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Abstract – When evaluating surround sound loudspeaker reproduction, perceptual effects are commonly
analyzed in relationship to different loudspeaker configurations. The presented work contributes to this by
modeling perceptual effects based on acoustic properties of various reproduction formats. A model of immersion
in music listening is derived from the results of an experimental study analyzing the psychological construct of
immersive music experience. The proposed approach is evaluated with respect to the relationship between
immersion ratings and sound field features obtained from re-recordings of the stimuli using a spherical micro-
phone array at the listening position. Spatial sound field parameters such as inter-aural cross-correlation
(IACC), diffuseness and directivity are found to be of particular relevance. Further, immersion is observed
to reach a point of saturation with greater numbers of loudspeakers, which is confirmed to be predictable from
the physical properties of the sound field. Although effects related to participants and musical pieces outweigh
the impact of sound field features, the proposed approach is found to be suitable for predicting population-
average ratings, i.e. immersion experienced by an average listener for unknown content. The proposed
method could complement existing research on multichannel loudspeaker reproduction by establishing a more
generalizable framework independent of particular speaker setups.

Keywords: Spatial audio, Multichannel loudspeaker reproduction, Auditory perception modeling, Feature
selection, Sound field analysis

1 Introduction

In spatial audio reproduction over loudspeakers, the
trend is towards greater numbers of speakers, with possible
configurations including speakers in the listening plane in
systems such as 5.1 surround as well as speakers at different
heights in 5.1.4 or 22.2 setups. These configurations are
employed in the hope of achieving better reproduction of
spatial cues and – as a consequence –more immersive listen-
ing experience [1, 2].

Although increasing the number of loudspeakers and
developing new techniques for generating signals to feed
them is a superficially obvious course of action, the relation-
ship between technological elaborateness and subjective
listening experience remains somewhat ambiguous. This
has been investigated in a number of studies [3–6] by eval-
uating various perceptual attributes or listener preference in
listening tests. The attributes used to assess spatial audio
reproduction are mostly rooted in audio quality evaluation
[7]. In the absence of glaring deficiencies and artifacts in

modern multichannel audio systems, however, overall
listening experience (OLE) is becoming increasingly impor-
tant over basic audio quality (BAQ) [8]. This view on spa-
tial audio evaluation requires different assessment
paradigms. Notions of OLE, emotional arousal and immer-
sion have also been evaluated for various loudspeaker set-
ups and program material [9–11].

The cited studies have in common that they evaluate
perceptual attributes against reproduction formats. Insti-
gated by the idea of determining differences in acoustic
properties of music reproduced with different loudspeaker
configurations [12], this work presents an analysis of an
experimental study through a model based on sound field
features of the stimuli. Musical stimuli in different loud-
speaker reproduction formats have been assessed by partic-
ipants using the Immersive Music Experience Inventory
(IMEI) [13], in addition to the collection of psycho-physio-
logical feedback. This paper, however, focuses only on the
relationship of immersion to acoustic features – exploring
both descriptive and predictive modeling.

This paper is structured as follows: The rest of Section 1
is concerned with delineating the concept of immersion*Corresponding author: roman.kiyan@ikt.uni-hannover.de
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underpinning the current study as well as reviewing related
studies with respect to key observations that the model to
be developed should account for. Section 2 presents details
of the experimental study and Section 3 introduces the pro-
posed modeling approach. Since this approach follows a
general formulation, the selection process of which specific
sound field features are suitable for modeling is described
in Section 4. Results concerning descriptive and predictive
modeling are reported and discussed in Section 5 and a
summary and conclusion are given in Section 6.

1.1 Immersion in spatial audio

Various conceptualizations and definitions of immersion
have been proposed with varying degrees of discrimination
towards related concepts such as presence or envelopment.
In acoustics and audio, these terms often serve as attributes
to evaluate spatial sound reproduction [14–16]. Unless
specifically prompted, judgments are generally meant to
be independent of preference or emotion [17]. In audiovisual
media, virtual reality (VR) and computer games, immer-
sion is commonly understood in a broader sense, also
encompassing aspects of user emotion, attention and other
psychological and cognitive factors. For instance, Zhang
et al. [18] make a distinction between immersion in video
content in a spatial and an emotional sense. Agrawal
et al. [19] ascribe a cognitive character to immersion while
deeming envelopment to be of lower-level perceptual nature.
Jennett et al. [20] define presence in computer games to be
related to the fidelity of a virtual environment while reserv-
ing immersion for the effect of being absorbed in the playing
activity. There is no single consensus on terminology,
however, with some authors effectively assigning reversed
roles to immersion and presence [21, 22].

In spatial audio evaluation, the provision for higher-
level psychological effects may be viewed in the light of eval-
uating OLE in contrast to BAQ [8, 9], with such notions of
immersion increasingly gaining a foothold in the spatial
audio community [10, 11, 23]. Using IMEI to study immer-
sive experience, we follow the definition of immersion by
Wycisk et al. [13], which is based on the definition by
Witmer and Singer as a “psychological state characterized
by perceiving oneself to be enveloped by, included in, and
interacting with an environment that provides a continuous
stream of stimuli and experiences” [22], while simultane-
ously emphasizing emotional and mental aspects of the
experience highlighted by Georgiou and Kyza [24]. The
IMEI questionnaire asks for ratings of ten items that have
been selected in accordance with a many-facet Rasch model
of immersion. Each item is rated on a four-point scale and
an overall pseudo-continuous immersion rating is obtained
by averaging the ten item ratings.

1.2 Perceptual and emotional impact of spatial audio
formats

Several studies have dealt with perceptual and emo-
tional effects of spatial sound. In particular, recent atten-
tion has been focused on assessing differences between

stereo, 2D (loudspeakers surrounding the listener in one
horizontal plane) and 3D (including loudspeakers at differ-
ent heights) sound reproduction. A brief review of these
studies shall identify common observations that should
ideally be captured by a model of immersion based on sound
field features.

1.2.1 Review of related studies

Considering the definition of immersion adopted in the
current study, the work of Schoeffler et al. [9] investigating
the differences in ratings of BAQ and OLE for spatial audio
stimuli is noteworthy. With BAQ being rated against a
reference and OLE being assessed without reference, the
latter was found to reach a point of saturation with an
increasing number of loudspeakers, yielding a limited bene-
fit of 3D reproduction formats over 2D. Similarly, Agrawal
et al. [11] found no significant differences in the perceptual
attribute of envelopment between 5.1 and 7.1.4 sound repro-
duction in their study examining the impact of audio
formats on immersion in movie scenes – while both 5.1
and 7.1.4 reproduction have been rated higher in envelop-
ment than stereo. Additionally, a dependency on the speci-
fic movie excerpt presented to the participants was found.
Hahn [10] has reported a difference in emotional response
to classical music reproduced on an Auro3D 9.1 loudspeaker
setup as opposed to a 5.1 arrangement, on the other hand,
observing overall emotional arousal and pleasantness to
increase with the spatiality of loudspeaker setups as well
as being dependent on the program material. Other studies
have dealt with ratings of listener preference. Francombe
et al. [5] reported increased preference for 3D loudspeaker
setups over 2D in music and other multimedia content,
but they found the benefit of 3D setups with extended
channel counts (particularly 22.2) to be limited as com-
pared to 5.1.4. Silzle et al. [3] found 3D formats to be pre-
ferred over 2D and stereo, also observing increased
preference for 22.2 over 5.1.4 reproduction. They observed
differences in preference to be content-dependent.

Ratings of listener envelopment, overall tonal quality,
presence and overall listening experience have been
evaluated by Eaton and Lee [4] for stereo, 5.1, 5.1.4 and
22.2 setups in reproduction of classical music. Differences
between reproduction formats were found to be content-
dependent, which was hypothesized to be due to different
instrumentation as well as microphone and recording tech-
niques. Guastavino and Katz [6], studying soundscape
reproduction and evaluating a number of attributes, found
marked differences between stereo and 2D reproduction,
with 3D being rated in between on most attributes.

1.2.2 Key observations

Although the works cited above analyze widely different
attributes or notions of immersion, two common themes
emerge from the review. Firstly, many of the attributes
were found to depend on program material. Secondly, a
point of saturation in the respective attributes is observed
in many studies. The number of loudspeakers at which this
effect occurs – and whether it occurs at all – appears to
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differ between experiments. It may be assumed that the
dependency on the reproduction format can be modeled
using sound field features. At the same time, acoustic prop-
erties alone may be insufficient for adequate modeling of
content-dependency.

1.3 Modeling based on sound field parameters

The aforementioned studies have focused on the speaker
setup as the independent variable. Analyses of how the
physical sound field influences perception have mostly been
carried out in the field of concert hall acoustics – where
there is no speaker setup to serve as a proxy variable for
sound field parameters. The use of loudspeakers in listening
experiments, however, leads to experimental procedures
similar to studies on multichannel loudspeaker reproduction
[25–27]. Acoustic metrics for modeling attributes such as
listener envelopment in concert halls were also applied to
multichannel loudspeaker reproduction independent of the
original context [28]. Interaural parameters and properties
of reverberation are typically evaluated as acoustic predic-
tors of perception, in accordance with general knowledge
on the psychoacoustics of spatial sound [29].

In soundscape research, a greater variety of psychoa-
coustic metrics is commonly employed for modeling human
perception [30], including loudness and spectral properties.
Adapting the sound field parameters used by Bergner and
Peissig [31] and Bergner et al. [12], these additional classes
of sound field features are included in the initial set of
parameters utilized in the modeling approach presented
here.

A notable study concerning the methodology of select-
ing features for perceptual modeling is that of Sarroff and
Bello [32]. They took a machine-learning approach to the
prediction of perceived spaciousness in stereo recordings.
Good prediction performance was achieved using support
vector regression, but the features obtained by an auto-
matic feature selection procedure were found to be lacking
in interpretability to some degree. As a limitation of the
approach, they addressed that only two spatial features
were used among mostly temporal and spectral properties
of the music recordings – highlighting that the selection of
features fed into an automatic model building method is
crucial to the final results.

2 Experimental study

This section shall introduce the technical setup and the
music program material used in the experimental study.

2.1 Technical setup

The experimental study has been carried out in the
Immersive Media Laboratory (IML) [33] at the Institute
of Communications Technology (IKT). The listening room
is largely compliant with ITU-R BS.1116-3 [34] in terms of
background noise, reverberation time and frequency
responses of the loudspeakers – except for incorporating
room gain at low frequencies [35], which was deemed more

appropriate for music listening. The setup used in the study
is made up of nine Neumann KH 120 A full-range speakers
and two Neumann KH 810 G subwoofers. Full-range
speaker positions are according to ITU-R BS.2051-2 [36]
setup D. Further details on the listening room, loudspeaker
setup and equalization are given by Hupke et al. [37] and
Bergner et al. [12].

A graphical user interface (GUI) for the IMEI question-
naire has been implemented using the QUEST software [38].
The questionnaire GUI was presented on a tablet computer
positioned on a stand next to the listening position. In
addition to questionnaire responses by the participants,
psychophysiological parameters were recorded using elec-
tromyography (EMG), electrodermal activity (EDA),
breath monitoring and pupillometry equipment. This paper
is concerned with the IMEI questionnaire results only.

2.2 Stimuli

Eight musical pieces have been utilized in the experi-
mental study. The pieces represent a variety of genres
and production techniques, with versions for different loud-
speaker setups prepared for the study. In this paper, the
term stimulus is used to refer to a particular piece in a
particular reproduction format. The formats mono and
stereo refer to a single center loudspeaker and two loud-
speakers at ±30� in the listening plane, respectively. 2D
and 3D refer to loudspeaker arrangements 5.1 and 5.1.4
according to ITU-R BS.2051-2 [36]. In view of the tradeoff
between the number of program material items and repro-
duction formats that may reasonably be evaluated in a
single-session listening experiment, the selection of formats
has been limited to the minimal configurations introducing
rear (2D) and height loudspeakers (3D) among common
setups.

Additional stimuli have been generated for the pieces
Bilder and Rokoko by lowering the playback level of the
3D version by 5dB and playing back the mono signal over
all speakers of the 3D setup (referred to as multi Mono in
Tab. 1), respectively. The 3D variant of the piece Hantel
has been presented twice over the course of the experiment.
Note that not all combinations of pieces and formats have
been used in order to limit the experiment to an appropriate
duration. Combinations with all pieces have been tested for
the stereo, 2D and 3D setups, whereas mono, multiMono
and 3D (�5dB) are considered as anchor-like or control
conditions, respectively. An overview of the stimuli is given
in Table 1.

Mixes for stereo, 5.1 and 5.1.4 were prepared by two
sound engineers, aiming to produce stimuli that are aesthet-
ically similar across reproduction formats and vary only in
their spatial characteristics. The mono version has been
generated by averaging the stereo channels. The level of
the stimuli has been normalized within each piece with
respect to median deviation of the short term LUFS time
series between each format and the respective stereo
version. The overall level for each piece has been adjusted
by an audio engineer taking into consideration the genre
and ensemble for each piece. For reference, the average
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Table 1. Musical pieces and reproduction formats used in the experimental study. Short names of the pieces used throughout this paper are highlighted in bold.

Piece Composer Genre, Ensemble Production Dur.
in s

Stereo avg.
lvl. in dB(A)

Mono Stereo 2D 3D 3D
(�5dB)

multi
Mono

3D
Retest

Walkürenritt R. Wagner Opera (orchestra,
fem. voices)

Manual upmix from
commercial 5.1 [40]

62.5 80.4 X X X

School’s Out A. Cooper, M.
Bruce, G.
Buxton, D.
Dunaway, N.
Smith

Rock (band with
male voice)

spot mics + 3D
ambience (live)

57.5 79.0 X X X

In a Mellow Tone D. Ellington,
performed by
J. Berger

Jazz (band with
fem. voice)

3D mic. setup +
support mics

35.4 73.4 X X X

Im Wunderschönen
Monat Mai

R. Schumann Art song (piano,
male voice)

3D mic. setup +
support mics

38.6 67.9 X X X

Laudate Dominum J. Vila Choir (12 singers) 3D mic. setup +
support mics

33.4 71.6 X X X

Bilder einer
Ausstellung – Das
große Tor von Kiew

M. Mussorgsky Classical (large
orchestra)

3D mic. setup +
support mics

37.3 76.3 X X X X

Die Hantel F. Thiesen Electropop
(synthesizers,
voices)

multitrack studio
production

61.8 75.5 X X X X X*

Rokoko variations –
Finale

P. Tchaikovsky Classical
(woodwind
quintet, cello)

manual upmix from
commercial 5.1 [41]

68.1 71.1 X X X X X

* Not used in the statistical evaluations.
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A-weighted level at the listening position is given for the
stereo version of each piece in Table 1. Stimulus duration
has been chosen to provide sufficient time for an emotional
response to form [39], and to represent a musically coherent
excerpt of the respective piece with consideration of the
genre and tempo, resulting in stimuli of varying duration.
For further details on the stimuli, the reader is referred to
Bergner et al. [12]. In similar studies, stimuli have been pre-
pared using automatic downmixing algorithms [3, 4, 9],
decoding from Ambisonics [6], by muting channels [3] as
well as individual mixes being produced for different
reproduction formats [5, 10]. It is important to note that
the current modeling approach is based entirely on sound
field features of each stimulus which are expected to capture
any remaining inconsistencies between mixes.

2.3 Subjects and study design

The experimental study has been carried out in a
within-subject design with each participant listening to all
stimuli marked with a “X” in Table 1. In total, 57 subjects
participated in the study (31 female and 26 male, avg. age
26.1 years, std. dev. 6.5 years). The order of the stimuli has
been randomized for each participant under the constraint
that the same piece (in different formats) would not occur
more than twice in a row. The order of the IMEI items
has also been randomized for each participant but kept
constant across each participant’s session. In addition to
IMEI item ratings, each participant’s reported personal
liking of the musical pieces has been collected on the same
four-point scale as the IMEI questionnaire. The duration
of the laboratory experiment was approximately 70min.
After setting up the psychophysiological measurement
equipment (EDA, EMG, pupillometry), an experimenter
instructed the participants in the procedure and then left
the room. Participants independently started the playback
of a stimulus via the GUI. The IMEI items were displayed
after each stimulus had finished playing.

3 Modeling based on sound field features

This section details the definition and measurement of
sound field features as well as their application in the pro-
posed modeling framework.

3.1 Sound field parameters

In order to analyze sound field properties of the stimuli,
re-recordings at the listening position using an EM32 Eigen-
mike� [42] have been carried out. Sound field parameters
have been computed based on a fourth order spherical
harmonic representation of the sound field, a zeroth-order
pressure representation and a magnitude least-squares
binaural rendering [43] generated using head-related trans-
fer functions (HRTFs) of a Neumann KU100 head simula-
tor [44] as implemented in the IEM BinauralDecoder plugin
[45]. Rendering from Ambisonics has been chosen over
re-recording with an actual dummy head in order to exclude
uncertainties arising from the use of different equipment

and multiple re-recording runs. Since the chosen rendering
method has been shown to perform well perceptually for
music reproduction [46], it is considered to reproduce binau-
ral cues with adequate precision. Because of the partici-
pants’ limited ability to move out of the listening position
due to the presence of the psycho-physiological measure-
ment equipment, the current study focuses on the sweet
spot only. The variation of sound field parameters around
the listening position is dependent on loudspeaker setups
and rendering techniques used [47]. A re-recording at the
sweet spot is assumed to be sufficiently representative of
the sound field experienced by the human subjects for the
channel-based reproduction formats considered here. The
parameter computation pipeline based on the MATLAB
Audio Toolbox [48], the Spherical Array Processing
Toolbox [49], the Auditory Modeling Toolbox [50], and
AudioCommons [51] has been adapted from Bergner and
Peissig [31] and Bergner et al. [12]. The quantities used as
sound field parameters are listed in Table 2 and can be
grouped roughly into four categories: timbre/quality,
temporal variation, loudness, and spatial/binaural proper-
ties. Sound field parameters have been computed as time
series with a 0.1 s sliding window at a stride of 0.05 s. These
values have been selected to be reasonably certain that vari-
ability due to sound events in the musical excerpts may be
captured while limiting computational effort. Parameters
have been calculated from the broadband audio signals
(B) and, where applicable, in four frequency bands: (0) bass
below 100 Hz, (1) low mids from 100 Hz to 500 Hz, (2) high
mids up to 2.5 kHz, and (3) high frequencies above 2.5 kHz.
Barring the division into low and high mids at 500 Hz, the
crossover frequencies are inspired by Olive et al. [52]. The
four broad frequency bands have been utilized for two
reasons. Firstly, since the current study deals with music
reproduction, it can be assumed that the given bands
roughly match the partitioning of the auditory frequency
spectrum typically undertaken by sound engineers when
making mixing decisions. Secondly, results obtained for
such broad frequency subdivisions are considered to be
more readily interpretable than finer frequency resolutions
such as octave or Gammatone bands.

3.2 Derived features

Being a questionnaire result, the IMEI score can only
capture an integrative or aggregated measure of the impres-
sion made by a particular stimulus on a participant [53].
Therefore summary statistics of the sound field parameter
time series have been used as features for the modeling
approach.

With sound field parameters being on hand in the form
wi(n, k) with time window index n and frequency band index
k 2 {B, 0, 1, 2, 3}, the following features have been defined:

wi;mean kð Þ ¼ mean
n

wi n; kð Þ½ �; ð1aÞ
which indicates the average value of feature wi over time in
each band k across one stimulus, and

wi;var kð Þ ¼ var
n

wi n; kð Þ½ �; ð1bÞ
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which refers to the temporal variance of feature wi in each
band k. Mean and variance have been used as features due
to the parameter distributions being reasonably unimodal
and symmetric. Alternative statistics such as median and
inter-quartile range are also possible choices within the
current approach.

To distinguish between the “raw” sound field parameters
referred to as wi and the resulting sound field features, the
latter shall be termed /j. The sound field features derived
from the same parameter in different frequency bands will
be considered to be distinct features (e.g. /1 = w1,mean(0),
/2 = w1,mean(1), . . . /5 = w1,mean(0), . . .). Independent of
physical units, each feature /j has been normalized to the
interval [0, 1] across the entire data set for descriptive mod-
eling and across subsets used to cross-validate the predictive
model as described in Section 5.

3.3 Modeling approach

A linear mixed modeling approach has been selected due
to the repeated-measures study design. In a linear mixed
model, the response variable is considered to be composed
of a linear combination of fixed effects, a linear combination
of random effects and Gaussian noise according to

~y ¼ U �~cf þ P �~cr þ~�; ð2Þ
where~y is the vector of outcome observations, the matrix U
contains the fixed-effect predictor values and~cf includes the
model coefficients for those predictors – this part is identical
to a “regular” linear model. P contains the random effects
specification while ~cr � N ð~0;RrÞ are the random effects
coefficients assumed to be normally distributed with zero
mean and covariance matrix Rr. Finally, the error
~� � N ð~0;R�Þ is assumed to be normally distributed as well
with covariance matrix R� = Ir�

2, i.e. errors are assumed to
be uncorrelated [54].

3.3.1 Model specification

In the model proposed here, U contains an intercept K
as well as the values /j,fn of the sound field features.

The indexes f and n refer to the musical piece and the repro-
duction method, respectively (thus uniquely identifying
each stimulus). Concerning the random effects, P’s entries
encode to which participant g and which piece f each
observation belongs. Based on the experimental design, a
random offset per participant g has been used to account
for systematic tendencies in individuals’ ratings. An addi-
tional random interaction between participants and pieces
g, f incorporates the effect that a particular piece of music
may have on a particular participant’s ratings irrespective
of the reproduction methods – e.g. a participant particu-
larly liking the genre, interpretation or piece of music. Over-
all, each IMEI rating ygfn by participant g for piece f in
reproduction version n is modeled as

ygfn ¼ K þ cf;1 � /1;fn þ cf;2 � /2;fn þ . . .þ cr;g þ cr;gf þ �gfn:

ð3Þ
Importantly, any explicit information on the reproduction
format (e.g. in the form of format labels) is withheld from
the model, the modeling approach is thus based on the
sound field features /j only.

Given the IMEI scores~y, the coefficient vectors~cf and~cr
are to be estimated under the distributional assumptions
stated above in order to fit the given data. Unlike in linear
regression, no closed-form solution to this problem exists
[54], necessitating treatment as an optimization problem
in~cf and~cr (or, more precisely,~cf and Rr). This optimiza-
tion may be performed in a maximum likelihood framework
using a maximum likelihood (ML) or restricted maximum
likelihood (REML) metric. When comparing mixed models
with different fixed effects, model fitting using ML is recom-
mended [55]. All models have been fitted using ML as
implemented in the R package lmerTest [56] based on
lme4 [57].

3.3.2 Prediction

Equation (3) defines a descriptive modeling approach
for given data, but it may not be used as-is for prediction
in new instances. This is because the random effects are

Table 2. Sound field parameters used in the evaluation, sorted by category. Full names are given for parameters whose short names
may be ambiguous. For full definitions, see Bergner and Peissig [31] and Bergner et al. [12]. Parameters are marked according to the
pressure (p), Ambisonics (A) or binaural (B) stimulus representations they depend upon. Underlined parameters are computed from
broadband signals and in four frequency bands.

Category Parameters

Timbre, quality rough
p (roughness), sharpp (sharpness), spectralCentroidp, spectralCrestp,

spectralDecrease
p, spectralEntropyp, spectralFluxp, spectralKurtosisp,

spectralRolloffPoint
p, spectralSkewnessp, spectralSlopep, spectralSpreadp, boomingp

(timbral booming), MFCC00p, . . ., MFCC12p

Temporal variation fluct
p (fluctuation strength), modDepthP1p, modDepthP2p, modDepthP3p, (periodic modulation depth),

modF1
p, modF2p, modF3p (periodic modulation frequency), modDepthS (stochastic modulation depth)

Loudness LA
p, LAeqp, LAmaxp, LApeakp, loudnessZwickerp, lufsIntp, lufsMomp, lufsPeakp, lufsRangep,

lufsShort
p, oct00p, . . ., oct10p (octave band energy)

Spatial, binaural diff
A (diffuseness), doaAzA, doaElA (horizontal and vertical direction of arrival), niaccB (normalized

inter-aural cross correlation), ildB, itdB (inter-aural level and time difference), sphDIA, sphDIAzA,
sphDIEl

A (overall, horizontal and vertical spherical directivity index), sphGPRatioA (spherical
gradient/pressure ratio), sphGRatioA (spherical gradient ratio), sphPRatioA (spherical pressure ratio)
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specific to the participants g and the pieces f used in model
fitting and cannot be known for a new observation. If ran-
dom effects are used to model disturbances to the actual
effects of interest, only the fixed effects part U � ~cf of a
mixed model may be used for prediction [58]. However,
training a model including the random effects has been
considered necessary to not confound effects related to
participants and pieces with the effects of the sound field
features. In other words, the random effects are considered
to account for participant and piece effects on IMEI in order
to be able to deduce effects of the sound field parameters
that are valid for the overall population.

4 Feature selection

The procedures described in Section 3 result in a total of
386 features1. However, a model based on a few impactful
features is considered to be more expedient than a highly
complex model. What is more, including all available fea-
tures at once inevitably leads to numerical issues in mixed
model estimation.

In order to arrive at a parsimonious but expressive
model, two main strategies may be employed: dimensional-
ity reduction and feature selection. The former is concerned
with aggregating relevant information in a set of variables
of lower dimensionality. Feature selection, on the other
hand, aims to identify a subset of relevant features among
those available. Dimensionality reduction by methods such
as principal component analysis (PCA) presents a level of
abstraction that lessens interpretability, which is the pri-
mary reason for adopting a feature selection approach in
the current work. Feature selection may be carried out
using wrapper or embedded methods [59]. Wrapper
methods perform the search for an optimal feature vector
by re-fitting the desired model architecture for different
feature subsets, whereas embedded methods incorporate
feature selection into the fitting procedure itself. Although
a generalization of L1 regularization of linear models – also
known as the least absolute shrinkage and selection opera-
tor (LASSO) – has been proposed as an embedded method
for mixed models [60], a wrapper approach has been
selected here for simplicity.

A wrapper requires a metric for comparing candidate
models. Nakagawa’s pseudo-R2 [61] is a metric commonly
used to evaluate goodness of fit in mixed models. Generaliz-
ing the common R2 in linear models, two definitions of the
pseudo-R2 exist: The conditional R2

cond: assesses variance
explained by both fixed and random effects whereas the
marginal R2

marg: considers the fixed effects only. Given the
model specification Equation (3), R2

marg: is of primary
interest here. Another common metric is the Akaike infor-
mation criterion (AIC) [62] which is based on information
theoretical reasoning on model fit, with a lower AIC value
indicating a better model. Of these metrics, AIC is consid-
ered to be more appropriate for model selection whereas
R2-type metrics assess variance explained by a particular
model. Unlike R2, AIC will not automatically favor a
more complex model in an attempt to maximize explained
variance [55].

To summarize, wrapper feature selection shall imple-
ment the search for an optimal feature vector~/opt: such that
a model Mð~/opt:Þ fitted using those features is the optimal
model subject to metric GðMÞ:

~/opt: ¼ argmax
~/

G M ~/
� �� �h i

: ð4Þ

4.1 Genetic feature selection

The most generic of feature selection methods is the
evaluation of all feature combinations. For the current
data set this is intractable, necessitating a heuristic to selec-
tively probe the space of feature vectors. The genetic
algorithm has been proposed for feature selection by defin-
ing a vector coding for the inclusion and exclusion of fea-
tures to be optimized [63]. Here, the coding scheme
consists of a vector containing nfeat. unique integer indexes,
each representing one feature occupying the respective
slot [64]. The results of multiple optimization runs with
nfeat. = 4 are shown in Table 3. The algorithm has been
configured with a population size of 32 with two elitist indi-
viduals, a mutation chance of 0.1, and has been run for
64 generations in each instance. Five runs have been carried
out optimizing for minimum AIC, each starting from a
random feature vector.

1
The total number emerges from 2|{z}

mean and variance

�
 

31 � 5|fflffl{zfflffl}
broadband and in bands

þ 11|{z}
broadband only

þ 11þ 13þ 3|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
oct; MFCC; booming

!
¼ 386.

Table 3. Results of five runs of automatic feature selection using the genetic algorithm optimizing for AIC (lower is better). A model
with randomly chosen features is shown in the last row for comparison.

Selected features AIC

modF3Bands3_mean, niaccBands3_mean, modDepthP3Bands3_var, diffBands3_mean 2753
sphDIAzBands3_mean, modDepthP3Bands3_var, sphDIBands3_mean, niaccBands3_mean 2758
LAmaxBands1_mean, diffBands3_var, sphGPRatioBands3_mean, niaccBands0_var 2765
ildBands2_mean, sphGPRatioBands3_mean, lufsPeakBands2_mean, modDepthSBands0_var 2762
niaccBands3_mean, modDepthSBands0_var, diffBands3_mean, lufsIntBands0_var 2756

lufsIntBands2_mean, modDepthP3Bands3_var, lufsRange_mean, ildBands1_mean 2864
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The emerging models score better than a model based
on features selected at random, with features from the
spatial and loudness categories occurring most often in
the selected subsets. However, optimization converges
towards different feature vectors in each run, returning sim-
ilar AIC values. This suggests that the dependency of model
quality on the feature vector is highly non-convex, which in
turn implies that a ranking of features might be more
appropriate than a search for the optimal vector ~/opt:. On
top of that, the interpretability of the selected feature sets
is questionable. For these reasons, a pre-selection among
the available features (known as a filter approach to feature
selection [65]) has been implemented.

4.2 Feature pre-selection

4.2.1 Feature screening

The results obtained from genetic feature selection are
somewhat reminiscent of the results obtained through
automatic feature selection by Sarroff and Bello [32] in that
the optimality and interpretability of the resulting fea-
ture vector are to be doubted. They highlight as a limita-
tion of their approach that features may be selected
because they are confounded with the choice of program
material as a consequence of limited data being available.
Thus – as a first step in the current feature pre-selection
procedure – features that vary strongly between the musical
pieces but not between reproduction methods have been
identified.

The quantity

rrat:;j ¼ mean
f

var
c2Cf

/j

� �

var
c

/j

� � 8f
8<
:

9=
;

2
4

3
5; ð5Þ

has been defined, where pieces are indexed by f and Cf

refers to the subset of all observations belonging to piece
f (with c denoting a particular single observation). The
metric rrat.,j < 1 thus describes the ratio of feature /j’s
average variance within each of the pieces to the feature’s
overall variance. Features that are strongly confounded
with the pieces (f) have rrat.,j ? 0 while features that
vary across reproduction methods within the pieces yield
rrat.,j > 0. As a second metric in the pre-screening method,
the absolute Spearman rank correlation |rS|j := |rS[/j, y]|
of each feature to the experimental IMEI scores has
been used. With the quantities rrat.,j and |rS|j, only
features /j with

qj ¼
rrat:;j

max
j

rrat:;j
þ rSj jj
max

j
rSj jj

> 1:0; ð6Þ

have been considered for further evaluation. This thresh-
old has been selected by inspection of the distribution of
rrat.,j and |rS|j shown in Figure 1 to keep approximately
10% of features. It is apparent that a large number of
features – particularly ones relating to loudness and
spectral properties of the stimuli – have low values of
rrat.,j < 0.25, indicating that they are highly confounded

Figure 1. Scatter plot of the within-piece to overall variance ratio rrat. for each sound field feature against the Spearman
rank correlation |rS| between each feature and the observed IMEI scores. The dotted line indicates the cutoff for the combined rating
qj > 1.0. Colors represent the clusters resulting from the procedure described in Section 4.2.2 (cf. Tab. 4). For features with qj � 1.0,
most labels are hidden for visual clarity.
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with the musical pieces. This is unsurprising given that
the stimuli have been designed with a variation of spatial
parameters in mind. While loudness and timbre features
could have been discarded simply based on this knowl-
edge, the pre-selection procedure underpins this decision
by confirming that the statistics of the sound field features
indeed follow the expected patterns. The 34 features
remaining after pre-screening – corresponding to spatial
sound field properties – are listed in Table 4. The mid
to high frequency bands are primarily represented among
the remaining features. Only two of the 34 features are
based on the bass band and five are broadband features.

Selecting features by (rank) correlation to the target
variable may be argued to foster overfitting the given data.
This risk is minimized by including considerable variation
in terms of genre, ensemble and production techniques.
The broad repertoire should reasonably ensure that a fea-
ture discarded in the pre-screening process due to low qj
would not play a major predictive role even if a bigger data
set were available.

4.2.2 Feature clustering

Some of the features remaining after pre-selection
have been found to exhibit high degrees of collinearity.
Since collinear features may lead to unreliable model
parameter estimates [66], the features in the reduced set
have been clustered by mutual absolute Pearson correlation
jrP½/j1

; /j2
�j between all combinations of features /j1

; /j2
and models in further evaluation have been prevented from
including multiple features belonging to the same cluster.
Agglomerative hierarchical clustering has been employed
with distance metric 1–jrP½/j1

; /j2
�j. By using complete

linkage, a minimum correlation of 0.5 between features in
each cluster has been ensured. The eight clusters obtained
this way are given in Table 4 with the same color coding

as in Figure 1. As expected, clusters are mostly made up
of features based on the same sound field parameter in
different frequency bands.

5 Results and discussion

In this section, results pertaining to the usefulness of the
pre-selected sound field features for descriptive modeling of
the experimental data will be presented first and an optimal
model will be specified. Then, prediction performance of
this optimal model specification will be evaluated using a
cross-validation scheme, focusing on population mean
effects. Finally, the effect of participants’ personal liking
of the musical pieces will be introduced in order to analyze
the prediction accuracy of individual ratings.

5.1 Selected feature set and descriptive modeling

5.1.1 Optimal model specification

After feature pre-selection, all possible models with
nfeat. = 2, 3, 4 features chosen from Table 4 under the con-
straint of not including features from the same cluster have
been evaluated by AIC. In contrast to the full feature set,
this yields a computationally manageable 9474 models.
The optimal model is stated in Table 5. It includes mean
diffuseness between 500 Hz and 2.5 kHz as well as mean
normalized IACC and mean vertical spherical directivity
index above 2.5 kHz. Finally, temporal variance of the
spherical directivity index above 2.5 kHz serves as a predic-
tor. Based on t-tests (using Satterwaithe’s method for esti-
mation of degrees of freedom in the mixed model as
implemented in the R package lmerTest [56]), the three
former effects are determined to be statistically significant
whereas the effect of the last feature is not significant at

Table 4. Features remaining after pre-screening according to criterion qj . Each row represents equivalent features in the frequency
bands stated in Section 3.1, with an entry in the table indicating that a particular feature in a particular band passes the pre-selection
criterion. Letters and colors represent the clusters resulting from the procedure described in Section 4.2.2. Cluster colors correspond to
Figure 1.

Feature name Bands (cluster) Description

B 0 1 2 3

diff_mean Mean diffuseness
doaEl_mean Mean vertical elevation
niacc_mean Mean normalized inter-aural cross-correlation (IACC)
itd_mean Mean inter-aural time difference (ITD)
sphDI_mean Mean spherical directivity index
sphDIAz_mean Mean horizontal spherical directivity index
sphDIEl_mean Mean vertical spherical directivity index
sphGPRatio_mean Mean spherical gradient/pressure ratio
sphGRatio_mean Mean spherical gradient ratio
sphPRatio_mean Mean spherical pressure ratio

doaAz_var Variance of horizontal direction of arrival (DOA)
doaEl_var Variance of vertical DOA
itd_var Variance of ITD
sphDI_var Variance of spherical directivity index
sphDIAz_var Variance of horizontal spherical directivity index
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the a = 0.05 level. Regarding model diagnostics (using
the R package performance [67]), normality of residuals
has been confirmed by a Shapiro-Wilk test (p = 0.369) and
homogeneity of residual variance across predictor vari-
able values has been found to be fulfilled by a Bartlett test
(p = 0.672). Shapiro-Wilk tests analyzing the normality of
random offsets per participant (p = 0.030) and per partici-
pant and piece (p= 0.070) have found the former to deviate
from a normal distribution. Upon inspection of a quantile-
quantile plot this deviation has been deemed acceptable.

5.1.2 Feature ranking

Although the optimal model of Table 5 yields the lowest
AIC among the set of models permissible after feature pre-
selection, it can be reasonably assumed that different model
specifications performing similarly well in terms of AIC can
be found. Therefore, a feature ranking has been established
in parallel to the optimal model search by computing the
difference in mean AIC for models including a particular
feature versus models not including it. This is displayed in
Figure 2. The observed AIC values are in the range
from 2764.1 to 2965.2 with a median of 2827.6. Figure 2
shows high-frequency IACC and high-mid frequency diffuse-
ness to be among the highest-ranking features. Inclusion of
vertical spherical directivity index, however, even leads to
an increase in AIC on average. This suggests that its useful-
ness as a predictor (being included in the optimal model) is
linked to the particular combination with the other predic-
tors instead of the feature’s own merit. The inclusion of
the variance of high-frequency spherical directivity index is
neutral with respect to AIC on average. Indeed, AIC values
of the optimal model (AIC = 2764.1) and a version with this
feature removed (AIC = 2765.3) barely differ. Further, it is
of note that the lowest AIC values resulting from the feature
pre-selection strategy are comparable to those obtained from
blind AIC optimization using the genetic algorithm as listed
in Table 3. However, themodels emerging from the proposed
approach include more salient features than those chosen by
the genetic algorithm, as shall be discussed below.

5.1.3 Discussion of selected features

Diffuseness and normalized IACC are likely feature
choices. Diffuseness as defined by Pulkki [68] is a quantity
designed to assess a sound field on a continuum from a

single plane wave to a completely diffuse field. IACC is
known to be linked to perceptual properties such as auditory
source width (ASW) [69, 70] as well as envelopment [69, 71]
and spaciousness [71], with a deliberate increase in IACC
being able to reduce perceived ASW and envelopment in
reproduction using binaural room impulse responses [69].
In line with these insights, the regression coefficients stated
in Table 5 indicate that higher diffuseness and lower IACC
lead to increased immersion. In concert halls, spatial percep-
tion is influenced by the azimuthal angular distribution of
reflections [25]. Although not featured in the optimal model
specification, multiple features based on the horizontal
spherical directivity index are among the highest-ranking
features in Figure 2. Perceived spaciousness has also been
reported to depend on temporal variations of inter-aural
parameters [72, 73], which are not prominently featured
among the pre-selected features (Tab. 4) and thus are absent
from the optimal model.

Figure 2. Difference in mean AIC (lower is better) of models
including and excluding each feature after pre-selection. All
possible combinations of features in Table 4 not assigned to the
same cluster have been evaluated.

Table 5. Best model according to the feature selection procedure of Section 4. t-tests performed using Satterwaithe’s method as
implemented in R package lmerTest [56].

Fixed effects Estimates Standard error df t p

Intercept 2.19 0.09 435.23 24.368 <0.001
diffBands2_mean 0.52 0.07 1524.52 7.173 <0.001
niaccBands3_mean �0.43 0.06 1513.04 �7.667 <0.001
sphDIElBands3_mean 0.23 0.07 1473.81 3.496 <0.001
sphDIBands3_var 0.11 0.06 1410.96 1.780 0.075
Random effects r2r;g = 0.131 (participant) AIC = 2764.1

r2r;gf = 0.128 (participant and piece) R2
marg: ¼ 0:078

Residual variance r2� = 0.225 R2
cond: ¼ 0:573
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The selection of vertical spherical directivity index with
a positive regression coefficient is somewhat unexpected
because this implies that immersion increases if the sound
field is more directional (narrower) in the vertical dimen-
sion. For most of the pieces in the repertoire, the feature
sphDIElBands3_mean is lowest in 3D reproduction.
Since this feature is detrimental to a model’s AIC on aver-
age, it is hypothesized that its inclusion is only a good
choice in conjunction with IACC and diffuseness. This is
to be discussed in detail in Section 5.2.1.

It is important to be aware that the results obtained
here may depend on the specific feature computation
pipeline. For example, the implementation of ITD and
IACC used in this work is based on the ear signals’ energy
envelopes (termed “IACCe” by Andreopoulou and Katz
[74]). This is implemented and recommended as a default
by the Auditory Modeling Toolbox [50] and has been con-
sidered appropriate in the light of the time resolution of
0.05 s chosen here. Different time resolutions and different
sound field parameter definitions may, however, influence
results. An analysis of different parameter definitions and
implementations is considered to be beyond the scope of
this paper.

5.2 Predictive modeling

In addition to descriptively modeling the experimental
data, prediction of IMEI ratings from the sound field fea-
tures has been investigated using the model specification
of Table 5. The evaluation has been carried out by cross-
validation. 64 instances of partitioning into training and
test sets have been performed, with each of those instances
setting aside the data for one of the 8 musical pieces and for
10 of the 57 participants for validation. Evaluation of each
model with newly estimated coefficients is thus always
performed on data for an unknown piece and an unknown
participant. As mentioned in Section 3.3.2, random effects

cannot be known for new data, and are considered as distur-
bances in the current modeling framework. Hence only the
fixed effects part of a model is used for prediction. When
fitting each of the 64 models, normalization of sound field
features to [0, 1] is performed based on the respective train-
ing set only to prevent information on the test set from
bleeding into training data. The normalization parameters
are then stored and applied to the test data. This approach
relies on a training set with all features spanning represen-
tative value ranges. Alternatively, normalization may be
carried out on the basis of expected ranges the features
may take. However, this requires the incorporation of prior
assumptions on feature distributions. It shall also be
remarked that the size of the collected data set has necessi-
tated validation to be carried on the same set of data used
for initial feature selection. For more thorough validation of
the proposed approach, larger-scale data collection and
evaluation is required.

5.2.1 Prediction of mean ratings

In order to evaluate whether the proposed modeling
approach is able to represent the saturation of immersion
and of content-dependency mentioned in Section 1.2 and
observed in the current study, it is necessary to compare
mean model predictions to the means of observed IMEI
ratings by reproduction format and by piece. Figure 3 dis-
plays the means and bootstrapped 95% confidence intervals
of observed IMEI scores by reproduction format and by
piece along with prediction results averaged over the
64 cross-validation runs. A good match between true and
predicted means is apparent for mono, stereo, 2D and 3D
reproduction with an average absolute difference of experi-
mental mean ratings and mean predictions of 0.01. Notably,
the experimental results show a very small difference
between the mean ratings for 2D and 3D, which is in line
with the saturation effects often observed in similar studies

Figure 3. Means and bootstrapped 95% confidence intervals of true IMEI ratings as well as mean model predictions in the cross-
validation procedure. Predictions are according to different model specifications. As predictions (except for those including liking)
contain no between-participant variance, no confidence intervals are shown. (a) By reproduction format. (b) By piece.
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[6, 9, 11]. This behavior is well-captured by mean model
predictions. The feature sphDIElBands3_mean plays a
key role in modeling the relationship between the 2D and
3D formats as confirmed by repeating the cross-validation
procedure with a model specification omitting this feature.
As shown in Figure 3a, this leads to underestimation of
mean 2D IMEI scores and overestimation of 3D scores, with
means of predictions and observed ratings differing by
±0.04 in both cases. The proposed feature selection proce-
dure can thus be deemed to have succeeded at identifying
a suitable choice of predictors. More generally, the predic-
tion results show that ratings of immersion – on a popula-
tion-average level – may indeed be traced down to
acoustic properties of the stimuli.

The mean prediction for format multiMono is imprecise,
however, with mean predictions differing by 0.18 from the
mean experimental rating (although the predicted mean is
still within the true mean’s confidence interval). This may
be linked to the fact that only one piece (Rokoko) was
presented in this format. Although all predictions were
made for previously unseen participants and pieces, the
training data did contain observations with the same
format for mono, stereo, 2D, and 3D. Training on data
omitting a format altogether has not been performed
because the limited number of reproduction methods means
that removing one format would strongly distort the distri-
bution of sound field features learned by a model.

Observed and predicted mean IMEI scores by piece are
displayed in Figure 3b. The average absolute difference
between experimental mean IMEI scores and predictions
is 0.04, with the greatest difference being observed for the
piece Mellow at 0.09. Note that features being confounded
with the musical pieces accounting for the prediction
results can be ruled out by design of the feature selection
procedure. Variation in IMEI ratings between pieces can
thus be partially explained by their acoustic properties.

While the proposed modeling approach shows good pre-
diction performance in the cross-validation scheme applied
here, the reliability of the presented observations may ben-
efit from further substantiation. In particular, more varia-
tion in sound field features (i.e. more different stimuli,
even at the cost of fewer participant ratings per stimulus)
would be desirable. Although 1596 observations of IMEI
ratings have been used in the current evaluation, only
28 distinct values have been available for each sound field
feature. This is due to the study being subject to various
constraints resulting in the design stated in Section 2.

5.2.2 Prediction of individual ratings

Distinct from mean predictions is the evaluation of how
precise individual IMEI predictions are with respect to the
observed ratings. In order to predict individual ratings,
subjective effects need to be re-introduced to the model
specification. To this end, the specification of Table 5 has
been extended by adding reported liking as an ordinal
predictor variable with a fixed effect. Cross-validation has
been repeated for this extended model specification with
the same data partitioning as for the “sound field only”

approach. Per-instance error observed in cross-validation
is plotted against the respective predicted value in Figure 4
for both specifications.

The models including liking predict more extremal val-
ues in the range of 1.2–3.26 whereas the predictions of the
sound field only models are capped at 1.9 and 2.85. The
error distribution reveals that the sound field only models
yield greater absolute errors. Indeed, mean absolute error
(MAE) for this specification is 0.584 across all observations
in cross-validation whereas it is 0.446 for the models includ-
ing liking. A model including liking is thus able to predict
individual IMEI scores more accurately than a model only
using population average effects of sound field features.
The descriptive model of Table 5 – which expresses subjec-
tive impact on immersion as random effects – confirms this
finding. This is evident from the metrics R2

marg: ¼ 0:078 and
R2

cond: ¼ 0:573 of the descriptive model. Since R2
cond: includes

variance explained by random effects whereas R2
marg: indi-

cates variance explained by fixed effects only, is clear that
a more substantial amount of variance in the ratings is
actually explained by the effects of participants and pieces
rather than the sound field features.

On the other hand, Figure 3b shows that mean
predictions by piece are less accurate with respect to exper-
imental mean IMEI ratings when liking is part of the model
specification. In the mean predictions by format shown in
Figure 3a, this effect appears to be averaged out across
pieces whereas some mean predicted IMEI ratings by piece
are biased. Although not the focus of this paper, these
observations show that subjective effects are in need of
further investigation. In particular, the current (sound field
only) modeling approach regards effects of sound field
features to be independent of participant and piece effects.

Figure 4. Errors plotted against predicted IMEI scores in the
cross-validation procedure for a model specification according to
Table 5 and one additionally including liking. Marginal distri-
butions are displayed as histograms. Minimum and maximum
possible errors due to boundedness of IMEI scores are indicated
by dotted lines.
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Amore general approach may include individual differences
in perception, for instance by incorporating per-person
random slopes in the mixed model framework in addition
to the random offsets used here.

The slopes at the bottom and top of the point clouds in
Figure 4 are due to IMEI scores being bounded between 1
and 4 (e.g. a predicted score of 1.5 may not have an error
lower than �0.5 as the true score cannot be below 1). This
points to the perceptual response to the stimuli being
somewhat nonlinear in the first place. Results obtained here
support the conclusion that a linear relationship may be
assumed within a certain interval, but modeling of scores
at the bounds of the domain may benefit from a nonlinear
approach such as generalized linear mixed effects models
including variable transformations through nonlinear link
functions. This is further substantiated by the fact that
existing auditory models do utilize psychoacoustically
motivated nonlinear dependencies on parameters such as
IACC [69].

6 Summary and conclusion

This paper presents an approach for modeling immer-
sion – as quantified by IMEI – based on acoustic properties
of musical stimuli reproduced using different surround
sound loudspeaker setups. Using immersion ratings
collected in the experimental study, a linear mixed effects
approach has been employed in order to estimate popula-
tion-average effects of sound field features while accounting
for subjective effects and effects of the musical pieces on
individual subjects.

To arrive at sound field parameters serving as meaning-
ful predictors of immersion, a feature selection procedure
based on feature statistics and model fit has been imple-
mented. Feature selection confirms quantities related to
spatial sound perception such as IACC and diffuseness, par-
ticularly in the mid to high frequency range, to be relevant in
modeling immersion. With the selected features, a descrip-
tive model of the experimental data has been estimated.
Application of the model specification in a predictive capac-
ity has been explored by means of cross-validation. The
modeling approach has been found to predict mean ratings
for the various reproduction methods with high accuracy
and mean ratings per musical piece with a somewhat lower
accuracy. This permits to draw the tentative conclusion that
the immersion saturation phenomenon observed in this and
other studies – i.e. an increase in the number of loudspeakers
yielding diminishing returns in terms of immersion and
related attributes – can be traced down to acoustic features
of sound reproduced over different loudspeaker setups. The
content-dependency of immersion, which is also commonly
observed, can partially be explained by acoustic features.
A study design featuring greater variation in acoustic fea-
tures is identified as a prerequisite for more general valida-
tion of the proposed modeling approach and an evaluation
of the general validity of the features identified as predictors.
Furthermore, an analysis of the model’s sensitivity to the
sound field parameters is a necessary next step towards a

generalization of the approach. Specifically, the dependen-
cies of the computed sound field features (and, by extension,
model predictions) on the computation pipeline’s implemen-
tation specifics require further evaluation. Additionally, an
investigation of the sound field parameters’ spatial variation
and uncertainty – potentially leading to an incorporation of
this variation into the model – could help to ensure the
model’s validity outside of the currently assumed sweet spot
listening conditions.

Although this is not the focus of this paper, the role of
subjective effects has been found to be highly relevant to
the psychological construct of immersion. In descriptive
modeling, the effects of participants and pieces have been
found to explain substantially more variance than the
sound field features. In predictive modeling, introducing
reported liking of the musical piece as an additional predic-
tor yields more accurate predictions of individual immersion
ratings over a model based on sound field features only.
Nonetheless, sound field features alone serve as good predic-
tors of immersion on the population level.

Overall, the proposed approach may be regarded as a
step towards a framework for modeling and predicting
perceptual and psychological responses to surround sound
loudspeaker reproduction independent of particular speaker
arrangements, production techniques and content types
and formats. Comparing acoustic properties could help to
explain and contextualize varying results obtained in differ-
ent studies on multichannel loudspeaker reproduction –

which is otherwise relegated to hypothetical deliberations
based on different experimental conditions and program
material.
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