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Abstract
Moduli spaces of (polarised) Enriques surfaces can be
described as open subsets ofmodular varieties of orthog-
onal type. It was shown by Gritsenko and Hulek that
there are, up to isomorphism, only finitely many differ-
ent moduli spaces of polarised Enriques surfaces. Here,
we investigate the possible arithmetic groups and show
that there are exactly 87 such groups up to conjugacy.
We also show that all moduli spaces are dominated by
a moduli space of polarised Enriques surfaces of degree
1240. Ciliberto, Dedieu, Galati and Knutsen have also
investigated moduli spaces of polarised Enriques sur-
faces in detail. We discuss how our enumeration relates
to theirs. We further compute the Tits building of the
groups in question. Our computation is based on groups
and indefinite quadratic forms and the algorithms used
are explained.
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1 INTRODUCTION

The moduli space 0
En

of Enriques surfaces is an open subset of a 10-dimensional orthogonal
modular variety, which was shown by Kondō [22] to be rational. This description is obtained
by considering the universal cover of Enriques surfaces, which leads to the moduli space of 𝐾3
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surfaces with a fixed-point free involution. Indeed, 0
En

can be viewed as the moduli space of
𝑁-polarised 𝐾3 surfaces where

𝑁 = 𝑈 +𝑈(2) + 𝐸8(−2). (1)

Here,𝑈 denotes a hyperbolic plane,𝐸8(−1) is the negative-definite𝐸8-lattice and𝑈(2) and𝐸8(−2)
means that the bilinear forms are multiplied by 2. These 𝐾3 surfaces carry a non-symplectic free
involution giving rise to a quotient which is an Enriques surface.
Taking a slightly different viewpoint, one can also considermoduli spaces of polarisedEnriques

surfaces, that is, Enriques surfaces with an ample line bundle. These moduli spaces come in
two flavours, namely as moduli spaces of polarised or numerically polarised Enriques surfaces,
depending on whether one considers the polarisation as an element in the Néron–Severi group
NS(𝑆) or the group Num(𝑆) of divisors modulo numerical equivalence. We recall that Num(𝑆) is
the quotient of NS(𝑆) by the 2-torsion element given by the canonical class 𝐾𝑆 . It was shown in
[17] that the moduli spaces 𝑎

En,ℎ
of numerically polarised Enriques surfaces are open subsets

of 10-dimensional orthogonal modular varietiesEn,ℎ (see (3)) and the moduli spaces ̂𝑎
En,ℎ

of
polarised Enriques surfaces are étale 2 ∶ 1 covers ̂𝑎

En,ℎ
→𝑎

En,ℎ
. In [17], we also asked the ques-

tion when this covering is connected. A complete answer was given in [21, Theorem 1.1]: the space
𝑎

En,ℎ
is connected if and only if the class ℎ is not 2-divisible in Num(𝑆).

Moduli spaces of polarised Enriques surfaces behave in some ways very differently from mod-
uli spaces of polarised 𝐾3 surfaces. Indeed, it was shown in [17, Theorem 1.1] that there are
only finitely many moduli spaces, up to isomorphism, of (numerically) polarised Enriques sur-
faces. The starting point of this paper is the question: how many different moduli spaces of
Enriques surfaces exist? Here, we shall treat this question from the point of view of orthogonal
modular varieties.
To describe the results of this paper, we need some more details concerning moduli spaces

of numerically polarised Enriques surfaces, which are all open subsets of orthogonal modular
varieties. As usual (see also Section 2 for more details), we denote by𝑁 a connected component
of the 10-dimensional type IV domainΩ𝑁 associated to𝑁 and byO(𝑁) andO+(𝑁) the orthogonal
group and the orthogonal group of transformations with real spinor norm 1. These act onΩ𝑁 and
𝑁 , respectively, and we set

En ∶= O
+(𝑁)∖𝑁.

The moduli space0
En
of Enriques surfaces is the open subset ofEn

0
En ∶=En ⧵ Δ−2,

where Δ−2 is the image of all hyperplanes orthogonal to roots 𝑟 in 𝑁. This is necessary to ensure
that we really have period points on Enriques surfaces. By [28, Theorem 2.13], the hypersurface
Δ−2 is irreducible.
There is also the notion of moduli spaces of Enriques surfaces with a level-2 structure. For

this, we consider the dual lattice of 𝑁, which we denote by 𝑁∨, and the stable orthogonal group
Õ(𝑁), which is defined as the group of all elements in O(𝑁) acting trivially on the discriminant
𝐷(𝑁) = 𝑁∨∕𝑁. We set
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Õ
+
(𝑁) ∶= O+(𝑁) ∩ Õ(𝑁),

and note that this is an index 2 subgroup since the reflection with respect to a vector of length 2
in the summand 𝑈 of 𝑁 gives an element in Õ(𝑁) with real spinor norm −1. Let

̃En ∶= Õ
+
(𝑁)∖𝑁.

The open subset

̃0
En ∶= ̃En ⧵ Δ̃−2

defined as the complement of the hypersurfaces orthogonal to the roots can be interpreted as the
moduli space of Enriques surfaces with a level 2 structure.
We recall that 𝐷(𝑁) = 𝑁∨∕𝑁 ≅ (𝔽2)

10 and

O(𝐷(𝑁)) ≅ O+(𝔽102 )

is the orthogonal group of even type whose order is |O+(𝔽10
2
)| = 221 ⋅ 35 ⋅ 52 ⋅ 7 ⋅ 17 ⋅ 31. For

details, see [23, §1] and [13, Chap. I, §16, Chap. II. §10]. We also recall that O(𝑁) → O(𝐷(𝑁)) is
surjective (see [29, Theorem 3.6.3] and

O(𝐷(𝑁)) ≅ O(𝑁)∕Õ(𝑁) ≅ O+(𝑁)∕Õ
+
(𝑁). (2)

We will describe the construction of moduli spaces of polarised Enriques surface in more
detail in Section 2. Here, we only want to state that all moduli spaces 𝑎

En,ℎ
are open subsets

of orthogonal modular varieties

En,ℎ ∶= Γ
+
ℎ
∖𝑁, (3)

where

Õ
+
(𝑁) ⊂ Γ+

ℎ
⊂ O+(𝑁). (4)

From this, onehas to remove thehyperplanes orthogonal to the roots and somehyperplaneswhich
are orthogonal to certain (−4)-vectors. The latter is necessary to ensure that ℎ represents an ample
class, not removing these hyperplanes means that we are also considering quasi-polarisations,
that is, nef and big line bundles. Here, we are exclusively concerned with the orthogonal varieties
En,ℎ. Obviously, there are only finitelymany possible choices of subgroups Γℎ. Each such choice
defines an orthogonal modular varietyEn,ℎ which is covered by ̃En and coversEn, in turn,

̃En →En,ℎ →En.

Note that the maps involved here are not necessarily Galois coverings.
In the situation described here, a number of natural questions arise which we want to address

in this paper. The first question is to ask for the number of possible modular varieties which arise
in connection with moduli spaces of polarised Enriques surfaces. We rephrase this question in
terms of arithmetic groups.
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4 of 32 SIKIRIĆ and HULEK

Question 1.1. Howmany subgroups Γ+
ℎ
, arising frommoduli spacesEn,ℎ of polarised Enriques

surfaces (cf. (3)), exist (up to conjugacy)?

We will see in Theorem 3.5 that there are 87 such conjugacy classes. In Tables 1 and 2, we will
provide further information about these groups, in particular, their index in O+(𝑁) (which is
equivalent to knowing the index of Õ+(𝑁) in Γ+

ℎ
). This can be rephrased in terms of subgroups of

the finite group orthogonal group O+(𝔽10
2
), see Question 2.1.

The next question concerns the relation between the degree ℎ2 = 2𝑑 of a polarisation and the
possible groups Γ+

ℎ
. In the case of𝐾3 surface, given the degree ℎ2 = 2𝑑 of a primitive polarisation,

we obtain an irreducible moduli space of 2𝑑-polarised 𝐾3 surfaces. The reason is that the 𝐾3-
lattice 𝐿𝐾3 = 3𝑈 + 2𝐸8(−1) is unimodular and the group O(𝐿𝐾3) acts transitively on all primitive
vectors of fixed norm. This is no longer true in the case of Enriques surfaces. Indeed, for given
degree ℎ2 = 2𝑑 > 2, one has to expect many primitive vectors ℎ which are not equivalent modulo
the action of the isometry group of the Néron–Severi lattice𝑀(1∕2) ∶= 𝑈 + 𝐸8(−1).
This leads us to our next as follows.

Question 1.2. Enumerate all inequivalent primitive vectors ℎ ∈ 𝑈 + 𝐸8(−1) of given (small)
degree ℎ2 = 2𝑑 under the action of the group O(𝑈 + 𝐸8(−1)).

Wewill give an answer to this in Theorem 3.3. In Table 3, we gather the information as to which
polarisations define conjugate groups Γ+

ℎ
.

In [17, Proposition 5.7], the existence of a polarisation ℎ0 was shown such that Γ+
ℎ0
is mini-

mal, that is, Γ+
ℎ0
= Õ

+
(𝑁). This is of interest as the correspondingmodular varietyEn,ℎ0

= ̃En

covers all varietiesEn,ℎ. Hence, it is natural to ask the following.

Question 1.3. What is theminimal degree 𝑑min = ℎ20 such that there exists a vector ℎ0 with Γ
+
ℎ0
=

Õ
+
(𝑁), that is,En,ℎ0

= ̃En? Is such a vector of minimal degree unique?

We shall provide an answer to this question in Theorem 3.1 where we will see that there is a
unique such vector ℎ0 of minimal degree ℎ20 = 1240.
Naturally, moduli spaces of polarised Enriques surfaces of small degree have been studied clas-

sically. For a discussion of classical constructions for 𝑑 ⩽ 10, we refer to Dolgachev’s paper [14]. In
the case of degree 4, Casnati [4] studied polarisations which are base-point free and lead to a 4:1
cover of the projective plane (also called Cossec–Verra polarisations). He showed that this defines
an irreducible moduli space which is also rational. There are also degree 4 polarisations (ample
line bundles) which are not base point free. These are sometimes not considered to be polarisa-
tions in the literature (see [4, Section 1]). The case of (base point free) polarisations of degree 6 is
the classical case representing Enriques surfaces as singular sextic surfaces in ℙ3. For degree 10,
there exists one polarisation with generically very ample line bundle. This leads to Reye congru-
ences, respectively, degree 10 models in ℙ5. We shall discuss these cases and the relation with our
calculations more systematically in Section 3.7.
Ciliberto, Dedieu, Galati and Knutsen undertook a very systematic enumeration of moduli

spaces of polarised Enriques surfaces in [5], based on the 𝜙-invariant of a polarisation. This is
the minimal degree of a polarisation on an effective elliptic curve. This enumeration was taken
further in [21] where it was shown that the moduli spaces depend on a finer invariant, called the
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MODULI OF POLARIZED ENRIQUES SURFACES – COMPUTATIONAL ASPECTS 5 of 32

𝜙-vector, which is the minimal (defined in a proper way) degree of the polarisation with respect
to a whole isotropic 10-sequence (see [21, Theorem 1.4]). This leads us to the following.

Question 1.4. How can the enumerations given by our methods and that of Ciliberto et al.
be matched?

A complete matching will be provided in Tables 5 and 6.
When one wants to study the geometry of moduli spaces, one typically has to work with

projective compactifications of the modular varieties Γ+
ℎ
∖𝑁 . The natural choices here are the

Baily–Borel and toroidal compactifications. The first is canonically defined for all orthogonal
modular varieties, and the second involves a choice of fans. In either case, it is important to
know the cusps as these are in 1 ∶ 1 correspondence with the boundary components of the
Baily–Borel compactification. In the orthogonal case, one has zero-dimensional cusps (points)
and one-dimensional cusps (modular curves) which have to be added to the orthogonal modular
variety to obtain the Baily–Borel compactification. We recall that for all arithmetic orthogonal
groups Γ of lattices of signature (2, 𝑛), the zero and one-dimensional cusps are in 1 ∶ 1 correspon-
dence with the Γ-orbits of rational isotropic lines and rational isotropic planes, respectively. More
generally, a zero-dimensional cusp is contained in the closure of a one-dimensional cusp if and
only if 𝑙 ⊂ 𝑒 for some representatives of the corresponding isotropic line and plane, respectively.
The Tits building is the 1-complex whose vertices are the orbits of isotropic lines and planes and
whose edges are given by the inclusion relation. The Tits building  (Γ+

ℎ
) encodes the combina-

torial structure of the boundary of the Baily–Borel compactification of Γ+
ℎ
∖𝑁 . This leads to the

following.

Question 1.5. How many zero- and one-dimensional cusps do the varieties Γ+
ℎ
∖𝑁 have? More

generally, what can we say about the Tits building  (Γ+
ℎ
)?

This question will be addressed in Section 3.6.

2 CONSTRUCTION OF THEMODULI SPACES

In this section, we want to give more details on the construction of the moduli spaces and the
groups involved. The starting point is the fact that for an Enriques surface 𝑆, the group of divisors
modulo numerical equivalence is

𝐻2(𝑆, ℤ)𝑓 = Num(𝑆) ≅ 𝑈 + 𝐸8(−1).

The fact that the canonical class 𝐾𝑆 is 2-torsion implies the existence of an étale 2 ∶ 1 cover 𝑝 ∶
𝑋 → 𝑆 where 𝑋 is a K3 surface. We denote the corresponding involution on 𝑋 by 𝜎 ∶ 𝑋 → 𝑋. It
is well known that the intersection form equips 𝐻2(𝑋, ℤ) with the structure of a lattice, namely

𝐻2(𝑋, ℤ) ≅ 3𝑈 + 2𝐸8(−1) =∶ 𝐿K3,

where we refer to 𝐿K3 as the K3 lattice. Under the 2 ∶ 1 cover 𝑝 ∶ 𝑋 → 𝑆, the intersection form is
multiplied by a factor 2, and thus,

𝑝∗(𝐻2(𝑆, ℤ)) ≅ 𝑈(2) + 𝐸8(−2) =∶ 𝑀.
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6 of 32 SIKIRIĆ and HULEK

By [29, Theorem 1.14.4], the primitive embedding of the lattice 𝑈(2) + 𝐸8(−2) into the K3 lattice
𝐿K3 is unique (up to the action ofO(𝐿𝐾3). Hence, we may assume that𝑀 is embedded into 𝐿K3 by
the embedding (𝑥, 𝑢) ↦ (𝑥, 0, 𝑥, 𝑢, 𝑢) where 𝑥 ∈ 𝑈(2), 𝑢 ∈ 𝐸8(−2). When we refer to the sublat-
tice𝑀 of 𝐿K3 we will always assume this embedding. The sublattice𝑀 also has an interpretation
in terms of the involution

𝜌 ∶ 𝐿K3 = 3𝑈 + 2𝐸8(−1) → 𝐿K3 = 3𝑈 + 2𝐸8(−1),

𝜌(𝑥, 𝑦, 𝑧, 𝑢, 𝑣) = (𝑧, −𝑦, 𝑥, 𝑣, 𝑢).

Clearly,𝑀 can be identified with the (+1)-eigenspace Eig(𝜌)+ of 𝜌. The (−1)-eigenspace Eig(𝜌)−
can be identifiedwith the lattice𝑁 as defined in (1). Indeed,we can embed the lattice𝑁 primitively
into 𝐿𝐾3 by (𝑦, 𝑧, 𝑣) ↦ (𝑧, 𝑦, −𝑧, 𝑣, −𝑣) and this gives

Eig(𝜌)− = 𝑀⟂
𝐿K3

≅ 𝑁.

We shall now explain how the groups Γ+
ℎ
arise. When one wants to construct moduli spaces

of numerically polarised Enriques surfaces, one considers pairs (𝑆, ℎ) where ℎ is the class of
a numerical polarisation. This defines an element ℎ ∈ 𝑈 + 𝐸8(−1) = 𝑀(1∕2) of positive degree
ℎ2 = 2𝑑 > 0. For what follows we can and will assume that this vector is primitive. Given ℎ, one
has to consider the stabiliser

O(𝑀(1∕2), ℎ) = O(𝑀, ℎ) = {g ∈ O(𝑀(1∕2)) = O(𝑀) ∣ g(ℎ) = ℎ}.

The natural maps 𝜋𝑀 ∶ O(𝑀) → O(𝐷(𝑀)) and 𝜋𝑁 ∶ O(𝑁) → O(𝐷(𝑁)) are surjective. Since 𝑀
and𝑁 are orthogonal to each other in the𝐾3 lattice 𝐿𝐾3, the discriminant groups𝐷(𝑀) and𝐷(𝑁)
are naturally isomorphic:

(𝐷(𝑀), 𝑞𝑀) ≅ (𝐷(𝑁), −𝑞𝑁).

Here, 𝑞𝑀 and 𝑞𝑁 are the induced quadratic forms. We shall forthwith identify these discriminant
groups and hence also O(𝐷(𝑀)) and O(𝐷(𝑁)).
The crucial definition is

Γℎ ∶= 𝜋
−1
𝑁 (𝜋𝑀(O(𝑀, ℎ))) ⊂ O(𝑁). (5)

Since Õ(𝑁) ⊂ Γℎ is a normal subgroup of O(𝑁) of finite index, the group Γℎ is an arithmetic
subgroup of O(𝑁). We again note that the subgroup

Γ+
ℎ
= Γℎ ∩ O

+(𝑁)

has index 2.
In fact, we can rephrase our Question 1.1 on the groups Γ+

ℎ
entirely in terms of subgroups of

O+(𝔽10
2
). For this, let

Γ̄ℎ ∶= 𝜋𝑀(O(𝑀, ℎ) ⊂ O
+(𝔽102 ).

Since the natural map O+(𝑁) → O(𝐷(𝑁)) ≅ O+(𝔽10
2
) is surjective, Question 1.1 can be solved

by giving an answer to the following.
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MODULI OF POLARIZED ENRIQUES SURFACES – COMPUTATIONAL ASPECTS 7 of 32

Question 2.1. How many subgroups (up to conjugacy) of the form Γ̄ℎ are there in O+(𝔽102 )?

3 THE COMPUTATIONS

3.1 Some basic facts and roots

The lattice 𝑀(−1∕2) = 𝑈 + 𝐸8 is known under different names. It is actually the root lattice of
the hyperbolic Coxeter group 𝐸10 (with 𝐸𝑛, 𝑛 ⩽ 8 being the classical ones and 𝐸9 being the affine
extension of 𝐸8). It is also the even Lorentzian lattice 𝐼𝐼9,1. Another common name is 𝐸++8 , see
[20] for more details. We will use the following Gram matrix for𝑀(1∕2):

𝐺 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 −2 0 0 0 0 0 −1 0

0 0 0 −2 1 0 1 −1 0 −1

0 0 0 1 −2 −1 0 0 0 1

0 0 0 0 −1 −2 0 0 −1 1

0 0 0 1 0 0 −2 1 −1 1

0 0 0 −1 0 0 1 −2 0 0

0 0 −1 0 0 −1 −1 0 −2 1

0 0 0 −1 1 1 1 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

We shall first collect some basic facts about this lattice. It is known to be 2-reflective, see [30].
Hence, Vinberg’s algorithm [38] can be employed to compute a fundamental domain 𝐷 of the
Weyl group of the lattice. Here, we give a list of roots that define the facets of (a possible choice
of) 𝐷, which is a list of simple roots. The roots 𝑟 satisfy 𝑟2 = −2, are numbered from −1 to 8 and
have the coordinates:

−1 = (−1, 1, 0, 0, 0, 0, 0, 0, 0, 0),

0 = (0, −1, −1, 1, 1, −2, −2, −2, 2, −1),

1 = (0, 0, 0, 0, −1, 1, 1, 1, −1, 0),

2 = (0, 0, 0, 0, 1, −1, 0, 0, 0, 0),

3 = (0, 0, 0, 0, 0, 0, −1, 0, 1, 0),

4 = (0, 0, 1, 0, −1, 1, 1, 0, −2, −1),

5 = (0, 0, −1, −1, 0, −1, −1, 0, 2, 1),

6 = (0, 0, 0, 0, 0, 1, 0, 0, −1, 0),

7 = (0, 0, 1, 1, 0, 0, 1, 0, −1, 0),

8 = (0, 0, 0, 1, 1, 0, 1, 0, 0, 0).

The associated Coxeter–Dynkin diagram is
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8 of 32 SIKIRIĆ and HULEK

Since there are 10 simple roots, it follows that the fundamental domain is simplicial. The
generators g𝑖 of the extreme rays are the following:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0 0 0 0 0

−1 −1 0 0 0 0 0 0 0 0

−2 −2 −2 1 1 −3 −3 −2 3 −2

−2 −2 −1 1 1 −2 −2 −2 2 −1

−3 −3 −2 2 1 −4 −4 −3 3 −3

−3 −3 −2 2 1 −3 −3 −3 3 −2

−4 −4 −3 3 2 −6 −5 −4 5 −4

−4 −4 −3 3 2 −5 −4 −4 4 −3

−5 −5 −4 4 3 −7 −6 −5 6 −4

−6 −6 −4 5 3 −8 −7 −6 6 −6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A straightforward computation shows that these generators even define a ℤ-basis of the lattice
𝑈 + 𝐸8(−1), and hence, the fundamental domain is in fact a basic cone.
The symmetrix matrix𝑊 = g𝑖 ⋅ g𝑗 with respect to the simple roots g𝑖 is easily computed to be

𝑊 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 2 3 3 4 4 5 6

1 2 4 4 6 6 8 8 10 12

2 4 4 6 7 8 9 10 12 14

2 4 6 6 9 9 12 12 15 18

3 6 7 9 10 12 14 15 18 21

3 6 8 9 12 12 16 16 20 24

4 8 9 12 14 16 18 20 24 28

4 8 10 12 15 16 20 20 25 30

5 10 12 15 18 20 24 25 30 36

6 12 14 18 21 24 28 30 36 42

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

From the above presentation, one can also conclude that the Coxeter–Dynkin 𝐸10 has only trivial
symmetries. It thus follows that the isometry group and the Coxeter group coincide:

O(𝑈 + 𝐸8(−1)) = 𝑊(𝑈 + 𝐸8(−1)). (8)

We also mention that the Coxeter–Dynkin is simply laced, that is, has no multiple edges (but we
will not make use of this fact).
This information already allows us to give an answer to Question 1.3.

Theorem 3.1. Theminimal norm of integer vectors with trivial stabiliser in𝑈 + 𝐸8(−1) is 1240 and
in this degree, there is a unique such vector.

Proof. Since the Coxeter–Dynkin diagram has no symmetries, we have already concluded in (8)
that the isometry group and the Coxeter group of the lattice𝑈 + 𝐸8(−1) coincide. Hence, a vector
ℎ has trivial stabiliser if and only if it is in the interior of the fundamental domain. Since the g𝑖
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MODULI OF POLARIZED ENRIQUES SURFACES – COMPUTATIONAL ASPECTS 9 of 32

form a ℤ-basis of the lattice, it follows that

𝑣 =

10∑
𝑖=1

𝑎𝑖g𝑖 for some 𝑎𝑖 ∈ ℕ>0.

It then follows from the form of𝑊 in (7), notably the observation that all entries in the matrix𝑊
are non-negative and only one entry is 0, that the minimum value for 𝑣2 is obtained if and only if
all 𝑎𝑖 = 1. We can then conclude, again from (7), that this minimum value is 𝑣2 = 1240. □

Remark 3.2. The vector ℎ with norm ℎ2 = 1240 is characterised by the property that (ℎ, 𝑟) = 1 for
every root 𝑟 defining a wall of the Weyl chamber. This is called theWeyl vector in [7, Chapter 27,
§2, Theorem 1].

We note that this fits very well with the results obtained by Knutsen in [21, Proposition 1.5]
where a geometric construction of a divisor class ℎ0 was given such that ℎ20 is minimal and the cor-
respondingmoduli space dominates allmoduli spaces of numerically polarised Enriques surfaces.
The divisor found byKnutsen also satisfies ℎ2

0
= 1240, andwe checked by computer that his polar-

isation and the polarisation ℎ fromTheorem 3.1 are equivalent, confirming that the corresponding
modular varieties are the same.

3.2 Enumerating polarisations of small degree

Our next aim is to enumerate the number of inequivalent polarisations in a given degree (for small
values of 𝑑).

Theorem 3.3. The list of non-isotropic vectors of norm at most 30 in the fundamental domain is
given in Table 3.

Proof. The matrix of scalar products (g𝑖 ⋅ g𝑗) is positive except for the isotropic vector. We can
enumerate the vectors 𝑤 of the form

10∑
𝑘=2

𝛼𝑘g𝑘 for 𝛼𝑘 ∈ ℕ

with 𝑤 ⋅ 𝑤 ⩽ 30. Since g𝑘 ⋅ g𝑘 > 0 for 𝑘 ⩾ 2, we have a finite set of possible solutions. For such a
𝑤, we consider the vectors 𝑡 = 𝛽g1 + 𝑤 for 𝛽 ∈ ℕ. Since we want to find non-isotropic vectors,
we have 𝑤 ≠ 0. We have 𝑡 ⋅ 𝑡 = 2𝛽g1 ⋅ 𝑤 + 𝑤 ⋅ 𝑤. Since 𝑤 ≠ 0, we also have g1 ⋅ 𝑤 > 0 and thus a
finite number of possibilities to consider. □

Remark 3.4. We postpone the table to Subsection 3.3 becausewewill then also add the information
about which polarisations will lead to the same modular varieties.

We note that there are two different polarisations in degree 4. The first is is given by ℎ = g1 + g2,
and the second by ℎ = g3. Another representation of the first polarisation is ℎ = 𝑒 + 2𝑓 where
𝑒, 𝑓 are a standard basis of the hyperbolic plane 𝑈, that is, 𝑒2 = 𝑓2 = 0 and 𝑒 ⋅ 𝑓 = 1. Indeed, if
one sets 𝑒 = g2 − g1 and 𝑓 = g1, then one gets that 𝑒, 𝑓 define a hyperbolic plane. This leads to a
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10 of 32 SIKIRIĆ and HULEK

polarisation with base points (since it has degree 1 on an elliptic curve). The second polarisation is
the one treated by Casnati. Similarly, there are two polarisations in degree 6, one corresponding to
ℎ = 2g1 + g2 or, alternatively, ℎ = 𝑒 + 3𝑓. This is again not base point free, the other polarisation
is ℎ = g4 and leads to sextic surfaces in ℙ3. In general, there are the non-base-point-free polarisa-
tions ℎ = 𝑘g1 + g2, or equivalently, ℎ = 𝑒 + (𝑘 + 1)𝑓 of degree 2𝑘 + 2. We shall see later that all
polarisations ℎ = 𝑘g1 + g2 lead to equivalent subgroups Γ+ℎ and thus to isomorphic modular vari-
eties. We note that in the (classical) literature, non-base-point-free polarisations are sometimes
excluded.Wewill return to the connectionwith the classical cases inmore detail in Subsection 3.7.

3.3 Enumerating moduli spaces

We will now start enumerating the conjugacy classes of the groups Γ+
ℎ
. By Section 2, this is equiv-

alent to enumerating all conjugacy classes of the groups Γ̄ℎ ⊂ O+(𝔽102 ). We shall give detailed
information on the groups in Tables 1 and 2.

Theorem 3.5. There are 87 conjugacy classes of subgroups of the form Γ+
ℎ
.

Proof. Let 𝐻 = {
∑10
𝑖=1 𝛼𝑖g𝑖 ∣ 𝛼𝑖 ∈ ℝ⩾0} be our chosen fundamental domain of the group 𝑂(𝑈 +

𝐸8(−1)). The crucial fact whichwe use is the following: the stabiliser of a point 𝑥 in𝐻 is generated
by the reflections corresponding to the facets of 𝐻 in which 𝑥 is contained. For a proof, see [18,
Theorem4.8], which, in turn, refers to [18, Theorem 1.12.c].Hence, a groupΓ+

ℎ
is determined by the

set of roots to which ℎ is orthogonal to. There are exactly 10 roots for the fundamental domain.We
note that the isotropic vector g1 cannot represent a polarisation. Further, ℎ cannot be orthogonal
to all roots (as these span the lattice). This leaves us with 210 − 1 − 1 possibilities.
All remaining sets give us potential subgroupsΓ+

ℎ
.We shall nowworkwith the groups Γ̄ℎ, which

makes this a finite problem. These groups can be represented as a permutation group acting on 210
elements. By using [16], we can check when two subgroups are conjugate and thus reduce from
1022 to 87 subgroups. In order to do this practically, one needs to compute suitable invariants. The
level 1 invariants are the order and the size of the orbits of these groups. For groups with less than
1000 elements, we compute all their subgroups and their associated level 1 invariants. This gets
us a more powerful invariant that would not be possible to compute for the larger groups of this
enumeration. □

In Tables 1 and 2, we provide detailed information on the groups Γ̄ℎ (and thus equivalently for
Γ+
ℎ
). For this,weuse our description that the groupΓ+

ℎ
is completely determined by the facets of the

fundamental domain containing ℎ. This allows us to describe these groups in terms of admissible
subsets of the Dynkin diagram, that is, subsets which are neither the set of all roots nor consist of
only the isotropic vector. If the number of generating elements is greater than 5, then we take the
complement of the subset of the Dynkin diagram and indicate this by a line over the set given in
the table.We then give the number of subsets defining the same conjugacy class of subgroups. The
next columns give the order of Γ̄ℎ and we then provide the number of orbits of isotropic vectors
and planes in the lattice𝑁 with respect to the group Γ+

ℎ
(we will return to the latter in more detail

in Subsection 3.6). Our computations also show that for each group Γℎ, there is a unique orbit of a
vector ℎmin with ℎ2minminimal and Γℎ = Γℎmin (up to conjugation). In the last column, we provide
the 𝜙-invariant of the vector ℎmin representing the group Γ+ℎ .
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MODULI OF POLARIZED ENRIQUES SURFACES – COMPUTATIONAL ASPECTS 11 of 32

TABLE 1 The group Γ̄ℎ. For each group, we give one representative as a subset 𝑆 of the diagram. If the
number of generating elements is greater than 5, then we take the complement and denote this by 𝑆. We then give
the number #𝑆 of subsets leading to the same group. The next column is the order of Γ̄ℎ. The next three columns
give the numbers #𝐼1, #𝐼2 and #𝐼12 of orbits of isotropic lines, planes and flags in 𝑁. The penultimate column
gives the degree of the (unique) smallest realisation ℎmin having this group and the last column gives 𝜙(ℎmin)
(Part 1).

Nr 𝑺 #𝑺 |�̄�𝒉| #𝑰𝟏 #𝑰𝟐 #𝑰𝟏𝟐 𝐦𝐢𝐧𝐝𝐞𝐠 𝝓(𝒉min)

1 {0} 1 214 ⋅ 35 ⋅ 52 ⋅ 7 5 9 18 2 1
2 {−1, 0} 1 213 ⋅ 35 ⋅ 52 ⋅ 7 7 13 28 4 1
3 {7} 1 215 ⋅ 34 ⋅ 5 ⋅ 7 5 10 19 4 2
4 {1} 1 211 ⋅ 35 ⋅ 5 ⋅ 7 6 14 28 6 2
5 {−1, 7} 1 214 ⋅ 32 ⋅ 5 ⋅ 7 9 23 49 8 2
6 {0, 1} 2 211 ⋅ 34 ⋅ 5 ⋅ 7 9 23 51 10 2
7 {8} 1 28 ⋅ 34 ⋅ 52 ⋅ 7 6 13 28 10 3
8 {2} 1 210 ⋅ 35 ⋅ 5 8 22 47 12 3
9 {0, 7} 1 211 ⋅ 32 ⋅ 5 ⋅ 7 11 34 77 14 3
10 {7, 8} 3 27 ⋅ 34 ⋅ 5 ⋅ 7 11 31 74 16 3
11 {6} 1 28 ⋅ 34 ⋅ 5 ⋅ 7 8 22 49 18 4
12 {1, 2} 2 28 ⋅ 35 ⋅ 5 12 38 89 18 3
13 {−1, 0, 7} 1 210 ⋅ 32 ⋅ 5 ⋅ 7 15 48 116 20 3
14 {3} 1 210 ⋅ 32 ⋅ 52 10 34 76 20 4
15 {−1, 0, 1} 1 210 ⋅ 34 ⋅ 5 ⋅ 7 12 32 76 22 3
16 {1, 7} 1 210 ⋅ 33 ⋅ 5 13 49 113 22 4
17 {0, 8} 3 28 ⋅ 32 ⋅ 5 ⋅ 7 14 51 125 24 4
18 {0, 2} 1 29 ⋅ 34 ⋅ 5 13 46 108 26 4
19 {2, 7} 3 210 ⋅ 32 ⋅ 5 16 67 162 28 4
20 {4} 1 27 ⋅ 33 ⋅ 52 11 41 96 30 5
21 {0, 1, 7} 2 210 ⋅ 32 ⋅ 5 19 83 204 30 4
22 {−1, 0, 8} 4 27 ⋅ 32 ⋅ 5 ⋅ 7 19 74 191 32 4
23 {0, 1, 2} 3 28 ⋅ 34 ⋅ 5 17 64 159 34 4
24 {5, 8} 2 25 ⋅ 33 ⋅ 5 ⋅ 7 16 68 171 34 5
25 {5, 7} 3 26 ⋅ 32 ⋅ 5 ⋅ 7 18 85 213 36 5
26 {0, 3} 2 29 ⋅ 32 ⋅ 5 18 87 213 38 5
27 {3, 8} 3 26 ⋅ 32 ⋅ 52 19 91 233 40 5
28 {5} 1 26 ⋅ 33 ⋅ 5 ⋅ 7 12 49 115 42 6
29 {1, 2, 7} 5 28 ⋅ 32 ⋅ 5 24 124 320 42 5
30 {3, 7} 1 29 ⋅ 32 ⋅ 5 18 85 208 44 6
31 {0, 1, 8} 9 25 ⋅ 32 ⋅ 5 ⋅ 7 24 122 322 44 5
32 {2, 8} 3 27 ⋅ 33 ⋅ 5 18 85 215 46 6
33 {−1, 5} 4 26 ⋅ 33 ⋅ 5 21 115 294 48 6
34 {−1, 0, 1, 7} 1 29 ⋅ 32 ⋅ 5 25 118 305 50 5
35 {2, 6} 4 27 ⋅ 32 ⋅ 5 23 136 351 52 6
36 {0, 2, 7} 4 29 ⋅ 3 ⋅ 5 26 151 388 54 6

(Continues)
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12 of 32 SIKIRIĆ and HULEK

TABLE 1 (Continued)

Nr 𝑺 #𝑺 |�̄�𝒉| #𝑰𝟏 #𝑰𝟐 #𝑰𝟏𝟐 𝐦𝐢𝐧𝐝𝐞𝐠 𝝓(𝒉min)

37 {2, 3, 7} 2 29 ⋅ 32 29 179 466 56 6
38 {1, 2, 8} 8 25 ⋅ 33 ⋅ 5 28 167 448 58 6
39 {0, 2, 8} 9 26 ⋅ 32 ⋅ 5 31 207 553 60 6
40 {−1, 0, 1, 8} 5 24 ⋅ 32 ⋅ 5 ⋅ 7 32 181 495 62 6
41 {2, 7, 8} 13 26 ⋅ 32 ⋅ 5 31 200 540 64 6

Note that this information immediately gives the degree of the maps

̃En →En,ℎ →En.

The first is the order of Γ̄ℎ, the latter the index [O+(𝔽102 ) ∶ Γ̄ℎ], where we recall that |O+(𝔽102 )| =
221 ⋅ 35 ⋅ 52 ⋅ 7 ⋅ 17 ⋅ 31.

3.4 Degree of the polarisation and number of moduli spaces

As the degree of the polarisation increases, the number of inequivalent polarisations will also
grow. At the same time, the number of conjugacy classes of groups Γ̄ℎ, and hence of modular
varieties En,ℎ is limited by 87. This means that inequivalent polarisations must give rise to
isomorphic modular varieties. We will now discuss this in more detail.
In Table 3, we list a representative for each polarisation class in given low degree. We

also enumerate the different conjugacy classes of the groups Γ̄ℎ. The entries 2 ∶ {g1 + g2} and
2 ∶ {2g1 + g2}, for example, mean that the degree 4 polarisation g1 + g2 and the degree 6
polarisation 2g1 + g2 define conjugate subgroups Γ̄ℎ.
Table 4 gives the following information for each degree 2𝑑 = 2,… , 72 and corresponding genus

g = 2,… , 37: the first line shows the number#ℎ of orbits of primitive vectors in a given degree.We
note that these numbers agree exactly with the corresponding list in [5, Appendix]. The second
line#Γ̄ℎ gives the number of conjugacy classes of groups Γ̄ℎ for given degree. We note that#Γ̄ℎ ⩽
#ℎ and that strict inequality will occur when different orbits of primitive vectors ℎ give rise to
conjugate subgroups Γ̄ℎ. This phenomenon first appears in degree 12 where the stabiliser groups
of the two polarisations 5g1 + g2 and g1 + 2g2 actually agree. As the degree grows, the number of
orbits #ℎ will grow much faster than #Γ̄ℎ. We note that the numbers in this list agree with those
given in [17, Corollary 5.6].
In the next two lines, we compare how in degree at most 2𝑑 the number of orbits and the num-

ber of conjugacy classes increase. We see that we have found 312 different classes of polarisations
and 46 different conjugacy classes of groups Γ̄ℎ in degree ⩽ 72. The number of subgroups will
finally stabilise to 87 by Theorem 3.5. This happens in degree 1240, which is a lower limit by The-
orem 3.1. The above lists can easily be extended to higher degree (genus) using the programs we
have. The norm 2𝑑 = 72 is the first one for which there is no new group occurring.

3.5 Connection with the 𝝓-invariant

In [5, Appendix], Ciliberto et al. gave a systematic enumeration of polarisations for genus up to
30. We will now match their enumeration with our results.
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MODULI OF POLARIZED ENRIQUES SURFACES – COMPUTATIONAL ASPECTS 13 of 32

TABLE 2 Continue (Part 2).

Nr 𝑺 #𝑺 |�̄�𝒉| #𝑰𝟏 #𝑰𝟐 #𝑰𝟏𝟐 𝐦𝐢𝐧𝐝𝐞𝐠 𝝓(𝒉min)

42 {1, 4} 1 25 ⋅ 33 ⋅ 5 24 149 389 66 7
43 {0, 1, 2, 7} 7 28 ⋅ 3 ⋅ 5 34 219 585 66 6
44 {0, 5} 2 26 ⋅ 32 ⋅ 5 27 187 487 68 7
45 {−1, 0, 1, 2} 1 27 ⋅ 34 ⋅ 5 22 92 238 70 6
46 {0, 3, 7} 2 28 ⋅ 32 33 239 629 70 7
47 {0, 5, 8} 19 25 ⋅ 32 ⋅ 5 36 274 746 76 7
48 {0, 1, 2, 8} 17 25 ⋅ 32 ⋅ 5 41 307 849 78 7
49 {1, 5} 2 26 ⋅ 33 30 231 608 84 8
50 {1, 2, 3, 7} 3 27 ⋅ 32 44 354 967 84 7
51 {2, 6, 8} 7 27 ⋅ 32 38 306 832 88 8
52 {0, 5, 7} 6 26 ⋅ 3 ⋅ 5 40 342 927 92 8
53 {1, 2, 7, 8} 20 24 ⋅ 32 ⋅ 5 48 413 1159 96 8
54 {0, 1, 5} 14 26 ⋅ 32 45 429 1175 100 8
55 {0, 1, 3, 7} 3 28 ⋅ 3 48 435 1184 102 8
56 {2, 3, 7, 8} 11 26 ⋅ 32 51 463 1298 104 8
57 {1, 5, 8} 4 25 ⋅ 33 40 341 937 106 9
58 {0, 5, 7, 8} 30 25 ⋅ 3 ⋅ 5 53 512 1433 108 8
59 {−1, 0, 1, 2, 8} 6 24 ⋅ 32 ⋅ 5 54 465 1315 110 8
60 {−1, 0, 1, 2, 7} 2 27 ⋅ 3 ⋅ 5 44 325 890 114 8
61 {1, 2, 5} 4 24 ⋅ 33 48 484 1339 120 9
62 {0, 1, 5, 8} 46 25 ⋅ 32 60 649 1832 124 9
63 {0, 1, 2, 7, 8} 32 24 ⋅ 3 ⋅ 5 70 782 2235 132 9
64 {0, 1, 2, 3, 7} 4 27 ⋅ 3 63 653 1825 138 9
65 {0, 2, 5} 3 25 ⋅ 32 54 611 1685 140 10
66 {0, 1, 5, 7} 20 26 ⋅ 3 67 814 2291 148 10
67 {1, 2, 3, 7, 8} 30 24 ⋅ 32 80 1002 2884 156 10
68 {0, 1, 2, 5} 30 24 ⋅ 32 72 929 2637 160 10
69 {0, 1, 5, 7, 8} 57 25 ⋅ 3 89 1252 3599 180 11
70 {1, 2, 5, 8} 5 23 ⋅ 33 64 737 2097 184 12
71 {0, 2, 5, 7} 11 25 ⋅ 3 81 1174 3323 196 12
72 {4, 6, 3, 5} 8 23 ⋅ 3 ⋅ 5 92 1210 3503 198 11
73 {0, 1, 2, 5, 8} 48 23 ⋅ 32 96 1440 4166 208 12
74 {0, 1, 2, 5, 7} 64 24 ⋅ 3 108 1818 5251 220 12
75 {4, 6, −1, 5} 44 24 ⋅ 3 118 1953 5690 228 12
76 {4, 6, 8, 5} 1 26 ⋅ 3 82 996 2829 234 12
77 {4, 6, 3, 7} 19 22 ⋅ 32 128 2263 6625 260 13
78 {0, 1, 3, 5, 7} 9 25 122 2306 6647 280 14
79 {4, 6, −1, 3} 99 23 ⋅ 3 144 2856 8357 292 14
80 {4, 6, −1, 2} 39 24 163 3626 10 599 340 15
81 {4, 6, 5} 9 23 ⋅ 3 156 3074 9031 342 15

(Continues)
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14 of 32 SIKIRIĆ and HULEK

TABLE 2 (Continued)

Nr 𝑺 #𝑺 |�̄�𝒉| #𝑰𝟏 #𝑰𝟐 #𝑰𝟏𝟐 𝐦𝐢𝐧𝐝𝐞𝐠 𝝓(𝒉min)

82 {4, 6, 3} 54 22 ⋅ 3 192 4532 13 369 380 16
83 {4, 6, −1} 57 23 218 5766 17 003 460 18
84 {4, 3} 9 2 ⋅ 3 256 7242 21 471 532 19
85 {4, 6} 36 22 292 9246 27 411 580 20
86 {4} 10 2 392 14 926 44 387 820 24
87 ∅ 1 1 528 24 242 72 199 1240 30

A crucial role in [5] is played by the minimal degree of a polarisation ℎ on an effective elliptic
curve 𝐸, namely

𝜙(ℎ) = min{ℎ ⋅ 𝐸 ∣ 𝐸2 = 0, 𝐸 > 0}.

Using this parameter and the genus, they consider the moduli spaces ̂g ,𝜙 of polarised Enriques
surfaces with given 𝜙 and genus g . The crucial tool in their enumeration is the notion of decom-
position type given in [5, Definition 4.13]. This can lead to more than one component of a moduli
space ̂g ,𝜙, in our cases denoted by ̂

(𝐼)
g ,𝜙

and ̂ (𝐼𝐼)
g ,𝜙

.
Another essential technical tool is the notion of an isotropic 10-sequence as defined in [5, Defini-

tion 3.2], and which goes back to Cossec and Dolgachev [9, p. 122]. This is a collection of effective
isotropic classes 𝐸𝑖, 𝑖 = 1, … , 10 which span the lattice 𝑀(1∕2) = 𝑈 + 𝐸8(−1) over the rationals
with the additional property that 𝐸𝑖 ⋅ 𝐸𝑗 = 1 for 𝑖 ≠ 𝑗. By [5, Lemma 3.4], see also [8, Lemma 1.6.2
(i)] or [9, Corollary 2.5.5], an isotropic 10-sequence has the further property that

∑
𝐸𝑖 is 3-divisible,

that is, there is a divisor 𝐷 with 3𝐷 ≡
∑
𝑖 𝐸𝑖 . By the defining property of an isotropic 10-sequence,

it then follows that 𝐷2 = 10. This observation also implies that the 𝐸𝑖 form a ℚ-basis, but not a
ℤ-basis of𝑀(1∕2).
We further note that the list of [5, Appendix] also contains non-primitive numerical

polarisations, which we disregard in our approach since they do not lead to new moduli spaces.
We now want to provide a precise matching between the (components of the) moduli spaces

̂g ,𝜙 and our modular varieties En,ℎ. To do this, we first introduce a new integral basis 𝑢𝑖 , 𝑖 =
1, … , 10 of the lattice𝑀(1∕2) = 𝑈 + 𝐸8(−1) with Gram matrix

𝐺𝑢 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 3 1 1 1 1 1

1 0 1 1 3 1 1 1 1 1

1 1 0 1 3 1 1 1 1 1

1 1 1 0 3 1 1 1 1 1

3 3 3 3 10 3 3 3 3 3

1 1 1 1 3 0 1 1 1 1

1 1 1 1 3 1 0 1 1 1

1 1 1 1 3 1 1 0 1 1

1 1 1 1 3 1 1 1 0 1

1 1 1 1 3 1 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

The equivalence between the basis 𝑢𝑖 and the standard basis of the lattice 𝑈 + 𝐸8(−1) is
provided by the matrix
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MODULI OF POLARIZED ENRIQUES SURFACES – COMPUTATIONAL ASPECTS 15 of 32

TABLE 3 The primitive vectors of norms at most 30 in the
fundamental domain expressed in the basis (g𝑖 ). The vectors are first
grouped by norm and then all together. If two or more vectors give rise to
conjugate groups, then they are grouped in a set whose index corresponds
to the one of Tables 1 and 2.

𝐝𝐞𝐠 Polarisations
2 1 : {g2}.
4 2 : {g1 + g2}, 3 : {g3}.
6 2 : {2g1 + g2}, 4 : {g4}.
8 2 : {3g1 + g2}, 5 : {g1 + g3}.
10 2 : {4g1 + g2}, 6 : {g1 + g4}, 7 : {g5}.
12 2 : {5g1 + g2, g1 + 2g2}, 5 : {2g1 + g3}, 8 : {g6}.
14 2 : {6g1 + g2}, 6 : {2g1 + g4}, 9 : {g2 + g3}.
16 2 : {7g1 + g2}, 5 : {3g1 + g3}, 6 : {g2 + g4}, 10 : {g1 + g5}.
18 2 : {8g1 + g2}, 6 : {3g1 + g4}, 11 : {g7}, 12 : {g1 + g6}.
20 2 : {9g1 + g2, 3g1 + 2g2}, 5 : {4g1 + g3}, 13 : {g1 + g2 + g3},

14 : {g8}.
22 2 : {10g1 + g2}, 6 : {4g1 + g4}, 10 : {2g1 + g5}, 15 : {g1 + g2 + g4},

16 : {g3 + g4}.
24 2 : {11g1 + g2, g1 + 3g2}, 5 : {5g1 + g3, g1 + 2g3},

12 : {2g1 + g6}, 17 : {g2 + g5}.
26 2 : {12g1 + g2}, 6 : {5g1 + g4}, 13 : {2g1 + g2 + g3},

17 : {g1 + g7}, 18 : {g2 + g6}.
28 2 : {13g1 + g2, 5g1 + 2g2}, 5 : {6g1 + g3}, 9 : {2g2 + g3},

10 : {3g1 + g5, g3 + g5}, 15 : {2g1 + g2 + g4}, 19 : {g1 + g8}.
30 2 : {14g1 + g2, 2g1 + 3g2}, 6 : {6g1 + g4, 2g2 + g4},

12 : {3g1 + g6}, 20 : {g9}, 21 : {g1 + g3 + g4}.
all 1 : {g2}, 2 : {g1 + g2, 2g1 + g2, 3g1 + g2, 4g1 + g2,

5g1 + g2, 6g1 + g2, 7g1 + g2, 8g1 + g2, 9g1 + g2,
10g1 + g2, 11g1 + g2, 12g1 + g2, 13g1 + g2, 14g1 + g2,
g1 + 2g2, 3g1 + 2g2, 5g1 + 2g2, g1 + 3g2, 2g1 + 3g2},
3 : {g3}, 4 : {g4}, 5 : {g1 + g3, 2g1 + g3, 3g1 + g3,

4g1 + g3, 5g1 + g3, 6g1 + g3, g1 + 2g3}, 6 : {g1 + g4,
2g1 + g4, 3g1 + g4, 4g1 + g4, 5g1 + g4, 6g1 + g4,
g2 + g4, 2g2 + g4}, 7 : {g5}, 8 : {g6}, 9 : {g2 + g3,

2g2 + g3}, 10 : {g1 + g5, 2g1 + g5, 3g1 + g5, g3 + g5},
11 : {g7}, 12 : {g1 + g6, 2g1 + g6, 3g1 + g6}, 13 : {g1 + g2 + g3,
2g1 + g2 + g3}, 14 : {g8}, 15 : {g1 + g2 + g4, 2g1 + g2 + g4},

16 : {g3 + g4}, 17 : {g2 + g5, g1 + g7}, 18 : {g2 + g6},
19 : {g1 + g8}, 20 : {g9}, 21 : {g1 + g3 + g4}.
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16 of 32 SIKIRIĆ and HULEK

TABLE 4 The number of primitive polarisations and modular groups.

g 2 3 4 5 6 7 8 9 10 11 12 13
2𝑑 2 4 6 8 10 12 14 16 18 20 22 24
#ℎ 1 2 2 2 3 4 3 4 4 5 5 6
#Γ̄ℎ 1 2 2 2 3 3 3 4 4 4 5 4
#ℎ, ℎ2 ⩽ 2𝑑 1 3 5 7 10 14 17 21 25 30 35 41
#Γ̄ℎ, ℎ

2 ⩽ 2𝑑 1 3 4 5 7 8 9 10 12 14 16 17
g 14 15 16 17 18 19 20 21 22 23 24 25
2𝑑 26 28 30 32 34 36 38 40 42 44 46 48
#ℎ 5 8 7 6 8 8 7 10 10 10 11 11
#Γ̄ℎ 5 6 5 6 8 6 7 7 7 7 10 7
#ℎ, ℎ2 ⩽ 2𝑑 46 54 61 67 75 83 90 100 110 120 131 142
#Γ̄ℎ, ℎ

2 ⩽ 2𝑑 18 19 21 22 24 25 26 27 29 31 32 33
g 26 27 28 29 30 31 32 33 34 35 36 37
2𝑑 50 52 54 56 58 60 62 64 66 68 70 72
#ℎ 9 14 11 12 14 16 13 15 16 16 18 16
#Γ̄ℎ 9 10 11 8 12 9 11 14 11 11 12 10
#ℎ, ℎ2 ⩽ 2𝑑 151 165 176 188 202 218 231 246 262 278 296 312
#Γ̄ℎ, ℎ

2 ⩽ 2𝑑 34 35 36 37 38 39 40 41 43 44 46 46

𝑇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1 0 0 0 1 0 0 1

1 −1 1 0 0 0 1 0 0 0

0 −1 1 −1 1 −1 0 0 0 0

1 −1 2 1 −2 1 2 1 1 1

−1 −1 −1 −1 3 −1 −1 −1 −2 −1

0 0 0 0 0 0 0 1 −1 0

0 1 −1 −1 0 0 0 0 0 0

0 −1 1 0 0 1 0 0 0 0

0 0 0 −1 0 0 0 1 0 0

0 0 1 1 −1 0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

meaning that 𝑇𝑡𝐺𝑢𝑇 = 𝐺 with 𝐺 as in (6). The columns of the matrix 𝑇 are the vectors 𝑢𝑖 .
The isotropic 10-sequence which we are looking for can be obtained from the basis 𝑢𝑖 bymeans

of the transition matrix

𝐼 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 −1 3 −1 − −1 −1 −1

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0, 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0, 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)
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MODULI OF POLARIZED ENRIQUES SURFACES – COMPUTATIONAL ASPECTS 17 of 32

One sees immediately that det(𝐼) = 3. The Gram matrix of the vectors 𝐸𝑖 is given by

𝐺𝐸 = (1)1⩽𝑖,𝑗⩽10 − 𝐼𝑛, (12)

which immediately shows that the defining conditions of an isotropic 10-sequence are satisfied.
We can nowmake the correspondence between the varietiesEn,ℎ and ̂g ,𝜙 for g ⩽ 30 explicit.

The result is given in Tables 5 and 6. Note thatwe also list non-primitive polarisations here in order
to have a full matching with [5, Appendix].

3.6 The Tits building

As we already recalled, the zero- and one-dimensional cusps of the modular varieties En,ℎ =

Γ+
ℎ
∖𝑁 correspond to the orbits of isotropic vectors 𝑙 and isotropic planes ℎ in the lattice 𝑁 =

𝑈 +𝑈(2) + 𝐸8(−2) with respect to the groups Γ+
ℎ
. The inclusions 𝑙 ⊂ ℎ characterise when a

zero-dimensional cusp is contained in a one-dimensional cusp. Taking orbits modulo the group
Γ+
ℎ
defines the Tits building which thus incorporates the entire combinatorial structure of the

boundary. We will now investigate this systematically for small degrees.
The classical case of unpolarised Enriques surfaces is well known. We start by recalling that

En = O
+(𝑁)∖𝑁 has two zero-dimensional and two 1-dimensional cusps each. Proofs of this

were given by Sterk [37, Propositions 4.5 and 4.6] and Allcock [1, Corollary 4]. By applying the
computational techniques of Section 4, we confirm these results. It is not difficult to give explicit
representatives of these orbits. The orbits of isotropic lines are spanned by 𝐿1 = ℤ𝑒1 and 𝐿2 = ℤ𝑒3.
The orbits of isotropic planes of 𝑁 are 𝑃1 = ℤ𝑒1 + ℤ𝑒3 and 𝑃2 = ℤ(2𝑒1 + 2𝑒2 + 𝑤) + ℤ𝑒3 with 𝑤
a vector of norm 4 in 𝐸8, which then viewed as a vector in 𝐸8(−2) has norm 𝑤2 = −8 in 𝐸8(−2).
Here, (𝑒1, 𝑒2) and (𝑒3, 𝑒4) are standard bases of 𝑈 and 𝑈(2). The Tits building is displayed in
Table 1. The stabiliser of 𝐿1 has an image in the discriminant group which is equal to the full
group, whereas the image of the stabiliser of 𝐿2 has index 527 = 17 ⋅ 31. The stabiliser of the plane
𝑃1 has an image of index 527, whereas the image of the stabiliser of 𝑃2 has an image of index
23 715 = 32 ⋅ 5 ⋅ 17 ⋅ 31.
Here, we would also like to mention that the space ̃En = Õ

+
(𝑁)∖𝑁 has 528 zero-

dimensional cusps (corresponding to isotropic lines) and 24 242 one-dimensional cusps (corre-
sponding isotropic planes). Under the group O+(𝔽2), the 528 zero-dimensional cusps decompose
into two orbits, one of length 527 and one of length 1, see the above discussion and [10, p.
534]. The set of 24 242 isotropic planes also has two orbits, and these are of length 527 and
23 715, respectively.
Whenworkingwith the group Γℎ, we need to compute the orbits for a subgroup of the full isom-

etry group𝐺. That is, given an orbit 𝑥𝐺, wewrite𝐺𝑥 for the stabiliser of 𝑥 by𝐺. The decomposition
𝑥𝐺 = ∪𝑖∈𝐼𝑥𝑖Γℎ corresponds to a double coset decomposition

𝐺 = ∪𝑖∈𝐼𝐺𝑥ℎ𝑖Γℎ for 𝑥𝑖 = 𝑥ℎ𝑖.

Thus orbit splitting can be done with double coset decomposition. This is in general a difficult
problem, but in the case of finite groups, there are well-known algorithms [33, Sec. 8.1.1].

Lemma 3.6. Let 𝐺 be a group, 𝑈 a normal subgroup and 𝐾 and 𝐻 two subgroups of 𝐺 such that
𝑈 ⊂ 𝐾. Then, the quotientmap𝐺 → 𝐺∕𝑈 establishes amany-to-one correspondence between double
coset decompositions of 𝐺 by (𝐾,𝐻) and of 𝐺∕𝑈 by (𝐾∕𝑈,𝐻) where𝐻 is the image of𝐻 in 𝐺∕𝑈.
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18 of 32 SIKIRIĆ and HULEK

TABLE 5 Expression of the entries of [5, Appendix] in terms of the g vectors (Part 1). Here, the first column
gives the genus g and the second the value of 𝜙. The next two columns give the description of the polarisation
according to [5] and in terms of the g𝑖 .

g 𝝓 CDGK DH g 𝝓 CDGK DH g 𝝓 CDGK DH
2 1 𝐸2,1 g2 3 1 𝐸3,1 g1 + g2 3 2 𝐸3,2 g3

4 1 𝐸4,1 2g1 + g2 4 2 𝐸4,2 g4 5 1 𝐸5,1 3g1 + g2

5 2 𝐸(𝐼)
5,2

g1 + g3 5 2 𝐸(𝐼𝐼)
5,2

2g2 6 1 𝐸6,1 4g1 + g2

6 2 𝐸6,2 g1 + g4 6 3 𝐸6,3 g5 7 1 𝐸7,1 5g1 + g2

7 2 𝐸(𝐼)
7,2

2g1 + g3 7 2 𝐸(𝐼𝐼)
7,2

g1 + 2g2 7 3 𝐸7,3 g6

8 1 𝐸8,1 6g1 + g2 8 2 𝐸8,2 2g1 + g4 8 3 𝐸8,3 g2 + g3

9 1 𝐸9,1 7g1 + g2 9 2 𝐸(𝐼)
9,2

3g1 + g3 9 2 𝐸(𝐼𝐼)
9,2

2g1 + 2g2

9 3 𝐸(𝐼)
9,3

g1 + g5 9 3 𝐸(𝐼𝐼)
9,3

g2 + g4 9 4 𝐸9,4 2g3

10 1 𝐸10,1 8g1 + g2 10 2 𝐸10,2 3g1 + g4 10 3 𝐸(𝐼)
10,3

g1 + g6

10 3 𝐸(𝐼𝐼)
10,3

3g2 10 4 𝐸10,4 g7 11 1 𝐸11,1 9g1 + g2

11 2 𝐸(𝐼)
11,2

4g1 + g3 11 2 𝐸(𝐼𝐼)
11,2

3g1 + 2g2 11 3 𝐸11,3 g1 + g2 + g3

11 4 𝐸11,4 g8 12 1 𝐸12,1 10g1 + g2 12 2 𝐸12,2 4g1 + g4

12 3 𝐸(𝐼)
12,3

g1 + g2 + g4 12 3 𝐸(𝐼𝐼)
12,3

2g1 + g5 12 4 𝐸12,4 g3 + g4

13 1 𝐸13,1 11g1 + g2 13 2 𝐸(𝐼)
13,2

5g1 + g3 13 2 𝐸(𝐼𝐼)
13,2

4g1 + 2g2

13 3 𝐸(𝐼)
13,3

2g1 + g6 13 3 𝐸(𝐼𝐼)
13,3

g1 + 3g2 13 4 𝐸(𝐼)
13,4

g2 + g5

13 4 𝐸(𝐼𝐼)
13,4

2g4 13 4 𝐸(𝐼𝐼𝐼)
13,4

g1 + 2g3 14 1 𝐸14,1 12g1 + g2

14 2 𝐸14,2 5g1 + g4 14 3 𝐸14,3 2g1 + g2 + g3 14 4 𝐸(𝐼)
14,4

g2 + g6

14 4 𝐸(𝐼𝐼)
14,4

g1 + g7 15 1 𝐸15,1 13g1 + g2 15 2 𝐸(𝐼)
15,2

6g1 + g3

15 2 𝐸(𝐼𝐼)
15,2

5g1 + 2g2 15 3 𝐸(𝐼)
15,3

2g1 + g2 + g4 15 3 𝐸(𝐼𝐼)
15,3

3g1 + g5

15 4 𝐸(𝐼)
15,4

g1 + g8 15 4 𝐸(𝐼𝐼)
15,4

2g2 + g3 15 5 𝐸15,5 g3 + g5

16 1 𝐸16,1 14g1 + g2 16 2 𝐸16,2 6g1 + g4 16 3 𝐸(𝐼)
16,3

3g1 + g6

16 3 𝐸(𝐼𝐼)
16,3

2g1 + 3g2 16 4 𝐸(𝐼)
16,4

2g2 + g4 16 4 𝐸(𝐼𝐼)
16,4

g1 + g3 + g4

16 5 𝐸16,5 g9 17 1 𝐸17,1 15g1 + g2 17 2 𝐸(𝐼)
17,2

7g1 + g3

17 2 𝐸(𝐼𝐼)
17,2

6g1 + 2g2 17 3 𝐸17,3 3g1 + g2 + g3 17 4 𝐸(𝐼)
17,4

g1 + 2g4

17 4 𝐸(𝐼𝐼)
17,4

g1 + g2 + g5 17 4 𝐸(𝐼𝐼𝐼)
17,4

2g1 + 2g3 17 4 𝐸(𝐼𝑉)
17,4

4g2

17 5 𝐸17,5 g3 + g6 18 1 𝐸18,1 16g1 + g2 18 2 𝐸18,2 7g1 + g4

18 3 𝐸(𝐼)
18,3

3g1 + g2 + g4 18 3 𝐸(𝐼𝐼)
18,3

4g1 + g5 18 4 𝐸(𝐼)
18,4

g1 + g2 + g6

18 4 𝐸(𝐼𝐼)
18,4

2g1 + g7 18 5 𝐸(𝐼)
18,5

g2 + 2g3 18 5 𝐸(𝐼𝐼)
18,5

g4 + g5

19 1 𝐸19,1 17g1 + g2 19 2 𝐸(𝐼)
19,2

8g1 + g3 19 2 𝐸(𝐼𝐼)
19,2

7g1 + 2g2

19 3 𝐸(𝐼)
19,3

4g1 + g6 19 3 𝐸(𝐼𝐼)
19,3

3g1 + 3g2 19 4 𝐸(𝐼)
19,4

2g1 + g8

19 4 𝐸(𝐼𝐼)
19,4

g1 + 2g2 + g3 19 5 𝐸(𝐼)
19,5

g4 + g6 19 5 𝐸(𝐼𝐼)
19,5

g2 + g7

19 6 𝐸19,6 3g3 20 1 𝐸20,1 18g1 + g2 20 2 𝐸20,2 8g1 + g4

20 3 𝐸20,3 4g1 + g2 + g3 20 4 𝐸(𝐼)
20,4

g1 + 2g2 + g4 20 4 𝐸(𝐼𝐼)
20,4

2g1 + g3 + g4

20 5 𝐸(𝐼)
20,5

g2 + g8 20 5 𝐸(𝐼𝐼)
20,5

g1 + g3 + g5 21 1 𝐸21,1 19g1 + g2

Proof. Let us take a double coset decomposition

𝐺 = ∪𝑖∈𝐼𝐾g𝑖𝐻.

Then, mapping to the quotient, we obtain

𝐺∕𝑈 = ∪𝑖∈𝐼𝐾∕𝑈g𝑖𝐻.
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MODULI OF POLARIZED ENRIQUES SURFACES – COMPUTATIONAL ASPECTS 19 of 32

TABLE 6 Expression of the entries of [5, Appendix] in terms of the g vectors (Part 2).

g 𝝓 CDGK DH g 𝝓 CDGK DH g 𝝓 CDGK DH
21 2 𝐸(𝐼)

21,2
9g1 + g3 21 2 𝐸(𝐼𝐼)

21,2
8g1 + 2g2 21 3 𝐸(𝐼)

21,3
5g1 + g5

21 3 𝐸(𝐼𝐼)
21,3

4g1 + g2 + g4 21 4 𝐸(𝐼)
21,4

g1 + 4g2 21 4 𝐸(𝐼𝐼)
21,4

3g1 + 2g3

21 4 𝐸(𝐼𝐼𝐼)
21,4

2g1 + 2g4 21 4 𝐸(𝐼𝑉)
21,4

2g1 + g2 + g5 21 5 𝐸(𝐼)
21,5

g1 + g9

21 5 𝐸(𝐼𝐼)
21,5

g2 + g3 + g4 21 6 𝐸21,6 2g5 22 1 𝐸22,1 20g1 + g2

22 2 𝐸22,2 9g1 + g4 22 3 𝐸(𝐼)
22,3

5g1 + g6 22 3 𝐸(𝐼𝐼)
22,3

4g1 + 3g2

22 4 𝐸(𝐼)
22,4

2g1 + g2 + g6 22 4 𝐸(𝐼𝐼)
22,4

3g1 + g7 22 5 𝐸(𝐼)
22,5

g1 + g3 + g6

22 5 𝐸(𝐼𝐼)
22,5

2g2 + g5 22 5 𝐸(𝐼𝐼𝐼)
22,5

g2 + 2g4 22 6 𝐸22,6 g10

23 1 𝐸23,1 21g1 + g2 23 2 𝐸(𝐼)
23,2

10g1 + g3 23 2 𝐸(𝐼𝐼)
23,2

9g1 + 2g2

23 3 𝐸23,3 5g1 + g2 + g3 23 4 𝐸(𝐼)
23,4

2g1 + 2g2 + g3 23 4 𝐸(𝐼𝐼)
23,4

3g1 + g8

23 5 𝐸(𝐼)
23,5

g1 + g2 + 2g3 23 5 𝐸(𝐼𝐼)
23,5

g1 + g4 + g5 23 5 𝐸(𝐼𝐼𝐼)
23,5

2g2 + g6

23 6 𝐸23,6 g3 + g8 24 1 𝐸24,1 22g1 + g2 24 2 𝐸24,2 10g1 + g4

24 3 𝐸(𝐼)
24,3

6g1 + g5 24 3 𝐸(𝐼𝐼)
24,3

5g1 + g2 + g4 24 4 𝐸(𝐼)
24,4

2g1 + 2g2 + g4

24 4 𝐸(𝐼𝐼)
24,4

3g1 + g3 + g4 24 5 𝐸(𝐼)
24,5

g1 + g4 + g6 24 5 𝐸(𝐼𝐼)
24,5

g1 + g2 + g7

24 5 𝐸(𝐼𝐼𝐼)
24,5

3g2 + g3 24 6 𝐸(𝐼)
24,6

2g3 + g4 24 6 𝐸(𝐼𝐼)
24,6

g5 + g6

25 1 𝐸25,1 23g1 + g2 25 2 𝐸(𝐼)
25,2

11g1 + g3 25 2 𝐸(𝐼𝐼)
25,2

10g1 + 2g2

25 3 𝐸(𝐼)
25,3

6g1 + g6 25 3 𝐸(𝐼𝐼)
25,3

5g1 + 3g2 25 4 𝐸(𝐼)
25,4

2g1 + 4g2

25 4 𝐸(𝐼𝐼)
25,4

4g1 + 2g3 25 4 𝐸(𝐼𝐼𝐼)
25,4

3g1 + 2g4 25 4 𝐸(𝐼𝑉)
25,4

3g1 + g2 + g5

25 5 𝐸(𝐼)
25,5

2g1 + g3 + g5 25 5 𝐸(𝐼𝐼)
25,5

g1 + g2 + g8 25 5 𝐸(𝐼𝐼𝐼)
25,5

3g2 + g4

25 6 𝐸(𝐼)
25,6

g1 + 3g3 25 6 𝐸(𝐼𝐼)
25,6

2g6 25 6 𝐸(𝐼𝐼𝐼)
25,6

g4 + g7

26 1 𝐸26,1 24g1 + g2 26 2 𝐸26,2 11g1 + g4 26 3 𝐸26,3 6g1 + g2 + g3

26 4 𝐸(𝐼)
26,4

3g1 + g2 + g6 26 4 𝐸(𝐼𝐼)
26,4

4g1 + g7 26 5 𝐸(𝐼)
26,5

2g1 + g9

26 5 𝐸(𝐼𝐼)
26,5

g1 + g2 + g3 + g4 26 5 𝐸(𝐼𝐼𝐼)
26,5

5g2 26 6 𝐸(𝐼)
26,6

g2 + g3 + g5

26 6 𝐸(𝐼𝐼)
26,6

g4 + g8 27 1 𝐸27,1 25g1 + g2 27 2 𝐸(𝐼)
27,2

12g1 + g3

27 2 𝐸(𝐼𝐼)
27,2

11g1 + 2g2 27 3 𝐸(𝐼)
27,3

7g1 + g5 27 3 𝐸(𝐼𝐼)
27,3

6g1 + g2 + g4

27 4 𝐸(𝐼)
27,4

3g1 + 2g2 + g3 27 4 𝐸(𝐼𝐼)
27,4

4g1 + g8 27 5 𝐸(𝐼)
27,5

2g1 + g3 + g6

27 5 𝐸(𝐼𝐼)
27,5

g1 + 2g2 + g5 27 5 𝐸(𝐼𝐼𝐼)
27,5

g1 + g2 + 2g4 27 6 𝐸(𝐼)
27,6

g1 + 2g5

27 6 𝐸(𝐼𝐼)
27,6

g3 + 2g4 27 6 𝐸(𝐼𝐼𝐼)
27,6

g2 + g9 28 1 𝐸28,1 26g1 + g2

28 2 𝐸28,2 12g1 + g4 28 3 𝐸(𝐼)
28,3

7g1 + g6 28 3 𝐸(𝐼𝐼)
28,3

6g1 + 3g2

28 4 𝐸(𝐼)
28,4

3g1 + 2g2 + g4 28 4 𝐸(𝐼𝐼)
28,4

4g1 + g3 + g4 28 5 𝐸(𝐼)
28,5

2g1 + g2 + 2g3

28 5 𝐸(𝐼𝐼)
28,5

2g1 + g4 + g5 28 5 𝐸(𝐼𝐼𝐼)
28,5

g1 + 2g2 + g6 28 6 𝐸(𝐼)
28,6

g1 + g10

28 6 𝐸(𝐼𝐼)
28,6

3g4 28 6 𝐸(𝐼𝐼𝐼)
28,6

g2 + g3 + g6 28 7 𝐸28,7 2g3 + g5

29 1 𝐸29,1 27g1 + g2 29 2 𝐸(𝐼)
29,2

13g1 + g3 29 2 𝐸(𝐼𝐼)
29,2

12g1 + 2g2

29 3 𝐸29,3 7g1 + g2 + g3 29 4 𝐸(𝐼)
29,4

3g1 + 4g2 29 4 𝐸(𝐼𝐼)
29,4

5g1 + 2g3

29 4 𝐸(𝐼𝐼𝐼)
29,4

4g1 + 2g4 29 4 𝐸(𝐼𝑉)
29,4

4g1 + g2 + g5 29 5 𝐸(𝐼)
29,5

2g1 + g4 + g6

29 5 𝐸(𝐼𝐼)
29,5

2g1 + g2 + g7 29 5 𝐸(𝐼𝐼𝐼)
29,5

g1 + 3g2 + g3 29 6 𝐸(𝐼)
29,6

g1 + g3 + g8

29 6 𝐸(𝐼𝐼)
29,6

2g2 + 2g3 29 6 𝐸(𝐼𝐼𝐼)
29,6

g2 + g4 + g5 30 1 𝐸30,1 28g1 + g2

30 2 𝐸30,2 13g1 + g4 30 3 𝐸(𝐼)
30,3

7g1 + g2 + g4 30 3 𝐸(𝐼𝐼)
30,3

8g1 + g5

30 4 𝐸(𝐼)
30,4

4g1 + g2 + g6 30 4 𝐸(𝐼𝐼)
30,4

5g1 + g7 30 5 𝐸(𝐼)
30,5

3g1 + g3 + g5

30 5 𝐸(𝐼𝐼)
30,5

2g1 + g2 + g8 30 5 𝐸(𝐼𝐼𝐼)
30,5

g1 + 3g2 + g4 30 6 𝐸(𝐼)
30,6

g1 + 2g3 + g4

30 6 𝐸(𝐼𝐼)
30,6

g1 + g5 + g6 30 6 𝐸(𝐼𝐼𝐼)
30,6

g2 + g4 + g6 30 6 𝐸(𝐼𝑉)
30,6

2g2 + g7

30 7 𝐸(𝐼)
30,7

g3 + g9 30 7 𝐸(𝐼𝐼)
30,7

2g1 + g2 + g8
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20 of 32 SIKIRIĆ and HULEK

F IGURE 1 Coset graphs of the first eight coset graphs from Table 1. The red, blue, black and green dots
correspond to the orbit arising from the orbit of 𝐿1, 𝑃1, 𝐿2 and 𝑃2.

Since 𝑈 ⊂ 𝐾, the double coset 𝐾g𝑖𝐻 is actually a union of left 𝑈 cosets. Therefore, the double
cosets 𝐶𝑖 = 𝐾∕𝑈g𝑖𝐻 are disjoint, that is, 𝐶𝑖 ∩ 𝐶𝑗 = ∅ if 𝑖 ≠ 𝑗. This establishes that the mapping is
well defined and it is surjective by construction. □

We can apply the above lemma to our case with 𝑈 = Õ(𝑁) the kernel of the action of
O(𝑁) on the discriminant 𝐾 = Γℎ and 𝐻 = 𝐺𝑥. The second key ingredient is that the quo-
tient O(𝑁)∕Õ(𝑁) ≅ O+(𝔽2) is finite. We can apply the existing approach for finite groups, as
implemented in [16], and thus, reduce the orbit splitting from O(𝑁) to the group Γℎ.
This approach allows us to compute the number of orbits of lines, planes and flags, and thus, the

Tits building, for each subgroup Γℎ. The obtained data on the orbit splitting, that is, the number of
isotropic lines and planes as well as inclusions are given in Tables 1 and 2 where they are labelled
by#𝐼1,#𝐼2 and#𝐼12, respectively. The pictures of the first 8 coset graphs are given in Figure 1. We
note that Case 1 coincides with the Tits building found in [37, Fig 14].

3.7 Classical cases

Here, we briefly discuss how our computations fit in with some classical results.
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MODULI OF POLARIZED ENRIQUES SURFACES – COMPUTATIONAL ASPECTS 21 of 32

3.7.1 The degree 2 case

There is only one degree 2 polarisation ℎ, namely ℎ = g2. This linear system is not base point
free, which follows, for example, because 𝜙 = 1, that is, there is an elliptic curve on which ℎ has
degree 1. The linear system |2ℎ|, however, is base-point-free and gives rise to what is classically
known a double-plane representation. More precisely, |2ℎ|maps a general Enriques surface 2 ∶ 1
onto a del Pezzo surface in ℙ4 which is the intersection of two rank 3 quadrics, see [2, Section 3.3]
and [10, Section 3.5]. By [2, Theorem 3.9], a generic Enriques surface admits 27 ⋅ 17 ⋅ 31 different
double-plane representations. This implies that [O+(𝑁) ∶ Γℎ] = 27 ⋅ 17 ⋅ 31 or alternatively, that

[Γℎ ∶ Õ
+(𝑁)] = 221 ⋅ 35 ⋅ 52 ⋅ 7 ⋅ 17 ⋅ 31∕27 ⋅ 17 ⋅ 31 = 214 ⋅ 35 ⋅ 52 ⋅ 7

This is Case 1 in Table 1.
We note that this case was also treated by Sterk [37] who referred to degree 2 polarisations as

almost polarisations. There it is also proved, see [37, Section 4.4], that the corresponding modular
variety has five 0-dimensional and nine 1-dimensional cusps, in agreement with our results in
Table 1. As we already mentioned above, the Tits building computed by Sterk [37, Fig 14] agrees
with our graph for Case 1.

3.7.2 Enriques realisations

In degree 6, we have two polarisations, which are distinguished by the 𝜙-invariant which can
be 1 or 2. These are given by g1 + g2 and g3, respectively. In the first case, the linear system is
not base-point-free, in the other case, it defines, for a generic Enriques surface, a birational map
onto a non-normal sextic surface in ℙ3 with double locus along the edges of a tetrahedron, see [2,
Section 3.1] and [10, Section 3.5]. This is historically the first realisation of an Enriques surface.
By [2, Theorem 3.10], a general Enriques surface 𝑆 admits 211 ⋅ 5 ⋅ 17 ⋅ 31 such realisations. Note,
however, that ℎ and ℎ + 𝐾𝑆 define projectively inequivalent models. For us, this means that the
morphismEn,ℎ →En has degree 210 ⋅ 5 ⋅ 17 ⋅ 31, and hence,

[Γℎ ∶ Õ
+(𝑁)] = 221 ⋅ 35 ⋅ 52 ⋅ 7 ⋅ 17 ⋅ 31∕210 ⋅ 5 ⋅ 17 ⋅ 31 = 211 ⋅ 35 ⋅ 5 ⋅ 7

agreeing with Case 4 in Table 1.

3.7.3 Reye congruences

It follows from Table 3 that we have three different polarisations in degree 10, namely 4g1 + g2,
g1 + g4 and g5. According to Table 5, these have 𝜙-invariants 1, 2 and 3, respectively. In the first
case, the linear system |ℎ| is not base-point free, and in the second, it cannot be ample. In the third
case, the linear system |ℎ| defines an embedding for the general Enriques surface 𝑆 and thus a
degree 10 model in ℙ5, see also [2, Section 3] and [10, Section 3.5]. This is classically known as a
Reye congruence, or, according to [10] as a Fano model. By [2, Theorem 3.11], a general Enriques
surface admits 214 ⋅ 3 ⋅ 17 ⋅ 31 inequivalent representations as a degree 10 surface in ℙ5. Since |ℎ|
and |ℎ + 𝐾𝑆| define different models, we can conclude that the morphism En,ℎ →En has
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22 of 32 SIKIRIĆ and HULEK

degree 213 ⋅ 3 ⋅ 17 ⋅ 31, and hence,

[Γℎ ∶ Õ
+(𝑁)] = 221 ⋅ 35 ⋅ 52 ⋅ 7 ⋅ 17 ⋅ 31∕213 ⋅ 3 ⋅ 17 ⋅ 31 = 28 ⋅ 34 ⋅ 52 ⋅ 7,

which agrees exactly with Case 7 in Table 1.

4 ALGORITHMS FORWORKINGWITH INDEFINITE FORMS

The methods used in this work are, we believe, of wider interest, and thus, we explain in this sec-
tion in some detail how they work. The code is available via [35] in both a GAP and C++ version.
An integrated system is available for Oscar in [39]. The emphasis is on practical techniques. In this
section, a lattice is a free ℤ-module of rank 𝑛, which will often be identified with ℤ𝑛, equipped
with an integer quadratic form 𝐴 which can possibly be degenerate.
The first class of problems is related to groups. That is, given an integer quadratic form 𝐴, we

want to compute a generating set of the integral automorphism groupO(𝐴). Next, we want to test
the equivalence of two integral quadratic forms 𝐴1 and 𝐴2 by an integral transformation and, if
such an isomorphism exists, produce it explicitly.
The second class of problems considered concerns vector representations. That is, given an

integer quadratic form𝐴 and an integer 𝛽 ≠ 0, we ask to find all orbit representatives of solutions
𝑥 of the equation 𝐴[𝑥] ∶= 𝑥𝐴𝑥𝑇 = 𝛽. For 𝛽 = 0, we are looking for primitive solutions. We are
also interested in finding 𝑘-planes of totally isotropic vectors.
As it turns out, both classes are closely related in our algorithmic approach. In Subsection 4.1,

we explain the group techniques used.We then discuss the case of positive and hyperbolic lattices,
for which well-known algorithms exist, in Subsection 4.2. In Subsection 4.3, we introduce the
notion of approximatemodel of a lattice, and finally, we show in Subsection 4.4 how all techniques
together allow us to solve the above problems.

4.1 Integral group algorithms

The matrix groups 𝐺 ⊂ GL𝑛(ℚ) that we will consider will be in general infinite and will preserve
a rank 𝑛 lattice 𝐿 ⊂ ℤ𝑛. In particular, this implies that 𝐺 ∩ GL𝑛(ℤ) is a finite index subgroup in 𝐺.
We will need an algorithmic solution for the following problems:

Alg 1 Compute a generating set of the intersection 𝐺 ∩ GL𝑛(ℤ).
Alg 2 For 𝑥 ∈ GL𝑛(ℚ), decide whether there is some g ∈ 𝐺 such that g𝑥 ∈ GL𝑛(ℤ) and compute

one such g .
Alg 3 Compute the right cosets of 𝐺 ∩ GL𝑛(ℤ) in 𝐺.

Without the condition that a lattice 𝐿 is preserved by 𝐺, there is no reason to think that there is a
general algorithm as the groups are just too wild. We will limit our exposition toAlg 1. The other
algorithms use the same ideas and are suitable adaptations to the relevant context.
Let us take 𝐿 an integral rank 𝑛 lattice invariant under 𝐺 and denote by 𝐿′ the lattice ℤ𝑛. Obvi-

ously, we have 𝐿 ⊂ 𝐿′ and there exists an integer 𝑑 > 0 such that 𝐿 ⊂ 𝐿′ ⊂ 𝐿∕𝑑.When expressed in
a basis of 𝐿, the group𝐺 becomes an integral subgroup ofGL𝑛(ℤ). By quotienting by 𝑑𝐿, we obtain
a map 𝜙 ∶ 𝐺 ↦ GL𝑛(ℤ∕𝑑ℤ)mapping the lattice 𝐿′ to a subset 𝑆 of (ℤ∕𝑑ℤ)𝑛 and the problem can
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MODULI OF POLARIZED ENRIQUES SURFACES – COMPUTATIONAL ASPECTS 23 of 32

be rephrased as first finding the stabiliser of 𝑆 under Im 𝜙 and then computing its pre-image
in 𝐺.
The group GL𝑛(ℤ∕𝑑ℤ) is a finite group and finding set-stabilisers is a well-known problem

with efficient algorithms [19, 24, 25]. To find the pre-image of a group, the natural way is to use
Schreier’s lemma [33, Lemma 4.2.1]. If the group 𝐺 is finite and has a faithful permutation repre-
sentation on a set𝑊, then we can amalgamate the set-stabiliser and pre-image operations in just
one set-stabiliser operation on a finite permutation group acting on |𝑊| + 𝑑𝑛 points.
Because of its practical importance, it is essential to accelerate this algorithm as much as possi-

ble. A possible speed-up is to use the factorisation of the divisor 𝑑 into prime factors as 𝑑 = 𝑝1 …𝑝𝑟
and to iterate the computation prime by prime, starting by the smallest occurring prime. Another
speed-up is not to consider the full set (ℤ∕𝑑ℤ)𝑛 of vectors, but instead to select a vector 𝑥 in 𝑆
whose orbit 𝑂𝑥 is not contained in 𝑆. Then, we compute the stabiliser for 𝑆′ = 𝑂𝑥 ∩ 𝑆. In this
way, 𝑑𝑛 is reduced to |𝑂𝑥| which is much smaller. Of course, some additional iterations may be
needed for the stabiliser to be computed since there could be other vectors in 𝑆 whose orbit is
contained in 𝑆. If we know that a filtration is preserved by 𝐺, then it is good to start the search
of such 𝑥 in the smallest subspaces. The commonality between all these approaches is that they
replace a big computation with a dominating term 𝑑𝑛 into smaller computations though at the
expense of having many. This algorithm is an evolution of the last one of [3, Section 3.1] where
the problem of finding the group of integral symmetries of a polytope was considered. The GAP
and the independent C++ version of the code are available at [35].

4.2 Positive definite and hyperbolic forms

For positive definite quadratic forms, there arewell-knownmethods [32] for the equivalence prob-
lem and for computing a generating set. For the problem of finding representative solutions of
𝐴[𝑥] = 𝛽, we can use the Fincke–Pohst algorithm (cf. [6, Algorithm 2.7.7]).
For the case of hyperbolic lattices, this becomes more involved, but is still doable using the

method of perfect forms. This is an inefficient technique, but it has the advantage that there are
no limitations regarding its use. In this work, we have used the Coxeter group structure for the
lattice 𝑈 + 𝐸8(−1). This is possible because it is a reflective lattice, but most lattices do not have
this property, and so, the perfect form method has to be used.
The enumeration of perfect forms is done via a variant of Mertens’ algorithm [26]. The main

changes are an improvement in the way the facets of the perfect domain are enumerated up to
symmetry (see [12] for a description of the algorithm and [35] for implementations) and the use
of the method of 4.1 for finding automorphisms and testing isomorphisms of perfect domains.

4.3 Approximate models and the case of signature 𝒑, 𝒒 ⩾ 𝟐

Having dealt with definite forms and hyperbolic lattices, we now turn to signature (𝑝, 𝑞) with
𝑝, 𝑞 ⩾ 2. The definition below provides the main tool for our work.

Definition 4.1. Given an integral lattice 𝐿, an approximate model is defined by:

∙ a set of generators {g1, … , g𝑚} of a subgroup Ap(𝐿) of O(𝐿) named approximate subgroup,
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24 of 32 SIKIRIĆ and HULEK

∙ an oracle function Ap(𝐿, 𝛽) that, given a 𝛽 ≠ 0, returns a finite list 𝑣1, … , 𝑣𝑘(𝛽) such that any
vector of norm 𝛽 is equivalent byAp(𝐿) to one of the 𝑣𝑖 . For 𝛽 = 0, the oracle function returns a
list of primitive vectors of norm 0 such that any primitive vector of norm 0 is equivalent to one
such vector by an element of Ap(𝐿).

It is important to note that a lattice can potentially have an infinite number of approximate
models and that we do not claim that every lattice has an approximate model. The approximate
subgroup is a finite index subgroup of O(𝐿) in all cases considered, here but we do not know if
that is always the case and we do not use this property here.

Lemma 4.2. If 𝐿 is an integral non-degenerate even lattice, then 𝑈 +𝑈 + 𝐿 has an approxi-
mate model.

Proof. Eichler’s criterion [15, §3] applies to this class of lattices and provides an algorithm for
obtaining the approximate orbit representatives. We need to prove that we have a finite set of
generators of a suitable approximate subgroup. In this case, we can take a suitable subgroup of
the group O(𝑈 + 𝑈) together with the Eichler transvections. In [34, Example 3.7.2], the lattice
𝑈 +𝑈 is identified with the determinant form on𝑀2,2(ℤ). Thus, SL2(ℤ) has an action on the left
and an action on the right on𝑀2,2(ℤ). In particular, SL2(ℤ) × SL2(ℤ) is a subgroup of O(𝑈 + 𝑈).
Since SL2(ℤ) is generated by two elements, this subgroup is generated by four generators.
The second step of Eichler’s criterion is to apply the Eichler transvections 𝐸𝑒𝑖,𝑥 (see [34,

Section 3.7]) for 𝑒𝑖 with 1 ⩽ 𝑖 ⩽ 4 one of the four canonical isotropic vectors coming from the
two hyperbolic planes 𝑈 and 𝑥 a vector orthogonal to 𝑒𝑖 . The Eichler transvections satisfy
𝐸𝑒,𝑥𝐸𝑒,𝑦 = 𝐸𝑒,𝑥+𝑦 for 𝑒 isotropic and 𝑥, 𝑦 orthogonal to 𝑒. According to [34, Proposition 3.7.3],
we simply need the generators of SL2(ℤ)2 and the transvections 𝐸𝑒𝑖,𝑣𝑖,𝑗 with 1 ⩽ 𝑖 ⩽ 4, 1 ⩽ 𝑗 ⩽
𝑛 − 1 and (𝑣𝑖,𝑗)1⩽𝑗⩽𝑛−1 forming a ℤ-basis of 𝑒⟂𝑖 . Thus, if the dimension of 𝑈 +𝑈 + 𝐿 is 𝑛, we
need four generators from SL2(ℤ)

2 and 4(𝑛 − 1) from the transvections and so 4𝑛 together. The
proof of Proposition 3.7.3 in [34] provides an explicit way of computing a set of possible vector
representatives and so the oracle function. □

It is important to note that the approximate model provided by the above lemma can be
improved significantly in some cases. The group provided by the Eichler algorithm acts trivially
on the discriminant. For a case such as 𝑈 +𝑈 + 𝐸8(−2), this gets us 28 orbit representatives. By
adding the isometries of the 𝐸8 component to the approximate subgroup, we are reduced to just
three representatives which is far better for computational purposes. This is because𝑊(𝐸8) has
three orbits in its action on 𝐸8∕2𝐸8, their sizes being 1, 120 and 135.

Theorem 4.3. Suppose that 𝐿′ and 𝐿 are two integral lattices of rank 𝑛 with 𝐿′ ⊂ 𝐿 and we have an
approximate model for 𝐿. Then we have an approximate model for 𝐿′.

Proof. We can compute the stabiliser 𝑆 of 𝐿′ underAp(𝐿) byAlg 1 and this gets us an approximate
subgroupAp(𝐿′). By usingAlg 3, we compute the right coset decomposition ofAp(𝐿)under 𝑆with
coset representatives g1, ..., g𝑚. For 𝛽 ∈ ℤ, the approximate model of 𝐿 gives us representatives 𝑥1,
..., 𝑥𝑡 of the orbits of vectors of norm 𝛽.We then consider all the elements of the form g𝑗𝑥𝑖 and keep
the ones that are contained in 𝐿′. This gets us our approximate orbit representativesAp(𝐿′, 𝛽). □
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In particular, the above shows that any lattice 𝑐𝑈 + 𝑑𝑈 +𝑊 with 𝑐, 𝑑 ∈ ℕ and𝑊 integral and
even has an approximate model via the following embedding in 𝑈 +𝑈 +𝑊:

(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑤) ↦ (𝑐𝑥1, 𝑥2, 𝑑𝑦1, 𝑦2, 𝑤).

In fact much more is true.

Theorem 4.4. Let 𝐿 be an integral lattice of signature 𝑝, 𝑞 ⩾ 2 of dimension at least 7. Then 𝐿 has
an approximate model.

Proof. Let us take the dual 𝐿∨. Since integral indefinite lattices of dimension at least 5 have
isotropic vectors (see [27]), there is an isotropic vector 𝑣1 in 𝐿∨. Let us take a vector g not
orthogonal to 𝑣1. Then the vector 𝑣2 = 2(g .𝑣1)g − (g .g)𝑣1 is also isotropic and not orthogonal
to 𝑣1.
We then iterate this operation on 𝐿∨ ∩ (ℤ𝑣1 + ℤ𝑣2)⟂, where this notation indicates that the

orthogonal complement is taken in 𝐿∨, and find two isotropic vectors 𝑣3, 𝑣4. We define 𝐾 = 𝐿∨ ∩
(ℤ𝑣1 + ℤ𝑣2 + ℤ𝑣3 + ℤ𝑣4)

⟂ and taking the dual, we obtain

𝐿 ⊂ 𝑈(𝑐) + 𝑈(𝑑) + 𝐾∨ for some 𝑐, 𝑑 ∈ ℚ+.

By multiplying by a factor 𝛼, we can obtain that 𝛼𝑐, 𝛼𝑑 are integers and that 𝐾∨(𝛼) is an even
integral lattice. Rescaling a lattice leaves its property of having an approximate model invariant.
Finally, we have the embedding

𝑈(𝛼𝑐) + 𝑈(𝛼𝑑) + 𝐾∨(𝛼) ⊂ 𝑈 + 𝑈 + 𝐾∨(𝛼),

and we can conclude from Lemma 4.2 that 𝐿 has an approximate model. □

Lemma 4.2 provides an approximate model for lattices of the form 𝑈 +𝑈 + 𝐿 with 𝐿 integral
even. The lattices thatwe are going to consider are not necessarily even nor admit a decomposition
𝑈 +𝑈 + 𝐿 but we can find an approximate model for them.
The above existence theorem is not necessarily optimal in the sense that the obtained oracle

function may get us a large numbers of possible solutions. In our application, we are in the fortu-
nate situation that the lattice𝑈 +𝑈(2) + 𝐸8(−2) can be trivially embedded into𝑈 +𝑈 + 𝐸8(−2)
by our previous remark and so no additional work is needed. For finding the isotropic vectors, we
use the algorithm of [36] implemented in [31].

4.4 Solution of the problems

We now use approximate models to solve the equivalence/automorphism and representative
problems that we explained at the beginning of this section. The solutions that we provide are
effective in the sense that they can be computed on computers, but we do not make any claim on
complexity, though runtime is clearly one of our priorities.
For a lattice 𝐿 of signature (𝑝, 𝑞), we define 𝑠(𝐿) = min(𝑝, 𝑞). For an integral lattice 𝐿, a splitting

integer is a 𝛽 ∈ ℤ ⧵ {0} such that there exists a vector 𝑣 of norm 𝛽 with 𝑣⟂ a lattice satisfying
𝑠(𝑣⟂) = 𝑠(𝐿) − 1. Clearly, such a number exists if 𝑠(𝐿) ⩾ 1. We also define 𝑟(𝐿) = max(𝑝, 𝑞).
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26 of 32 SIKIRIĆ and HULEK

Theorem 4.5. There exist algorithms solving the equivalence and automorphism group problems
for integral non-degenerate lattices with 𝑟(𝐿) ⩾ 5.

Proof. The solution to those problems depends on each other, which is why they are stated
together.

∙ Orth(s): The problem of determining a generating set of automorphism groups for non-
degenerate lattices 𝐿 with 𝑠(𝐿) = 𝑠.

∙ Equi(s): Given two non-degenerate lattices 𝐿1, 𝐿2 with 𝑠(𝐿1) = 𝑠(𝐿2) = 𝑠 test whether they are
isomorphic and if isomorphic find an isomorphism.

For 𝑠(𝐿) = 0 or 1, Subsection 4.2 provides algorithms. Our solution is inductive in 𝑠. Since in
the sequel, we will have 𝑠 ⩾ 2, the condition of dimension at least 7 required by Theorem 4.4
is satisfied.
If we can solve Orth(s-1) and Equi(s-1), then we can solve Orth(s). To see this, let us take a

lattice 𝐿 with 𝑠(𝐿) = 𝑠 and 𝛽 a splitting integer. Let us choose an approximate model Ap(𝐿) of 𝐿.
The oracle function will provide a set of vectorsAp(𝐿, 𝛽) = {𝑣1, … , 𝑣𝑚}. The lattice 𝑣⟂1 has 𝑠(𝑣

⟂
1
) =

𝑠 − 1. Therefore, by Orth(s-1), we can find O(𝑣⟂
1
). For 𝑣 ∈ 𝐿, define the sublattice 𝐿𝑣 = 𝑣⟂ + ℤ𝑣

of 𝐿. The group O(𝑣⟂
1
) is naturally embedded as a subgroup 𝐺 of O(𝐿𝑣1) by sending 𝑣1 to 𝑣1. We

want to determine the subgroup 𝐻 of 𝐺 that preserves 𝐿. Since 𝐿𝑣1 is a finite index sublattice of
𝐿, this can be done by applying Alg 1. Now we need to determine which transformations could
map 𝑣1 to one of 𝑣2, ..., 𝑣𝑚. If 𝑣1 is equivalent to some 𝑣𝑖 , then 𝑣⟂1 is equivalent to 𝑣

⟂
𝑖
. This can be

tested using Equi(s-1). We get a corresponding map 𝜙 from 𝐿𝑣1 to 𝐿𝑣𝑖 . Then by applying Alg 2
to 𝐺 and 𝜙, we can test whether there exists a map from 𝐿 to 𝐿 mapping 𝑣1 to 𝑣𝑖 . By taking those
transformations when they exist and a generating set of 𝐻, we actually find a generating set of
O(𝐿).
If we can solve Orth(s-1) and Equi(s-1), then we can solve Equi(s). Let us take two lattices 𝐿

and 𝐿′ with 𝑠(𝐿) = 𝑠(𝐿′) = 𝑠 and 𝛽 a splitting integer of 𝐿. We can assume 𝛽 is a splitting integer of
𝐿′ since otherwise they are not equivalent. Take a vector 𝑣 of norm 𝛽 in 𝐿 and an approximate list
{𝑣′
1
, … , 𝑣′𝑚} of representatives in 𝐿

′. We compute the automorphism groupO(𝑣⟂) usingOrth(s-1)
and then the corresponding subgroup 𝐺 of O(𝐿𝑣). We simply iterate over the 𝑣′𝑖 , form the lattices
𝑣⟂ and 𝑣′

𝑖
⟂ and check if there is an isomorphism using Equi(s-1). If there is an isomorphism ℎ,

we extend it to an isomorphism of 𝐿𝑣 to 𝐿′𝑣′
𝑖

. Then, we use Alg 2 with ℎ and 𝐺 to check if we can

obtain an isomorphism of 𝐿 to 𝐿′ mapping 𝑣 to 𝑣′
𝑖
. If at some point, we find an equivalence, then

we conclude that 𝐿 and 𝐿′ are equivalent. If not then, the lattices are not.
By the work done for hyperbolic lattices, we have the solution for Orth(1) and Equi(1).

Therefore, we have the solution of Orth(s) and Equi(s) for any 𝑠 ⩾ 2. □

We next show that the assumption that 𝐿 be non-degenerate is actually not necessary.

Theorem 4.6. There exist algorithms for solving the equivalence and the automorphism problems
for integral lattices with 𝑟(𝐿) ⩾ 5.

Proof. If we equip ℤ𝑛 with a degenerate quadratic form 𝐴, then we can still compute the auto-
morphism group of this lattice. To see this, we first notice that the integral kernel ker(𝐴) has to be
preserved. The group GL(ker(𝐴)) is isomorphic to GL𝑘(ℤ) with 𝑘 = dimker(𝐴). We can always
find a submodule 𝐿′ of ℤ𝑛 such that 𝐴 restricted to 𝐿′ is non-degenerate and ℤ𝑛 = ker(𝐴) + 𝐿′.
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We compute the automorphism group of 𝐴 restricted to 𝐿′ by using Theorem 4.5. Then the group
O(𝐿) is isomorphic to

GL𝑘(ℤ)⋊ {(ℤ𝑛−𝑘)𝑘 ⋊ O(𝐿′)},

and so, we can easily get a generating set of that group. This method also works for isomorphism
checks. □

Lemma 4.7. If 𝐿 is a lattice and 𝑣 a non-zero isotropic vector in 𝐿, then any automorphism of 𝑣⟂
extends uniquely to an automorphism of 𝐿 ⊗ ℚ.

Proof. If 𝐿 is of dimension 𝑛, then 𝐻 = 𝑣⟂ is (𝑛 − 1)-dimensional. Let g be an isometry of 𝐻.
We want to extend this to an isometry of 𝐿 ⊗ ℚ. We select a vector 𝑢 not in 𝐻 which gives the
condition

𝑥 ⋅ g(𝑤) = 𝑢 ⋅ 𝑤 for 𝑤 ∈ 𝐻 and 𝑥 = g(𝑢).

This is an affine system for the unknown 𝑥. The kernel corresponds to the vectors orthogonal to
g(𝑤) for 𝑤 ∈ 𝐻. Since g is an automorphism of𝐻, this means that the kernel is𝐻⟂ = ℚ𝑣. Let us
take a basis ℎ1, ..., ℎ𝑛−1 of𝐻. The system becomes equivalent to

𝑥 ⋅ g(ℎ𝑖) = 𝑢 ⋅ ℎ𝑖 for 1 ⩽ 𝑖 ⩽ 𝑛 − 1.

Since the linear system has 𝑛 unknowns and 𝑛 − 1 equations, a solution 𝑥 = 𝑢′ exists by the rank
theorem. Since (𝑢, ℎ1, … , ℎ𝑛−1) is of full rank, (𝑢′, g(ℎ1), … , g(ℎ𝑛−1)) is also of full rank and thus
𝑢′ ∉ 𝐻.
Thus, we can write g(𝑢) = 𝑢′ + 𝐶𝑣 for some 𝐶 ∈ ℚ. The equation g(𝑢) ⋅ g(𝑢) = 𝑢 ⋅ 𝑢 is

expressed as 𝑢 ⋅ 𝑢 = 𝑢′ ⋅ 𝑢′ + 2𝐶𝑣 ⋅ 𝑢′. We have 𝑢′ ⋅ 𝑣 ≠ 0 because 𝑢′ ∉ 𝐻. Thus, a unique solution
𝐶 exists. □

Theorem4.8. There exists an algorithm for computing orbit representatives of vectors of given norm
𝛽 ∈ ℝ∗ for integral non-degenerate lattices with 𝑟(𝐿) ⩾ 6 and 𝑠(𝐿) ⩾ 2. For 𝛽 = 0, the algorithm gives
the orbit representatives of primitive vectors.

Proof. Let us take a lattice 𝐿 of dimension 𝑛 with 𝑠(𝐿) = 𝑠 ⩾ 2. We first use an approximate model
of 𝐿 in order to compute an approximate list of representatives {𝑣1, … , 𝑣𝑚}. The orthogonal lattice
𝑣⟂ satisfies 𝑟(𝑣⟂) ⩾ 5, and so, we can apply Theorem 4.5 to the class of lattices 𝑣⟂

𝑖
.

If 𝛽 ≠ 0, then the strategy of Theorem 4.5 works to test equivalence and so reduces the
approximate list to an exact list.
If 𝛽 = 0, then 𝑣⟂

1
is a lattice of dimension 𝑛 − 1 that contains 𝑣1. Thus, the lattice 𝑣⟂1 is degen-

erate. By using Theorem 4.6, we can test for isomorphisms among the lattices 𝑣⟂
𝑖
. By Lemma 4.7,

those isomorphisms can be lifted to isomorphisms of the associated ℚ-vector spaces, and by Alg
2, we can actually check if an integral isomorphism can be obtained. In this way, we can decide
which of the 𝑣𝑖 are isomorphic. □

In order to compute the Tits building, we must also deal with isotropic planes. For this rea-
son, we now turn more generally to higher-dimensional isotropic 𝑘-planes where the situation is
considerably more complicated.

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12828 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [04/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



28 of 32 SIKIRIĆ and HULEK

Theorem 4.9. Let 𝑘 ⩾ 1 be an integer and 𝐿 an indefinite non-degenerate lattice.

(i) Given an isotropic𝑘-plane 𝐼𝑠, we can compute the stabiliser Stab(𝐿, 𝐼𝑠) of 𝐼𝑠 in the isometry group
O(𝐿) of 𝐿. We can also compute a finite set (g𝑖)1⩽𝑖⩽𝑚 of elements of O(𝐼𝑠⟂) such that

O(𝐼𝑠
⟂
) = ∪𝑚

𝑖=1
g𝑖 Stab(𝐿, 𝐼𝑠)𝐼𝑠⟂

with Stab(𝐿, 𝐼𝑠)
𝐼𝑠
⟂ the restriction of Stab(𝐿, 𝐼𝑠) to 𝐼𝑠⟂.

(ii) Given two isotropic 𝑘-planes 𝐼𝑠1 and 𝐼𝑠2, we can test whether there is an isometry of 𝐿 mapping
𝐼𝑠1 to 𝐼𝑠2.

Proof.

(i) Let us take a basis (𝑒𝑘+1, … , 𝑒2𝑘) of 𝐼𝑠. We have 𝐼𝑠 ⊂ 𝐼𝑠
⟂ and so we can complete this to a basis

(𝑒𝑘+1, … , 𝑒𝑛) of 𝐼𝑠
⟂. We then complete this to a basis of 𝐿 by finding suitable vectors (𝑒1, … , 𝑒𝑘).

The matrix of scalar products is expressed in this basis as

𝐵 =

⎛⎜⎜⎜⎝
𝐻 𝐽 𝐾

𝐽𝑇 0 0

𝐾𝑇 0 𝐴

⎞⎟⎟⎟⎠
with 𝐽 a non-degenerate 𝑘 × 𝑘-matrix and 𝐴 a non-degenerate symmetric matrix of size
(𝑛 − 2𝑘) × (𝑛 − 2𝑘). The matrix of scalar product of 𝐼𝑠⟂ in the basis (𝑒𝑘+1, … , 𝑒𝑛) is

𝐶 =

(
0 0

0 𝐴

)
.

Let us take an isometry 𝑄 of 𝐼𝑠⟂. It will preserve 𝐼𝑠 and its expression in (𝑒𝑘+1, … , 𝑒𝑛) is

𝑄 =

(
𝑄1 0

𝑄2 𝑄3

)

with 𝑄3𝐴𝑄𝑇3 = 𝐴. Here, we recall that we use the action on row vectors from the right.
If the isometry 𝑄 has an extension 𝑃 to 𝐿 ⊗ ℚ, then this extension satisfies 𝑃𝐵𝑃𝑇 = 𝐵 and

will necessarily be of the form

𝑃 =

⎛⎜⎜⎜⎝
𝑃1 𝑃2 𝑃3

0 𝑄1 0

0 𝑄2 𝑄3

⎞⎟⎟⎟⎠.
When expanding the expression 𝑃𝐵𝑃𝑇 = 𝐵, we obtain the equations

𝐻 = 𝑃1𝐻𝑃
𝑇
1
+ {𝑃2𝐽

𝑇𝑃𝑇
1
+ 𝑃1𝐽𝑃

𝑇
2
} + {𝑃3𝐾

𝑇𝑃𝑇
1
+ 𝑃1𝐾𝑃

𝑇
3
} + 𝑃3𝐴𝑃

𝑇
3
,

𝐽 = 𝑃1𝐽𝑄
𝑇
1
,

𝐾 = 𝑃1𝐽𝑄
𝑇
2
+ 𝑃1𝐾𝑄

𝑇
3
+ 𝑃3𝐴𝑄

𝑇
3
.

The second equation determines 𝑃1 ∈ GL𝑘(ℚ) uniquely. Then the third equation will deter-
mine 𝑃3 ∈ 𝑀𝑘,𝑛−2𝑘(ℚ) uniquely. However, the first equation will leave 𝑃2 underdetermined
which is a major complication in the case 𝑘 > 1.
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Let us take 𝐺1 = O(𝐼𝑠
⟂
). We have 𝐽𝑇 = 𝑄1𝐽𝑇𝑃1 which implies

𝑃−11 = (𝐽𝑇)−1𝑄1𝐽
𝑇.

This implies, in turn, that if we force 𝑄1 to preserve the lattice 𝐿𝐽𝑇 spanned by the rows of
the matrix 𝐽𝑇 , then 𝑃1 is integral. By applying a conjugacy transformation and back, we can
applyAlg 1 to the lattice 𝐿𝐽𝑇 instead ofℤ𝑘. So, we obtain a finite index subgroup𝐺2 of𝐺1 that
preserves 𝐿𝐽𝑇 . Also using Alg 3, we can obtain the cosets of 𝐺2 in 𝐺1.
The equation

𝑃3 = (𝐾 − 𝑃1𝐽𝑄
𝑇
2 − 𝑃1𝐾𝑄

𝑇
3 )(𝑄

𝑇
3 )
−1𝐴−1

implies that there exists a denominator 𝑑3 such that 𝑃3 ∈
1

𝑑3
𝑀𝑘,𝑛−2𝑘(ℤ), for example,

𝑑3 = | det(𝐴)|. The equation for 𝑃2 that we obtain is
(𝑃1𝐽𝑃

𝑇
2 )
𝑇 + 𝑃1𝐽𝑃

𝑇
2 = 𝐻 − 𝑃1𝐻𝑃

𝑇
1 − 𝑃3𝐴𝑃

𝑇
3 − {𝑃3𝐾

𝑇𝑃𝑇1 + 𝑃1𝐾𝑃
𝑇
3 }. (13)

We interpret this as a system of linear equations for 𝑃2. Since 𝑃1 and 𝐽 are non-degenerate,
we can equivalently interpret this as linear for 𝑃1𝐽𝑃𝑇2 . The right-hand side of this system of
equations is symmetric. Since any equation of the form𝑋𝑇 + 𝑋 = 𝑀 with𝑀 symmetric obvi-
ously has a solution, for example, 𝑋 = 𝑀∕2, it follows that Equation (13) has a solution 𝑃2.
The kernel of this linear system has dimension 𝑘(𝑘 − 1)∕2. We can find a denominator 𝑑2
such that for any 𝑄 ∈ 𝐺1, there exists a solution 𝑃2 in

1

𝑑2
𝑀𝑘,𝑘(ℤ). To be more precise, a pos-

sible denominator of the right-hand side of Equation (13) is 𝑑2
3
. So, a possible denominator of

𝑃1𝐽𝑃
𝑇
2
is 2𝑑2

3
and so a denominator of 𝑃2 is 2𝑑33 . Define 𝑑 as the lowest common multiple of

𝑑2 and 𝑑3. We define the sublattice

𝐿3 = ℤ𝑒1 +⋯ + ℤ𝑒𝑘 + ℤ𝑑𝑒𝑘+1 +⋯ + ℤ𝑑𝑒𝑛 ⊂ 𝐿.

Any solution of Equation (13) in 1

𝑑
𝑀𝑘,𝑘(ℤ) will preserve 𝐿3.

We define the group 𝐻2 of matrices 𝑃 ∈ GL𝑛(ℚ) which preserve 𝐿3 and 𝐼𝑠
⟂ and whose

restriction to 𝐼𝑠⟂belongs to𝐺2. Thus, the naturalmapping 𝜙 ∶ 𝐻2 → 𝐺2 is surjective. By apply-
ing Alg 1, we can get a finite index subgroup 𝐻3 ⊂ GL𝑛(ℤ) of 𝐻2. The group 𝐻3 is the group
Stab(𝐿, 𝐼𝑠), which is the group of isometric transformation of 𝐿 preserving 𝐼𝑠.
By applying Alg 3, we can obtain a coset decomposition of 𝐻3 in 𝐻2. We also have a coset

decomposition of 𝐺2 in 𝐺1:

𝐻2 = ∪𝑢∈𝑈𝑢𝐻3, 𝐺1 = ∪𝑣∈𝑉𝑣𝐺2 with 𝑈 ⊂ 𝐻3, 𝑉 ⊂ 𝐺1 and 𝑈,𝑉 finite.

By applying 𝜙 to the first decomposition and substituting, we obtain

𝐺1 = ∪𝑢∈𝑈,𝑣∈𝑉𝑣𝜙(𝑢)𝐺3,

which is the required finite coset covering. It is only a covering and not a decomposition since
some of the cosets may coincide.

(ii) The process works similarly. We compute the equivalence for the spaces 𝐿𝐽𝑇
1
and 𝐿𝐽𝑇

2
. If they

are not equivalent, then the spaces are not equivalent. Otherwise we map the equivalence,
build the corresponding spaces and then use Alg 2 to conclude. □
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The algorithm used in this construction is relatively complex. It would have been simpler if we
had a sublattice 𝐿′ of 𝐿 such that for any 𝑓 ∈ 𝑂(𝐼𝑠⟂), there exists an extension that preserves 𝐿′.
Unfortunately, we could not find a universal construction of such a lattice. However, in all the
cases we considered, a practical algorithm allowed us to solve this problem.
In Theorem4.8, we established an algorithm for computing isotropic lines.We shall now extend

this to arbitrary dimension.

Theorem4.10. There exists an algorithm for computing the orbits of isotropic 𝑘-planes of indefinite
lattices 𝐿.

Proof. The algorithm is constructed by induction on the dimension 𝑘 of the isotropic spaces
starting with 𝑘 = 1, which is Theorem 4.8. Suppose that we know some orbit representatives of
isotropic 𝑘 − 1-dimensional planes. For each such representative 𝐼𝑠, we compute the lattice 𝐼𝑠⟂

which we decompose as a lattice sum 𝐼𝑠 + 𝐾. This is actually also an orthogonal decomposition
since𝐾 ⊂ 𝐼𝑠⟂. We enumerate the orbits of isotropic primitive vectors in𝐾 for the groupO(𝐾) using
Theorem 4.8 and obtain some representatives 𝑣1, ..., 𝑣𝑙. Those can also be interpreted as isotropic
𝑘-planes 𝐼𝑠 + ℤ𝑣𝑖 in 𝐼𝑠 + 𝐾 for the group O(𝐼𝑠 + 𝐾).
By using Theorem 4.9 (i), we can compute the stabiliser Stab(𝐿, 𝐼𝑠) of 𝐼𝑠⟂ in 𝐿. We can further

compute a covering of the cosets of Stab(𝐿, 𝐼𝑠) restricted to 𝐼𝑠 + 𝐾 inO(𝐼𝑠 + 𝐾). If the cosets are g1,
..., g𝑚, then this gets us candidates g𝑗(𝐼𝑠 + ℤ𝑣𝑖) for the isotropic 𝑘-planes containing 𝐼𝑠 covering
all orbits.
We then apply Theorem 4.9 (ii) to compute a complete list of mutually non-equivalent isotropic

𝑘-planes. □

We also note that the algorithm can be extended to enumerating flags of isotropic spaces. We
simply need to replace the group GLdimker(𝐴)(ℤ) in Theorem 4.6 by the integral stabiliser of the
flag which is isomorphic to a group of invertible triangular matrices.

4.5 Relationship with work by Dawes

Dawes [11] also developed algorithms for orthogonal groups, in particular the computation of the
Tits buildings. His work is not concerned with moduli problems of polarised Enriques surfaces,
whichwere the starting point of our investigations. Here, wewant to comment on similarities and
differences in our approaches. Some of Dawes’ techniques are similar to ours. His Algorithms
2.1 and 2.2 use the same strategy as the one we implemented. However, Dawes does not have
our integral group algorithms, and so, he is forced to iterate over group elements, which can be
expensive. Instead, the author uses an alternative approach: he uses the fact that some genera are
known to have only one class (see Theorem 2.3) which allows him to prove some isomorphisms
relatively easily. However, genus theory, while computationally much easier, does not provide
explicit isomorphisms and does not give a generating set of the automorphism group of a lattice.
Another idea used in [11] is to use Vinberg’s algorithm. This can be done, provided that the lattice
is reflective, which is clearly a substantial restriction. In Algorithm 3.1, Dawes’ approach seems
needlessly complicated, since he does not use the notion of double coset, which is exactly what
one needs when splitting orbits. This forces him to use iteration over group elements to find the
matching cosets.
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