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Abstract

Based on classical contagion models we introduce an

artificial cyber lab: the digital twin of a complex cyber

system in which possible cyber resilience measures

may be implemented and tested. Using the lab, in

numerical case studies, we identify two classes of

measures to control systemic cyber risks: security‐ and
topology‐based interventions. We discuss the implica-

tions of our findings on selected real‐world cyberse-

curity measures currently applied in the insurance and

regulation practice or under discussion for future cyber

risk control. To this end, we provide a brief overview of

the current cybersecurity regulation and emphasize the

role of insurance companies as private regulators.

Moreover, from an insurance point of view, we provide

first attempts to design systemic cyber risk obligations

and to measure the systemic risk contribution of

individual policyholders.
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1 | INTRODUCTION

Cyber risks pose a major threat to societies, governments, businesses, and individuals
worldwide. For example, the annually published Allianz Risk Barometer, see Allianz (2022),
recently identified cyber incidents as the most important global business risks, ahead of
business interruptions, natural disasters, and pandemic outbreaks. In addition, cyber risk
continues to increase, first due to the continued digitization of business processes, second due
to the COVID‐19 pandemic and the associated increase in teleworking, see for example, Lallie
et al. (2021), and third in the context of the current political conflicts and wars.

Regulatory and macroprudential leaders are increasingly aware of the potentially catastrophic
consequences of cyber risks. In particular, the systemic relevance of certain types of cyber threats,
so‐called systemic cyber risks, is highlighted, see for example, Lagarde (2021). Two illustrative
systemic cyber incidents from the past are the WannaCry and NotPetya attacks1:

• In May 2017, the WannaCry ransomware infected around 230,000 computer devices in more
than 150 countries. It encrypted data on the infected systems and demanded a ransom
payment of USD 300. The encryption resulted in data loss and rendered IT systems unusable
in healthcare services and in industry. It is estimated that the damage caused ranges from
hundreds of millions to four billion US dollars. The discovery of a “kill switch” helped
contain the incident.

• In June 2017, the NotPetya malware was used for a global cyberattack that mainly targeted
Ukraine. This version of the Petya malware was disguised as ransomware, but with the
intention of causing maximum damage by encrypting data and disrupting IT systems. The
encryption of data resulted in a permanent loss of its availability with immediate impact on
institutions such as the Ukrainian Central Bank and a disruption of the country's major stock
markets. In addition, the malware was able to infect other organizations outside the
Ukrainian financial sector with offices in Ukraine, compromising machines also elsewhere.
For example, the global shipping company Maersk experienced widespread business
disruptions at other locations around the world, which nearly destroyed the company.

This paper, in view of the previous examples, focuses on systemic cyber risks which are
characterized by contagion effects in interconnected systems. Other instances of cyber
accumulation scenarios are attacks based on a common risk factor such as the dependence on
joint IT architecture or service providers, see for instance the infamous SolarWinds attack.2 For
insurance stress testing of accumulation scenarios which may not follow a contagion pattern,
like DoS attacks or cloud outage, see the discussion in EIOPA (2022).

In light of the rapidly growing and evolving cyber threat landscape, cybersecurity approaches
that focus solely on preventing attacks may be insufficient to manage and mitigate this class of
systemic cyber risks. Therefore, building cyber resilience requires taking a more expansive approach
that targets the “ability to anticipate, withstand, recover from, and adapt to adverse conditions,
stresses, attacks, or compromises on systems that use or are enabled by cyber resources.”3

1An in‐depth risk analysis of these two incidents can be found, for example, in ESRB (2020).
2Awiszus et al. (2023) propose to classify aggregate cyber risks which depend on a common risk factor as systematic
while reserving the notion systemic for cyber risks caused by local or global contagion effects.
3See the definition of “cyber resiliency” in NIST (2022).

2 | AWISZUS ET AL.

 15396975, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jori.12450 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Legislators and regulators have enacted a variety of laws and policies governing
cybersecurity and identified the need to enhance the resilience of cyber systems. In addition,
private actors may also take a leading role in shaping and guiding cybersecurity standards. In
particular, the idea of (re)insurance companies acting as private regulators to fill existing
regulatory gaps and mitigate residual risks has emerged.

But how can private and government regulators ensure an adequate level of protection
against cyber threats and implement appropriate measures to build cyber resilience? What
characteristics of networked cyber systems are critical to managing and controlling cyber
threats and, in particular, to preventing, managing, and responding to the onset of a systemic
cyber risk event? And is regulatory intervention even necessary to build effective levels of cyber
resilience? In this paper, we address these questions. Our key contributions are:

1. We design the artificial cyber lab, the digital twin of a complex cyber system, to evaluate
different types of cyber resilience measures. Digital twins consist of a “physical entity, a
virtual counterpart, and the data links between them,” cf. Jones et al. (2020). The virtual
counterpart of interconnected cyber‐physical systems is based on network contagion models
and is therefore tailored to the analysis of systemic cyber risks such as the aforementioned
WannaCry and NotPetya attacks.

2. In two exemplary case studies, we leverage the lab to generate artificial data from virtual
counterparts of real‐world cyber systems to analyze specific types of cyber resilience interventions.
a) Security‐related interventions: Interconnected actors in a cyber network use security

investments to protect themselves from cyber risk contagion. We
• study a security investment game modeling network interaction and interdependence

effects related to IT security standards; unlike the vast majority of game‐theoretic
models in the cyber insurance literature, our game is based on the underlying dynamic
contagion captured by stochastic Monte‐Carlo simulations,

• rigorously prove that there exists a steady state (Nash equilibrium) of security
investment decisions which, however, generally does not minimize the overall cyber
risk losses of the network,

• develop and evaluate different regulatory allocation strategies to further improve the
overall system security in a steady state of security investment choices,

• and analyze centrality measures to identify systemically relevant nodes for the targeted
allocation of cybersecurity obligations.

b) Topology‐based interventions: Network topology is important for both network
functionality and the risk of cyber epidemic contagion. Therefore, we
• characterize the cyber contagion risk exposure of large‐scale networks,
• study the effect of network heterogeneity on risk amplification,
• discuss possible efficient intervention strategies that minimize the negative impact on

network functionality,
• present a novel approach to quantify contagious cyber risks and effectively allocate

associated surcharges or insurance premiums based on the identification of critical
network connections.

Our digital twin approach provides an experimental framework for testing and evaluating
different regulatory intervention strategies. This is particularly important due to the lack of
data on historical cyber incidents and the nonstationarity of the cyber environment. Our
results clearly indicate a need for regulation to build an appropriate level of cyber resilience.

AWISZUS ET AL. | 3

 15396975, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jori.12450 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3. Based on the findings from the case studies, selected regulatory measures that are currently in use
or under debate to strengthen resilience in real‐world networked cyber systems are discussed.

4. To this end, we provide a brief overview of the current regulatory framework for
cybersecurity in the European Union and the United States. In addition, we also discuss the
role of private actors, particularly cyber insurance companies, in shaping security standards.

1.1 | Literature

In the following, we will only briefly review the relevant literature. For a comprehensive
overview of the various modeling and pricing approaches in the field of cyber risk and
insurance, we refer the interested reader to the most recent survey Awiszus et al. (2023).
Dacorogna and Kratz (2023) provides another recent discussion on characteristics, models, and
the management of cyber risks.

In the actuarial literature, cyber loss models are often based on classical frequency‐severity
approaches; see, for example, Zeller and Scherer (2022) for an exemplary loss model and a
comprehensive literature overview, and Eling (2020) for a recent review of research in business and
actuarial science. While at first glance such approaches appear to be the most feasible from an
insurer's perspective, they suffer from insufficient or inadequate data, see also Zeller and Scherer
(2023). Furthermore, in the case of systemic cyber risks such as WannaCry or NotPetya, the structural
importance of network effects for risk emergence and amplification cannot be adequately captured by
these classical approaches. The dynamics of incidents are similar to feedback mechanisms in
financial systems such as the propagation of economic distress in a network of creditors or business
partners. Interaction mechanisms of this type were, for example, studied in Giesecke and Weber
(2004) and Giesecke andWeber (2006) using results from the theory of interacting particle systems. A
similar approach was first introduced in microeconomics in the seminal work Föllmer (1974), in
which actors interact on a grid.

Regulatory aspects are also not considered in frequency‐severity models for cyber claims. In
a game‐theoretic framework, by contrast, regulatory issues as well as network interdependence
of policyholders can be taken into consideration. The existing literature on strategic
interactions in cyber networks has focused mainly on the impact of cyber insurance on the
self‐protection efforts of interconnected actors, see, for example, Ogut et al. (2005), Bolot and
Lelarge (2009), Schwartz and Sastry (2014), and Yang and Lui (2014). In most cases, market
inefficiencies are observed and cyber insurance is not found to provide incentives for self‐
protection. However, in the absence of information asymmetries between insureds and insurer(s),
simplified regulatory corrective actions and measures such as fines, rebates, or mandatory cyber
insurance may increase incentives for self‐protection, see, for example, Pal et al. (2014) and
Naghizadeh and Liu (2014). For a detailed summary and comparative analysis of this literature, see
Marotta et al. (2017); see also Böhme and Schwartz (2010), and Böhme et al. (2018). However, the
modeling framework adopted for risk contagion is often extremely simple and static, excluding risk
amplification and the possibility of very high loss events.

In contrast, dynamic models of contagion processes provide a more realistic framework.
Originally, such models were developed in the field of mathematical biology and epidemiology since
the seminal work of Kermack and McKendrick (1927). In the last two decades, extensive efforts have
been made to incorporate the underlying contact structure within populations into the modeling
framework: Epidemic processes have been generalized to networks; see, for example, Pastor‐Satorras
et al. (2015) and Kiss et al. (2017) for detailed reviews. Because of their ability to capture
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interconnectedness, approaches to modeling epidemics in the context of cyber risk have also
appeared recently. For example, models of network contagion are utilized in Fahrenwaldt et al.
(2018), Xu and Hua (2019), Jevtić and Lanchier (2020), Antonio et al. (2021), and Chiaradonna et al.
(2023) for the purpose of pricing cyber insurance policies. Furthermore, the impact of cyber risk
contagion on insurance portfolios has been analyzed in Hillairet and Lopez (2021), and more recently
the network structure of interconnected industry sectors has been considered, see Hillairet et al.
(2022). A dynamic contagion game was introduced in Hayel et al. (2014) using the Markov‐
susceptible‐infected‐susceptible (SIS) model (but based on the easily tractable, albeit rough, NIMFA
approximation). However, to our knowledge, the regulation, management, and control of contagious
cyber risks have not yet been studied in a modeling framework based on dynamic contagion.

Beyond the field of cyber risk, applications of network models to insurance‐related problems are
less common in the literature. Existing works focus, for example, on the implementation of data
science methods such as fraud detection techniques, see Tumminello et al. (2023), or study the
systemic risk in financial networks where insurance companies themselves are present as
interdependent financial actors, such as in Chen et al. (2020) and Chen and Sun (2020).

Studies of network resilience and robustness can be found in the engineering and computer
science literature. However, much of the work focuses exclusively on measurements of network
topology properties (see Freitas et al., 2022, for a recent overview) or is based on models of lateral
network movements that do not capture the infection and recovery dynamics of risk contagion (see
Chen et al., 2018 or Freitas et al., 2020). Moreover, resilience building is studied only from a network
perspective and not in a regulatory framework. A specific attempt to build network resilience against
self‐propagating malware, and in particular the WannaCry worm, was recently presented in
Chernikova et al. (2022). The authors use synthetic WannaCry data to derive an adequate contagion
model, similar to the classic susceptible‐infected‐recovered (SIR) model, and appropriate parameter
estimates. However, this model follows a deterministic top‐down population‐based approach,
whereas our study is based on a stochastic bottom‐up model of node‐level interactions. Again,
resilience is considered from an engineering perspective rather than a regulatory one, and issues of
network economics and risk management are also not considered.

1.2 | Outline

The paper is organized as follows. In Section 2, we provide a brief overview of current cybersecurity
legislation in the European Union (EU) and the United States of America (US), and also mention the
regulatory role of private actors and insurance companies. Based on this, we present a selection of
current approaches from the field to strengthen cybersecurity. In Section 3, we introduce the artificial
cyber lab, and in the following two sections, we conduct the aforementioned illustrative case studies
to analyze security‐ and topology‐based cyber resilience measures. In light of these findings, we also
revisit the selected real‐world approaches from Section 2. Section 6 concludes.

2 | THE REAL WORLD: THE CURRENT STATE OF
CYBERSECURITY REGULATION

In what follows, we briefly discuss the main characteristics of current cybersecurity legislation
in the EU and the US, as well as the role of private actors such as insurance companies
in shaping cybersecurity standards. This discussion will serve to identify and classify a set of
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real‐world measures for improving resilience to cyberattacks, which we will then discuss in
light of our findings from simulations conducted in the artificial cyber lab.

2.1 | Current government regulations for cybersecurity

Due to the enormously increasing importance of cybersecurity to the functioning of modern societies,
lawmakers have enacted several regulations, including a variety of legal norms. However, given the
nonstationary nature of cyberspace, policymakers tend to future‐proof their regulations by using
indeterminate legal terms when formulating security requirements. Examples of such phrases include
“adequate security measures” or “adequate technical and organizational measures,” see below. On
the one hand, this can guarantee a high level of cybersecurity, even if a new technology or
vulnerability is found. On the other hand, the indeterminacy of the legal terms introduces a
significant degree of uncertainty as to the “correct” cybersecurity measures to be taken. In light of the
latter problem, a growing number of technical standards and guidelines published by organizations
such as the Cybersecurity & Infrastructure Security Agency (CISA) and the National Institute of
Standards and Technology (NIST) in the US, the International Organization for Standardization
(ISO), the European Network and Information Security Agency (ENISA), or TeleTrusT—IT Security
Association Germany and the Bundesamt für Sicherheit in der Informationstechnik (BSI) in
Germany provide specific guidance, see, for example, TeleTrusT (2021) and BSI (2022). While some of
these standards actually serve as guidelines for government institutions, they are not legally binding
for private companies, and furthermore they are usually characterized by a high degree of complexity,
see, for example, BSI (2022). Both the nonlegally binding nature and the complexity may prevent
companies from implementing these standards in practice.

Cyber security legislation in the EU and the US

Protection of critical infrastructure
• The EU sets minimum standards for cybersecurity of critical infrastructure in the

2020 NIS Directive.4 The requirements include organizational provisions such as
risk analysis and policies for information systems security, incident handling,
business continuity and crisis management, supply chain security, and IT‐related
technical safeguards. In this context, critical infrastructure operators are required
to implement “appropriate security measures.” However, the specific design of
these measures is not specified in the directive.

• In the US, the Cybersecurity and Infrastructure Security Agency Act of 2018 entailed the
establishment of the Cybersecurity & Infrastructure Security Agency (CISA) by the
Department of Homeland Security. The CISA regularly publishes Binding Operational
Directives in which explicit actions improving the cybersecurity of federal civilian
agencies are stated. For example, the recently published Directive BOD 22‐01 requires all
federal civilian agencies to remediate newly discovered exploits within a period of 2

4See the “Directive (EU) 2016/1148 of the European Parliament and of the Council of 6 July 2016 concerning measures
for a high common level of security of network and information systems across the Union.” Later, we will also discuss
the newly proposed NIS2 Directive which is set to replace the existing regulatory framework for critical infrastructures
in the EU.
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weeks since disclosure, based on a regularly updated catalog of known exploited
vulnerabilities. Thereby, CISA sets a fixed threshold for software and service providers to
roll out patches and updates for their respective end users. Although the BOD 22‐01
targets federal civilian agencies only, CISA itself strongly recommends that private
businesses review and monitor the catalog to strengthen their cybersecurity.

Data protection
• The General Data Protection Regulation (GDPR) is the centerpiece of data

protection legislation in the EU. It has been in force since May 25, 2018 and
regulates the handling of personal data. The central provision of data protection is
addressed in Art. 32 GDPR, which requires the implementation of “appropriate
technical and organizational measures,” taking into account the “state of the art,
the implementation costs, and the nature, scope, circumstances, and purposes of
data processing.” However, these terms are not further specified.

• In the US, many federal states have introduced legislation on data protection. Again,
indeterminate legal terms are used to define legislative requirements. For example,
Section 1798.81.5 (b) and Section 1798.81.5 (e) of the California Consumer Privacy Act
(CCPA) state that “a business that collects a consumer's personal information shall
implement reasonable security procedures and practices appropriate to the nature of the
personal information to protect the personal information from unauthorized or illegal
access, destruction, use, modification, or disclosure”—without specifying which
measures may be considered “reasonable security procedures.”

2.2 | Regulation by private actors and the role of insurance
companies

Against the backdrop of legal uncertainty associated with the presence of indeterminate terms under
current legislation and the fact that recommended technical standards are typically not legally
binding for business corporations, private actors may play an essential role in cybersecurity
governance by implementing and shaping security standards. For example, Hurel and Lobato (2018)
discuss the role of private companies as entrepreneurs of cyber standards, with particular attention to
Microsoft's efforts to influence global security standards and policies.

For insurance companies and financial institutions, cyber security is an increasingly important
issue because of their significance to society and the sensitive data they hold. An empirical study on
this issue and its growing relevance within the US banking and insurance industry has been
presented in Gatzert and Schubert (2022). Also, Sweetman (2022) provides a first history of computer
security and network protection within major institutions from the UK banking sector.

In this paper, in contrast, we will focus to a greater extent on the particular role that cyber
insurance companies can play in promoting security standards among their policyholders. This
role has also been studied in, for instance, Trang (2017), Talesh (2018), Woods and Moore
(2020), Herr (2021), and Lemnitzer (2021). There, it is found that insurers may act as private
regulators in cybersecurity governance: Cyber insurance is an efficient way for companies to
manage their cyber risk and seek assistance in implementing appropriate security measures.
Hence, insurance companies can promote cybersecurity and resilience for their policyholders
by setting certain standards in their contractual obligations.

AWISZUS ET AL. | 7
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2.3 | Selected measures of cyber resilience

In the previous sections, we discussed the current framework of cybersecurity regulation and
emphasized the role of both governments and private actors such as insurance companies in
implementing cybersecurity standards and strengthening resilience. In this section, we present a
selection of concrete measures to improve cyber resilience focusing on systemic cyber risks that are
either already part of current practice or currently under discussion. In particular, we include some
measures which appear in the European Commission's proposal for replacing the existing NIS
legislation by a new NIS2 Directive.5 Consistent with the previous discussion, we will distinguish
between government regulation (GOV) and private regulation, particularly insurance‐based
regulation (INS). In addition, we will distinguish between measures targeting the IT‐security
(security‐related interventions) and those aiming at the structure of the network (topology‐based
interventions). To understand why we consider both, recall the infamous WannaCry and NotPetya
attacks mentioned in the introduction, which can serve as models for studying systemic cyber risk.
In both of these incidents, the risk propagation was due to the spread of malware across a network
of interconnected actors and was characterized by the following two key aspects:

• Both attacks resulted from an initial vulnerability of Windows‐based computer systems:
devices that had not applied the latest patches from Microsoft or were running outdated
systems were affected. Improved IT‐security—in this case: regular software updates—may
have prevented these attacks.

• Both cyber epidemics spread through IT networks and affect many interconnected
computers across different institutions at a global scale. Controlling the topology, especially
the connections to critical parts of the network, might have reduced the damage caused.

Security‐related interventions: We consider the following security‐related interventions:

GOV ◇ Size‐cap rule: Instead of covering all, the proposal for the new NIS2 Directive
suggests limiting the scope of the Directive to medium‐sized and large
companies operating in the targeted sectors or providing services covered by
the NIS2 Directive. In general, micro or small enterprises from critical
infrastructure sectors should not be affected by the directive while
exceptional cases are listed in Article 2, §2.

◇ Supply chain protection: Article 18, §2 of the NIS2 proposal contains a new
catalog of cybersecurity risk management measures that are intended to
reflect the state of the art. Specifically, supply chain security measures must
be implemented by addressing “security‐related aspects concerning the
relationships between each entity and its suppliers or service providers such
as providers of data storage and processing services or managed security
services.” Note the use of the indeterminate legal term “state of the art.”
Nonetheless, we adopt the idea of supply chain protection as a concrete
measure that can be analyzed.

5See the “Proposal for a Directive of the European Parliament and of the Council on measures for a high common level
of cybersecurity across the Union, repealing Directive (EU) 2016/1148—EU‐doc. COM (2020) 823 final, dated 16
December 2020”. A discussion on the proposal is provided in Sievers (2021).
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INS ◇ Assistance services: Depending on the policyholder's own (lack of) expertise,
the policyholder's level of security can be significantly increased by
providing or requiring investment in cyber assistance services. Cyber
assistance services include implementation services, staff training, and
external security testing for policyholders. Some insurers also offer a 24/7
hotline with direct contact to technical experts, as well as public relations
and legal experts at their own expense to minimize the potential damage
from an ongoing cyberattack. Insurers could potentially mandate additional
services for certain policyholders.

◇ Patch management and backup: The use of a patch management procedure
and the application of a backup process are already part of the current cyber
insurance practice, see, for instance, GDV (2017, sec. A1–16). However,
efficiently tailoring these obligations to the characteristics of the policy-
holder can further improve their effectiveness.

Intuitively, the requirements for individual cybersecurity investments should contribute to
a higher level of security for the overall system. However, increasing the level of security comes
at a cost. There is, of course, a trade‐off between the cost of maintaining a high level of
cybersecurity and potential losses from cyberattacks. The situation becomes particularly
complex when one considers that networked actors imply interdependent levels of IT security.
The question naturally arises whether individually rational security investment decisions by
network actors already provide a sound level of security for the system as a whole, or whether
interdependence calls for additional security commitments? And if such extra commitments
are necessary, how should they be implemented within a cyber network?

Topology‐based interventions: The topological arrangement of the interconnected agents is critical
to the extent of resulting cyber risk. We will consider the following topology‐based arrangements:

GOV ◇ Incident response and reporting: Computer security incident response teams
(CSIRTs) shall be designated by each EU member state according to Article
9 of the NIS2 proposal. Specific requirements and tasks for CSIRTs are
defined in Article 10, including the monitoring of cyber threats, the
implementation of an early warning system, and the provision of proactive
network scanning upon request of an entity. In addition, Article 20 obliges
“essential and important entities” to report incidents with a significant
impact on their functioning or the provision of their services to regulatory
authorities or the CSIRT without undue delay.

◇ Critical supply chains: In addition to IT‐security aspects, also the underlying
pattern of connections between business partners (and their partners) and
along production chains may play an important role in securing supply
chains. Therefore, the risk assessment of network characteristics may help
protect highly interconnected industries and infrastructures. Article 19 of
the NIS2 proposal allows for EU coordinated assessments of critical supply
chains, identified by the Commission in consultation with ENISA.
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INS ◇ Contact liability premiums: A major concern are existing contagion channels
for risk spreading and amplification. For instance, policyholders might have
to provide so‐called need‐to‐access information when signing cyber
insurance contracts, see for instance Kategorie B.4 in GDV (2019). The
idea is to monitor the number and type of access to a given IT facility and
thus control potential contagion channels. To counteract possible accumu-
lation scenarios, it might even be sensible to introduce additional risk
premiums for systemic cyber events that depend on the existing contagion
channels.

◇ Insurance backstop mechanism: Lemnitzer (2021) argues for the necessity of
a state‐funded backstop mechanism for systemic cyber incidents to cover the
losses of catastrophic events, similar to the Terrorism Risk Insurance Act
(TRIA) which was established in the United States after 9/11. Here, a federal
guarantee could be given to the insurance industry; after the occurrence of a
systemic cyber event, mandatory surcharges could be imposed to the
policyholders for the settlement of the costs incurred. Similar to the
allocation of contact liability premiums, the size of these surcharges could
correspond to the policyholders' individual contribution to the overall
systemic risk.

Here too, of course, a trade‐off exists between viewing the network links as contagion channels
and providing an effective infrastructure for data distribution. Obligations should be
implemented in a way that minimizes any negative impact on network functionality. But
how can the exposure to large cyber risk be assessed in complex network arrangements? What
network characteristics do significantly increase the risk of large‐scale cyber events? And how
can effective topology‐based measures be designed and implemented?

3 | THE ARTIFICIAL CYBER LAB—THE DIGITAL TWIN
OF A COMPLEX CYBER SYSTEM

Important characteristics of cyber risk are the scarcity of data and the non‐stationarity of the cyber
environment due to the rapidly evolving IT‐infrastructure. However, since classical statistical and
actuarial models follow a frequency‐severity approach and thus heavily rely on a sufficient amount
of meaningful data, these standard methods are insufficient to evaluate the impact of cyber
resilience interventions. To explore the questions from the previous section and assess the quality of
proposed measures, we follow the digital twin paradigm and propose a novel approach based on
models from network science and contagion theory; an experimental setup where cyber resilience
measures can be implemented and tested through analysis and simulation—the artificial cyber lab.

To build the virtual counterparts of real‐world cyber systems, a certain degree of abstraction
is necessary to provide a sufficiently complex but still tractable modeling framework. In
general, network models for cyber risk contagion consist of three key components which we
will sketch subsequently:

(i) A network representing interaction channels between agents or entities,
(ii) a model for the spread of a certain cyber threat through these interaction channels,

10 | AWISZUS ET AL.
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(iii) and a loss model determining the (monetary) losses occurring at the different agents due to
the spread of the considered cyber threat.

3.1 | Networks

Systems of interconnected agents, like companies with data exchange, computer systems, or
single devices, can mathematically be interpreted as networks. Agents are represented as nodes,
and the interaction channels (potential infection channels) between them as edges. Exemplary
network structures are depicted in Figure 1.

A simple (unweighted) network connecting N different agents can be represented by its
adjacency matrix A a= ( )ij i j N, {1, …, }∈ with a {0, 1}ij ∈ : here, a = 1ij indicates that nodes i and j

are directly connected, a = 0ij indicates no direct connection.6 For example, in the case of the
tree network depicted in Figure 1c, A is given by













A =

0 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 1 1 0 0
0 1 0 0 0 0 1 1
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0

.

3.1.1 | Random network models

In applied network analysis, the exact network structure is often unknown. In this case,
random network models enable sampling from a class of networks with given fixed topological
characteristics (such as the overall number of nodes). In a random network, each possible edge
in the network is present (or absent) with a given fixed probability. We consider the following
two standard classes of undirected random networks7:

(a) (b) (c)

FIGURE 1 Exemplary network structures with N = 8 nodes. (a) Fully connected, (b) star‐shaped, and (c)
branching tree.

6Alternatively, weighted networks could be considered. Here, a > 0ij represents the strength of the connection between
nodes i and j.
7Pseudocode for both random network models is provided in Appendix C.
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• Erdős–Rényi networks: The simplest random network model was introduced by Erdős and
Rényi (1959): The Erdős–Rényi networkG N( )p is constructed from a set of N nodes in which
each of the possible N N( − 1) 2∕ edges is independently present with the same probability p,
that is, the expected number of edges is given by N N p N p( ( − 1) ) 2 ( ) 22∕ ≈ ∕ for large N .

• Barabási–Albert networks: A phenomenon widely observed in the empirical analysis of networks,
including the World Wide Web, IT networks, and social networks, is that newly formed
connections tend to emerge at nodes with an already large degree. For example, newly created
websites are more likely to link to an already existing popular website than to other websites.
This principle is called preferential attachment. Hence, real‐world networks are usually more
heterogeneous in terms of their topology than the Erdős–Rényi model would suggest. Often, a
hierarchy of nodes is observable—with a few nodes of high degree (called hubs), and a vast
majority of less connected nodes. A first model, motivated by the study of citation networks of
academic papers, was introduced and discussed in Price (1965, 1976). The most commonly
applied random graph model for networks which follow a preferential attachment principle is
the one from Barabási and Albert (1999). Different from the Erdős–Rényi model, a
Barabási–Albert network BA N m( ; ) with N nodes is generated by a growing network
algorithm: Starting from an initial core with n0 nodes, m n0≤ , and ϵ0 edges, a new node i is
added to the graph in each simulation step andm edges for i are randomly generated following a
preferential attachment rule. The number of edges for the resulting network is given by
m N n( − ) + ϵ0 0, which, neglecting the initial core, can be approximated by mN .

3.1.2 | Measuring centrality

In network science, the structural importance of single nodes or edges within the network can
be characterized using centrality measures  . However, centrality is not a rigorously defined
term and a large variety of different concepts has been proposed.

1. For a network edge e, a common way to measure centrality is to consider the fraction of
shortest paths between any two nodes i and j that pass through e. The corresponding
measure is then called edge (betweenness) centrality,8 and, can be written as

e
σ e

σ
( ) =

( )
,

i j

ij

ij

edge

,

 (1)

where σij denotes the number of shortest paths between nodes i and j, and σ e( )ij is the total
number of these paths that go through edge e.

2. For a network node i, two of the most frequently used measures are9

• Degree centrality:Here nodes are simply ranked by their number of network neighbors, that is,

 i a a i N( ) = = , = 1, …, ,
j

N

ij

j

N

ji
deg

=1 =1

 (2)

for an undirected graph. It accounts for immediate network effects.

8This centrality measure was introduced in Girvan and Newman (2002).
9For an extensive overview we refer to Newman (2018, chap. 7).
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• Betweenness centrality: In contrast to degree‐based approaches, betweenness centrality
focuses on the role nodes may play as connections or “bridges” between different network
regions. In analogy to the concept of edge betweenness centrality, the corresponding
definition on the node level is given by

i
σ i

σ
i N( ) =

( )
, = 1, …, ,

j h

jh

jh

bet

,

 (3)

where σjh denotes the total number of shortest paths between nodes j and h, and σ i( )jh is the
particular number of these paths that go through node i.

3.2 | Modeling contagious cyber risks

Through the interaction channels described by the chosen network, a contagious cyber risk
may spread. Mathematical models describing the spread of cyber epidemics on networks first
divide the set of agents into distinct categories varying over time: for example, individuals that
are susceptible to an infection, infected, and recovered individuals. The SIS and SIR Markov
models constitute frequently used epidemic‐spreading models on networks. The difference
between them is the presence (SIR) or absence (SIS) of immunity: While reinfection events are
possible in the SIS framework, in the SIR framework, recovered individuals gain permanent
immunity. A rigorous discussion of the mathematical aspects is provided in Appendix A.

The possible transitions in these two models as well as their two key parameters, the
infection rate τ and the recovery rate γ , are illustrated in Figure 2.10

3.3 | Cyber loss models

Finally, agents, that is, nodes in the network, may experience losses due to a cyber infection.
Depending on the modeling purpose, the cyber loss model may emphasize different aspects
of an ongoing cyber incident, like the total number of affected network components,
aggregate losses of network nodes, and the monetary losses of single entities. Typically, an
adequate model should reflect on the stochastic nature of risk scenarios and capture key
statistical aspects of cyber loss distributions, including loss expectations and tail risk
properties.

3.4 | Artificial cyber lab setup

For our design of the artificial cyber lab, a fundamental choice has to be made in terms of the
contagious spread model, namely between a SIR and SIS approach (see Figure 2). Since
we consider attacks similar to the WannaCry and NotPetya attacks, which were both based on
the EternalBlue exploit, we assume that reinfections are rather unlikely because—once

10There also exist more nuanced models, for example, containing only a limited immunity (SIRS) or an additional
category of exposed individuals, that is, individuals that are infected but not yet contagious (SEIR). For more details,
see, for example, Pastor‐Satorras et al. (2015) and Kiss et al. (2017).

AWISZUS ET AL. | 13

 15396975, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jori.12450 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



detected—the underlying security issues are easily solvable through the installation of the latest
patches. Therefore, we will use the SIR model.11

The key in‐ and output parameters can be summarized as follows:

• Input:
– Network:

* network size N (number of agents)
* topological structure A a= ( )ij i j N, =1, …, , that is, the connectivity pattern between nodes

(see Figure 1, for examples)
* number and position of initially infected nodes

– Epidemic dynamics:
* infection rate τ = 0.1 (determines the speed of the infection), assumed to be equal for all

connections12

* individual recovery rates γi for nodes i N= 1, …, (influence the time needed for recovery
—interpreted as IT security level, see Section 4)

– Loss distribution:
* stochastic modeling framework for loss formation

• Output:
– Epidemic dynamics:

* spread of cyber infection over time, total number of affected nodes, probability of
infection for each node

– Loss distribution:
* aggregate losses for single nodes or the entire network

In the following, we use the lab to generate artificial data from our virtual model and evaluate
two different types of cyber resilience interventions. Based on the results, we discuss the

(a) (b)

FIGURE 2 Infection and recovery for the (a) SIS and (b) SIR model in a network: A susceptible node is
infected by its contagious neighbor with rate τ . Independent from the state of its neighbors, an infected node
recovers at rate γ . SIS and SIR differ in terms of immunity: In the SIS model, a recovered node is susceptible
again such that multiple infections for the same node are possible. In contrast, recovery in the SIR model means
that the node is immune and cannot be infected again. SIR, susceptible‐infected‐recovered; SIS, susceptible‐
infected‐susceptible. [Color figure can be viewed at wileyonlinelibrary.com]

11A similar choice has also been made in Hillairet and Lopez (2021) for modeling the WannaCry attack. Here, the
authors use the population‐based ordinary differential equation system from Kermack and McKendrick (1927) instead
of a stochastic network model.
12Reasonable estimates of the infection speed in contagious cyber incidents cannot be derived due to insufficient data.
We assume τ = 0.1, which in a Markovian setting corresponds to the expected waiting time of 10 units of time for
infectious transmission over a network edge. Our results can easily be adapted to a specific infection speed scenario by
adequate interpretation of the time unit.
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implications of our findings on the implementation of concrete cyber resilience measures for
real‐world cyber systems.

4 | CASE STUDY I: SECURITY ‐RELATED
INTERVENTIONS UNDER STRATEGIC INTERACTION

For both the WannaCry and NotPetya attacks, the vulnerability of systems was crucially
dependent on the security efforts taken by individual network users. Therefore, we first
introduce a suitable model for security levels, benefits, and costs within the framework of
our artificial cyber lab. However, due to the interconnectedness of entities in cyber systems,
the individual risk exposure is also influenced by the security choices of other network
participants: Interdependence and strategic interaction of different actors constitute key
characteristic of systemic cyber risks. Therefore, we develop a security investment game to
study interdependence effects within the cyber network. Finally, we evaluate if, and how,
security‐related interventions in the form of additional security obligations can efficiently
be allocated among network nodes to improve the overall safety of the cyber system.

4.1 | Security investments and strategic interaction

In our SIR model, the cyber risk exposure of network nodes depends on the epidemic infection
and recovery rates. For tractability reasons, we assume a fixed homogeneous infection rate
τ (see Section 3.4) and vary the individual recovery rate γi of node i N= 1, …, which we will
interpret as security level: The lower the security level γi, the longer it takes for firm i to detect a
cyber infection or an existing security gap. Consequently, this also affects the risk exposure of
the firm's direct network neighbors, see Figure 3.

From the perspective of the individual node i, the choice of security level γi results from the
trade‐off between the following two functions:

1. The cyber loss function L γ γ γ( , , …, )i N1 2 describes the losses of node i—as a function of all
nodes' security levels due to the interconnectedness of network agents. In general, a loss
model may capture a variety of aspects, see the discussion in the previous section. Clearly,
the amount of cyber losses should be related to the duration of a cyberattack, which, for
instance, may correspond to downtime of services13 and business interruption costs. We
choose a simple and tractable loss model by setting








L L γ γ I t dt( , …, ) ( ) ,i i N i1

0
≔ ≔

∞

which represents the expected amount of time node i will spend in the infectious state I ,
given the security levels γ γ, …, N1 . In particular, Li can be reduced by increasing the security
level γi. For details, see Appendix D.

SIR infection dynamics are described by an ordered system of equations; see Appendix A
for details. Note that the order of SIR equations increases up to the network size N . Hence,

13For example, this idea has been proposed in the loss model from Xu and Hua (2019).
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solving the exact system is intractable for complex networks due to the large number of
system equations. We thus follow a stochastic simulation approach.14 Further details are
given in Appendix E.

2. The cost functionC γ( )i i describes the cost of the implementation of security level γi for node i.
For simplicity, we let C C=i for all i N= 1, …, . Typically, such a cost function should be
strictly convex, representing a rapidly increasing cost with increasing targeted security level.
Further,C should satisfy C (0) = 0. For simplicity and tractability, we choose an exponential
function

C γ e k( ) = − 1, > 0,i
kγi

with growth constant k. In the following, we set k = 1 3∕ .

A rational network agent i will try to minimize her total expenses

γ γ C γ L γ γ( , …, ) = ( ) + ( , …, ),i N i i i N1 1

that is, the competing sums of security costs and cyber losses, as a function of γi.
As noted in Section 3.4, we choose the fixed homogeneous rate τ = 0.1 for the infection

dynamics. The contagion process is initialized at time t = 0 by the random infection of a single
node. We remark that there are, of course, many reasonable choices for the loss and cost
function and thus the total expenses, and also the infection dynamics. However, since our
studies are of a qualitative and not a quantitative nature, we believe that our choices are suited
to gain a basic understanding of the problem.

4.1.1 | Individually optimal security level

Under the assumption that for all nodes j i≠ the security level γj remains unchanged, a

security level γi is individually optimal for node i, if it minimizes the total expenses i , that is, a
rational agent will choose the individually optimal security level

(a) (b)

FIGURE 3 Contagious spreading for initially infected nodes with low and high recovery rates γi. The value
of γi reflects the IT security level and protection efforts of company i. (a) Low security level and (b) high security
level. [Color figure can be viewed at wileyonlinelibrary.com]

14Trajectories of the SIR dynamics can be generated using the well‐known Gillespie algorithm, cf. Gillespie (1976, 1977).
Pseudocode is provided in Appendix B.
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γ γ γ γ γ γ γ γ γ( ) arg min ( , …, ) where ( , …, , , …, ).i i
γ

i N i i i N
ind

−
[0, )

1 − 1 −1 +1

i

≔ ≔
∈ ∞



An example for node 3 from the branching tree in Figure 1 is shown in Figure 4.

4.1.2 | Strategic interaction of interdependent actors

The security level choices of network agents do not only affect their individual expenses i but
also the cyber losses L j i,j ≠ , of other network nodes. Therefore, these nodes will in turn react
to the new threat situation, initializing a cascade of strategic interactions. We will call this the
security investment game. A steady state of individually optimal security levels is a choice of
security levels γ (0, )N∈ ∞ such that

i N γ γ γ= 1, …, : ( ) = .i i i
ind

−∀

In other words, a steady state is a Nash equilibrium of the security investment game. The
following theorem asserts the existence of steady states of individually optimal security levels.
The proof of Theorem 4.1 is provided in Appendix F.

Theorem 4.1. Steady states of individually optimal security levels exist.

Note that the theorem holds for basically any reasonable choices of cost functions Ci and
loss functions Li as long as the total expenses i remain strictly convex in γi and admit a
minimum point. In that case, the proof would make use of Berge's maximum principle. We
implement the security investment game as a dynamical game with several rounds
r M= 0, 1, …, where every round r starts with a fixed vector of security levels

FIGURE 4 Cyber losses, security costs, and total expenses of node 3 in the branching tree from Figure 1 as a
function of the security level γ3. Infection rates are assumed to be homogeneous, τ = 0.1, and security levels are set to
γ = 0.1j for j 3≠ . The value γ = 0.9433

ind is individually optimal. Cyber losses are calculated using the decomposition
scheme from Appendix D: = 10, 000, 000 trajectories of the susceptible‐infected‐recovered process were generated to
determine the probability A( )3 where A3 is the event that node 3 becomes infected. For each simulation, the initially
infected node was randomly chosen. [Color figure can be viewed at wileyonlinelibrary.com]
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γ r γ r γ r γ r( ) = ( ( ), ( ), …, ( )).N1 2

Algorithm 4.2 (The security investment game).
Input: Initial configuration γ (0) (0, )N∈ ∞ , number of rounds M >0∈ .

1. (Initialization) Set r 0→ .
2. For every node i i N, = 1, …, , calculate

γ r γ r γ r γ γ r γ r( + 1) = arg min ( ( ), …, ( ), , ( ), …, ( )).i
γ

i i i i N
[0, )

1 −1 +1

i∈ ∞



More details are given in Appendix E. Set

γ r γ r γ r γ r( + 1) = ( ( + 1), ( + 1), …, ( + 1)).N1 2

3. If r M< , set r r + 1→ , and return to Step 2; otherwise end.

Output: Security configuration γ M( ) after M rounds

4.1.3 | Complex network interactions

We study the strategic interaction in two particular fixed networks: one generated from the
Erdős–Rényi class with parameters N = 50 and p = 0.16, and another one drawn from the
Barabási–Albert class with N = 50 and m = 4. Note that these two exemplary networks are
comparable with respect to their number of network connections, cf. Section 3.1.1.
Visualizations are provided in Figure 5.

On both networks, we conduct the security investment game (Algorithm 4.2) with M = 50

rounds and initial security level γ (0) = 0.1i for all nodes i. To generate values for the cyber
losses Li, in each round of the game, = 10, 000, 000 trajectories of the SIR epidemic process
are simulated; see Appendix E for details.

FIGURE 5 Visualization of the considered exemplary networks drawn from the Erdős–Rényi (left) and
Barabási–Albert (right) classes. Nodes are colored according to their chosen level of security after round 50 of
the security investment game (Algorithm 4.2): the darker the color, the higher the chosen security level (for
Erdős–Rényi: minimum: 0.3780, maximum: 0.6526; for Barabási–Albert: minimum: 0.4719, maximum: 0.7598).
Data is based on = 10,000,000 trajectories of the susceptible‐infected‐recovered epidemic process for each
round of the security investment game. [Color figure can be viewed at wileyonlinelibrary.com]
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The results of the security investment game in the steady state, γ γ γ= ( , …, )N
stead

1
stead stead , are

represented by node colors in Figure 5. For both network arrangements, we observe that more
central nodes choose higher security levels than nodes in the periphery. The accumulated total
expenses

 ( )γ γ γ( ) , …,
i

N

i N
stead

=1
1
stead stead≔ 

are given by γ( ) 21.66stead ≈ for the Erdős–Rényi‐type, and γ( ) 21.92stead ≈ for the
Barabási–Albert‐type network, respectively.

4.2 | Demand for regulation: Allocating additional security
investments

In this section, we address the question whether the individually optimal security choices given
by a steady state γstead are also favorable from an overall network perspective, that is, do they
minimize the accumulated total expenses γ( ) , or can additional security investments further
improve the situation? In fact, the individually optimal security choices will in general not lead
to a minimization of the overall network expenses, see Appendix G for a simple example.
Indeed, it is well‐known that Nash equilibria (steady states) do not in general minimize the
social welfare function which in this case is the total expenses. In our case, a profound
systematic characterization of the latter observation is, however, still an open challenge due to
the lack of sufficient analytical tractability of the network dynamics, f.e., see Kiss et al. (2017,
sec. 3.5.3) for a similar problem.

As indicated by the distribution of steady‐state security investments shown in Figure 5, a
key role in identifying good allocations of additional security investments may be played by the
individual nodes' centrality. To this end, recall the degree and betweenness centrality of
network nodes introduced in Section 3.1.2. Note that these standard centrality measures from
the literature are solely based on the underlying network topology. The security investment
game, however, suggests yet another way of measuring centrality, namely by fixing a steady
state γstead and defining the centrality of node i to be the individually optimal investment

i γ( ) = .i
inv stead

In the following, we will refer to this latter centrality measure as the investment‐based
centrality.

4.2.1 | Allocation strategies

In view of the previous discussion, in this section, we proceed as follows:

1. We start from a steady state γstead of individually optimal security levels. Moreover, we fix an
additional security budget β > 0.

2. This extra amount of security is allocated among the nodes according to one of the following
strategies:

AWISZUS ET AL. | 19
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(a) Untargeted allocation: β is uniformly distributed among all network nodes, providing an
additional security investment γ β N=i

all ∕ for each node I .
(b) Targeted allocation: we choose a centrality measure  and determine the allocation

weights

w
i

j
i N

( )

( )
, = 1, …, .i

j
N
=1

≔




Based on these allocation weights we consider two opposing procedures:
(i) The upper allocation strategy allocates β proportionally γ β wi i

all ≔ ⋅ . Here a higher
amount of β is assigned to nodes with a higher degree of centrality.

(ii) The lower allocation strategy does the opposite. To this end, we calculate the inverse
allocation weights




w
w w

ˆ
if 0

0 else.
i

i i
−1

≔
≠

In this case, the additional security investment γ β w w= ( ˆ ˆ )i i j
N

j
all

=1⋅ ∕ for node i assigns a
higher amount of β to nodes with a lower, yet positive, degree of centrality.

The proposed allocation procedures yield a new vector of security levels γ̃ with entries

γ γ γ i N˜ = + , = 1, …, .i i i
stead all

3. Finally, we calculate the accumulated total network expenses γ( ˜) under the new security
configuration.

4.2.2 | Allocation for complex networks

We compare the different allocation strategies and centrality measures for the Erdős–Rényi‐
and Barabási–Albert‐type networks from Figure 5 by allocating an additional budget of β = 5.
The strategies are visualized in Figure 6 and the resulting reductions of total network expenses
are shown in Table 1 on a percentage basis.

In any case, we observe that the injection of additional network security clearly reduces the
accumulated total expenses.

Comparing the different allocation procedures, we see that the upper allocation strategy
leads to lower overall losses than both the untargeted and lower allocation strategies—
regardless of the centrality measure chosen.

Moreover, for both types of networks, we observe that the upper allocation strategy
combined with topology‐based centrality measures outperforms the investment‐based
approach. In particular, the upper allocation strategy based on betweenness centrality yields
the best outcome.

A possible reason for this is that the proportion of budget which is allocated to periphery
nodes is too large in both the untargeted and investment‐based case: For example, for the graph
from the Erdős–Rényi class, the investment‐based centrality of periphery nodes is more than
half the size of the maximum node centrality, see Figure 6c. In contrast, the betweenness
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centrality of the most isolated nodes is close to zero, and therefore, almost no additional
security investment is allocated to these nodes, see Figure 6a.

4.2.3 | Further centralization of upper allocations

Our previous observations suggest that additional security investments should not be
distributed equally among nodes, but in accordance with their centrality following an upper
allocation strategy. Introducing specific requirements for every network entity may be difficult
or even impossible from a regulatory point of view. For example, the upcoming NIS2 Directive
introduces a specific size‐cap rule which solely targets medium‐sized and large entities in
sectors of critical infrastructure, see the discussion in Section 2.3. But does the exclusion of low‐
centrality nodes from the allocation procedure substantially reduce the beneficial effect of

(a) (b) (c)

(a) (b) (c)

FIGURE 6 Exemplary visualization of centrality weights wi in the Erdős–Rényi (top) and Barabási–Albert‐
type (bottom) network for (a) betweenness, (b) degree, and (c) investment centrality. [Color figure can be viewed
at wileyonlinelibrary.com]

TABLE 1 Percental reduction of accumulated total expenses  after the allocation of the additional budget
β = 5 among all network nodes.

cdeg cbet c inv

Upper 10.6% 11.3% 10.8% 12.3% 10.2% 9.6%

Lower 8.2% 6.7% 0.5% 3.4% 9.5% 8.3%

Untargeted 9.9% 9.0%

Note: The three proposed allocation strategies are evaluated for each of the suggested centrality measures. Entries for the Erdős‐
Rényi network are colored in blue (left entries), and for the Barabási‐Albert network in salmon (right entries), respectively. For
each entry, cyber losses were generated from T= 10,000,000 simulations of the SIR epidemic process. Full data is given in
Appendix H.
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additional network security? Or can we even improve the effectiveness of security obligations if
only a certain fraction of highest‐centrality nodes is considered?

To answer these questions, the upper allocation procedure is slightly modified: Suppose we
want to restrict the budget allocation to a certain fraction p of nodes with the highest centrality,
and let  denote the set of corresponding node indices. Then, the amount of budget which is
allocated to node i is chosen as







( )γ
β i j i

=
( ) ( ) , if ,

0, else.
i

jall ⋅ ∕ ∈
∈

  


Note that for p = 100%, this coincides with the previously studied upper allocation strategy
on the full network. The results of the modified procedure for different percentages of targeted
nodes are depicted in Figure 7.

For the Erdős–Rényi network no substantial change of expenses is found when excluding
the most decentralized nodes from the allocation of the additional security budget. In contrast,
for the Barabási–Albert network and allocations based on investment and degree centrality,
only targeting nodes with a medium to high degree of centrality is even beneficial. No
substantial change, however, is observed in case of the betweenness‐centrality‐based allocation.
As noted before, this may be due to the fact that in the betweenness‐centrality case, the
allocation weights of periphery nodes are anyway close to zero. In sum, our observations
provide evidence that budget allocations to periphery nodes are rather ineffective.

Nevertheless, for all centrality measures and both types of networks under consideration,
solely allocating the budget to a small fraction of nodes with the highest centrality does not
prove to be optimal. A reason for that might be the trade‐off between costs and efficiency:
Additional security investments for highly central nodes come with substantially increasing
costs, since these nodes already invest a high amount in the individually optimal steady state
(see Figure 5) and the cost function C γ( )i i is strictly convex.

For both types of networks, the overall best results are found for betweenness‐based‐
allocations. However, the corresponding optimal total expenses are only slightly below the total
expenses corresponding to adequately targeted degree‐based allocations. Determining the
betweenness centrality of nodes requires information on the full network topology, and this

FIGURE 7 Refinement of the upper allocation strategy for different percentages of targeted nodes. Again, the total
additional security budget is β = 5. For each data point, = 10,000,000 simulations of the epidemic process were
generated. Full data is given in Appendix H. [Color figure can be viewed at wileyonlinelibrary.com]
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information may not be available in practice. In contrast, node degrees, that is, the number of
IT contacts of an agent in the cyber network, are local quantities, and thus, they can more easily
be determined, for example, using questionnaires. Therefore, in view of the information‐
gathering issue and given the comparable performance in our simulations, degree‐based
allocations targeting the upper 50% of most central nodes may constitute a reasonable
compromise.

4.3 | Evaluation of security‐related interventions

We find that mandatory security investments as a regulatory obligation can actually increase
the overall cybersecurity in a system of interconnected agents. More precisely, our simulations
suggest the following:

(i) The strategic interaction of nodes in the cyber network leads to a steady state of security
investments as proven in Theorem 4.1. However, the self‐regulation of interdependent
actors does in general not lead to an effective state of security configurations from an
overall network perspective: A substantial improvement of this state is possible by the
injection of additional security budget. Therefore, a need for regulation is found, and
introducing adequate security‐related obligations might be reasonable.

(ii) Severe security requirements for weakly connected entities like private households or
companies with a very small number of business partners do not seem to have any notable
effect on reducing network vulnerability. However, solely focusing on the most central nodes
does not produce the best results either. Provided that these central nodes at least make the
significant investments given by some steady state of the security investment game, additional
investments come with massively increasing costs. Therefore, regulation should also focus on
agents and companies with a medium to large number of IT or business contacts.

(iii) Centrality is not a rigorously defined concept. However, for both degree‐ and betweeness‐
based security allocations, good results are obtained. For practical reasons, degree‐based
allocations may be easier to implement: information on immediate network contacts can
directly be obtained from agents, for example, using questionnaires.

As regards the selected cybersecurity measures given in Section 2 we find that:

GOV ◇ Size‐cap rule: Remarkably, the approach proposed by the European
Commission is in very good agreement with our findings: Security
obligations for micro and small enterprises are ineffective, but both
medium‐sized entities as well as large businesses should be targeted.
Therefore, our results strongly suggest that the size‐cap rule is an efficient
tool for improving resilience in cyber systems.

◇ Supply chain protection: The observation that efficient security allocations
cannot solely be restricted to a small fraction of nodes with the highest
centrality illustrates the need for a strengthening of security levels further
down along possible paths of contagious transmission. Therefore, similar to
the size‐cap rule, our study supports the implementation of security‐
enhancing measures along supply chains.
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INS ◇ Assistance services: Our study may help to identify companies for which
assistance should be made mandatory in insurance contracts, and also give an
estimate of the amount of services that should be made available to the specific
policyholder. Further, in the case of an ongoing WannaCry‐ or NotPetya‐type
incident, the amount of resources for those assistance services may only be
limited, see also the discussion in Hillairet and Lopez (2021). Thus, our results
may also be useful for an effective resource allocation in such situations.

◇ Patch management and backup: Our observations suggest that the effectiveness
of mandatory obligations strongly depends on the systemic importance of the
examined entity measured by a reasonable centrality criterion. Medium‐sized
as well as large businesses with respect to centrality should not only invest
more in cybersecurity, and thus in particular in their back‐up and patching
procedures, than smaller entities, but they should even invest more than an
individually optimal assessment would suggest.

5 | CASE STUDY II: TOPOLOGY ‐BASED INTERVENTIONS
AND CYBER PANDEMIC RISK

Due to the interconnectedness of modern IT systems, both the WannaCry and NotPetya
incidents affected systems at a global scale, triggering large amounts of cyber losses. Clearly, a
major regulatory concern is the prevention of such cyber pandemic incidents. Moreover, since
risk pooling does not apply to systemic incidents, it is also important for insurance companies
to reduce the risk of potential cyber accumulation scenarios within their portfolios.

Digital information and technology networks often come at a size of several 1000 nodes,15 see
the reference network data from Barabási and Pósfai (2016, table 2.1) and Newman (2018, table
10.1). In this section, we study the cyber pandemic risk exposure, first for homogeneous
Erdős–Rényi‐type networks, and then for heterogeneous—probably more realistic—Barabási–
Albert‐type networks of large size. We will observe that to control the cyber pandemic risk,
regulatory approaches which solely focus on the improvement of individual cyber security are
insufficient: interventions need to target the underlying topological network structure. Thus a clear
demand for the regulation of the network topology in large‐scale cyber systems is found. We will
also observe that network heterogeneity massively amplifies the cyber pandemic risk.

5.1 | Demand for regulation: Network topology and cyber
pandemic risk

In large‐scale networks, the frequency distribution of epidemic outbreak sizes in the SIR model
can typically be characterized by the presence of two peaks,16 namely

• small outbreaks, affecting only a very small fraction of network nodes, and
• proper epidemic outbreaks or pandemics, where a large number of nodes becomes infected.

15The possibly largest existing network is the WWW with approximately N = 1012 nodes.
16Mathematical details are extensively discussed in chapter 6 of Kiss et al. (2017).
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To assess the risk of cyber pandemics, simulation studies are conducted. Again, for all
networks, we choose a global infection rate of τ = 0.1. In contrast to the previous study,
recovery rates are assumed to be fixed and homogeneous for all nodes, that is, γ γ= = 1i for all
i N= 1, …, . This parameter choice implies that detection of cyber incidents is expected to be 10
times faster than infectious transmission, i.e., we assume an overall high standard of IT security
for the full network.

5.1.1 | Cyber pandemic risk in homogeneous networks

We first analyze the cyber epidemic risk exposure of homogeneous large networks drawn from
the Erdős–Rényi random graph model with a fixed size of N = 1, 000. The benefit of this model
class is that the resulting networks are easily tractable due to the fact that their topology is
entirely determined by the parameters p and N . In particular, p can be interpreted as the
control parameter of network connectivity. Each simulation is performed in the following way:

1. Randomly draw a network G (1000)p from the Erdős–Rényi class.
2. Randomly choose a single node which is initially infected.
3. Randomly generate an infection trajectory from our SIR model. We are interested in the total

number of infected nodes, that is, the outbreak size.

The resulting frequency distribution of outbreak sizes is depicted in Figure 8. The following
phase transition can be observed:

• For low connectivity probabilities p, only small outbreaks occur; the outbreak size frequency
is exponentially decaying.

• Tipping point behavior: If a certain critical edge probability pc is exceeded, the frequency
distribution is characterized by a second peak around a characteristic large outbreak size.

The apparent strong dependence between network connectivity and outbreak sizes suggests
that a supervision and regulation of the network is beneficial to avoid large systemic outbreaks.

FIGURE 8 Final outbreak size frequencies given an initial infection of a single network node, over 100,000
simulations for increasing values of p; values are p p p p p p= 0.01 < = 0.011 < < = 0.012 < = 0.013 < =c1 2 3 4 5

0.014. Exact data points from the simulation and appropriate regression curves (power law for p1 and p2, polynomial of
degree 8 for p p p, ,3 4 5) are plotted. [Color figure can be viewed at wileyonlinelibrary.com]
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Naively speaking, in a homogeneous network, the regulator should aim at keeping the network
connectivity below the critical threshold pc.

5.1.2 | The heterogenous case: Cyber pandemic risk in scale‐free networks

On a larger scale, many real‐world networks are characterized by a preferential attachment
principle, see Barabási and Pósfai (2016, chap. 4), and therefore, a more heterogeneous topology
is often observed: Let K be a random variable which represents the degree ki of a randomly
chosen network node i. Then

• the degree distribution of the Erdős–Rényi random graphG N( )p is given by a binomial form,
that is, we have



 


K k

N

k
p p k N( = ) =

− 1
(1 − ) , = 0, …, − 1,k N k−1−

• whereas under preferential attachment, the distribution of node degrees typically follows a
power‐law, that is,17

K k k α( = ) ~ , with degree exponent .α−
+∈

Node arrangements with α = 3 can be modeled using the Barabási–Albert class introduced
in Section 3.1.1. These so‐called scale‐free networks provide a hierarchy of nodes, with
heavily connected high‐degree hubs in their center and less connected nodes in their
periphery.

Figure 9 shows representative networks from both the Erdős–Rényi and Barabási–Albert
class, highlighting the different degree distributions.

This difference in the network topology has a strong impact on the epidemic vulnerability.
Focusing on connectivity in terms of the sole number of edges, for networks of size N = 1000, the
class of Barabási–Albert networks withm = 5 is comparable to Erdős–Rényi graphs with p = 0.01,
since the resulting numbers of edges in both networks approximately coincide.18 However, there
exists a strong difference regarding their vulnerability to epidemic outbreaks, as shown by Figure 10:
In contrast to the Erdős–Rényi graph, a clear second peak in the frequency distribution of outbreak
sizes is observed for the Barabási–Albert network. Hence, the heterogeneity in the topology of
Barabási–Albert networks remarkably lowers the critical connectivity threshold for cyber pandemics,
that is, it amplifies the epidemic spread and triggers the emergence of large‐scale outbreaks.

A profound characterization of this behavior in relation to the distribution of node degrees can
be obtained in the limit of infinite network size N → ∞: Neglecting additional correlation effects19

it is known that large‐scale pandemic outbreaks are possible if and only if the threshold condition

17For details and empirical examples, we refer to chapters 3 and 4 in Barabási and Pósfai (2016).
18Approximately 5000 edges should be present in both networks, see the discussion in Section 3.1.1.
19The effect of degree correlations and clustering on the dynamics of spreading phenomena is difficult to quantify
analytically due to the dimensionality of the system, see also the discussion in Appendix A. Findings on their impact on
the epidemic threshold are surveyed in Sections B1 and B2 of Pastor‐Satorras et al. (2015).
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τ

τ γ

K K

K+

[ − ]

[ ]
> 1

2

(4)

is satisfied, see Kiss et al. (2017, equation 6.4, p. 221).20 Note:

• For Erdős–Rényi random graphs, in the limit the degree distribution is Poisson with
parameter λ denoting the average degree, see Barabási and Pósfai (2016, sec. 3.4). Therefore,
from (4), it follows that cyber pandemics can be prevented in the infinite limit if the network
security/recovery rate γ satisfies γ τ λ( − 1)≥ .

• In contrast, for scale‐free networks with α (2, 3]∈ and a sufficiently high number of nodes, it
may be difficult or even impossible to prevent cyber pandemics by solely improving the network
security or reducing the overall network connectivity. The reason for this is that in the infinite
size limit, the second moment K[ ]2 of the degree distribution diverges to ∞ while the first
moment K[ ] stays finite, see Newman (2018, sec. 10.4.2) for more details. Hence, in view of (4),
with growing N , the security parameter γ must be substantially increased to prevent the

FIGURE 9 Erdős–Rényi G (1000)0.01 (left) and Barabási–Albert BA (1000; 5) (right). In both cases, the node
size of node i is given by k k100 i j j=1

1000⋅ ∕ , an increasing function of the node's relative degree k ki j j=1
1000∕ .

[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Final outbreak size frequencies given an infection of a single network node for the Barabási–
Albert BA (1000; 5) and Erdős–Rényi networks G (1000)0.01 from Figure 9 over 100,000 simulations. Exact data
points from the simulation and a regression curve (power law for Erdős‐Rényi, polynomial of degree 8 for
Barabási‐Albert) are plotted. [Color figure can be viewed at wileyonlinelibrary.com]

20See also Pastor‐Satorras et al. (2015, equation 62) for an equivalent expression of the threshold.
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occurrence of cyber pandemics. This comes with massively increasing costs. In the limiting case
N → ∞, (4) is always satisfied, regardless of the infection and recovery parameters chosen, so
cyber pandemics may always occur.

In scale‐free networks with a degree exponent α in the range of (2, 3] and a large number
of entities, cyber pandemics are thus an inherent risk of the underlying network topology.
The risk of cyber pandemic outbreaks cannot be controlled by security‐related interven-
tions, that is, by increasing the recovery rate γ , only, but requires a manipulation of the
degree distribution, that is, the topological network arrangement. This behavior is clearly
relevant in the risk assessment of cyberspace, which consists of a very large number
of entities and is characterized by a heterogeneous, possibly scale‐free, structure of
interconnections.21

5.2 | Implementing suitable interventions

In the previous section, we have seen how a network's vulnerability to large‐scale cyber
pandemic outbreaks depends on the topology of the underlying cyber network. The
following approaches may be considered to limit or control critical network connections
and nodes:

• Edge removal: Edge deletion comprises
– physical deletion of connections, such as any unnecessary access to servers, or if not

possible,
– edge hardening, which corresponds to strong protection of network connections via

firewalls, the closing of open ports, or the monitoring of data flows using specific detection
systems, see Chernikova et al. (2022).

• Node splitting to separate critical contagion channels and let them pass through two different
nodes with the same operational task.

Since manipulating the network topology comes at a cost, probably reducing network
functionality, the aim in the following is to identify critical network connections and nodes in a
way which reduces negative effects on the network functionality to a minimum. A classical
measure for network functionality is the average shortest path length  l : For nodes i and j l, ij is
the minimum number of edges connecting i and j. The average shortest path length is the
average over all these distances, that is,

 l
N N

l=
1

( − 1)i j i j

ij

, , ≠

in case of a connected network. A small value of  l is a measure for fast and efficient data flow,
and hence, corresponds to a high network functionality. If a network consists of more than one
component, then lij is not well defined for any two nodes i and j which come from two different

21For example, the Internet's degree distribution is estimated to be scale‐free with degree exponent α 2.5≈ in Newman
(2018, table 10.1).
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components. In this case, we follow Newman (2018, p. 311) and adopt the definition by only
taking the average over those node pairs which are connected by an existing path.22

5.2.1 | Edge removal and node splitting

Edge removal: To identify epidemically critical edges, we utilize the edge centrality given in (1)
in Section 3.1.2 and propose the following procedure:

1. Consider a network G. Determine the centrality of G's edges.
2. Consecutively delete the most central network edges. Stop the deletion process, if the resulting

network does not exhibit a cyber pandemic outbreak any more.

The procedure thus ends when pandemic outbreaks are not any longer observed in the
resulting network Gc. Let c denote the set of edges which are deleted from G to obtain Gc, and
let  c be its number.

To illustrate the effectiveness of the proposed procedure, we determine the value  c and the
average shortest path length  lc of the resulting network Gc for the Barabási–Albert network
depicted in Figure 9 with initial functionality of  l 2.96≈ and outbreak size frequencies as
shown in Figure 10. The results after edge deletion are depicted in Figure 11.

In comparison to random edge removals, it is clearly observable that the number of necessary
edge deletions  c can be significantly reduced by following the edge centrality deletion procedure.
Moreover, the remaining network possesses a higher functionality represented by a lower average
shortest path length  lc than in the case of random edge removals.

Node splitting: In the following, we propose a splitting procedure which is based on the suitable
choice of a node centrality measure  .23 Nodes with highest centrality are splitted in an iterative
manner, that is, centralities are re‐evaluated after each split. Hence, nodes resulting from a split can
be splitted again if they still exceed the rest of the network in terms of centrality.

Algorithm 5.1 (Node splitting). Input: Initial network of N nodes, number n of node
splits, node centrality measure 

1. Determine the centrality of all network nodes.
2. Find the node i with highest centrality.
3. Split node i in the following way:

(i) Add a new node j to the existing network.
(ii) Create an order of node i's network neighbors where nodes are sorted according to

their centrality.
(iii) For nodes l with an even order rank, delete the edge between i and l and create a

new edge between l and j.

22In particular, this modification is relevant for the random edge deletions in Figure 11, where larger amounts of links
are removed. The networks in Figures 11–13 which are generated by targeted edge deletions and node splittings are not
fragmented into disconnected components.
23A similar algorithm was introduced in Chernikova et al. (2022).

AWISZUS ET AL. | 29

 15396975, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jori.12450 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4. Repeat steps (1)–(3) until n node splits are conducted.Output: Resulting network Gc of
N n+ nodes

In analogy to the previously conducted analysis of edge removals, we study the effect of
node splitting on the epidemic outbreak size distribution and functionality of the
Barabási–Albert network from Figure 9 with initial outbreak size frequencies as shown in
Figure 10. The results for degree‐ and betweenness‐based node splitting are depicted in
Figure 12, yielding almost identical results.

In comparison to edge removals, we find that node splitting is even more effective: Only
about 6% of the most central nodes need to be splitted to control the risk of cyber pandemics.

FIGURE 11 Final outbreak size frequencies given an initial infection of a single network node, over 100,000
simulations for different percentages of deleted edges. Exact data points from the simulations and regression
curves (polynomial of degree 8) are plotted. The results for edge centrality‐based removals are depicted in the
left figure, and the percentage of critical links is found to be about 14%. In contrast, random edge removals are
shown in the right figure, and this procedure is clearly less effective: Approximately 30%–35% of edges need to
be removed here to eliminate the risk of cyber pandemics. The randomized edge removals are newly conducted
for each of the 100,000 simulations. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Final outbreak size frequencies given an initial infection of a single network node, over 100,000
simulations for different numbers of splitted nodes. Exact data points from the simulations and regression
curves (polynomial of degree 8) are plotted. The results for degree‐based splittings are depicted in the left figure,
the number of critical splits is found to be about n = 60 which corresponds to 6% of the nodes. Very similar
results are found when splitting nodes according to their betweenness centrality, as is shown in the right figure.
[Color figure can be viewed at wileyonlinelibrary.com]
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Further, the functionality of  l 3.24≈ of the resulting network is better than in the case of edge
removals ( l 3.30≈ ).

In step 3, (iii) of the algorithm, rewiring of edges is conducted with the aim of separating
critical contagion channels from each other. To study the effectiveness of the procedure, we
may modify this step of the algorithm in the following way: Let ki denote the degree of node i.
Then, the  k 2i∕ neighbors with highest degree remain connected to i, and only edges between
the  k 2i∕ lowest degree nodes and i are rewired from node i to j. From the outcomes in
Figure 13, we clearly observe that the effectiveness of the node splitting procedure is now
remarkably lowered, both in terms of necessary node splits for the prevention of cyber
pandemics and network functionality. Hence, the separation of critical contagion channels is
essential for the effective implementation of node splitting.

5.2.2 | Risk allocation and design of contractual obligations

Risk allocation: Consider an initial graph G and the graph Gc which is obtained by network
interventions, either edge removals or node splitting, such that cyber pandemics are sufficiently
controlled inGc. The network connections inGc can be considered acceptable, that is, they should not
warrant further regulatory action. Instead, suitable risk allocation schemes and possible obligations
should be derived from the set of deleted (edge removals) or rewired (node splitting) connections. To
allocate the cyber pandemic risk to the individual nodes in accordance with their systemic risk
contribution, we thus introduce the concept of contact coefficients:

• Edge removals: Let   j i jϵ = { ( , ) }i c∈  denote the number of critical connections of node i.24

To measure the cyber pandemic risk contribution of the single node i, we define the contact
coefficient ci of i by

FIGURE 13 Final outbreak size frequencies given an initial infection of a single network node, over 100,000
simulations for different numbers of split nodes under the modified procedure. Exact data points from the
simulations and regression curves (polynomial of degree 8) are plotted. In comparison to the results from
Figure 12, we see that the modified rewiring procedure substantially reduces the procedure's efficiency. Indeed,
in this case, 8% of the nodes need to be splitted and the corresponding network functionality is  l = 3.36. [Color
figure can be viewed at wileyonlinelibrary.com]

24Note that every critical edge i j( , ) c∈  connects two nodes i and j, thus  ϵ = 2i
N

i c=1  .
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 c c=
ϵ

2
, normalized to = 1.i

i

c i

N

i

=1

• Node splitting: Let N{1, …, }⊆ denote the set of nodes from the initial networkG which
are splitted during the procedure. Then, in analogy to the centrality weights wi from
Case Study I, we choose a node centrality measure  and define the contact coefficient
ci by






( )c

i j i
=

( ) ( ) , if ,

0, else.
i

j
∕ ∈

∈
  



In the following, we sketch preliminary ideas on how specific topology‐based obligations for
network nodes i could be established.

Contractual obligations: A major problem of (private) regulators such as insurance
companies is that they might not be able to directly control or limit connections within cyber
networks. In that case, contractual obligations, like surcharges or insurance risk premiums,
may incentivize the deletion or protection of critical contagion channels. In the following, we
briefly discuss such insurance‐related obligations.

• Fixed surcharge: Given a cyber premium πi +∈ for node i, not yet accounting for systemic
cyber risks, the contact coefficient ci could serve to determine the fraction of a fixed systemic
risk surcharge f > 0 which has to be borne by node i. This means that node i's total premium
would equal

π π c f π= + ,i i i i⋅ ≥∼

with equality if and only if c = 0i , that is, if and only if node i possesses no critical network
connections. For example, these surcharges could be implemented in the context of the
insurance backstop mechanism that is discussed in Lemnitzer (2021).

• Risk premia: Let L represent the random total loss (over all nodes) in the original networkG,
and let Lc represent the total loss in the new network Gc. Then L L L−e c≔ may be
interpreted as the cyber pandemic loss. Consider a risk measure ρ such as the Value at Risk
or Expected Shortfall25 and let ρ L( )e denote the corresponding risk capital. When ρ L( ) > 0e

we define a topology‐based premium π c( )i for each node i by allocating the risk capital ρ L( )e
among the policyholders according to their individual risk contribution. For fixed networks
G and Gc, the corresponding function π ρ L: [0, 1] [0, ( )]e→ should be nondecreasing and
satisfy  π c ρ L( ) = ( )i

N
i e=1 . This amounts to a classical risk allocation problem, see, for

example, Feinstein et al. (2017). Obviously, the proportional allocation rule

π c c ρ L( ) = ( )i i e⋅

satisfies these constraints.

25For a rigorous introduction to monetary risk measures, we refer the interested reader to Föllmer and Schied (2016,
sec. 4).
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Using edge‐removal interventions, we illustrate the effect of these mechanisms in Figure 14
for the Barabási–Albert network from Figure 9. The larger the size of a node in Figure 14, the
larger is its underlying contact coefficient ci, and, thus, the higher would be an adequate
topology‐based obligation. We find that critical network connections are mostly associated to a
few central hubs. Comparing Figures 9 and 14, these few hubs are even more important than
from a degree perspective, and their decisive meaning for the emergence of cyber pandemic risk
within the network is clearly observed. Thus, adequate topology‐based interventions should
target these few central pandemic nodes.

5.3 | Evaluation of topology‐based interventions

The case study clearly demonstrates that effective manipulations of the network topology can
prevent cyber pandemic outbreaks while preserving a reasonable level of network functionality.
We obtain the following insights:

(i) In homogeneous networks of large size, connectivity, defined in terms of the sole number
of links, plays a major role in the emergence of cyber pandemic risk: A critical connectivity
threshold pc can be identified, below which the frequency of cyber pandemics is negligible.
Further, it is possible to prevent cyber pandemics by increasing the overall network
security.

(ii) However, many real‐world networks are characterized by a more heterogeneous, scale‐free
distribution of node degrees. Examples of networks with a scale‐free topology can be
modeled using the Barabási–Albert model. Here, we found that highly connected network
participants (hubs) may further amplify risk propagation compared to homogeneous
networks. Moreover, in the limit of infinite network size, cyber pandemics cannot solely
be prevented by strengthening the security of network participants but requires
manipulating the degree distribution of the underlying network topology.

(iii) Centrality and contact coefficients are an effective way to measure an agent's relative
topological importance and allocate the cyber pandemic risk of the system to its individual
nodes. Regulation taking into account these parameters may significantly reduce the cyber
risk and simultaneously preserve a high level of network functionality. However,
determining these coefficients requires information on the full network topology.

(iv) In contrast to security‐related measures, which should target all large and medium‐scale
entities, topology‐based interventions only need to focus on a small group of highly central

FIGURE 14 Visualization of contact coefficients based on edge removals in the Barabási–Albert network
introduced in Figure 9: Here, node size of node i equals c c100 i j j=1

1000⋅ ∕ , an increasing function of the node's
importance with respect to its contact coefficient ci. [Color figure can be viewed at wileyonlinelibrary.com]
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nodes. Thus, while contact coefficients might be difficult to determine in practice, it is
sufficient to impose obligations, like mandatory backup servers, the protection of data
connections, and separation of contagion channels, on a small fraction of highly
interconnected network entities. Due to their size and importance, these nodes are more
likely to be identified.

We identify the following implications for the cyber resilience measures discussed in Section 2:

GOV ◇ Incident response and reporting: The implementation of early warning
systems and reporting obligations for strongly connected network entities
may be an effective way to prevent large‐scale events. Immediately
disconnecting or otherwise securing these agents after risk arrival may be
crucial to prevent the outbreak of a systemic incident. Further, network
scanning should evaluate the risk of cyber pandemic outbreaks; in
particular, contact coefficients and the analysis of edge removal or node
splitting procedures may help to give concrete advice for the design of a
more resilient network topology.

◇ Critical supply chains: Network topology characteristics of industry supply
chains should play a major role in risk assessment and resilience building.
Highly interconnected entities, cloud service platforms, or frequently used
software may pose a severe threat for production chains and industry
sectors.

INS ◇ Contact liability premiums: The systemic risk contribution of a policyholder
to the insurers portfolio could be evaluated by means of contact coefficients
as introduced in Section 5.2.2.

◇ Insurance backstop mechanism: Our approach provides a reasonable
allocation mechanism for mandatory surcharges after the appearance of
a systemic cyber risk incident. Further, it may help encourage the deletion
or protection of critical network connections and thereby reduce the
existing risk potential.

6 | CONCLUSION AND OUTLOOK

As systemic cyber risks such as the well‐known WannaCry and NotPetya incidents pose a
growing threat to social and economic stability around the world, risk management and
resilience building are increasingly becoming the focus of regulators and private actors. In this
context, major issues arise from the limited amount of incident data available and the ever‐
evolving threat landscape.

Following the digital twin paradigm, we tackle this issue by introducing the artificial cyber
lab: Based on data from virtual counterparts of real‐world cyber systems, the artificial cyber lab
provides an experimental framework to analyze the impact of both security‐related and
topology‐based interventions. We find that both types can significantly improve the resilience of
interconnected cyber systems—if they are well‐adapted to the topology of the underlying cyber
network: In the context of security‐related interventions, appropriate obligations can be

34 | AWISZUS ET AL.

 15396975, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jori.12450 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



successfully implemented if, in addition to regulating highly centralized entities, they also
apply to medium‐sized network players. Additionally, topology‐based measures for preventing
cyber pandemic outbreaks in large‐scale heterogeneous networks are essential. These
constitute a rather serious regulatory intervention in cyber systems compared to security‐
related obligations. However, these interventions may be justified because only a small portion
of highly centralized nodes need to be affected. Based on our analysis of a virtual counterpart of
the real world, digital networks might become more resilient against systemic cyber threats by
implementing the discussed cyber resilience measures.

Of course, our specific case studies are highly stylized, and the validity of results depends on
the appropriateness of the chosen framework. Possible modifications and extensions of the lab
environment may be:

• Attackers and insurers as strategic actors: A limitation of our approach is that we have not yet
considered in detail the reactions and objectives of the actors involved, for example, the reaction
of malicious actors to the implementation of novel measures, or the impact of information
asymmetries in the relationships between insurers and policyholders. Our approach is a first step
toward combining strategic approaches and dynamic cyber risk models. Future research should
seek to incorporate these strategic aspects into the modeling framework.

• Data gathering and model uncertainty: Based on artifical lab data, our study is able to provide
insights on critical aspects of building cyber resilience—in a qualitative sense. However, to
determine what exact degree of constraints might be appropriate in reality, the input
parameters of our mathematical cyber risk model need to be fitted to real‐world data to
establish additional data links between the virtual and real‐world components of our digital
twin. Therefore, gathering data about network topologies and cyber incidents remains an
important task for regulatory authorities, risk management agencies, and insurance
companies.26 Additionally, considering risk management methods under model uncertainty
may be necessary to robustify the lab framework.

• Network size and complexity: Of course, the computational complexity of algorithms applied
within the artificial cyber lab significantly increases with the number of network nodes and
edges. However, our studies indicate that an effective risk assessment can be achieved by
focusing on the most central parts of the network only. Hence, a possible way to overcome
complexity issues could be to artificially reduce the size of the network subject to preserving
important characteristics. For instance, large real‐world networks could be downsized by
merging the peripheral parts to a tractable number of nodes. The suitability of such
approaches is part of future research.

• Feedback mechanisms in dynamic and adaptive networks: Over the course of an ongoing
contagious cyber incident, nodes may in turn react to the threat evolution dynamics by link
activation, shift, or deletion. For example, in response to the downfall of a server, new links
may be created to servers which are still operational. Models for dynamic and adaptive
networks with link rewiring, activation, and deletion are extensively discussed in Masuda
and Holme (2017) and Kiss et al. (2017, chap. 8).

This list of future research and modeling perspectives is not exhaustive. Moreover, new
aspects of cyber risk will emerge over time as cyber technology evolves. Nevertheless, artificial

26A brief survey on statistical inference methods for network topologies and/or epidemic model parameters is presented
in Awiszus et al. (2023, Appendix E). Further, in Hillairet et al. (2022), a macroeconomic network model with weighted
edges was calibrated from OECD data on the economic flow between industry sectors.

AWISZUS ET AL. | 35

 15396975, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jori.12450 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



cyber labs are a promising tool for analyzing and understanding threats—supporting the
evaluation of potential countermeasures when building a more resilient cyber landscape for the
future.
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APPENDIX A: MARKOVIAN SIR DYNAMICS

Continuous‐Time Markov Chains: In Markovian spread models on networks of N nodes, the
evolution of the state vector X t( )
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X t X t X t E( ) = ( ( ), …, ( )) ,N
N

1 ∈

is described by a continuous‐time Markov chain on the discrete state space EN . E is the
compartment set of possible single‐node states. We assume that the Markov chain is time‐
homogeneous, that is, that the probability of changing from state x EN∈ to state y EN∈ within
a time window of length t > 0 does not depend on the current time u

 P t X u t y X u x X t y X x u( ) ( ( + ) = ( ) = ) = ( ( ) = (0) = ), > 0.xy ≔

These probabilities constitute the    E E×N N transition probability matrix P t P t( ) = ( ( ))xy

with  P t( ) = 1y E xyN∈ . For t = 0, it is consistent to assume that P P t(0) = lim ( )t 0↘ equals the
   E E×N N ‐dimensional identity matrix. Then P t( ) is continuous for all t 0≥ and satisfies the
Chapman–Kolmogorov equation

P t u P u P t P t P u( + ) = ( ) ( ) = ( ) ( ). (A1)

The transition probabilities P t( ) fully characterize the evolution of a continuous‐time
Markov chain. For practical purposes, however, they provide too much information. Hence, we
will focus on infinitesimal transition probabilities instead.

The continuity of P t( ) implies that the derivative matrix

Q P
P h P

h
′(0) = lim

( ) − (0)

h 0
≔

↘

exists.27 Q is called the infinitesimal generator of the process, and its entries qxy are called
transition rates since they describe the probability per unit time of a transition from state x to
state y. Using the Chapman–Kolmogorov equation (A1), the evolution of the complete process
X t( ( ))t 0≥ can be described by its infinitesimal generator Q via the Kolmogorov forward and
backward equations

P t P t Q P t QP t′( ) = ( ) and ′( ) = ( ). (A2)

The latter matrix differential equation is solved by the matrix exponential P t e( ) = Qt,
that is, the transition probabilities can directly be retrieved from the infinitesimal
transition rates. Moreover, this solution implies that the holding time Tx, that is, the
waiting time for leaving state x EN∈ , is exponentially distributed with parameter

q q q= − 0x y E y x xy xx,N≔ ≥∈ ≠ . In addition, the Markov property of X t( ( ))t 0≥ implies the
independence of holding times.28

SIR dynamics: The SIR spread process is determined by X t E S I R( ) = { , , }i ∈ . A transition of X
from one state in EN to another is only possible if exactly one node changes its state Xi in E.
State changes can occur through infection or recovery: It is assumed that each node may be
infected by its infected neighbors, but can be cured independently of all other nodes in the

27see Brémaud (1999, theorem 2.1).
28For details see, for example, Mieghem (2014, chap. 10). We refer to this book for more in‐depth reading on stochastic
processes and complex networks.
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network. Transitions are depicted in Figure 2. Formally, the entries of the infinitesimal
generator Q are given by














q

γ x I y R x y j i

τ a x S y I x y j i

q x y

=

, if = , = , and = for

, if = , = , and = for

− , if =

0, otherwise.

xy

i i i j j

j

N

ij x I i i j j

z E z x
xz

=1

=

,

j

N

≠

≠

∈ ≠

(A3)

Of particular interest are the dynamics of the state probabilities of individual nodes
X t x t( ( ) = ), 0i i ≥ . They can be derived from Kolmogorov's forward equation and written in

general form as (i N= 1, …, )

 d X t x

dt
X t z q X t y q

( ( ) = )
= [ ( ( ) = ) − ( ( ) = ) ],i i

y y x z y
zy yz

: =i i ≠
(A4)

where qzy denotes the transition rate of the entire process X from z y→ . Using Bernoulli
random variables S t I t( ) , ( )i X t S i X t I{ ( )= } { ( )= }i i

≔ ≔ , and R t( )i X t R{ ( )= }i
≔ , the dynamics of state

probabilities of individual nodes (A4) can conveniently be written via moments29:



 

 

d S t

dt
τ a S t I t

d I t

dt
τ a S t I t γ I t

d S t I t

dt
τ a S t S t I t τ a I t S t I t

τa S t I t γ S t I t

d S t S t

dt
τ a I t S t S t τ a S t S t I t

[ ( )]
=− [ ( ) ( )],

[ ( )]
= [ ( ) ( )] − [ ( )],

[ ( ) ( )]
= [ ( ) ( ) ( )] − [ ( ) ( ) ( )]

− [ ( ) ( )] − [ ( ) ( )],

[ ( ) ( )]
=− [ ( ) ( ) ( )] − [ ( ) ( ) ( )],

i

j

N

ij i j

i

j

N

ij i j i i

i j

k k i

N

jk i j k

k k j

N

ik k i j

ij i j j i j

i j

k k j

ik k i j

k k i

N

jk i j k

=1

=1

=1, =1,

=1, =1,

≠ ≠

≠ ≠

(A5)

where i j N, = 1, 2, …, and i j≠ .
Note that system (A5) is not closed: The dynamics of second‐order moments

depend on third‐order moments, which, in turn, depend on fourth‐order moments, and so
on. This dependence structure cascades up to network size N . Therefore, in general, solving the
exact system of moment equations becomes intractable, especially for larger networks. To deal
with this issue, the following two approximation approaches have been proposed:

1. Monte Carlo simulation: Monte Carlo simulation using the Gillespie algorithm
from Gillespie (1976) and Gillespie (1977) constitutes a powerful tool to obtain various
quantity estimates related to the evolution of the epidemic spread. Pseudocode is

29The dynamics of the recovery Bernoulli random variable R t( )i result from the dynamics of I t( )i and S t( )i due
to R t S t I t[ ( )] = 1 − [ ( )] − [ ( )]i i i .
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given in Appendix B, and further explanations of the Gillespie algorithm applied to
SIR epidemic network models is, for example, given in Kiss et al. (2017, appendix
A.1.1).

2. Moment closures: If a set of nodes J is infected, this increases the probability of other
nodes in the network (that are connected to the set J via an existing path) to become
infected as well. Hence, node states are to some extent correlated. To break the cascade of
equations and to make ordinary differential equation systems tractable, the moment closure
approach consists in assuming independence at a certain order k, neglecting any further
correlations. This is done by considering the exact moment equations up to this order k and
closing the system by approximating moments of order k + 1 in terms of products of lower‐
order moments using a mean‐field function. However, a major problem with moment
closures is that only little is known about rigorous error estimates.

APPENDIX B: GILLESPIE ALGORITHM

Algorithm (Gillespie).

Input: Initial state of the system x EN0 ∈ and initial time t 00 ≥ .

1. (Initialization) Set the current state x x0→ , current time t t0→ , and k 0→ .

2. (Rate Calculation) For the current state of the system x , calculate the sum of rates for all possible
transitions q q=x i

N
x=1 i
, where qxi denotes the rate for a state change of node i according to (A3).

3. (Generate Next Event Time) Sample the next event time tnew from an exponential distribution with
parameter qx .

4. (Choose Next Event) Sample the node inew at which the next transition occurs: Each node i N= 1, …, is
chosen with probability q qx xi

∕ .

Change the state x yi inew new
→ according to (A3).

5. Set ( )t t t t x x x y x x x k k+ = : , , …, , , , …, = : , + 1k i i i N
t

new +1 1 −1 +1 k
new new new

+1→ → → , and return to Step 2
until a prespecified stopping criterion is met.

Output: Trajectory t t t X t ω[ , ] ( , )end0 ∋ → of the spread process, where X t ω x( , ) tk≔ for t t t[ , ]k k+1∈ ; tend
denotes the end time of the simulation

APPENDIX C: NETWORK ALGORITHMS

Algorithm (Erdős‐Rényi).

Input: Number of network nodes N , connection probability p.

1. Choose a pair of nodes i j( , ) with i j N i j, {1, …, },∈ ≠ .

2. Simulate a uniformly distributed number p̃ between 0 and 1.

3. If p p˜ < , create an edge between node i and j. Else, no edge is created.

4. Repeat steps 1)–3) for all the other possible pairs of nodes.

Output: Network G from class G N( )p
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Algorithm (Barabási‐Albert).

Input: Number of network nodes N , small initial network of n0 connected nodes, numberm of nodes to which
every newly added node is connected.

1. Add a new node i to the small initial network.

2. Create a new edge for i in the following way:

i) Uniformly generate a node number j from the existing network i j( )≠ .

ii) Simulate a uniformly distributed number r between 0 and 1.

iii) Let kl denote the current degree of node l l N, = 1, … . If r k k< j l l∕ , then the edge should be created
between i and j. Else, go back to step i).

3. Repeat step 2) until m edges are created for the new node i.

4. Repeat steps 1)–3) until a network of N nodes is formed.

Output: Network G from class BA N m( ; )

APPENDIX D: Li AS A STRICTLY CONVEX FUNCTION OF γi

For our cyber loss model








L L γ γ I t dt( , …, ) ( ) ,i i N i1

0
≔ ≔

∞

we can derive an elegant expression in terms of γi: Let A t I t{ [0, ) : ( ) = 1}i i≔ ∃ ∈ ∞ be the
event that node i will be infected at some moment in time t . Then

 














L I t dt I t dt= ( ) + ( )i i A i A

0 0
i i

c

∞ ∞

where  I t dt( ) = 0i A
0 i

c
∞

by definition. Note that γi only affects the recovery process of node i,

and since reinfection events are ruled out in the SIR modeling framework, the probability of
infection A( )i for node i does not depend on the recovery rate of node i but only on the vector
γ i− of the other node's recovery rates.

Further, since the initial infections are randomly chosen, we have A N( ) 1i ≥ ∕ . Thus, by
using the rules of conditional expectation, Li can be expressed as

  













L I t dt A I t dt A= ( ) = ( ) ( ) .i i A i i i

0 0
i

⋅
∞ ∞

By definition,  I t dt( )i
0

∞
is the amount of time i spends in the infectious state I . If an

infection of node i actually occurs, then this is the time of transition from state I into state R.

Hence,  






I t dt A( )i i

0

∞
is the expected waiting time for recovery of node i. Since the SIR spread

process is assumed to be Markovian, the waiting time is exponentially distributed with
parameter γi. Therefore, we obtain
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I t dt A

γ
( ) =

1
.i i

i0

∞

Hence,

L γ γ
A

γ
( , …, ) =

( )
i N

i

i
1 (D1)

where the numerator does not depend on node i's recovery rate. Thus, Li is a strictly convex
function of γi.

APPENDIX E: MODELING CYBER LOSSES FOR THE SECURITY
INVESTMENT GAME

The decomposition of loss functions Li in Appendix D can be used for an efficient stochastic
simulation procedure of cyber losses in Algorithm 4.2: To find the recovery rate γ r( + 1)i for
round r + 1 in step 2 of the algorithm, we need to determine the minimizer

γ r γ γ r C γ L γ γ r( + 1) = arg min ( , ( )) = arg min [ ( ) + ( , ( ))].i
γ

i i i
γ

i i i i i− −

i i



Using the aforementioned representation of the loss functions, this means that for every
node i, we need to determine the infection probabilities A( )i to describe Li as a function of γi.
Now, since the infection probability of every node i is not depending on its own recovery rate,
these probabilities can be determined in a joint procedure:

1. Choose a sufficiently high number of simulation runs  to generate trajectories of the SIR
process. For example, we chose = 10,000,000 for simulations in Figures 5 and 7.

2. For every node i, let the recovery rate be given by γ r( )i .
3. For every simulation run, initially infect a randomly chosen single node and generate a trajectory of

the SIR process on the network. For every node i, save whether i was infected during this run.
4. After the conduction of the  simulation runs, for every node i, let i be the number of

simulation runs where node i was infected. Set A( ) =i i∕  .

Then, for every node i the total expenses i are solely given as a function of γi, and it is
straightforward to determine

γ r C γ A γ( + 1) = arg min [ ( ) + ( ) ].i
γ

i i i i

i

∕

APPENDIX F: PROOF OF THEOREM 4.1

Proof.

1. Continuity of total expenses: We prove that : (0, )i
N∞ → is continuous. Recall that
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γ γ C γ L γ γ( , …, ) = ( ) + ( , …, )i N i i N1 1

whereC γ e( ) = − 1i i
kγi 30 and 







L γ γ I t dt( , …, ) = ( )i N i1 0

∞
. Obviously,Ci is continuous.

As regards Li note that

  






L γ γ I t dt I t dt X t I dt( , …, ) = ( ) = [ ( )] = ( ( ) = )i N i i i1

0 0 0

∞ ∞ ∞

by the Fubini–Tonelli Theorem. Therefore, it is sufficient to prove the continuity
of X t I( ( ) = )i in γ γ( , …, ) (0, )N

N
1 ∈ ∞ . From Equation (A3), we see the the

generator matrix of the SIR Markov process is continuous (w.r.t. the Frobenius
norm), and therefore, the same applies to the solution P t e( ) = Qt of the
Kolmogorov backward equation. The continuity (w.r.t. the Euclidean norm) is
preserved by the continuous transform

 X t I X x P t( ( ) = ) = ( (0) = ) ( )i

x E y E

y I

xy

,

=

N N

i

∈ ∈

of transition probability matrix P t( ).

2. Recall the representation (D1) L γ γ( , …, ) =i N
A

γ1
( )i

i

. Hence, according to 1. also

A γL γ γ( ) = ( , …, )i i i N1 is continuous as a function of γ i− .

3. Note that both Ci and Li, and thus i , are strictly convex functions of γi. Recalling
that A( )i does not depend on γi, the first order condition for the unique
minimum is

γ
γ γ ke

A

γ
( , …, ) = −

( )
= 0.

i

i N
kγ i

i
1 2

i
∂

∂


Since A( )i is continuous as a function of γ i− by 2., it also follows that unique minimizer
γ γ( )i i

ind
− is continuous in γ i− . On the one hand, note that

γ
γ γ ke

A

γ
ke

γ
( , …, ) = −

( )
−

1

i

i N
kγ i

i

kγ

i
1 2 2

i i
∂

∂
≥

and the latter expression does not depend on γ i− and is positive for, for instance,

γ >i k

1 . On the other hand, since the initial infections are randomly chosen, we have

A N( ) 1i ≥ ∕ , and thus

ke
A

γ
ke

Nγ
−

( )
−

1kγ i

i

kγ

i
2 2

i i≤

30In Case Study 1, we choose k =
1

3
.
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where again the latter expression does not depend on γ i− . Now let ε N( ) > 0 such that

ke − < 0kε N
Nε N

( ) 1

( )2 (which always exists depending only on N ). Then it follows that

for any i N= 1, …, and γ γ( , …, ) (0, )N
N

1 ∈ ∞ we have γ γ ε N( ) [ ( ), ]i i k

ind
−

1
∈ .

4. In 3. we showed that the function















 ( )ε N

k
ε N

k
γ γ γ γ γ γ( ),

1
( ),

1
, ( , …, ) ( ), …, ( )

N N

N N N1 1
ind

−1
ind

−→ ↦

is well‐defined and continuous. Hence, according to Brouwer's fixed point theorem31

it has a fixed point, that is









γ ε N
k

i N γ γ γ( ),
1

= 1, …, : ( ) = .
N

i i i
ind

−∃ ∈ ∀
□

APPENDIX G: SECURITY CHOICES FOR A NETWORK OF TWO NODES

Straightforward exact computations of optimal investment levels are possible for the simple
case of two interconnected nodes as illustrated in Figure G1.

In this special case, the infection probabilities A( )i from the loss model decomposition in
Appendix D can be explicitly calculated from the waiting time distributions of the Markov
chain: Due to the random uniform choice of the initially infected node, it is X I( (0) = ) = 1 2i ∕

for i = 1, 2, and thus, we obtain

A X I X I S I I I

S I I I i j i j

( ) = ( (0) = ) + ( (0) = ) (( , ) ( , ))

= (1 + (( , ) ( , ))), , {1, 2}, .

i i j i j i j

i j i j
1

2

⋅ →

⋅ → ∈ ≠

S I I I(( , ) ( , ))i j i j→ can be expressed in terms of the waiting time for recovery Tj
recov of node

j and the infection event T infec, and we can use the fact that waiting times for Markov chains
are independent and exponential, yielding

( )S I I I T T
τ

γ τ
(( , ) ( , )) = > =

+
.i j i j j

j

recov infec→

Hence, a closed expression of the cyber losses Li in terms of epidemic transition rates is
given by







L γ γ

A

γ γ

τ

γ τ
i j i j( , ) =

( )
=

1

2
1 +

+
, , {1, 2}, ,i

i

i i j
1 2 ⋅ ∈ ≠

31See, for example, Aliprantis and Border (2006, corollary 17.56).
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and this can be inserted into the total expense functions γ γ C γ L γ γ( , ) = ( ) + ( , )i i i1 2 1 2 .
Thus, the individual optimal security choice γ r( + 1)i

ind in round r + 1 of the security
investment game is given by

( )γ r γ γ r i j i j( + 1) = arg min , ( ) , , {1, 2}, .i
γ

i i j
ind ind

i

∈ ≠

Now, in agreement with the chosen parameters in Case Study 4, we fix τ = 0.1 and initialize
the security investment game with recovery rates γ γ(0) = (0) = 0.11 2 . From Table G1, we see
that the game converges to the security configuration γ γ( , ) = (1.068, 1.068)1

ind
2
ind after r = 4

rounds.
However, from an overall network perspective, the best security configuration γ γ( , )1

soc
2
soc

would be the one which minimizes the accumulated total expenses  , that is, from a social
welfare perspective, the choice

( )γ γ γ γ, arg min ( , ) = (1.0984, 1.0984)
γ γ k

k1
soc

2
soc

( , ) =1,2
1 2

1 2

≔ 

would be beneficial. Since γ γi i
ind soc≠ , this simple example illustrates that, in general,

individually optimal security choices will not correspond to investment levels which minimize
the overall network expenses.

FIGURE G1 Line network with N = 2 nodes and the corresponding epidemic transition rates.

TABLE G1 The security investment
game for a line network of N = 2 nodes.

r γ r( )i
ind

1 1.2234

2 1.0638

3 1.0681

4 1.0680

5 1.0680

46 | AWISZUS ET AL.

 15396975, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jori.12450 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



APPENDIX H: ALLOCATION DATA

H.1. Data for upper and lower allocation strategies
See Table H1.

TABLE H1 Accumulated total expenses  after the allocation of the additional budget β = 5 among all
network nodes.

cdeg cbet c inv

Upper 19.363 (0.0030) 19.323 (0.0030) 19.460 (0.0031)

19.444 (0.0030) 19.230 (0.0028) 19.813 (0.0032)

Lower 19.891 (0.0033) 21.551 (0.0040) 19.601 (0.0032)

20.450 (0.0036) 21.171 (0.0039) 20.096 (0.0034)

Untargeted 19.516 (0.0031) 19.954 (0.0033)

Note: The three proposed allocation strategies are evaluated for each of the suggested centrality measures. Entries for the Erdős‐
Rényi network are colored in blue (upper entries), and for the Barabási‐Albert network in salmon (lower entries), respectively.
Reference values without the injection of additional security are 21.66 for the Erdős‐Rényi, and 21.92 for the Barabási‐Albert
network. For each entry, cyber losses were generated from T= 10,000,000 simulations of the SIR epidemic process; standard
errors are given in brackets.
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H.2. Data for centralized upper allocations
See Table H2.

TABLE H2 Accumulated total expenses for different percentages of targeted nodes under the upper
allocation strategy for each centrality measure.

targeted cdeg cbet c inv

10% 21.129 (0.0037) 21.120 (0.0036) 21.130 (0.0037)

20.163 (0.0031) 20.214 (0.0031) 20.156 (0.0031)

20% 20.091 (0.0033) 20.152 (0.0033) 20.111 (0.0033)

19.459 (0.0028) 19.495 (0.0028) 19.507 (0.0029)

30% 19.702 (0.0031) 19.769 (0.0031) 19.769 (0.0031)

19.302 (0.0028) 19.311 (0.0028) 19.398 (0.0029)

40% 19.523 (0.0030) 19.554 (0.0031) 19.545 (0.0030)

19.265 (0.0028) 19.251 (0.0028) 19.408 (0.0029)

50% 19.406 (0.0030) 19.454 (0.0030) 19.454 (0.0030)

19.271 (0.0028) 19.233 (0.0028) 19.461 (0.0030)

60% 19.347 (0.0030) 19.367 (0.0030) 19.378 (0.0030)

19.312 (0.0029) 19.229 (0.0028) 19.552 (0.0030)

70% 19.328 (0.0030) 19.324 (0.0030) 19.364 (0.0030)

19.339 (0.0029) 19.227 (0.0028) 19.625 (0.0031)

80% 19.329 (0.0030) 19.319 (0.0030) 19.374 (0.0030)

19.372 (0.0029) 19.231 (0.0028) 19.708 (0.0032)

90% 19.345 (0.0030) 19.319 (0.0030) 19.405 (0.0031)

19.412 (0.0030) 19.233 (0.0028) 19.758 (0.0032)

Note: Again, the total additional security budget is fixed with size β= 5. Entries for the Erdős–Rényi network are colored in blue
(upper entries), and for the Barabási‐Albert network in salmon (lower entries), respectively. The standard error of the stochastic
simulations is given in brackets. For each entry, T= 10,000,000 simulations of the epidemic process were generated.

48 | AWISZUS ET AL.

 15396975, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jori.12450 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Building resilience in cybersecurity: An artificial lab approach
	1 INTRODUCTION
	1.1 Literature
	1.2 Outline

	2 THE REAL WORLD: THE CURRENT STATE OF CYBERSECURITY REGULATION
	2.1 Current government regulations for cybersecurity
	2.2 Regulation by private actors and the role of insurance companies
	2.3 Selected measures of cyber resilience

	3 THE ARTIFICIAL CYBER LAB—THE DIGITAL TWIN OF A COMPLEX CYBER SYSTEM
	3.1 Networks
	3.1.1 Random network models
	3.1.2 Measuring centrality

	3.2 Modeling contagious cyber risks
	3.3 Cyber loss models
	3.4 Artificial cyber lab setup

	4 CASE STUDY I: SECURITY-RELATED INTERVENTIONS UNDER STRATEGIC INTERACTION
	4.1 Security investments and strategic interaction
	4.1.1 Individually optimal security level
	4.1.2 Strategic interaction of interdependent actors
	4.1.3 Complex network interactions

	4.2 Demand for regulation: Allocating additional security investments
	4.2.1 Allocation strategies
	4.2.2 Allocation for complex networks
	4.2.3 Further centralization of upper allocations

	4.3 Evaluation of security-related interventions

	5 CASE STUDY II: TOPOLOGY-BASED INTERVENTIONS AND CYBER PANDEMIC RISK
	5.1 Demand for regulation: Network topology and cyber pandemic risk
	5.1.1 Cyber pandemic risk in homogeneous networks
	5.1.2 The heterogenous case: Cyber pandemic risk in scale-free networks

	5.2 Implementing suitable interventions
	5.2.1 Edge removal and node splitting
	5.2.2 Risk allocation and design of contractual obligations

	5.3 Evaluation of topology-based interventions

	6 CONCLUSION AND OUTLOOK
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX
	MARKOVIAN SIR DYNAMICS
	APPENDIX
	GILLESPIE ALGORITHM
	APPENDIX
	NETWORK ALGORITHMS
	APPENDIX
	Li AS A STRICTLY CONVEX FUNCTION OF γi
	APPENDIX
	MODELING CYBER LOSSES FOR THE SECURITY INVESTMENT GAME
	APPENDIX
	PROOF OF THEOREM 4.1
	APPENDIX
	SECURITY CHOICES FOR A NETWORK OF TWO NODES
	APPENDIX
	ALLOCATION DATA




