn fn(x) (1)

whereby x = (x, y) is the coordinate of a point in space, 〈E(x)〉 is the mathematical
expectation, θ is a random event, ξn(θ)(n = 0, 1, . . . , m) form a Gaussian random sequence
with zero mean and they are uncorrelated to each other, and λn and fn(x) are eigenvalues
and eigenfunctions of the autocovariance matrix of random field C(x1, x2) .

The key of K-L expansion for a random field is to obtain the eigenvalue and eigenfunc-
tion of autocovariance matrix C(x1, x2) . Because the covariance matrix of a random field
is defined in the regular geometric space domain, the eigenvalues and eigenvectors can
be easily obtained. The detailed solution process of autocorrelation matrix C(x1, x2) is as
follows [5]. ∫

D
C(x1, x2) fn(x2)dx2 = λn fn(x1) (2)

whereby the autocovariance function C(x1, x2) is bounded, symmetric, and positive definite,
which ensures that the eigenvalues and eigenfunctions have the following properties: (1) the
set of eigenfunctions fi(x) is orthogonal and complete; (2) for each eigenvalue λk, there are
at most a limited number of linearly independent eigenfunctions; (3) there is at most one
countable infinite set of eigenvalues; (4) all of the eigenvalues are positive real numbers;
(5) the autocovariance function C(x1, x2) can be decomposed into the following forms:

C(x1, x2) =
∞

∑
k=1

λk fk(x1) fk(x2) (3)

In the case of one-dimensional (1D) random field, the following autocorrelation kernel
function can be used for solving the eigenfunction fn(x) in Equation (2)

C(x1, x2) = e−|x1−x2|/L (4)

whereby the correlation length of random field L also reflects the attenuation degree of
correlation between two points x1 and x2. Therefore, C(x1, x2) is a function of variable
|x1 − x2| and the parameter L; the integral area D in Equation (2) is a real number interval
in the case of one-dimensional random field, and it can be taken as D = [−a, a]. Therefore,
Equation (2) can be converted into:∫ +a

−a
e−|x1−x2|/L fn(x2)dx2 = λn fn(x1) (5)

Equation (5) is further expanded to obtain:∫ x1

−a
e−(x1−x2)/L fn(x2)dx2 +

∫ +a

x1

e(x1−x2)/L fn(x2)dx2 = λn fn(x1) (6)

Finding the first derivative of Equation (6) to x1 yields

λn f ′n(x1) = −
1
L

∫ x1

−a
e−(x1−x2)/L fn(x2)dx2 +

1
L

∫ +a

x1

e(x1−x2)/L fn(x2)dx2 (7)

Finding the derivative of Equation (7) to x1 once again and substituting x1 with x, then
the differential equation in general form can be obtained as follows

λn f ′′n (x) =
(
− 2

L
+

λn

L2

)
fn(x) (8)
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Let ω2 =
(
− 2

L + λn
L2

)/
λn ; Equation (8) can be converted into

f ′′n (x) + ω2 fn(x) = 0(−a ≤ x ≤ a) (9)

To solve Equation (9), its boundary conditions should be found at first. Substituting
x1 = −a and x1 = a into Equations (6) and (7), respectively, and rearranging them, the
following boundary conditions can be obtained

1
L

fn(a) + f ′n(a) = 0 (10)

1
L

fn(−a)− f ′n(−a) = 0 (11)

In summary, Equation (2) has been transformed into a general differential Equation (9)
with its boundary conditions Equations (10) and (11), and the general solution of Equation (9) is

fn(x) = c1 cos(ωx) + c2 sin(ωx) (12)

By substituting Equation (12) into boundary conditions and then rearranging the
equations, this yields:

c1

(
1
L
−ω tan(ωa)

)
+ c2

(
ω +

1
L

tan(ωa)
)
= 0, c1

(
1
L
−ω tan(ωa)

)
− c2

(
ω +

1
L

tan(ωa)
)
= 0 (13)

Based on Equation (13), to obtain the solution of differential Equation (9), namely, to
obtain Equation (12), the following conditions must be met:

1
L
−ω tan(ωa) = 0, ω +

1
L

tan(ωa) = 0 (14)

Solving Equation (14) and expressing the solution of the first equation as ω#
n, ω#

n

should be within the interval
[(

n
2 −

1
2

)
π
a , n

2 ·
π
a

]
, (n = 1, 3, . . . , m− 1), whereby m is an even

number and it indicates the truncated number during the K-L expansion of Equation (1).
Expressing the solution of the second equation of Equation (14) as ω∗n, ω∗n is within the
interval

[(
n
2 −

1
2

)
π
a , n

2 ·
π
a

]
, (n = 2, 4, . . . , m). The corresponding eigenfunctions are the

following Equations (15) and (16)

fn(x) = [cos
(

ω#
nx
)
]

/√
a +

sin(2ω#
na)

2ω#
n

(n = 1, 3, . . . , m− 1) (15)

f ∗n (x) = sin(ω∗nx)
/√

a− sin(2ω∗na)
2ω∗n

(n = 2, 4, . . . , m) (16)

Furthermore, based on the transformation relation ω2 =
(
− 2

L + λn
L2

)
/λn , the corre-

sponding eigenvalues to ω#
n and ω∗n can be derived as

λn = 2
/

[L · (ω#
n)

2
+

1
L
] (n = 1, 3, . . . , m− 1) (17)

λ∗n= [2
/

L · (ω∗n)
2 +

1
L
](n = 2, 4, . . . , m) (18)

Based on Equations (14)–(16), take the Karhunen–Loeve expansion of beams for
example. Set the beam length l = 1m, a = 0.5m and the correlation length L = 0.3m.
When the number of truncations is taken as n = 1, 2, 3, 4, 5, 6, the eigenfunctions fn(x)
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are illustrated in the left part of Figure 1. It can be seen directly that the eigenfunctions
are actually a series of trigonometric functions, and their periods and amplitudes are
related to the values of the chosen order n; that is, the larger the value of n, the smaller
the period of fn(x). Based on Equations (17) and (18), when l = 5m, a = 0.5m, and
L = 0.2m, 0.3m, 0.5m, 1m, 2m, 5m, the eigenvalues are shown in the right part of Figure 1.
It can be seen from Figure 1 that the random field H(x, θ) is composed of eigenvalues λn
and eigenfunctions fn(x) based on Equation (1); the larger the value of L in the right part
is, the larger the value of low-order eigenvalues, such as λ2, and the larger the proportion
of low-order eigenfunctions, such as f2(x) in H(x, θ), as shown in the left part, so the
fluctuation of random field is more gentle.
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After the eigenfunctions and eigenvalues of 1D random field are obtained, the autocor-

relation function can be obtained based on Equation (3); i.e., C(x1, x2) =
∞
∑

k=1
λk fk(x1) fk(x2).

When the length of 1D random field is 1m and the correlation length L is 0.3 m, C(x1, x2)
is displayed in Figure 2. Figure 2a is the autocorrelation kernel function represented
by Equation (4), and Figure 2b–d are the C(x1, x2) obtained with K-L expansion, respec-
tively, when the truncation number m is taken as 4, 8, and 12, whereby C(x1, x2) =

m
∑

k=1
λk fk(x1) fk(x2).
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It can be seen from Figure 2 that C(x1, x2) is more and more close to its autocorrelation
kernel function with the increasing m; that is, the more accurate the autocorrelation function
is, the more precise the random field simulation is. Therefore, in the following examples
in Section 4, the truncation number m is selected as 12 with a synthetical consideration of
simulation accuracy and calculation workload.

For a two-dimensional (2D) Gaussian random field, its eigenvalues and eigenfunctions
can be expressed by the product of the eigenvalues and eigenfunctions of two 1D random
fields [3] as follows

λn = λ1D
n1 · λ1D

n2 (19)

f (x) ≡ f (x, y) = fn1(x) · fn2(y) (20)

Substituting Equations (19) and (20) into Equation (1), the K-L expansion of 2D random
field can be obtained

H(x, y, θ) = H(x, y) +
M

∑
n=0

ξn(θ)
√

λn1 · λn2 fn1(x) · fn2(y) (21)

3. Structural Parameters Uncertainty Characterizing and Quantification

Based on the proposed Gaussian random field model, the uncertainty of structural
parameters will be characterized and quantified in this section. In the framework of finite
element, the Gauss random field of structural parameters is discretized into every grid
element, and the random dynamic characteristics of the structure are then calculated. Non-
parametric estimation of the structural dynamic characteristics will then be implemented
by using the kernel density estimation method so as to obtain the distribution function
characteristics of the structural random dynamic characteristics. Finally, the distribution
characteristics of the output responses from the test and simulation will be compared with
each other, and the distribution parameters of the model will be quantified and verification
carried out with maximum likelihood estimation.

3.1. The Analysis of Structural Dynamic Characteristics with Random Field

Considering that the Young’s modulus of the structure is a Gaussian random field, the
random field is discretized based on Equation (1) and then substituted into the following
element stiffness matrix and element consistent mass matrix

[ke] =
∫

Ω
[B]T [D][B]dΩ (22)

[me] =
∫

Ω
ρ[N]T [N]dΩ (23)

whereby [B] is the geometric matrix, [N] is the shape function matrix; Ω is the integral
domain, Ω is the unit length for the bar element and beam element, and Ω is the unit area
for the plate and shell elements; ρ is the material density; [D] is the elastic matrix shown in
Equation (24) for the beam element, Iz is the inertia moment of the beam; [D] is the bending
stiffness matrix in Equation (25) for the thin plate element, µ is the Poisson’s ratio of the
material.

[D] = EIz (24)

[D] =

 Dp µDp 0
µDp Dp 0

0 0 1−µ
2 Dp

, Dp =
Eh3

12(1− µ2)
(25)

The total stiffness matrix [K] and the total mass matrix [M] of the structural system
can be obtained by assembling element stiffness matrix and the element mass matrix and
then substituting the boundary conditions of nodes into them. Generally, the vibration that
causes damage to the structural system is low-frequency vibration, so, in the subsequent
analysis, only the low-order natural frequency of the system is considered in this work,
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and the matrix iteration method is used for solution so as to quickly obtain the low-order
natural frequency of the system and its corresponding vibration mode [6].

Suppose that the structural system represented by the stiffness matrix [K] and the
mass matrix [M] is a positive system with n degrees of freedom and the free vibration
equation of the structural system described with the flexibility matrix is as follows:

{X}+ [R][M]
{ ..

X
}
= {0} (26)

Let the solution of Equation (26) be {x} = {X} sin pt. Substituting the solution {x}
into Equation (26), the mode equation of system is

[R][M]{X} = 1
p2 {X} (27)

Let λ = 1
p2 , [S] = [R][M], Equation (27) can be converted into

[S]{X} = λ{X} (28)

For the first-order eigenvalue λ1, the relation holds; i.e., [S]{X}1 = λ1{X}1. Based
on this relationship, the matrix iteration method is used to carry out iteration, and the
maximal eigenvalue λ1 and the corresponding eigenvector {X}1 can be obtained. The
specific iteration steps are as follows

(1) Taking any normalized mode shape {u}0 as the initial solution vector and carrying
out the first iteration according to the formula [S]{u}0 = a1{u}1, whereby the first
components in both {u}0 and {u}1 are normalized to 1.

(2) If {u}1 6= {u}0, assigning {u}1 to {u}0 as the trial solution vector, and repeating step
(1) until the k-th iteration meeting [S]{u}k−1 = ak{u}k, it indicates that the iteration
converges if {u}k−1 = {u}k, then λ1 = ak and {X}1 = {u}k. It should be noted that
the ideal results {u}k−1 = {u}k actually cannot be obtained in the actual iteration
process due to the existence of errors, but it also means the convergence of iterations
when ‖{u}k−1 − {u}k‖ < err, whereby err is the selected error threshold.

To solve the second-order and higher-order eigenvalues and eigenvectors, the dynamic
matrix [S] needs cleaning; that is, [S] needs modifying by using the orthogonality of the
main mode and the components of the first r-order main modes in [S] should be cleared so
as to obtain the r + 1 order iterative dynamic matrix. According to the projection theorem
of functional theory, the cleaning matrix can be obtained as:

[Q]r = [I]− 1
Mr
{X}r{X}

T
r [M] (29)

whereby Mr = {X}T
r [M]{X}r. Let the dynamic matrix before and after cleaning be [S]r

and [S]r+1; the specific process of cleaning is as follows [10]:

[S]r+1 = [S]r[Q]r = [S]r −
λr{X}r{X}

T
r [M]

Mr
(30)

The r + 1 order eigenvalue of the system λr+1 and its corresponding eigenvector
{X}r+1 can be obtained by the operation of cleaning for [S]r+1 mentioned above and
iterative calculation, and the r + 1 order natural frequency of the system can also be

obtained, i.e., fr+1 = 1
2π

√
1

λr+1
.

3.2. Multidimensional Kernel Density Estimation

Maximum likelihood estimation provides a method to evaluate model parameters
with given observation data; i.e., by observing the results of many tests, the parameter
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can be found that can make the probability of sample occurrence the maximum. Since the
distribution characteristics of the output response of the model are unknown, it is necessary
to make nonparametric estimation for the probability distribution of the output response.
Herein, nonparametric estimation for the probability distribution of the output response is
implemented with the multi-dimensional kernel density estimation method.

When the structural parameter is random field, the natural frequency fr (r = 1, 2, . . .)
of the model is also random variable. Suppose that natural frequencies are independent
and identically distributed random variables so that the multidimensional kernel density
of its distribution density function is estimated as [8]:

pQ(q) =
1
n

n

∑
j=1

m

∏
k=1

[
1
hk

K

(
Qk
(
sj
)
− qk

hk

)]
(31)

whereby Qk
(
sj
)
= [Φ]T

(
fr − fr

)
=
{

Q1
(
sj
)
, Q2

(
sj
)
, Q3

(
sj
)
, . . . , Qm

(
sj
)}

, fr = { fr1
(
sj
)
,

fr2
(
sj
)
, and fr3

(
sj
)
, . . . , frm

(
sj
)}

are the sample data of fr, fr is the mean value of sam-
ple data; [C] is the covariance matrix of samples fr, [Φ] is the eigenvector matrix of [C];
K(·) is the multivariate kernel function; hk is the window width matrix, the selecting
principle of hk is to minimize the mean square error of calculation results; the kernel
density estimation points q = (q1, q2, . . . , qk, . . . , qm), q is a vector that is the indepen-
dent variables of kernel density estimation function; herein, q is the vector Qk

(
sj
)
={

Q1
(
sj
)
, Q2

(
sj
)
, Q3

(
sj
)
, . . . , Qm

(
sj
)}

, which is obtained from the transformation Qk
(
sj
)
=

[Φ]T
(
fr − fr

)
based on the structural output responses fr =

{
fr1
(
sj
)
, fr2

(
sj
)
, fr3

(
sj
)
,

. . . , frm
(
sj
)}

.

3.3. Maximum Likelihood Estimation

The maximum likelihood estimation is implemented aiming at the output response of
the structural model, and the parameter satisfying the probability distribution density is
estimated. The parameter with the greatest possibility θ∗ is taken as the estimation value
of the real parameter θ. Since the log likelihood function is easier to calculate, the kernel
density estimation function in Equation (31) is then expressed as

L̂(θ) =
num

∑
i=1

ln

{
1
n

n

∑
j=1

m

∏
k=1

[
1
hk

K

(
Qexp(k, i)−Qmod

θ (k, j)
hk

)]}
(32)

whereby the parameter setting θ = (σ, L), σ is the mean variance of Gaussian random
field, and L is the correlation length of random field; simulation output response Qmod

θ =

[Φ]Tθ

(
fmod
θ − fmod

θ

)
, fmod

θ is the output response of the model with parameter setting θ;

the covariance matrix of samples fmod
θ is [C]θ , and [Φ]θ is the eigenvector matrix of [C]θ ;

Qexp = [Φ]Tθ

(
fexp − fmod

θ

)
, fexp is the output responses of tests, and num means the number

of test points. According to the assumption of kernel function of multivariate Gaussian
distribution [8], the window width is taken as

hk =
√
[λ]kk

[
4

n(2 + m)

] 1
4+m

(33)

whereby [λ]kk is the eigenvalue matrix of covariance matrix [C]θ .
The Gaussian kernel function is chosen as

K(v) =
1√
2π

exp
(
−v2

2

)
(34)

The maximum likelihood estimation method is used to quantify distribution param-
eters of test samples; i.e., assuming a group of parameters θ, the output responses of
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parameter samples are taken as the model samples. The probability distribution density
function of the output responses is then obtained by using the kernel density estimation
aiming at output response values based on Equation (31), and the maximum likelihood
estimation function L̂(θ) can be computed by inserting the output responses from both test
samples and model samples into Equation (32), and, finally, parameter θ∗ can be estimated,
which corresponds to the maximal value of L̂(θ) so as to verify whether it is the input
parameter of test samples θ.

4. Case Study
4.1. I-Beam with One-Dimensional Random Field

Figure 3 is a simply supported steel beam with a section of I-beam, and the length
of the beam is 1 m. The inertia moment Iz = 245 cm4, sectional area A = 14.345 cm2, and
mass density ρ = 11.261 kg/m. The beam is meshed into 60 beam elements, as shown in
the right part of Figure 3.
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(unit: mm).

Suppose that Young’s modulus of material E is random field and its mean value
is 〈E(X)〉 = 210 GPa, and the covariance function is C(x1, x2) = e−|x1−x2|/L. Then, K-L
expansion of E in every element from Equation (1) is

E(xi, θ) = 〈E(X)〉+
m

∑
n=0

ξn(θ)
√

λn fn(xi) (i = 1, 2, 3, . . . , 60) (35)

From Equation (35), the random field E is represented with its mean variance σ and
correlation length L; i.e., the parameter setting θE is the output parameter of test samples
and model samples, θE = (σE, LE). In the following, the random field E is quantified
with numerical tests. Based on Section 3.1, the first eight-order natural frequencies can
be solved for every I-beam, and the natural frequency matrix can then be formed as
[f] = {f1, f2, f3, f4, f5, f6, f7, f8}.

Given an input parameter θ0 = (σ0, L0), and natural frequency matrix of 500 beams
[f]exp

8×500 are considered as the test data samples. Moreover, the other parameter settings
θij =

(
σi, Lj

)
(i = 1, 2, 3, . . . , 10) j = 1, 2, 3, . . . , 10) are chosen, and the detailed values of

parameters are {σ1, σ2, σ3, . . . , σ10} = {1GPa, 2GPa, . . . , 10GPa} and {L1, L2, L3, . . . , L10} =
{100mm, 200mm, 300mm, . . . , 1000mm}. The natural frequencies of 100 beams for each
parameter setting θij form a model matrix sample [f]mod

8×100, and there are 104 beams and

100 model matrix samples [f]mod
8×100 in all. In the following, the kernel density estimation

and maximum likelihood estimation will be implemented aiming at natural frequencies,
and the identifiability of parameter setting θ = (σ, L) and the effectiveness of random field
model will be verified.
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4.1.1. Test Data Analysis

For four parameter settings of Young’s modulus θE1 = (1GPa, 100mm), θE2 = (5GPa,
100mm), θE3 = (1GPa, 1000mm), and θE4 = (5GPa, 1000mm), the random process distri-
butions of E on 10 beams are demonstrated in Figure 4, in which every curve denotes the
value of E in the beam and reflects the randomness of values of E on every point of the
beam. From Figure 4, it can be seen that values of the random field E fluctuate around its
mean value 210 GPa; the fluctuation along the longitudinal axis reflects the magnitude of
variance and the variation of variance with the axial dimension of the beam; just as the
meaning of parameter setting σE and LE, the influence of σE on the random distribution of
E is much greater than that of LE. In the case of the same parameter setting used, 10 curves
in each figure, i.e., random distribution of E, are very different, but the general distribution
law is similar in each figure. Moreover, it can be observed from Figure 4 that LE directly
affects the randomness distribution of E on every element in the beam; that is, the larger
the correlation length is, the more acute the value fluctuation of E along the direction of
beam length.
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Based on the conclusions of Figure 4, the parameter setting θE = (5GPa, 500mm) will
be used in the subsequent analysis.

4.1.2. One-Dimensional Kernel Density Estimation

In order to verify the applicability of the parameter setting θE = (5GPa, 500mm), the
test samples fexp

2 and model samples fmod
2 of the second-order natural frequency f2 of the

beam are chosen and used for the one-dimensional kernel density estimation of the single
parameter of f2.
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First, take LE0 = 500mm and σE ∈ {σ1, σ2, σ3, . . . , σ10} = {1, 2, 3, . . . , 10}GPa, which
form 10 parameter settings θE. For 100 beams corresponding to each θE, f2 is solved and
the model sample { f2}mod

1×100 is formed. Then, take 100 beams with parameter settings
σE0 = 5GPa and LE0 = 500mm and f2 of 100 beams construct test samples { f2}

exp
1×100.

Figure 5a displays the one-dimensional kernel density estimation of f2 calculated based
on { f2}mod

1×100 and { f2}
exp
1×100. From Figure 5a, it can be seen that distributions of natural

frequencies of model samples become more and more concentrated with the decreasing σE,
and the distributions are very close to each other when σE of both test samples and model
samples is 5 GPa.
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Figure 5. One-dimensional kernel density distribution function of f2 when only considering random
field of E.

Moreover, when σE0 = 5GPa and LE ∈ {L1, L2, L3, . . . , L10} = {100, 200, 300, . . . , 1000}mm,
f2 of 100 beams form the model samples data { f2}mod

1×100, then taking the test sample data
{ f2}

exp
1×100 when σE0 = 5GPa and LE0 = 500mm, one-dimensional kernel density of f2 is

estimated based on { f2}mod
1×100 and { f2}

exp
1×100, as shown in Figure 5b. From Figure 5b, the

distribution of f2 computed from model samples becomes more and more concentrated
with the decreasing LE0; the distributions of f2 obtained from model samples and test
samples are closest when LE of two types of samples are equal. Once again, Figure 5 shows
that the influence of σE on the fluctuation of kernel density is greater than that of LE.

In the same way, considering that the Young’s modulus E and mass density ρ are
random fields varying with the spatial size of beam, the parameter settings are taken as
θ = (5, 500) and 100 beams are used. The 1D kernel density of f2 is estimated again,
where σE = 5GPa and σρ = 5kg/m3. The left part is the 1D kernel density distribution
function estimated of f2 when Lρ = 500mm but LE changes, and the right part is the 1D
kernel density estimated of f2 when LE = 500mm but Lρ varies. When Lρ = LE = 500mm,
in Figure 5a, σE changes but σρ = 5kg/m3, and Figure 5b is the result estimated when
σE = 5GPa but σρ changes.

It can be seen from Figure 6 that the influence of σE and σρ on the kernel density
distribution function is significantly greater than that of Lρ and LE; when other parameters
are fixed but σE and σρ change, respectively, the influence of σE on the kernel density
distribution function is greater than that of σρ; when other parameters are fixed but Lρ and
LE change, respectively, the influence of LE on the kernel density distribution function of
f2 is greater. In general, the random field E has a greater influence on the kernel density
distribution function of f2 than the random field ρ.
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4.1.3. Multidimensional Kernel Density Estimation and Maximum Likelihood Estimation

In order to accurately verify the validity of the random field model and the identifiabil-
ity of the parameter settings, it is necessary to further estimate the multi-dimensional kernel
density probability distribution function of the structure output responses, and then to
carry out the maximum likelihood estimation to obtain the parameter setting corresponding
to the maximal value of likelihood function.

When considering random field E, based on 100 model matrix samples [f]mod
8×100 from

1× 104 beams and test samples [f]exp
8×500 from 500 beams, the 8-dimensional kernel density

of the first 8-order natural frequencies of the beam is estimated, and then the parameter
θE = (σE, LE) is estimated by the maximum likelihood based on Equation (32), in which
[f]exp and [f]mod

θij
are composed of the first 8-order natural frequencies of the structure.

Because the values of probability density function of some points are small, in order
to avoid the calculation value of likelihood function being 0, it is necessary to take the
logarithm of the value of probability density function first and then implement summation.
The obtained log likelihood function is illustrated in Figure 7.
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Figure 7. Log likelihood function of 8-dimensional kernel density distribution function of the first
8 orders’ natural frequency when only considering random field E.

Figure 7a is the log likelihood function L̂(θ) of the first 8 natural frequencies when the
parameter settings of the test data samples are taken as σE = 5 GPa, LE = 500 mm. It can
be seen that, when L̂(θ) attains its maximum value, the parameter θ∗ of the corresponding
point is also (5 GPa, 500 mm), which shows that the random field model introduced can
identify the model parameter very well, and the random field model is reliable.

In Figure 7b, based on Equation (32), a group of parameter setting values of test sam-
ples are randomly taken as σE = 6.8 GPa, LE = 210 mm, and the multi-dimensional kernel
density probability distribution function is estimated for the first 8 natural frequencies, and
then the maximum likelihood estimation is carried out. The estimated parameter results,
that is θ∗ = (7 GPa, 200 mm), are slightly different from the original parameter setting
(6.8 GPa, 210 mm). This is because the amount of the model samples may not be infinite
and the estimation accuracy of the input parameter of test samples is obviously limited by
the amount of the model samples, but the peak value of likelihood function can still be
obtained around the input parameter θ = (6.8, 210).

When considering random fields E and ρ simultaneously, the input parameters of
the test samples are taken as two groups, respectively: θE = (σE, LE) = (5 GPa, 500 mm),
θρ = (σρ, Lρ) = (250 kg/m3, 500 mm), as well as θE = (σE, LE) = (4 GPa, 500 mm), θρ =
(σρ, Lρ) = (450 kg/m3, 500 mm). The correlation length of two random fields is fixed;
that is, LE = Lρ = 500 mm; the mean variances σE and σρ are then estimated when the
likelihood function L̂(θ) is taken as its maximal value. It can be seen from Figure 8 that the
parameter setting at the maximum value point of L̂(θ) is the same as the input parameters
by using the maximum likelihood estimation for the first 8-order natural frequency.

4.2. Example 2: Plate with Two-Dimensional Random Field

Figure 9 shows a square steel plate fixed at one end, with a thickness of 0.01 m; the
mean values of mass density ρ and Young’s modulus E are 〈ρ(x, y)〉 = 7850.1 kg/m3 and
〈E(x, y)〉 = 210 GPa. The plate is meshed into 400 rectangular plate elements.
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4.2.1. The Expansion and Distribution of Two-Dimensional Random Field

First, considering E is a two-dimensional random field, E is then expanded with K-L
expansion as

E
(

xi, yj, θ
)
= 〈E(x, y)〉+

M

∑
n=0

ξn(θ)
√

λn1 · λn2 fn1(xi) · fn2(yj)(i = j = 1, 2, . . . , 20) (36)

Taking the parameter setting of random field E, θE =
(
σE, LEx, LEy

)
= (5GPa, 500mm,

500mm), as the input parameter of test samples and model samples. When the plate is
meshed into different amounts of elements, the distribution of random field E in the plate
is displayed in Figure 10.

Moreover, only considering mass density ρ as random field, ρ is expressed with
the two-dimensional (2D) K-L expansion as Equation (37), whereby its mean value is
〈ρ(x, y)〉 = 7800kg/m3. Taking its parameter setting as θρ =

(
σρ, Lρx, Lρy

)
= (7800kg/m3,

300mm, 300mm) and meshing the plate into different number of elements, the distribution
of ρ in the steel plate is displayed in Figure 11.

ρ
(

xi, yj, θ
)
= 〈ρ(x, y)〉+

M

∑
n=0

ξn(θ)
√

λn1 · λn2 fn1(xi) · fn2(yj)(i = j = 1, 2, . . . , 20) (37)
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Figure 11. Random field distribution of ρ in the plate in the case of 15 × 15 elements (a) and
20× 20 elements (b).

It can be seen from Figures 10 and 11 that the values of E and ρ fluctuate and vary
around the mean values 〈E(x, y)〉 and 〈ρ(x, y)〉, and the values of E and ρ randomly
distributed along x and y directions. Moreover, compared with the random distributions of
E and ρ plated with 225 meshing elements, the random distributions with 400 elements
obviously reflect the real cases better and more accurately.

4.2.2. Kernel Density Estimation and Maximum Likelihood Estimation

When only considering random field E, a group of parameter settings are taken
as θEijk =

(
σEi, LExj, LEyk

)
, (i = 1, 2, . . . , 10; j = 1, 2, . . . , 10; k = 1, 2, . . . , 10

)
, and the spe-

cific parameter values are {σE1, σE2, . . . , σE10} = {1, 2, . . . , 10}, {LEx1, LEx2, . . . , LEx10} =
{100, 200, . . . , 1000}, and

{
LEy1, LEy2, . . . , LEy10

}
= {100 , 200, . . . , 1000}. Taking 100 plates

for each parameter θEijk =
(

σEi, LExj, LEyk

)
, the first six natural frequencies of 100 plates

are chosen to form the model matrix samples [f]mod
6×100 = {f1, f2, . . . , f6}. A total of 1000

model matrix samples [f]mod
6×100 and 1× 105 plates are used. Next, kernel density estimation

and maximum likelihood estimation will be performed on the test data samples based on
the model data samples.

In order to verify the random field model of the plate, parameter settings θE1 =
(5, 500, 500), θE2 = (6, 700, 300), θE3 = (2, 700, 100), and θE4 = (9, 650, 430) are, respec-
tively, taken for numerical simulation, and 500 plates are used for computation of each
parameter setting. The first six natural frequencies of 500 plates are taken for each parame-
ter θE1 = (5, 500, 500) to form test matrix samples

(
[f]exp

6×500

)
1
,
(
[f]exp

6×500

)
2
,
(
[f]exp

6×500

)
3
, and
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(
[f]exp

6×500

)
4
, respectively, and then the logarithmic likelihood functions L̂(θE) are calculated

by Equation (32), and the computational results are listed in Table 1.

Table 1. The maximum likelihood estimation of test samples when considering random field E.

Input Parameter
Setting of Test
Samples of 500

Plates
θE=(σE,LEx,LEy)

The Maximal
Value of Log
Likelihood

Function
L̂(θE)

Parameter Setting Estimated from
L̂(θE)

Mean Value and Mean Variance of the First Three Natural
Frequencies Obtained from 500 Test Samples of 500 Plates

θ*
E=(σ*

E,L*
Ex,L*

Ey) f1(Hz) f2(Hz) f3(Hz)

σ*
E L*

Ex L*
Ey 〈f1〉 σf1

〈f2〉 σf2
〈f3〉 σf3

(5, 500, 500) 10,344.12 5 500 500 8.6185 0.0581 13.5240 0.0877 51.6952 0.3545
(6, 300, 700) 9190.03 6 300 700 8.6159 0.0659 13.5199 0.0969 51.6793 0.3957
(2, 100, 700) 13,712.95 2 100 700 8.6197 0.0131 13.5254 0.0183 51.7022 0.0776
(9, 430, 650) 8151.44 9 400 700 8.6204 0.1083 13.5271 0.1627 51.7069 0.6553

Herein, 〈·〉 and σ denote the mean value and mean variance of the random variables.

From Table 1, according to the point at which L̂(θ) attains its maximal value, the
parameter setting of test samples, i.e., θ∗E =

(
σ∗E, L∗Ex, L∗Ey

)
, can be well estimated by the

presented 2D random field model of the plate, which is basically consistent with the
input parameters θE1, θE2, θE3, and θE4 of the test samples. Hence, the constructed 2D
random field model is reliable. Similar to the 1D random field model of I-beam, the
amount of model sample groups may not be infinite, and the estimation accuracy of test
sample parameter is limited by the amount of the model samples. When the maximum
likelihood estimation method is used to estimate the test samples with input parameter
θE4 = (9GPa, 430mm, 650mm), the input parameter of test samples can still be estimated
comparatively accurately; i.e., θ∗E4 = (9GPa, 400mm, 700mm).

Furthermore, when considering random fields E and ρ simultaneously, their pa-
rameter settings are, respectively, taken as θE =

(
σE, LEx, LEy

)
= (σE, 500mm, 500mm)

and θρ =
(
σρ, Lρx, Lρy

)
= (250kg/m3, 500mm, 500mm). When σE is taken as 1GPa,

2GPa, . . . , 10GPa, respectively, parameter settings of the test samples are taken as θ
E0

=

(5GPa, 500mm, 500mm) and θ
ρ0

=
(
250kg/m3, 500mm, 500mm

)
; the 2D kernel density

distribution function of the second-order natural frequency f2 of test samples is estimated
as shown in the left part of Figure 12.
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Figure 12. The two-dimensional kernel density estimation of f2 when both E and ρ are random fields.

Similarly, parameter settings of E and ρ are θE =
(
σE, LEx, LEy

)
= (5 GPa, 500 mm, 500 mm)

and θρ =
(
σρ, Lρx, Lρy

)
=
(
σρ, 500 mm, 500 mm

)
, and, respectively, taking σρ as 50 kg/m3,

100 kg/m3, . . . , 500 kg/m3 for computing, and then taking parameter settings of test
samples θ

E0
= (5 GPa, 500 mm, 500 mm) and θ

ρ0
=
(
250 kg/m3, 500mm, 500 mm

)
, the

2D kernel density distribution function of f2 is estimated as shown in the right part of
Figure 12.
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When taking input parameter settings of test samples θ
E0

= (5 GPa, 500 mm, 500 mm)

and θ
ρ0
= (250 kg/m3, 500 mm, 500 mm), the curve of kernel density estimation of f2 and

the histograms of probability density of f2 are illustrated in Figure 13.
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Figure 13. The histograms of f2 when both E and ρ are random fields: 15× 15 elements (left) and
20× 20 elements (right).

Figure 12 shows again that random field E has a greater influence on the kernel density
distribution function of structural natural frequency than ρ does. In Figure 13, the curve of
kernel density estimations and the histograms of f2 agree well, and it is obvious that the
curve and histogram in the right part are more reasonable than in the left part with the
increasing amount of meshing elements.

In addition, fixing mean variance of parameter θE, σE = 5GPa, and, taking LEx and
LEy as variables, the variation in log likelihood function L̂(θ) of natural frequency with LEx

and LEy is shown in Figure 14a. Similarly, L̂(θ) is obtained in Figure 14b when parameter
settings of test samples σE = 2.1GPa, LE = LEx = LEy = 300mm. In Figure 14, the plate is
meshed into 400 elements.
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Figure 14. L̂(θ) of the first 6 natural frequencies when inputting different parameter settings θE.

It can be seen from Figure 14 that the parameter settings θ∗E obtained corresponding
to the maximal value L̂(θ) are, respectively, θ∗E = (σ∗e , L∗Ex, L∗Ey) = (5GPa, 500mm, 500mm)

and (2GPa, 300mm, 300mm); based on the multi-dimensional kernel density estimation,
parameter settings of test samples can be accurately estimated when the log likelihood
function attains its maximal value and the estimated parameter settings are very close to
the input parameters of the test samples, which verifies the validity of the constructed
model.
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In the same way, when only ρ is random field and the input parameter settings θρ of the
test samples are σρ = 500 kg/m3, Lρx = 400 mm, Lρy = 700 mm and σρ = 150 kg/m3, L =
Lρx = Lρy = 600 mm, respectively, L̂(θ) obtained based on the first six natural frequencies
of the plate is displayed in Figure 15.
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4.2.3. Investigation of the Random Characteristics

Figure 16 shows the distributions of the lower bound, mean value, and upper bound of
the first two-order random natural modes in the steel plate when only considering random
field E, and the parameter setting after K-L expansion is taken as θE =

(
σE, LEx, LEy

)
=

(5 GPa, 500 mm, 500 mm).

Figure 16. The distributions of lower bound (left), mean value (middle), and upper bound (right) of
random natural modes when only considering random field E.

When considering random fields E and ρ simultaneously and taking parameter settings θE =
(σE, LEx, LEy) = (5GPa,500mm,500mm) and θσ =

(
σσ, Lρx, Lρy

)
= (250kg/m3, 500mm,500mm),

the distributions of the lower bound, mean value, and upper bound of the first two random
natural modes are illustrated in Figure 17.
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The mean values 〈‖Φi‖〉 and mean variances σ‖Φi‖ of norms of the first 4-order natural
modes are computed and listed in Table 2 for different random models so as to compare
the influences of different random cases on the structural random natural modes.

Table 2. Comparison of the norm of natural modes for different random models.

Random
Model

Computational
Results

Norm of Random Natural Modes

Φ1 Φ2 Φ3 Φ4

〈‖Φ1‖〉 σ‖Φ1‖ ‖Φ2‖ σ‖Φ2‖ ‖Φ3‖ σ‖Φ3‖ ‖Φ4‖ σ‖Φ4‖

Deterministic model 6342.80 0 1635.00 0 399.12 0 296.67 0

Random field E 6346.67 94.82 1635.12 6.56 399.25 3.73 357.71 1010.50

Random fields E and ρ 6347.82 134.34 1635.43 7.71 399.21 3.98 477.17 1249.14

From Figures 16 and 17 and the results in Table 2, it can be seen that mean values of
random natural modes only considering random field E are very close to those simultane-
ously considering random fields E and ρ, but mean variances for these two random models
are very different and mean variances only considering the randomness of E are obviously
smaller than those considering the randomness of E and ρ simultaneously.

The mean values 〈 fi〉 and mean variances σfi
of the first four natural frequencies are

computed and listed in Table 3 for different random models so as to compare the influences
of different random cases on the structural random natural frequencies.

Table 3. The mean values and mean variances of random natural frequencies for different random
models.

Random
Models

Computational
Results

Mean Value and Mean Variance of Natural Frequencies

f1 f2 f3 f4

〈f1〉 σf1
〈f2〉 σf2

〈f3〉 σf3
〈f4〉 σf4

Deterministic model 8.62 0 13.52 0 51.67 0 60.68 0
Random field of E 8.62 0.0583 13.53 0.0885 51.69 0.3580 60.69 0.3914

Random fields of E and ρ 8.62 0.0906 13.52 0.1321 51.65 0.5651 60.62 0.6235

Similarly, investigation of the influences of different random models on random natu-
ral frequencies is implemented and the corresponding results are illustrated in Figure 18.
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From Figure 18 and Table 3, once again, the mean variances and value ranges of random
natural frequencies simultaneously considering the randomness of E and ρ are obviously
greater than those only considering the randomness of E, and the former reflects the more
realistic case in structural engineering than the latter does.
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5. Conclusions

In this work, an investigation on the stochastic free vibration problem of engineering
structures considering material uncertainties is presented. As a novel extension of the
conventional uncertain eigenvalue problem, spatially dependent stochastic parameters
and random field theory are combined into a numerical analysis framework of stochastic
finite element method, and the verification method to validate the proposed parameter
setting model and stochastic free vibration model is presented and updated by using the
maximum likelihood method:

(1) The parameter setting model based on random field theory can represent the spa-
tially dependent uncertainty of structural parameters well, and the parameter setting
model presented can describe the randomly varying characteristics of actual structural
parameters.

(2) The example shows that the parameter settings of the model can be quantified by
the output response of the structural system; i.e., structural dynamic characteristics,
such as the structural natural frequency, and the mean variance and autocorrelation
distance of the parameter of the structure can also be obtained, which is very important
to application of random field in engineering.

(3) The proposed method can be extended to apply to other structural parameters and
can also be used to establish and quantify the parameter setting model of random
fields for other material parameters or structural parameters. The applicability and
effectiveness of the proposed computational framework are evidently demonstrated
through the numerical investigations on various practically motivated engineering
structures.

(4) Obviously, the simulation results are closer to reality when more parameters are
considered with the random field. However, as the number of parameters considered
increases, the computational effort increases exponentially. How to strike a valuable
trade-off between them is an interesting area of future work.
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