
Gottfried Wilhelm Leibniz Universität Hannover

Fakultät für Elektrotechnik und Informatik

Documenting Knowledge Graph
Embedding and Link Prediction using

Knowledge Graphs

A thesis submitted in fulfillment of the requirements for the degree of
Master of Science (M. Sc.)

BY

Huaxia Zhao
Matriculation number: 10032756
E-mail: strongzhx@gmail.com

First evaluator: Prof. Dr. Maria-Esther Vidal
Second evaluator: Prof. Dr. Sören Auer

Supervisor: M.Sc. Yashrajsinh Chudasama

February 1, 2024

Declaration of Authorship

I, Huaxia Zhao, declare that this thesis titled, ’Documenting Knowledge Graph Em-
bedding and Link Prediction using Knowledge Graphs’ and the work presented in it
are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

XXXX

Signature:

Date:

I

Acknowledgements

Thanks to Prof. Dr. Maria-Esther Vidal for allowing me to complete my master’s
thesis in the TIB-SDM group. And also thanks to the lecture Prof. Vidal holds in
the last two semesters. I learned a lot about the field of knowledge graphs. Her
comments and suggestions, as well as all aspects of support, were very helpful to
me. Thanks to my supervisor M.Sc. Yashrajsinh Chudasama for providing goals
and direction, as well as for providing guidance and help throughout the process.
I have benefited a lot from the weekly discussions. Thanks to all members of the
SDM team who were very kind to me. Thanks to my parents, I was able to study
abroad and complete my studies in a foreign country. Thanks to my girlfriend for
the companionship and support. Thanks to the many friends I have met along the
way.

II

Abstract

In recent years, sub-symbolic learning, i.e., Knowledge Graph Embedding (KGE)
incorporated with Knowledge Graphs (KGs) has gained significant attention in var-
ious downstream tasks (e.g., Link Prediction (LP)). These techniques learn a latent
vector representation of KG’s semantical structure to infer missing links. Nonethe-
less, the KGE models remain a black box, and the decision-making process behind
them is not clear. Thus, the trustability and reliability of the model’s outcomes
have been challenged. While many state-of-the-art approaches provide data-driven
frameworks to address these issues, they do not always provide a complete under-
standing, and the interpretations are not machine-readable. That is why, in this
work, we extend a hybrid interpretable framework, InterpretME [12], in the field of
the KGE models, especially for translation distance models, which include TransE,
TransH, TransR, and TransD. The experimental evaluation on various benchmark
KGs supports the validity of this approach, which we term Trace KGE. Trace KGE,
in particular, contributes to increased interpretability and understanding of the per-
plexing KGE model’s behavior.

Keywords: Knowledge Graph, Knowledge Graph Embeddings, Interpretability

III

Contents

1 Introduction 1
1.1 Motivating Example . 4
1.2 Contributions . 6
1.3 Document Structure . 7
1.4 Summary of the Chapter . 7

2 Background 8
2.1 Knowledge Graphs . 8

2.1.1 Resource Description Framework 8
2.1.2 Graphs . 11
2.1.3 SPARQL . 13
2.1.4 RDF Mapping Languages . 16
2.1.5 SDM-RDFizer . 18

2.2 Translation Family of Knowledge Graph Embedding Models 19
2.2.1 Evaluation Metrics . 24

2.3 Symbolic Learning . 25
2.4 Summary of the Chapter . 27

3 Related Work 28
3.1 LIME . 28
3.2 SHAP . 29
3.3 InterpretME . 30
3.4 AutoML Tools . 32
3.5 Summary of the Chapter . 33

4 Tracing KGE Models over InterpretME 34
4.1 Problem Statement . 34
4.2 Proposed Solution . 35

4.2.1 Tracing Inputs . 35

IV

4.2.2 Tracing Data Preparation . 35
4.2.3 Tracing HPO and Model Building 36
4.2.4 Tracing Model Evaluation . 37
4.2.5 Building a Comprehensive Pipeline 37

4.3 Summary of the Chapter . 38

5 Implementation 39
5.1 Data Preparation . 41
5.2 KGE Models Hyperparameter Optimization 43
5.3 KGE Model Training and Evaluation 44
5.4 Documenting KGE Models . 44
5.5 Summary of the Chapter . 46

6 Experimental Evaluation 47
6.1 Benchmarks . 48
6.2 Metrics . 49
6.3 Implementation Details . 49
6.4 Baseline . 50
6.5 Results . 50

6.5.1 Baseline Experiment . 51
6.5.2 Influence of HPO . 51
6.5.3 Influence of hyperparameters in TransR 54
6.5.4 Operations required to initialize the pipeline 55
6.5.5 SPARQL queries over the IntepretME KG 59

6.6 Summary of the Chapter . 61

7 Conclusions and Future Work 62
7.1 Conclusions . 62
7.2 Limitations . 63
7.3 Future Work . 63

Bibliography 65

V

List of Figures

1.1 Visualization of Table 1.3 in 2D axes format, each entity and relation from
the dataset in low dimensional space shown as a vector, further the result
of this learning is shown as a change in the vector of the entity shown
in Figure 2.4. 4

1.2 Motivating Example. Retrieving an RDF sub-graph via SPARQL Proto-
col And RDF Query Language (SPARQL) queries over the French Royalty
KG endpoint, a Knowledge Graph Embedding (KGE) model (e.g., TransE)
can be used to predict the missing links. Although tools like Local Inter-
pretable Model-agnostic Explanations (LIME) and SHapley Additive exPla-
nations (SHAP) can be utilized, in general, results generated by these mod-
els lack explainability where the learn embeddings is represented in latent
vector space. 5

2.1 Example of Resource Description Framework (RDF) Triples . The
RDF model interprets the natural language representation of sentences.
”Edward I was Henry’s father, and he married Eleanor of Castile and Mar-
garet of France. Eleanor is Henry’s mother and had a spouse named Edward
I” into RDF triples of the form subject, predicate, and object. 10

2.2 Data Graph. The example in Figure 2.1 depicts a subgraph concerning the
entity dbr:Edward I of England. The graph depicts an entity’s connection
to its spouse, mother, and father. 11

2.3 The illustration depicts an example of a KG, which contains not only data
but also metadata that describes the entities, allowing the reader or ma-
chine to better understand the content in a limited context. The example
illustrates that there are three entities, and that there is some relationship
between the three entities, it also tells us through the metadata that the
three entities are all human beings, but they are also members of the French
royal family. 12

VI

2.4 The figure demonstrates that the embeddings generated by the TransE
model, and presented as vectors in 2-dimensional space, and with this data,
it is possible to work on a link prediction task. In which, for LP task
(dbr:Isabella of Austria, intr:hasSpouse, ?)the vector of target entity dbr:Isabella of Austria
can add vector of relation intr:hasSpouse, and get a tail, which is approxi-
mately equal to literal ”No”. 21

2.5 The figure demonstrates the embeddings generated by the TransH model,
relations are all presented in a hyperplane, and all entities will be projected
into this hyperplane, and find out which entity is close to the target entity
add relation. 22

2.6 The figure demonstrates that the embeddings generated by the TransR
model, will generate relation space for each relation, and the entity will
be projected to the relation space to explore the relation between two entities. 23

2.7 Demonstration of TransD The biggest di↵erence between TransR and
TransD is that TransD considers head and tail as separated entities, and
proposes two mapping matrix M rh and M rt to help project the entities
into relation space. 24

3.1 An example of LIME, where colorful marks and weights highlight the fea-
tures, that make the classifier predict the writer as atheism or Christian. . . 29

3.2 An example of SHAP, shows weights of input features, which makes a black
box model have more explanation. 30

3.3 InterpretME . 30

3.4 The InterpretME architecture displays input as either Knowledge Graphs
(KG)s or datasets in formats such as CSV and JSON. Training interpretable
predictive model components, including SHACL validation, data prepara-
tion, and sampling, are used to prepare data for predictive models. The data
is subsequently supplied to the model-building component, which performs
predictive modeling tasks. To document interpretable predictive models,
generate and explore the InterpretME KG to acquire insights. 31

4.1 An RDF knowledge graph as input, and as output requires finish the link
prediction task and also a better understanding of the process and result,
what approaches could achieve this purpose. 35

4.2 This diagram illustrates the pipeline workflow, which involves not only
model-related work, but more importantly, tracing and documenting the
data during the pipeline. To get a rich context to enhance the interpretabil-
ity of the model. 38

5.1 Shows the simplest application of the KGE model. 39

VII

5.2 InterpretME pipeline for tracing the KGE Models. Firstly, the pipeline
retrieves the required data, then hyperparameters optimizing is deployed.
Further, model building is obtain to train and evaluate the model. During
execution of the pipeline, each step is traced and stored as metadata. Lastly,
these stored metadata with RML mapping rules is utilized to generate the
InterpretME KG. 40

6.1 Exemplar Sub-Graph. Figure 6.1a shows an instance dbr:AfonsoII of Portugal

with relations, such as dbo:parent, dbo:mother, dbo:sposue, dbo:child.
While, Figure 6.1b demonstrates the neighborhood sub-graph of dbr:AfonsoII of Portugal

with enriched heuristics edges (e.g., dbo:predecessor, dbo:successor)
generated by SPaRKLE approach. 48

6.2 Hit@10 and MRR Comparison Plot based onTable 6.2 52
6.3 Figure based on Table 6.3, a better visualization of the impact, that Hy-

perparameter Optimization (HPO) has made on the models. In metrics
Hits@10. As shown in the figure, HPO has no impact on TransR, while the
use of custom Hyperparameters for these three models has a better perfor-
mance than the use of the hyperparameters provided by HPO. 53

6.4 Figure based on Table 6.3, a better visualization of the impact, that HPO
has made on the models. In metrics MRR. As one can see from the figure,
it has a limited impact on the MRR performance of TransH and TransD.
And the customized hyperparameters can still bring better performance for
TransE. 53

6.5 The line chart clearly shows the impact of hyperparameters on model per-
formance. The similar trend of MRR and Hits@10 can prove that hyperpa-
rameters a↵ect the performance of the evaluation metrics. 57

6.6 An entity instance of InterpretME KG, where the triple owned by TransR
and TransD is omitted and the target entity could have one to four intr:hasModel
relation, it depends on the setting of the corresponding run. 59

6.7 With the SPARQL query in Listing 6.2, we are able to get a list of corre-
sponding results Table 6.4 from the InterpretME KG. 60

VIII

List of Tables

1.1 The dataset in the format of a hot encoding for traditional ML model, it is
di↵erent from the Table 1.2, whose input already has features that could be
identified by the classifier, the target of traditional Machine Learning (ML)
models is to train the model and make the model able to recognize these
features. 2

1.2 The dataset in the format of RDF triples, will not have any features available
for the classifier, needs to learn the embeddings based on the model. 3

1.3 The output of the KGE model in the format of 2-dimensional vector space
for the KGE model, embeddings between entities and relations will carry
information during the learning process of the model. 3

2.1 Prefixes and Their Associated Namespaces 10

2.2 Result set from Listing 2.1 . 14

2.3 Result graph from Listing 2.2, it uses PREFIXes from the CONSTRUCT
clause, and it is stored and demonstrated in Tab-separated values (TSV)
format. 15

2.4 Relational Table EMP : works for Listing 2.4, RDF creator will base on the
mapping rule, get data from this table to build a RDF graph, entire columns
can be left out, depending only on the requirements of the mapping rules. . 17

2.5 Part of created RDF graph base on Listing 2.4 and Table 2.4, It is stored
and displayed in TSV format. 17

6.1 Benchmark KGs statistics . 47

6.2 Evaluation Results. KGE models evaluation is represented in terms of
Hits@10 and MRR over benchmark KGs. Bold represents better values. . . 51

IX

6.3 Evaluation results of setting hyperparameters on TransFamily. The
first group is without setting hyperparameters, the second group is when
the model was built with embedding dimension set to 200 and epochs set
to 100, and the third group is when the model uses the Python KnowlEdge
EmbeddiNgs (PyKEEN) HPO function to calculate the hyperparameters.
And the bold represents the best-performing data for each type of model in
this run. 54

6.4 Evaluation of the TransR model in di↵erent hyperparameters settings re-
ported with Hits@10 and MRR. 54

6.5 This table is used to analyze the e↵ect of embedding dimensions, step for
adjustment is 32, the hyperparameters not shown here will remain the same. 56

6.6 This table is used to analyze the e↵ect of batch size, step for adjustment is
1024, the hyperparameters not shown here will remain the same. 56

6.7 This table is used to analyze the e↵ect of epochs, step for adjustment is 20,
the hyperparameters not shown here will remain the same. 56

X

Acronyms

AutoML Automated Machine Learning

HPO Hyperparameter Optimization

KG Knowledge Graphs

KGE Knowledge Graph Embedding

LIME Local Interpretable Model-agnostic Explanations

ML Machine Learning

MRR Mean Reciprocal Rank

PyKEEN Python KnowlEdge EmbeddiNgs

R2RML RDB to RDF Mapping Language

RDF Resource Description Framework

RML RDF Mapping Language

SHAP SHapley Additive exPlanations

SPARQL SPARQL Protocol And RDF Query Language

TSV Tab-separated values

URI Uniform Resource Identifier

XI

Chapter 1

Introduction

Recently, the sub-symbolic systems, i.e., the Machine Learning (ML) [23] methods
have become a widely used technology. From facial recognition to self-driving cars,
from personalized recommendations to cancer diagnosis, ML is used in an increasing
number of applications [24, 30, 42]. However, these di↵erent types of models can
provide many statistical results that help us to measure the performance of models,
such as accuracy, recall, precision, and F1-score. Table 1.1 demonstrates the tra-
ditional ML approach uses dense numeric vectors as input to represent data, and
an output with metrics score, such as (true:0.7, false: 0.3) to represent the result is
70% to be true. Nevertheless, the process of decision-making by such models is still
opaque, we hardly know how the result comes out, and it is also hard to get a com-
pletely correct result every time from the models. Therefore, making the decisions
of the model more trustable and interpretable is something that many researchers
have been working on [29, 33]. For some critical decisions or medical diagnoses (e.g.,
cancer), experts cannot simply trust a result that only depends on the high values
of a group of metrics, but also on explanations of a model’s behavior [33]. Moreover,
data-driven frameworks such as SHAP [29] and LIME [33] have shown considerable
achievement in various domains (e.g., healthcare). In the biomedical field, cancer is
a complex and multifactorial disease, and it can indeed be influenced by various fac-
tors. For Oncologists, their decision is always based on di↵erent information. For a
model, it will analyze and get results based on limited resources, such as some images
with cancer characteristics, or some information about patient symptoms as input
of the model. But users hardly know which part (or key points) will be treated by a
model as critical information and lead to a prediction result in the biomedical area,
e.g., cancer. However, such global and local explanations (e.g., relevant features list)
of each instance for the prediction task are human-readable. This is the reason why

1

Chapter 1. Introduction

Table 1.1: The dataset in the format of a hot encoding for traditional ML model,
it is di↵erent from the Table 1.2, whose input already has features that could be
identified by the classifier, the target of traditional ML models is to train the model
and make the model able to recognize these features.

Person hasChild hasGrandChild gender hasSpouse
Afonso 1 1 0 1
Matilda 1 1 1 1
Beatrice 0 0 1 0

even though the model’s performance with high accuracy, the experts are still not
able to fully trust the ML model’s predictions [15]. Therefore, the necessity for re-
search on interpretable methods of such complex ML models is required to facilitate
the user with more comprehensive human– and machine–readable interpretations.
On the other hand, Knowledge Graphs (KGs) are structured graph data models of
real-world knowledge, where nodes are linked by directed edges denoted by labels
conveying semantic relations which results in RDF triples called facts. Each fact is
represented by hsubject, predicate, objecti. In exemplary cross-domain, several RDF
KGs, such as DBpedia [26], Wikidata [38] have been a widespread concept and shown
tremendous progress in the assessment of KGs or a recommendation systems [19].
Table 1.2 represents an excerpt from the DBpedia KG about a french royal member.
It is a way to represent the data by graphs and also use many methods to enhance
the knowledge it carries. It can include processes such as data integration, knowledge
representation, and knowledge discovery, and can be used in predictive models. Fur-
ther, the sub-symbolic learning can be applied to the field of knowledge graphs for
not only Knowledge Graph Completion (KGC) task (i.e., Link Prediction (LP)) [7],
but also to accomplish some of the downstream tasks of knowledge graphs, such as
question answering, chat-bot, and recommendation systems [20, 37, 40].

Knowledge Graph Embedding (KGE) models is a sub-symbolic approach that
creates a continuous low-dimensional vector space for entities and relations that can
better express the graph, which can then be further used for the prediction of a
missing links [4, 19]. The KGE model has gained significant attention [39], relies on
supervised learning, and like other ML models, is a black box model. KGE models
are very di↵erent from how normal ML models usually represent data. Here, the
KGE models use a vector space to represent the entities and relations of the KGs
in n-embedding dimensions (at least one vector space for entities, and some KGE
models have an additional vector space for relations). Table 1.3 depicts the latent
vector representation of entities and relations from Table 1.2 in 2-dimensional space.

2

Table 1.2: The dataset in the format of RDF triples, will not have any features
available for the classifier, needs to learn the embeddings based on the model.

Subject Predicate Object
dbr:Adalard of Paris dbo:hasSpouse No
dbr:Adelaide of Paris dbo:parent dbr:Adalard of Paris
dbr:Adelaide of Paris rdf:type dbr:Person
dbr:Adelaide of Paris dbo:child dbr:Charles the Simple
dbr:Adelaide of Paris dbo:spouse dbr:dbr:Louis the Stammerer
dbr:Adelaide of Paris dbo:gender female

Table 1.3: The output of the KGE model in the format of 2-dimensional vector space
for the KGE model, embeddings between entities and relations will carry information
during the learning process of the model.

2-Dimension x y
dbo:hasSpouse 0.9584 -0.6897

dbr:Adalard of Paris 0.3279 0.9447
0 0.9122 -0.4097

female -0.4295 0.9031
10 0.3416 -0.9399

dbr:Marie de’ Medici -0.9420 -0.3356

Slightly di↵erent from common the ML models, we could use several ranking metrics
to evaluate the performance of the KGE models, such as Mean Reciprocal Rank
(MRR) and Hits@k (e.g., Hits@10 or Hits@1) described in Chapter 2.

Moreover, in time, the KGE models are capable of performing several tasks, such
as Entity Clustering (EC), Node Classification (NC), and LP. Nevertheless, the in-
ner mechanism of such translation models is ambiguous. Consider an example of tail
prediction (i.e., heh, r, ?i), where given a head entity (Adalard of Paris), a relation
(hasSpouse) and the goal is to predict the missing tail entity et. The translation
KGE models can easily learn the representation to predict the link. Nonetheless,
this prediction is not self explanatory. Several approaches [11, 34] have been pro-
posed to investigate these research directions. Here, explainable frameworks, such
as LIME [33] provides the important features listed as vectors and this represen-
tation is hard to understand and also cannot be translated back to original entity
characteristics. Closely related to our work, InterpretME [12] is capable of providing
the interpretations of ML model decisions in a human-and-machine readable format.

3

Chapter 1. Introduction

Figure 1.1: Visualization of Table 1.3 in 2D axes format, each entity and relation
from the dataset in low dimensional space shown as a vector, further the result of
this learning is shown as a change in the vector of the entity shown in Figure 2.4.

Such semantic web technology tools provide a perception of traceability and reliabil-
ity currently for traditional ML models, thus more research needs to be conducted,
in particular, interpreting the KGE models that handle latent vector representation.

1.1 Motivating Example

In the evolving field of data science, information loss due to the passage of time, miss-
ing and corrupted data, and other factors is a widespread challenge[9, 10]. Historical
databases, created by less advanced technologies and incomplete documentation, are
often the most vulnerable to information loss. The critical task of addressing missing
data has become an integral part of data assessment. The use of machine learning
methods to refine data based on KG characteristics has become a viable solution.
Figure 1.2 illustrates our motivation, we take the data refinement problem of the
French Royalty KG dataset as an example, aiming to refine whether the target head
has a spouse or not using the existing known characteristics of a royal member.
According to the pipeline, we have a structured KG dataset from an endpoint, we
could get a subgraph via SPARQL CONSTRUCT clauses. This subgraph is dif-
ferent from the input data required by the common ML model, and the di↵erence
can be seen in Table 1.1 and Table 1.2, with this subgraph and some predefined
parameter configurations to a KGE model (e.g., TransE), we could use KGE models

4

1.1. Motivating Example

Figure 1.2: Motivating Example. Retrieving an RDF sub-graph via SPARQL
queries over the French Royalty KG endpoint, a KGE model (e.g., TransE) can be
used to predict the missing links. Although tools like LIME and SHAP can be
utilized, in general, results generated by these models lack explainability where the
learn embeddings is represented in latent vector space.

to get embeddings of entities and relations shown in Table 1.3. A simple example
with 2 dimension space depicted in Figure 2.2, with these embeddings, the KGE
models could predict missing links, e.g., with a target entity ”dbr:Adalard of Paris”
as Head, a relation ”hasSpouse” and we want to predict the tail entity to refine the
triple structure (Head, Relation, Tail). After the training phase, the KGE model will
provide feedback with embeddings and allow us to calculate a complete list of scores
through a score function, and with a target head and a target relation, we could find
out the most plausible tail entity ranking with the highest score.

However, as discussed above, it is hard to convince users that the result is reliable
only with a high value of the plausibility score of a triple, when research could show
that triples with a high value of the plausibility score are likely to be true [7], and a
low value to triples that are likely to be false. By comparing Table 1.1 and Table 1.2,
it can be observed that the inputs required by the regular ML model can already
be more intuitively observed for some features, and by changing some of the values,

5

Chapter 1. Introduction

the e↵ect of the feature can be quickly investigated [33], but the inputs of the KGE
model can not be adjusted arbitrarily. The two state-of-the-art declarative tools:
SHAP [29] and LIME [33]), currently do not consider the KG as input and are not
able to provide a proper explanation for the KGE models. This makes the KGE
model an imperfect fit at a time when there is a constant quest for higher and better
model explainability. However, with the input and output of KGE models, it is
able to combine them in an improved context to improve its explainability. In this
thesis, a pipeline, Trace KGE, is proposed that can complete the whole process of
tracing the KGE model, including data preparation, model building, model training,
obtaining results and metrics, and at the same time improve the interpretability of
the model through the feature of KG being able to carry rich contexts.

1.2 Contributions

The main contributions of this thesis are summarized as follows:

• This work contributes a pipeline to apply KGE models beginning with extract-
ing training data (subgraph from the endpoint) and using methods for tuning
hyperparameters used in the KGE models, then training and evaluating mod-
els. During these phases, documenting all relevant contextual metadata, e.g.,
RDF data from the endpoint or locally stored dataset, hyperparameters, model
characteristics and metrics like MRR and Hit@10 from the evaluation phase
of the pipeline, which are used to measure the performance of models. In the
end, utilizing the RML mapping rules for the traced metadata to generate a
new KG named InterpretME KG. Further, using SPARQL queries over the
InterpretME KG to retrieve the interpretations of the KGE models.

• This work also optimizes a large number of repetitive operations for the user
and reducing the di�culty and risk of errors for the execution of pipeline. More-
over, helping the user to understand the inner characteristics of the model and
to analyze the model’s performance through the richness of the contexts stored
in the InterpretME KG. Extending the IntepretME project in the direction
of KGE model interpretability research enables IntepretME to use translation
distance models for the link prediction task and demonstrates the results.

• Additionally, an ablation study confirmed that InterpretME pipeline helps to
understand the influence of hyperparameters in the evaluation of model’s per-
formance in a more e�cient way.

6

1.3. Document Structure

1.3 Document Structure

The thesis contains seven chapters. Chapter 1 is the introduction and also shows
the reader a motivating example, the contributions, and the problem tackled in this
work. Chapter 2 summarizes the basic concepts required to understand the follow-
ing chapters. In Chapter 3, the reader can find approaches related to this work,
and summarize the state-of-the-art approach. The proposed solution and extensions
and improvements to it are discussed formally in Chapter 4, it also shows a running
example, which is the same as the motivating example and from the same dataset.
Chapter 5 describes how to implement the solution proposed in the previous chapter,
and introduces the packages that help in the implementation process. The next chap-
ter, Chapter 6 starts with two research questions, evaluating the proposed pipeline
by conducting multiple sets of experiments and analyzing it, in order to answer the
research questions posed. The final chapter, Chapter 7 contains a conclusion, the
known and possible limitations of the pipeline, and suggests ideas that might improve
or refine this work in future work.

1.4 Summary of the Chapter

This chapter briefly describes the applications of ML techniques, the need for model
interpretability, and the implications of these developments for the field of Knowledge
Graphs, shows the reader the contributions of this work and the problems to be solved
by means of a motivating example, and describes the structure and relevance of the
entire thesis.

7

Chapter 2

Background

This chapter introduces some basic concepts used in this thesis. The background
part can be divided into two main parts. The first part is about the basic concepts
and the topic of KG, and the second part introduces approaches related to inductive
knowledge, focusing on TransFamily.

2.1 Knowledge Graphs

2.1.1 Resource Description Framework

The RDF is a standardized data model recommended by W3C (WWW Consortium).
RDF is a loosely typed (or semi-structured) data model. It uses RDF triples structure
to store data, which statement as subject, predicate, and object(head, relation, and
tail) [8]. Given the infinitive sets R (set of Uniform Resource Identifier (URI)), B
(set of Blank Nodes), and L (set of literals). An RDF graph G is defined as a labeled
directed graph G= (V, E), where: V ✓ (R [B [L), E is a set of RDF triples t=
(V1,V2,V3), V1 is the subject of t and V1 2 (R [B), V2 is the property of t and
V2 2 R, V3 is the object of t and V3 2 (R [B [L).

Typically hierarchical structure of URI:

[scheme]://[authority][path][?query][#fragment]

scheme: Indicates the protocol to access the resource (e.g., http, https, ftp).
authority: the domain or IP address of the server hosting the resource. It may

also include port information(e.g., dbpedia.org, user:password@example.com:8080).
path: the path where we could find the resource on the server, like ontology.

8

2.1. Knowledge Graphs

query: start with question mark ?, use query to retrieve the resource, has addi-
tional parameters, in terms of ?P1=value1&P2=value2.

fragment: start with slash mark # identifier of the fragment to be accessed.

Examples of URI

https://dbpedia.org/ontology/spouse

http://dbpedia.org/resource/Edward_I_of_England

https://www.w3.org/1999/02/22-rdf-syntax-ns#type

RDF represents factual statements as triples: subject, property, and object. Fig-
ure 2.1 shows the RDF triples linked with the prefixes in the form of URLs. prefix
is a type of URI that enhances readability and maintainability. Examples of pre-
fixes are provided below Table 2.1. In Figure 2.1, dbr:Edward I of England is the
subject represents a resource Edward I of England that was extracted from DBpedia
with the assigned prefix dbr utilized for resources.

Structured data models:
A data model is strictly typed, also known as a structured data model, if
each data point must fall into one of several types or categories. Types
are predefined and cannot change dynamically. A relational data model
Table 1.1 is one of the examples of structured data models.

A relational database has a unique key for each row in the table. The columns of
a table describe the type or category of data, and each record typically has a value
for each type. Relational tables accept NULL values in some cases, however, in the
ML field, this might a↵ect training and evaluation, leading to incorrect conclusions
and unreliable analysis [10].

Semi-structured data models:
Loosely typed (or semi-structured) data models allow items to exist inde-
pendently and be connected without adhering to a category or being of a
specific type.

RDF translates factual statements into three small components as resources: the
subject (a URI or a blank node), the predicate (a URI), and the object (a URI, literal,
or blank node). It establishes a foundation for combining identifying, and distributing
structured and semi-structured data across various applications or protocols1.

Blank nodes: Blank nodes correspond to existential variables. They denote
the existence of an unknown resource that makes the triple true.

1https://www.w3.org/RDF/#

9

https://dbpedia.org/ontology/spouse
http://dbpedia.org/resource/Edward_I_of_England
https://www.w3.org/1999/02/22-rdf-syntax-ns#type
https://www.w3.org/RDF/#

Chapter 2. Background

Figure 2.1: Example of RDF Triples . The RDF model interprets the natural
language representation of sentences. ”Edward I was Henry’s father, and he married
Eleanor of Castile and Margaret of France. Eleanor is Henry’s mother and had a
spouse named Edward I” into RDF triples of the form subject, predicate, and object.

Prefix Namespace
rr http://www.w3.org/ns/r2rml#

rml http://semweb.mmlab.be/ns/rml#

ql http://semweb.mmlab.be/ns/ql#

rdfs http://www.w3.org/2000/01/rdf-schema#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

schema http://schema.org/

xsd http://www.w3.org/2001/XMLSchema#

owl http://www.w3.org/2002/07/owl#

prov http://www.w3.org/ns/prov#

intr http://interpretme.org/vocab/

dbo http://dbpedia.org/ontology/

dbr http://dbpedia.org/resource/

dbp https://dbpedia.org/property/

foaf http://xmlns.com/foaf/0.1/

Table 2.1: Prefixes and Their Associated Namespaces

10

2.1. Knowledge Graphs

Figure 2.2: Data Graph. The example in Figure 2.1 depicts a subgraph concerning
the entity dbr:Edward I of England. The graph depicts an entity’s connection to
its spouse, mother, and father.

Literals: Literals that are of a certain type can be specified using XML
schema datatypes (e.g., string, integer, float or date).

Examples of Literals

”Docetaxel” http://www.w3.org/2001/XMLSchema#string
”4500.60” http://www.w3.org/2001/XMLSchema#float
”2022-10-21” http://www.w3.org/2001/XMLSchema#date

2.1.2 Graphs

Graphs: graph is a structure that consists of a set of nodes and connected
by a set of edges. Graphs are widely used to model relationships and con-
nections between di↵erent entities. [17]

Data Graphs

Data Graphs: DGs are structures that store data in the format of graphs,
which have nodes connected by edges [19].

From Figure 2.2, could see nodes represent entities and edges could show relations,
and it could be generated from triples.

11

Chapter 2. Background

Figure 2.3: The illustration depicts an example of a KG, which contains not only
data but also metadata that describes the entities, allowing the reader or machine
to better understand the content in a limited context. The example illustrates that
there are three entities, and that there is some relationship between the three entities,
it also tells us through the metadata that the three entities are all human beings,
but they are also members of the French royal family.

Knowledge Graphs

Knowledge Graphs: Given a set Con of countable infinite constants.
Knowledge Graph [19] is defined as a directed edge-labeled graph G =
(V,E,L) where V ✓ Con is a set of nodes, L ✓ Con is a set of edge la-
bels, and E ✓ V×L×V is a set of edges

Labeled edges provide significance to the knowledge graph’s entities by encapsulat-
ing structured information. That is, a labeled edge can be regarded as a sentence
consisting of a subject (the entity), the predicate (the edge’s label), and the object
(the literal or another entity). Multiple sentences (or triples in the RDF graph)
about an entity sets it in a semantic context, giving it meaning. Unlike data graphs,
knowledge graphs contain both data and metadata.Figure 2.3. Metadata and data
can be combined with inference methods to deduce new facts.

12

2.1. Knowledge Graphs

Metadata: Metadata refers to organized information that describes, ex-
plains, locates, and represents data. It simplifies the complexity of an ob-
ject. Metadata facilitates the retrieval, use, and management of scientific
data.

2.1.3 SPARQL

SPARQL: SPARQL is a query language, that defines the protocol for using
clauses to make SPARQL queries and receiving the query results from RDF.
It can retrieve the expected result sets or result graphs from a KG or any
data source that can be mapped to RDF [35]. It is specified, structured, and
maintained by W3C.
A SPARQL query consists of two main sections and several optional sections,
which can be formed into
[clause section][WHERE section{optional1}]{optional2}

SPARQL commonly supports four types of query clauses: SELECT, CONSTRUCT,
ASK, and DESCRIBE. It also supports the use of namespaces with prefixes to sim-
plify and improve the readability of queries. Several prefixes could be read in Ta-
ble 2.1. In the clause section, we need to define the required result, which will be
columns of the result set or the structure of the graph. WHERE section is used
to limit the result or help us get more specific results. There are also many useful
operators in the WHERE section, like FILTER, LIMIT, and so on, to help restrict
the result, and there is an optional2 section that can use GROUP BY, ORDER BY,
etc. More descriptions and examples can be found in W3C website2.

SELECT: The syntax of a SELECT query is as follows:

• SELECT nominates which components of the matches made against
the data should be returned.

• FROM (optional) indicates the sources for the data against which to
find matches.

• WHERE defines graph patterns to match against the data.

2https://www.w3.org/TR/rdf-sparql-query/

13

https://www.w3.org/TR/rdf-sparql-query/

Chapter 2. Background

Examples of SELECT

PREFIX dbr:<http :// dbpedia.org/resource/>

PREFIX dbo:<http :// dbpedia.org/ontology/>

SELECT DISTINCT ?name ?numChilds

WHERE{

?name dbo:numChilds ?numChilds

}

Listing 2.1: A formal SELECT clause has SELECT section, that can define the
column of the result set, and a WHERE section, that can specify the result, in
this query, it will get the name of the entities that has triples where relation
is dbo:numChilds, and also return the obejct of these triples. DISTINCT is
used to remove the duplicate of the result.

name numChilds
dbr:Maria Josepha of Austria 11
dbr:Adelaide of Italy 0
dbr:Maria Kunigunde of Saxony 0
.

Table 2.2: Result set from Listing 2.1

CONSTRUCT: The CONSTRUCT query returns a single RDF graph as a
result, which is specified by a graph template, and can be parts or the whole
of graphs from the target RDF dataset. It uses a set union to combine the
result of the query solution from the clause section, and it defines the result
template in triple format.

Examples of CONSTRUCT

PREFIX dbr:<http :// dbpedia.org/resource/>

PREFIX dbo:<http :// dbpedia.org/ontology/>

CONSTRUCT {

(?name dbo:numChilds ?numChilds).

(?name dbo:gender ?gender) }

WHERE{

?name dbo:numChilds ?numChilds.

OPTIONAL {?name dbo:gender ?gender}

14

2.1. Knowledge Graphs

}

Listing 2.2: A formal CONSTRUCT clause has CONSTRUCT section, that
can define the structure of graph, cause the result is usually is the subgraph
of the original graph, and a WHERE section with same purpose as above, the
result will be like 2.1.3.

subject predicate object
dbr:Adela of Champagne dbo:gender ”female”
dbr:Adela of Champagne dbo:numChilds 2
dbr:Bivin of Gorze dbo:gender ”male”
dbr:Bivin of Gorze dbo:numChilds 0
.

Table 2.3: Result graph from Listing 2.2, it uses PREFIXes from the CON-
STRUCT clause, and it is stored and demonstrated in TSV format.

ASK: A question pattern has only two possible answers: yes or no. Applica-
tions can utilize the ASK form to determine whether a question pattern has
a solution. There is no information returned regarding the possible query
solutions; only whether or not a solution exists.

Examples of ASK

PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

ASK { ?x foaf:name "Alice" }

Listing 2.3: A formal ASK clause has ASK section, that can define a query
pattern and test whether has a solution, result with yes or no.

The input of the KGE models is RDF triples, i.e., hsubject, predicate, objecti.
The CONSTRUCT query is used to extract a RDF sub-graph from the full KG. As a
result, the pipeline for training the KGE model and predicting missing links between
entities becomes more e�cient.

15

Chapter 2. Background

2.1.4 RDF Mapping Languages

R2RML

R2RML: RDB to RDF Mapping Language (R2RML) is a language used to
customize mapping rules from relational databases to RDF data 3. Based
on W3C4 recommendation language, the R2RML is expressed in RDF and
composed of following syntax:

• logicalTable used to define the source, which could be a table or a valid
SQL query.

• subjectMap defines the subject of the generated RDF triples; for one
subjectMap. It may have multiple PredicateObjectMaps.

• PredicateObjectMap contains predicate and objectMap, aiming to de-
fine the predicate and the object of the triples.

This language is not designed to generate one single triple, but based on the Tir-
plesMaps generates bunches of triples according to the table and also fits the format
defined by the mapping rules. One example of the result could be found in Table 2.5,
which is based on Listing 2.4 and Table 2.4.

Examples of R2RML

@prefix ex: <http :// example.com/ns#>.

<Employee >

rr:logicalTable [rr:tableName "EMP"];

rr:subjectMap [

rr:template "http :// www.example.com/employee /{

EMPID}";

rr:class ex:Employee;

];

rr:predicateObjectMap [

rr:predicate ex:name;

rr:objectMap [rr:column "NAME"];

].

rr:predicateObjectMap [

rr:predicate ex:Department;

rr:objectMap [rr:column "Department"];

].

16

2.1. Knowledge Graphs

Listing 2.4: R2RML-Example

EMPID NAME Gender Department
0 Tom ”male” Tech
1 Jhon ”male” HR
2 Sam ”male” Tech
3 Jack ”male” Sale
.

Table 2.4: Relational Table EMP : works for Listing 2.4, RDF creator will base
on the mapping rule, get data from this table to build a RDF graph, entire
columns can be left out, depending only on the requirements of the mapping
rules.

subject predicate object
ex:0 ex:name Tom
ex:0 ex:Department Tech
ex:1 ex:name Jhon
ex:1 ex:Department HR
.

Table 2.5: Part of created RDF graph base on Listing 2.4 and Table 2.4, It is
stored and displayed in TSV format.

RML

RML: RDF Mapping Language (RML) [14] is an extension of R2RML,
which is standard from W3C to express mappings from relational databases
to RDF, and RML enable us to express mapping from heterogeneous data
structures, i.e., JSON, CSV, XML, and relational databases.

Examples of RML mappling

<ModelDetails >

rml:logicalSource [rml:source "InterpretME/files/

model_config.csv";

rml:referenceFormulation ql:CSV;

];

17

Chapter 2. Background

rr:subjectMap [

rr:template "http :// interpretme.org/entity /{

run_id}_{model}";

rr:class intr:Model

];

rr:predicateObjectMap [

rr:predicate intr:ModelName;

rr:objectMap [

rml:reference "model";

]

];

rr:predicateObjectMap [

rr:predicate intr:hasEpochs;

rr:objectMap [

rml:reference "num_epochs";

]

];

Listing 2.5: RML mappling -Example The biggest di↵erence between RML
mapping R2RML mapping is it can be defined for data in any other source
format, not only for Relational database. It is specified for this purpose.

In our work, we use RML to extract expect RDF triples from di↵erent data
sources, like orignal data sources, hype-parameters in our pipeline, link predict result
from KGE models, evaluation result provided by PyKEEN.

2.1.5 SDM-RDFizer

SDM-RDFizer [21] is a mapping rule interpreter that can turn unstructured data
into RDF knowledge graphs. It allows the generation of RDF knowledge graphs
from heterogeneous data sources. The SDM-RDFizer uses optimized data structures
and relational algebra operations to enable the e�cient execution of RML triple maps
even in the presence of large amounts of data. SDM-RDFizer can handle data from a
variety of sources (CSV, JSON, RDB, and XML), processing each set of RML rules
(TriplesMap) in a multi-thread safe approach. The SDM-RDFizer demonstrates the
advantages of establishing solutions for the problem of knowledge graph construc-
tion in well-established fields such as data integration systems and query processing.
SDM-RDFizer was made accessible as a resource due to the requirement for e�cient

18

2.2. Translation Family of Knowledge Graph Embedding Models

knowledge graph development in commercial and research applications.
SDM-RDFizer combines entities acquired during ML model training, as well as

all traceable metadata from the InterpretME pipeline, into the InterpretME KG as
factual assertions. The traced information from InterpretME contains SPARQL end-
points, feature definitions in the input KG, SHACL validation reports for entities in
the input KG, predictive model features and outcomes, LIME entity interpretations,
and so on. The InterpretME KG documents the learned ML behavior through both
machine and human statements. Traceability is ensured by aligning entities in the
InterpretME and input KGs. The GitHub 5 repository has a full overview of the
usage and actions to take when using SDM-RDFizer.

2.2 Translation Family of Knowledge Graph Em-
bedding Models

Given a Knowledge Graph (KG), defined as a directed edge-labeled graph KG=(V,E,L).
A KGE models[4] transform nodes and edges in G into a low-dimensional continuous
vector space that preserves the structure of G. There has been widespread adoption
of KGs, which store knowledge in machine-driven formats. KGs are typically noisy
and incomplete, several methods have been developed to predict new relationships.
Specifically, it is described as predicting the head/tail entities for (h, r, ?)/(?, r, t)
predicting missing relationships between entities in the KG.

Plausibility scores: Given a directed edge-labeled graph G = (V,E,L), a
set of vectors T , and a knowledge graph embedding (✏, p) of G. A plausibility
score function �, is a partial function T x T x T) R, such that for a triple
t=(s p o) in V x L x V , �(✏(s), ⇢(p), ✏(o)) computes the plausibility of t.

KGE models, given the embedding vectors for the entities and relations of the
KG, calculate a score expressing the plausibility of a triple. Assigning high values of
scores to triples that are probably true and low scores to triples that are probably
false is the aim of a plausibility score function. The objective of a plausibility score
function is to assign high values of � to triples that are likely to be true and low
scores to triples that are likely to be false.

KGE models learn latent vector representations of the entities e 2 " and relations
r 2 R in a KG that best preserve its structural properties. The objective of a
knowledge graph embedding model is to learn the embeddings in (✏, p) that maximize
the plausibility of positive edges in E+ and minimize to the edges the plausibility of

5https://github.com/SDM-TIB/SDM-RDFizer

19

https://github.com/SDM-TIB/SDM-RDFizer

Chapter 2. Background

negative edges in E�.

• The set of positive edges in G, E+, correspond to the edges in E.

• The set of negative edges in G, E�, correspond to the edges in V x L x V that
are not in E+.

TransE, TransH, TransR, and TransD are among the KGE models that are part
of the translation family. The euclidean lengths of the subject and object are used
by the translation-based embedding models to convert the KG entities into low-
dimensional vector space.

TransE

TransE is a representative model of translational distance models [7, 39] and one
of the most significant models of knowledge graph embedding. TransE converts a
knowledge graph’s entities and relations into a low-dimensional vector space. A 2-
dimensional vector space example of a head entity and relation translation to a tail
entity is shown in Figure 2.4. Nevertheless, such learnt vector embeddings capture
and maintain the semantic relationships of entities in a KG. Entities and relations are
represented as vectors in the same space, TransE can model relations as a translation
of head-to-tail embeddings, for a correct ternary (h, r, t), the embedding vector of
the head entity plus the embedding vector of the relation should be approximately
equal to the embedding vector of the tail entity, i.e., h+r ⇡ t. Thus, the scoring
function is defined as:

f(h, r, t) = �kh+ r � tkp (1)

with p 2 1,2, and the score is expected to be large, when the triple is true.
TransE can be used for large-scale KGs. However, it inherently cannot model

1-N, N-1 and N-M relations: assume(h, r, t1), (h, r, t2)2 K, then the model adapts
the embeddings to ensure h+r ⇡ t1 and h+r ⇡ t2 , cause h, r, and t1 t2 in the same
vector space, if h and r are determined, then h+ r = t t is determined, with t ⇡ t1
and t ⇡ t2 lead result to t1 ⇡ t2, in many scenarios result in t1 ⇡ t2 is not expected,
so while TransE performs well in some scenarios, it still has its limitations [39]. For
exmaple, one person may have two children, this two children could not be counted
as same or close, while they have a lot of similarities, they will theoretically have a lot
of di↵erences, such as gender, and for royalty, some have succession rights and some
don’t, which makes the gap between two children of the same parents sometimes
wide, but these are blurred by the characteristic of the TransE.

20

2.2. Translation Family of Knowledge Graph Embedding Models

Figure 2.4: The figure demonstrates that the embeddings generated by the TransE
model, and presented as vectors in 2-dimensional space, and with this data, it is pos-
sible to work on a link prediction task. In which, for LP task (dbr:Isabella of Austria,
intr:hasSpouse, ?)the vector of target entity dbr:Isabella of Austria can add vector of
relation intr:hasSpouse, and get a tail, which is approximately equal to literal ”No”.

TransH

TransH [41]Figure 2.5 is an extension of TransE that specifically addresses the limi-
tations of TransE in modeling 1-N, N-1, N-M relations. In TransH, each relation is
represented by a hyperplane, or more specifically a normal vector of this hyperplane
W r 2 R, and a vector dr. To compute the plausibility of a triple, the head embed-
ding and the tail embedding are first projected onto the relation-specific hyperplane,
by using hr = h�W |

rhW r and tr = t�W |
rtW r.

After the projection, we get hr and tr, and the relation itself exists on the hy-
perplane corresponding to it, i.e., dr, which has similar operations with TransE. The
projection of the head entity hr add the relation dr should be approximately equal
to projection of the tail entity hr.

f(h, r, t) = �khr + dr + trkp (2)

In this case, tr1 and tr1 will be similar, but t1 and t2 could have many di↵erence
before projected to the hyperplane.

21

Chapter 2. Background

Figure 2.5: The figure demonstrates the embeddings generated by the TransH model,
relations are all presented in a hyperplane, and all entities will be projected into this
hyperplane, and find out which entity is close to the target entity add relation.

TransR

TransR [28] is a further extension of TransH, that no more put all the entities and
relations from the KG within the same semantic space, it explicitly considers entities
and relations as di↵erent objects and therefore represents them in di↵erent vector
spaces. For a triple(h,r,t) the vector embeddings of the entities, h,t 2 R , are first
projected into the relation space by means of a relation-specific projection matrix
M r: hr = M rh and tr = M rt. r is on the relation space and with hr and tr, we
could repeat the approximately equation, i.e., hr + r ⇡ tr. corresponding scoring
function is as follow:

f(h, r, t) = �khr + r + trkp (3)

22

2.2. Translation Family of Knowledge Graph Embedding Models

Figure 2.6: The figure demonstrates that the embeddings generated by the TransR
model, will generate relation space for each relation, and the entity will be projected
to the relation space to explore the relation between two entities.

TransD

TransD [22] is improved from TransR. It also considers entities and relations as ob-
jects existing in di↵erent vector spaces. The example could be found in Section 2.2.
However, instead of performing the same relation-specific projection for all entity
embeddings, entities are separated into head entities and tail entities. and use dif-
ferent matrics Equation 4 and Equation 5 to project the entity to the relation space.
After the projection, TransD takes the same action as TransE.

M rh = rph
>
p + Im⇥n (4)

M rt = rpt
>
p + Im⇥n (5)

h? = M rhh (6)

t? = M rtt (7)

f(h, r, t) = �kh? + r + t?k22 (8)

23

Chapter 2. Background

Figure 2.7: Demonstration of TransD The biggest di↵erence between TransR and
TransD is that TransD considers head and tail as separated entities, and proposes
two mapping matrix M rh and M rt to help project the entities into relation space.

2.2.1 Evaluation Metrics

Metrics are a set of standards for evaluating the performance of things or a model
in this book. It enables the model to be evaluated in the same way and under the
same criteria. For example, experiments are conducted in the same environment, the
same dataset is trained and evaluated, or the results are computed using the same
set of formulas to understand their performance or to compare them with relevant
other models, i.e., MRR, Hits@10 and so on.

MRR: MRR is a metric that measures the performance of the ranking
task. It will show the speed of retrieving the expected answers from queries.
Reciprocal rank (RR) is used to retrieve the ranking of the first relevant or
correct result from the result-ranked list and get its reciprocal. MRR will
repeat several times of RR query and calculate their averages. It tends to
be more a↵ected by low-ranking values [32].

MRR =
1

N

NX

i=1

1

ranki
(9)

where N is the number of queries, and ranki is the rank of the correct answer
in the i-th query. The higher the MRR, the better the system is at placing
relevant results at the top of the list, and queries can also faster to run and
get the expect result.

24

2.3. Symbolic Learning

Example of MRR:

• Query 1: Correct answer ranked 4.

• Query 2: Correct answer ranked 3.

• Query 3: Correct answer ranked 2.

The MRR for these queries is calculated as follows:

MRR =
1

3

✓
1

4
+

1

3
+

1

2

◆
=

1

6
⇡ 0.17

Hits@k: Hits@k is a metric that focuses more on the performance of the
system in accuracy, which k could be 1, 3, 10, and so on, to measure the
correct answer hit in Top-K.

Example of Hits@10:

• Query 1: Found expected to result in the Top 10 of the result list.

• Query 2: Found expected to result in Top 10 of the result list.

• Query 3: Did not find an expected result in Top 10 of the result list.

The calculation of HIT@10 is:

This means that 2 out of 3 users found correct result in the Top-10.

2.3 Symbolic Learning

Symbolic Learning is a form of inductive learning technique commonly used over
KGs. In contrast to many other techniques, symbolic learning focuses on reason-
ing and logic-based methods to acquire and represent knowledge. Knowledge graph
embeddings are numerical models of knowledge graphs. However, these models are
often di�cult to explain or comprehend. These numerical models are used to predict
edges between nodes in KGs, but they cannot provide explanations or justifications
for the predictions made. Rule mining is a self-supervised symbolic learning tech-

25

Chapter 2. Background

nique that involves identifying significant patterns in the form of rules from massive
collections of background knowledge. The purpose of rule mining is to discover new
rules with a high ratio of positive edges and a low ratio of negative edges.

B1 ^ B2 ^ ^ Bn =) r(x, y) (10)

In the above equation, r(x, y) represents the head of the rule and B1^B2^ ...^Bn

represents the body of the rule. The horn rule claims that if all of the body atoms
occur in the KG, the head atom can be determined.
Mined Rules:
Body:- Head
Body is a conjunction of predicate facts; Head is a predicate fact:
dbo:gender(X,”male”@en),dbo:parent(Y,X):-dbo:father(Y,X)

Example of Mined Rules:

dbo:gender(dbr:Sancho I of Portugal,”male”@en),
dbo:parent(dbr:Sancho I of Portugal, dbr:Afonso II of Portugal)
:-
dbo:father(dbr:Sancho I of Portugal, dbr:Afonso II of Portugal)

The body of the above mentioned example rule states that the
gender of dbr:Sancho I of Portugal is male and his parent is
dbr:Afonso II of Portugal which implies the head of the rule
dbr:Sancho I of Portugal has father dbr:Afonso II of Portugal

This thesis will use the self-supervised approach known as Rule Mining, which
falls under the category of Symbolic Learning. Rule Mining can be defined as fol-
lows: Given a directed edge-labeled graph G = (V,E, L), E+ set of positive edges
which correspond to the edges in E. E� set of negative edges corresponding to the
triples (s

0
, p

0
, o

0
) 2 (V,E, L)�E. Several metrics like Support, Confidence and PCA

Confidence scores are computed in the rule mining process.

26

2.4. Summary of the Chapter

2.4 Summary of the Chapter

Some fundamental ideas utilized in this master’s thesis are introduced in this chapter.
The first section covers the fundamental ideas of Scientific Data Management and
KG, which aids in understanding the pipeline’s workflow. RDF and KG are the
foundational elements that allow entities to carry metadata and be enhanced with
semantic context; these elements form the basis of the KGE models. SPARQL is
the standard query language that permits users to query data from any data source
that can be mapped to RDF, including databases. In order to search the KG and
extract appropriate subgraphs for KGE models, SELECT and CONSTRUCT queries
are employed. InterpretME allows tracing the metadata at di↵erent stages of the
predictive model pipeline. The RML mappings are executed over the RDFizer and
are used to create InterpretME KG that contains all the traced metadata. The second
part will introduce approaches related to Inductive Knowledge, which focuses on
TransFamily and symbolic learning, The TransFamily model is part of KGE models,
which contain TransE, TransH, TransR, TransD, and several metrics to measure the
performance of the model, symbolic learning is based on rule mining to enrich the
incomplete KGs. This enriched KG will have an impact on TransFamily models.

27

Chapter 3

Related Work

To improve the interpretability of machine learning (ML) models, researchers have
proposed a variety of methods and tools in recent years. Among them, LIME, SHAP,
and InterpretME are three approaches that have attracted much attention [12, 29,
33]. LIME focuses on model-independent local explanations by generating inter-
pretable graphical representations of individual samples by generating interpretable
graphs. In contrast, SHAP is based on Shapley values and provides a globally consis-
tent interpretation, allowing the user to understand the characteristic contributions
of the entire model. However, these two methods have limitations; their outputs are
not machine-readable, and they also remain di�cult for humans to interpret in the
absence of context. InterpretME bridges the gap between data value and predictive
modeling by making it easier to describe predictive model conclusions using factual
statements and by establishing relationships to the application domain KG.

3.1 LIME

Predictions of black-box models are often di�cult to interpret, which makes it dif-
ficult for users to trust the model’s decisions. Users are interested in learning more
about the model’s methodology, particularly when it comes to application scenarios
that demand a high degree of interpretability. The core idea of LIME is to approxi-
mate the decision boundaries of the model by generating local neighborhood samples
in the input space and observing the predictions of these neighborhood samples in
the black-box model. LIME emphasizes its model-independence, i.e., it can be used
to interpret any classifier without being constrained by the type and structure of
the model itself. This is achieved by generating locally interpretable models that
do not necessarily have to be the same as the original model. The idea of LIME is

28

3.2. SHAP

to construct an interpretable local model that explains the model’s predictions on a
particular instance by generating local perturbations in the input space and observ-
ing the model’s behavior around these perturbations. Figure Figure 3.1shows the
interpreted graphical representations generated by LIME, which visualize which fea-
tures in the input space play a key role in the model’s predictions. The paper points
out that LIME can be applied in a variety of domains, including healthcare, finance,
and other domains that require high levels of model interpretability. It improves user
confidence in the model and facilitates practical application of the model.

Figure 3.1: An example of LIME, where colorful marks and weights highlight the
features, that make the classifier predict the writer as atheism or Christian.

3.2 SHAP

SHAP is a framework for analyzing the outputs of machine learning models Fig-
ure 3.2. It is based on game theory’s Shapley values and is used to determine how
much each characteristic adds to the model output. The Shapley values represent
the contribution of each feature to the model output considering all possible combi-
nations of features. SHAP not only provides an interpretation of individual samples
but also can compute an average Shapley value over the entire set of features, thus
providing a global model interpretation. This helps to understand the impact of
di↵erent features on the overall model behavior. Horizontal bar plots (bar plots) or
Hammington circle plots (force plots) are used to visualize the impact of each feature
on the model output. Similar to LIME, SHAP is model-agnostic and is suitable for
a variety of machine learning models, including deep and integrated learning.

29

Chapter 3. Related Work

Figure 3.2: An example of SHAP, shows weights of input features, which makes a
black box model have more explanation.

3.3 InterpretME

Figure 3.3: InterpretME

InterpretME[12]Figure 3.3 is an analytical
tool for tracing and explaining predictive
models created using data from KGs, CSV,
and JSON files. InterpretME is a standalone
framework that works on independent sys-
tems. Multiple runs can be integrated into a
single InterpretME KG for comparing inter-
pretations. InterpretME combines machine
learning algorithms with features from KG
to provide rich and relevant insights. It im-
proves the model’s interpretability, assists
the user, and increases e�ciency by integrat-
ing various forms of information from the trained model into the KG. InterpretME
examines SHACL constraints across input KG nodes and generates validation reports
for each constraint and target entity. These results demonstrate if an entity validates
or invalidates the restrictions set by the user. Validation reports state the validity of
data used by predictive models. Query processing allows for comparing the predic-

30

3.3. InterpretME

tion model’s attributes in the InterpretME KG to those of individual entities in the
input KGs. Using query federation, users can interpret results for a specific entity
based on input properties that match SHACL validation results.

Figure 3.4: The InterpretME architecture displays input as either KGs or datasets in
formats such as CSV and JSON. Training interpretable predictive model components,
including SHACL validation, data preparation, and sampling, are used to prepare
data for predictive models. The data is subsequently supplied to the model-building
component, which performs predictive modeling tasks. To document interpretable
predictive models, generate and explore the InterpretME KG to acquire insights.

InterpretME has two primary quadrants Figure 3.46, Training interpretable pre-
dictive model includes evaluating SHACL constraints over nodes in the input KG and
creates output in the form of validation report indicating valid or invalid entities.
Furthermore, the input data is preprocessed into the form required for predictive
model training. The data preparation phase includes sampling strategy decisions,
one-hot encoding, and target class determination; the model creation and AutoML-
based model optimization in the model selection phase; and the predictive model is
then executed over the preprocessed data. The interpretation component generates
visualizations in the form of decision trees connected with the SHACL restrictions,
as well as visualizations of interpretable tools such as LIME for local explanations
to show the contribution of each feature from the input KG to the prediction.

6https://github.com/SDMTIB/InterpretME/blob/main/images/architecture.png

31

Chapter 3. Related Work

The second quadrant, Documenting interpretable predictive model, uses all tracked
metadata throughout the process, from identifying important features from input
data to training predictive models over it. RDF mapping language RML is utilized
to transform the traced metadata into triples of the form hsubject, predicate,

objecti. RML mapping rules are used to generate InterpretME KG. The Inter-
pretME KG is used for statistical analysis of a target item or to understand why
it was categorized into a specific class by the prediction model. InterpretME o↵ers
to explore multiple KGs by executing a SPARQL query over the federation of KGs
to gain more clear human and machine understandable insights. Furthermore, sev-
eral metrics such as precision, recall, and accuracy, as well as well-presented LIME
interpretations, provide users with a more intuitive understanding of the model’s per-
formance. Experiments with InterpretME illustrate that tracing metadata and data
utilized within the pipeline can improve the interpretability of predictive models.

3.4 AutoML Tools

The purpose of Automated Machine Learning (AutoML) tools is to eliminate the
barriers so that non-experts may utilize machine learning techniques without under-
standing the underlying technical complexities. It can also increase e↵ectiveness by
automating model construction and eliminating human involvement, as well as im-
proving model performance by systematically searching and optimizing all aspects
of model building to find superior model configurations. This involves things like
data preparation, feature engineering, selecting models, and hyperparameter tuning.
The fast growth of complexity observed in machine-learning applications has created
a demand for automated machine-learning algorithms that are easy to use without
the requirement of expert knowledge. Auto-WEKA [25] and auto-sklearn [16] are
two state-of-the-art AutoML tools that assist non-expert users with data processing,
feature selection, model construction, and other tasks. These programs can process
these works automatically, providing users with a good ML model and results.

AutoML provides Hyperparameter Optimization (HPO) tools for non-experts to
optimize a model’s hyperparameters during training. InterpretME uses Optuna [1], a
hyperparameter optimization framework intended specifically for adjusting hyperpa-
rameters for all ML models. Optuna is a next-generation hyperparameter optimiza-
tion application, which only focuses on part of AutoML principles [1]. It allows users
to search the parameter space dynamically, and use several searching and pruning
strategies to get a higher e�ciency in running a predictive model, and also designed
with the idea of easy-to-setup, versatile architecture for several non-expert users.

PyKEEN has a hyperparameter optimization function that uses Optuna on the

32

3.5. Summary of the Chapter

backend for tuning hyperparameter optimization. PyKEENs hpo pipeline() performs
a grid, random, or similar search across the supplied model parameters and produces
a tuned hyperparameter list. There are many other types of hyperparameters o↵ered
by hpo pipeline(), which can be used to optimize the model fit. Hyper-parameter
optimization is most commonly used to specify the dataset, model, and number of
runs. The hyper-parameter optimization pipeline can optimize hyper-parameters
for their respective arguments provided in the pykeen.pipeline.pipeline(). The
following example demonstrates how to use the n trials option to optimize the TransE
model on the YAGO3 dataset many times.

Example of PyKEENs Hyper-parameter Optimization:

from pykeen.hpo import hpo_pipeline

hpo_pipeline_result = hpo_pipeline (

n_trials = 30,

dataset = "YAGO3",

model = "TransE",

)

Currently, this thesis uses PyKEENs HPO, which can be converted in the future
to use Optuna to be more e�cient with the implementation of InterpretME.

3.5 Summary of the Chapter

This chapter discussed the state-of-the-art approaches or tools for supporting in-
terpretability. SHAP includes feature contributions for each instance, global ex-
planations, and feature importance, whereas The LIME technique uses local surro-
gate models to explain particular pipeline predictions. LIME provides explanations
for target entities that are easy to understand. However, the explanations are not
machine-readable and cannot be translated for the domain application. InterpretME
addresses these limitations by providing fine-grained representations of local inter-
pretations related to target entities in the domain application KGs enhancing the
interpretability. AutoML simplifies working with ML models, and the hyperparam-
eter optimization method can help users achieve an e�cient model.

33

Chapter 4

Tracing KGE Models over
InterpretME

This chapter shows the problems faced by existing KGE model applications and the
needs of ordinary users and introduces technologies and proposed approaches used to
solve these problems, including PyKEEN, and SDM-RDFizer [5, 21]. Finally, shows
how the problem is tackled.

4.1 Problem Statement

Consider a directed edge labeled graph G, and the directed edge is represented as
triple (subject, predicate, object) and statement of fact, in which, each node in the
graph G represents a subject or object (in a directed edge, node entity in the head
is considered as subject, node entity in the tail is considered as object), each edge in
the graph G represents a relationship.
Given a link prediction (s, p, ?) where s is a head entity in G, p is the relationship
between entities, and (s, p, o) /2 G. The goal is to find a set of most plausible
triples by inferring new triples based on the existing triples in G, and provides an
interpretability-improvable set of triples I that lead the black-box model to predict
tail Figure 4.1. Unlike the previous method, it uses a result-oriented approach to
provide explanations.

In comparison to baseline ML methods, our goal is to construct a robust pipeline
for both utilizing the model and systematically evaluating the performance of KGE
models. The emphasis is on enhancing interpretability to empower users with a
deeper understanding of model decisions.

34

4.2. Proposed Solution

Figure 4.1: An RDF knowledge graph as input, and as output requires finish the
link prediction task and also a better understanding of the process and result, what
approaches could achieve this purpose.

4.2 Proposed Solution

The data and metadata involved in multiple steps can be traced and documented,
later represented in a specific way to help users better understand how the model
works and the performance of the model, and the interpretability of the model could
be enhanced, which can be tracked to eventually generate an RDF that correlates
this data with the model and experiments.

4.2.1 Tracing Inputs

Input information plays an important role in model decision-making, and the rich
metadata stored in the RDF graph, as well as the full structure of the information
(compared to the subgraph obtained through the CONSTRUCT clause, KG from the
endpoint has 132 relations, where the subgraph only only has 10), which preserves
the data source information for subsequent repeated access, can be very e↵ective in
explaining the experimental decision-making process.
Due to the variety of input data, such as data sources accessed through endpoints or
locally stored TSV file formats. This information must be tracked in an appropriate
manner to ensure that the data is captured correctly when the data source is accessed
again.

4.2.2 Tracing Data Preparation

In the data preparation phase, the CONSTRUCT clause is utilized to extract the
portion of the KG that includes entities and properties to be included in the KG.
Additionally, metadata is retrieved, which helps explain the model decision. Storing
CONSTRUCT clauses in a decomposed way like in the Listing 4.1 allows humans

35

Chapter 4. Tracing KGE Models over InterpretME

and machines to have a better understanding of the content, and quick refactoring
to reproduce the clauses and generate SPARQL query to access the endpoint.

Data Preparation Example

” Independent var i ab l e ” : {
” person ” : ”? person <http : //www.w3 . org /1999/02/22−rdf−syntax−ns#type> <http : // dbpedia

. org / onto logy /Person> . ”

} ,
” Independent Opt iona l va r i ab l e ” : {

” f a th e r ” : ”? person <http : // dbpedia . org / onto logy / father> ? f a th e r . ” ,
”mother” : ”? person <http : // dbpedia . org / onto logy /mother> ?mother . ” ,
” parent ” : ”? person <http : // dbpedia . org / onto logy /parent> ? parent . ” ,
”name” : ”? person <http : //xmlns . com/ f o a f /0 . 1/name> ?name .” ,
” su c c e s s o r ” : ”? person <http : // dbpedia . org / onto logy / succe s so r> ? su c c e s s o r . ” ,
” ch i l d ” : ”? person <http : // dbpedia . org / onto logy / ch i ld> ? ch i l d . ” ,
” spouse ” : ”? person <http : // dbpedia . org / onto logy / spouse> ? spouse . ” ,
” gender ” : ”? person <http : // dbpedia . org / onto logy /gender> ? gender . ”

} ,
” Dependent var i ab l e sub j e c t ” : ” person ” ,
”Dependent var iab le ” : {

”hasSpouse ” : ” ? person <http : // dbpedia . org / onto logy /numSpouses> ?numspouses .
BIND(IF (? numspouses>0 , \”Yes\” , \”No\”) as ? hasSpouse) ”

} ,

Listing 4.1: Elements from CONSTRUCT clauses are stored in a decomposed
way, and the independent variable aims to set the main structure of the
subgraph, it enables to query of all human beings from the endpoint, and
the optional variable is used to provide more information but is not necessary.
The dependent variable is used to set the prediction target. This allows users to
a better understand the CONSTRUCT clause and provides a basis for quickly
generating SPARQL queries.

4.2.3 Tracing HPO and Model Building

Appropriate hyperparameters can make the model perform better in prediction tasks.
The optuna framework provides an open source automatic hyperparameter optimiza-
tion software framework [2], this framework uses the study to keep track of the best
set of hyperparameters while exploring di↵erent trials with di↵erent hyperparame-
ter combinations and uses pruning to enable early stop and make the optimization
process more e�cient. PyKEEN integrates this framework into its library, enabling
users to acquire suitable hyperparameters before model training. The model-building
process predominantly relies on hyperparameters from the preceding step. However,
because multiple models are used concurrently in the pipeline, and the hyperparam-
eters vary for each training iteration due to diverse data sources, it becomes essential
to precisely monitor and record each set of hyperparameters corresponding to every
model during training. By recording all relevant hyperparameters, Users could gain a

36

4.2. Proposed Solution

better understanding of the model built when reviewing this data in some scenarios.

4.2.4 Tracing Model Evaluation

Metrics serve as indicators of model performance during the evaluation phase. By
calculating and ranking the results, the evaluation framework computes MRR and
Hits@10 for performance assessment. Since the outcomes vary with each model
training, it is necessary to systematically track and correlate the evaluation results
from the current training with those of the model under current training. This
ensures accurate and e�cient analysis of the evolving performance metrics.

4.2.5 Building a Comprehensive Pipeline

We propose a pipeline for documenting KGE models. This pipeline encompasses
the phases of data preparation, model building, model training, model evaluation,
and output RDFization. It facilitates the execution and tracking of the entire model
process while e�ciently utilizing memory resources. Additionally, it allows for the
preservation of selected data along with the ongoing processes. The pipeline gen-
erates local files for tracking key information. In the final stage of the pipeline, all
pertinent information is categorized and saved in designated CSV files for RDFiza-
tion, contributing to the construction of the InterpretME Knowledge Graph (KG).
The information tracked includes facts represented as triples T1(s1, p1, o1). Here, T1

is not in the existing graph G but is part of the desired information set I. This infor-
mation aids the black-box model in predicting the tail, enhancing the interpretability
of each round of the model.

Figure 4.2 shows the sequential process described in the motivating example. The
process starts with an Endpoint or a local dataset, which uses the CONSTRUCT
clause from SPARQL to extract a target subgraph as a dataset (which is small and
content is more specific, better for model training). The dataset is used to train and
evaluate the KGE model. After that, we could get embedding vectors as a result.
With the Score function, it will enable us to Calculate the triple tables to determine
which triple is most likely to be true. During all these processes, we collect their
relevant information, e.g., the URL of Endpoint, the SPARQL clause used to query
the result from Endpoint, predefined hype parameters used in the KGE model, which
model will be used, and so on. After we get embedding vectors, we use RDFizer7 and
defined mappings to create a new Knowledge Graph and enable it in an Endpoint

7https://github.com/SDM-TIB/SDM-RDFizer

37

Chapter 4. Tracing KGE Models over InterpretME

to make specific clauses to help us better understand the result, or use the result to
compare the performance of the datasets.

Figure 4.2: This diagram illustrates the pipeline workflow, which involves not only
model-related work, but more importantly, tracing and documenting the data during
the pipeline. To get a rich context to enhance the interpretability of the model.

4.3 Summary of the Chapter

This chapter addresses the challenges of improving the interpretability of KGE mod-
els. It presents a pipeline to document these models by tracing the transformations
conducted by the models. The pipeline stores relevant information for further anal-
ysis and it is part of the InterpretME framework.

38

Chapter 5

Implementation

This chapter focuses on the implementation of the translation distance models (e.g.,
TransD) and hyperparameters optimization in the InterpretME framework for trac-
ing the inner mechanism of the KGE models. The integration of the KGE models
into the existing code is of particular interest. Figure 5.2 describes in detailed the im-
plemented functions for documenting and tracing the KGE models. These semantic-
driven interpretations provide a description of a target entity with the model charac-
teristics. Also, encompasses the challenges involve in integration of the KGE models
with InterpretME framework. In general, Figure 5.1 shows a simplest application of
the KGE model where a RDF KG is required as input, and as output, the model
can result in a embedding learning that can be used to predict links or other tasks
such as node classification, and entity clustering. But the simplest application seems
simple, certain requirements hinder the usage of the existing KGE models. As afore-
mentioned in Chapter 4, the pipeline includes the components (i.e., data preparation,
hyperparameter optimization, model buidling, training and evaluation, KG creation,
statistical analysis over the InterpretME KG) defined in terms of the inputs and
outputs. Figure 5.2 illustrates our trace KGE pipeline over InterpretME framework.

Figure 5.1: Shows the simplest application of the KGE model.

39

Chapter 5. Implementation

Figure 5.2: InterpretME pipeline for tracing the KGE Models. Firstly, the
pipeline retrieves the required data, then hyperparameters optimizing is deployed.
Further, model building is obtain to train and evaluate the model. During execution
of the pipeline, each step is traced and stored as metadata. Lastly, these stored
metadata with RML mapping rules is utilized to generate the InterpretME KG.

1○ Data Preparation. The target to deal with inputs of heterogeneous formats
and storage environments. For example, when the data source for the Endpoint, or
data source to TSV, CSV, or JSON format is stored locally, the simple input as a
uniform format in this case is no longer applicable to the need to use the project to
be able to flexibly deal with di↵erent input.

2○ Model Hyperparameter Optimizing is obtained to build the KGE model
with the best parameters (e.g., batch size, embedding dimensions, etc.). Here, the
process of hyperparameter optimization is independent of the process of training
and evaluation of the model. Moreover, 3○ Model Building collects the knowledge
regarding the KGE model with their best hyperparameters. Currently, InterpretME
is integrated with the translation distance models, such as TransE, TransH, TransD,
and TransR. Based on the user’s preference the type of KGE model is obtained for
training in 4○ Model Training and Evaluate. For ordinary users, this is a very
complex process and some operations are di�cult to understand and implement from
the state of art approaches. Therefore, the implementation of our pipeline overcomes
these limitations and simplifies the whole process of training the KGE model.

5○ Knowledge Graph creation. InterpretME traces the KGE models’ char-
acteristics at each step of the pipeline and store it as metadata. Here, the RML

40

5.1. Data Preparation

mapping rules are obtained as described in Listing 5.5. Using an e�cient RML
engine, RDFizer, to generate the semantic representation of the metadata. These
semantic representation, we term as InterpretME KG, which contain the contex-
tual knowledge about each target entity’s behavior in the KGE model training and
evaluation.

6○ InterpretME KG. For the performance of the model results and the decision-
making process, it is di�cult for ordinary users to understand and interpret the model
outcomes with evaluation metrics, such as MRR and Hits@10. While, InterpretME
pipeline facilitates federated query processing as a module to extract the input and
model characteristics of a target entity with better contextual interpretations. Addi-
tionally, these statistical analysis of di↵erent KGE model’s comparisons is visualized
with bar, line and radar plot using InterpretME.plot() function.

5.1 Data Preparation

This section describes how to handle the main data inputs. There are two main
schemas: locally stored data in TSV, N-triples format and RDF sub-graphs retrieved
from the SPARQL endpoint. The user defines the required features in the JSON
format document for extracting data either locally or endpoint, and the operation
will redirect the pipeline to a di↵erent data processing class. The pseudo-code to
control this process can be found in Listing 5.1. The code shows that this process is
controlled by the contents of the input JSON, i.e., by the user features’ definition

Data Preparation

if "Endpoint" in JSON and "path_to_data" not in JSON:

input from endpoint

knowledge_graph_embedding_endpoint(input_data , st)

elif "Endpoint" not in JSON and "path_to_data" in JSON:

input from dataset

knowledge_graph_embedding_dataset(input_data , st)

else:

print("There are something wrong ’Endpoint ’ and ’

path_to_data ’ in the JSON file can only have one

of these two data at same time.")

Listing 5.1: Pseudo code for processing di↵erent data sources

41

Chapter 5. Implementation

To retrieve data from the SPARQL endpoint, the IntepretME pipeline provides
a function that currently supports only SELECT clause and does not support other
three clauses, In this thesis, this part of the function is extended, which is able to
support CONSTRUCT clauses to extract a RDF subgraph. Here, the user does
not need to have full knowledge of SPARQL for writing a query, but only needs
to understand which are the graph patterns whose answers correspond to triples.
Further, these RDF triples is included in the training of the KGE model based on
the input data source. Graph patterns can include the OPTIONAL operator to
ensure that all the key entities are not missing, if part of the entities are not satisfied
multiple triple patterns, the key entities in this situation can still be recognized and
processed by query.

CONSTRUCT Query

CONSTRUCT {

?person <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type >

<http :// dbpedia.org/ontology/Person > .

?person <http :// dbpedia.org/ontology/parent > ?parent.

?person <http :// dbpedia.org/ontology/gender > ?gender .

?person <http :// dbpedia.org/ontology/hasSpouse > ?

hasSpouse .

}

WHERE {

?person <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type >

<http :// dbpedia.org/ontology/Person > .

OPTIONAL {? person <http :// dbpedia.org/ontology/parent > ?

parent .}

OPTIONAL {? person <http :// dbpedia.org/ontology/gender > ?

gender .}

?person <http :// dbpedia.org/ontology/numSpouses > ?

numspouses.

BIND(IF(? numspouses >0 ,"Yes","No")as ?hasSpouse) }

Listing 5.2: Example of extracting a RDF subgraph from DBpedia. More rich
and comprehensive subgraphs can be obtained by adding more triple patterns,
in this example, we obtained the entities that are of type person and get
the corresponding triples with the relationships: dbo:parent, dbo:successor,
dbo:spouse, dbo:gender, etc. to perform the LP task.

42

5.2. KGE Models Hyperparameter Optimization

5.2 KGE Models Hyperparameter Optimization

This section illustrate the functionality of the pipeline using PyKEEN hpo() for
selecting the best optimize parameters to train a KGE model. The optimization of
model hyperparameters is distinct from the processes of training and evaluating the
model. This thesis integrates these steps into a unified pipeline, streamlining the
user experience. Users now only need to set two parameter sets instead of manually
initiating model training after conducting HPO (Hyperparameter Optimization) List-
ing 5.4. Following the retrieval of hyperparameters, specific parameters tailored for
di↵erent KGE models come into play. After obtaining the hyperparameters, utilize
the PyKEEN common interface to input these parameters and generate the corre-
sponding Knowledge Graph Embedding (KGE) model, as depicted in Listing 5.3.
Next, the training and evaluation processes are seamlessly executed within this in-
tegrated pipeline. Despite all models utilizing the same interface, certain models
require specific hyperparameters. For instance, TransR introduces the notion of a
relation space, necessitating the inclusion of the relation dimension parameter.

Model build

result = pykeen_pipeline(

training=training ,

testing=testing ,

validation=validation ,

model=model ,

model_kwargs=HP_data["pipeline"]["

model_kwargs"],

optimizer=HP_data["pipeline"]["optimizer"],

optimizer_kwargs=HP_data["pipeline"]["

optimizer_kwargs"],

loss=HP_data["pipeline"]["loss"],

loss_kwargs=HP_data["pipeline"]["loss_kwargs"

],

training_kwargs=HP_data["pipeline"]["

training_kwargs"],

)

Listing 5.3: Use pykeen pipeline to build training and evaluate model.

43

Chapter 5. Implementation

5.3 KGE Model Training and Evaluation

The current version of InterpretME is capable of performing ensemble learning mod-
els (e.g., random forest), this thesis aims to extend the pipeline functionality with
kge model as a mode. Based on user preference, InterpretME is utilized in vari-
ous prediction tasks. Henceforth, InterpretME resorts to PyKEEN [5] which is a
general-purpose python library designed for training and evaluating KGE models8.
It provides comprehensive support for building pipelines using a variety of KGE mod-
els, training strategies, and loss functions. PyKEEN’s modular structure allows for
di↵erent components to be implemented as independent submodules, thus, facilitat-
ing the creation of various combinations that meet specific requirements. Although
the library contains more than 20 models, our study focuses only on the transla-
tion distance KGE family, which include TransE, TransH, TransR, and TransD. As
mentioned in Listing 5.4, the best parameters of each KGE model are obtained with
a certain number of trials (e.g., TransE trained with 100 trials). Best embeddings
learning is traced and provided to the training module. Moreover, in the evaluation
phase, KGE models generate trained embeddings, and the scoring process involves
calculating scores for all possible entities E based on the given tail (h, r) or head (r, t)
prediction. The entities are then ranked (h, r, E) (or (E, r, t)) using the plausibility
score function derived from the respective KGE model. Additionally, the PyKEEN
module computes aggregation metrics according to the definition of a realistic rank.
InterpretME implements this definition and reports metrics, specifically MRR and
Hits@k.

Model selection

”model” : [”TransE” , ”TransR” , ”TransH” , ”TransD”] ,
”HPO tria ls ” : {”TransE” : 100 , ”TransR” : 20 , ”TransH” : 30 , ”TransD” : 20} ,

Listing 5.4: The user could select which model should be trained and evaluated
during this run by setting the input JSON file.

5.4 Documenting KGE Models

The essence of this book necessitates the inclusion of specific data and metadata
of the KGE model characteristics. This includes tasks such as assigning a unique
identifier (ID) to each run, and documenting input data (i.e., detailing the extracted

8https://github.com/pykeen/pykeen

44

https://github.com/pykeen/pykeen

5.4. Documenting KGE Models

features and graph patterns involved. Moreover, enumerating the hyperparameters
(i.e., embedding dimension, batch size, epochs, etc.) obtained from the HPO for
model building along with their best values. Additionally tracing the evaluation
metrics such as MRR and Hits@10. To organize and store these contextual metadata,
several designated CSV files are utilized. These files are later transformed into a
knowledge graph format by an e�cient RML engine, RDFizer, employing predefined
RML mapping rules. The mappings for the endpoint are illustrated in Listing 5.6.

Mapping rules

@prefix rr:<http :// www.w3.org/ns/r2rml#>.

@prefix rml:<http :// semweb.mmlab.be/ns/rml#>.

@prefix ql:<http :// semweb.mmlab.be/ns/ql#>.

@prefix rdf:<http :// www.w3.org /1999/02/22 - rdfsyntaxns#>.

@prefix schema:<http :// schema.org/>.

@prefix xsd:<http :// www.w3.org /2001/ XMLSchema#>.

@prefix owl:<http :// www.w3.org /2002/07/ owl#>.

@prefix prov:<http :// www.w3.org/ns/prov#>.

@prefix intr:<http :// interpretme.org/vocab/>.

Listing 5.5: Commen prefix in Mapping rules

<InputEndpoint >

rml:logicalSource [

rml:source "InterpretME/files/endpoint.csv";

rml:referenceFormulation ql:CSV;

];

rr:subjectMap [

rr:template "http :// interpretme.org/entity /{

run_id}";

rr:class intr:RunID

];

rr:predicateObjectMap [

rr:predicate intr:hasEndpoint;

rr:objectMap [

rml:reference "endpoint"

]

].

Listing 5.6: Mapping rules for endpoint

45

Chapter 5. Implementation

The resulting knowledge graph is named InterpretME KG. The InterpretME KG
is a heterogeneous graph which represents each target entity with the KGE model
characteristics shown in Figure 6.6. The pre-requisite vocab required to describe
the KGE models is available in GitHub9. InterpretME as a framework o↵ers a
function, that enables users to access this generated KG locally through SPARQL
queries. A better understanding of the model and the influence of parameters on the
performance of model, requires a well-designed query to get specific interpretations.
Additionally, the federated query processing module helps to query both the input
KGs and the InterpretME KG for a target entity to have more rationale about
the prediction task. For instance, a SPARQL query over the federated KGs that
retrieves the relevant known facts about the head entity and the model parameters
utilized in the prediction helps in interpreting a tail prediction task. The proposed
implementation is model-agnostic and the final task is to extend InterpretME in the
domain of KGE modeling. Also, incorporates the approach mentioned in [11] to
extract necessary and su�cient interpretations for a particular prediction task.

5.5 Summary of the Chapter

This chapter details the implementation of a comprehensive pipeline within Inter-
pretME, designed to trace KGE models. The pipeline incorporates six distinct stages,
encompassing data preparation, hyperparameter optimization, model training and
evaluation, KGE model data tracing, and querying over the InterpretME KG. The
objective is to streamline the overall process, accommodate diverse data sources, and
increase KGE models’ interpretability with contextual insights.

9https://github.com/STdove/Neo_masterthesis/tree/main/InterpretME/KGE_model/
mappings

46

https://github.com/STdove/Neo_masterthesis/tree/main/InterpretME/KGE_model/mappings
https://github.com/STdove/Neo_masterthesis/tree/main/InterpretME/KGE_model/mappings

Chapter 6

Experimental Evaluation

This chapter reports the results of the experimental evaluation of the proposed
pipeline in Chapter 5. We empirically evaluate with four KGE models: TransE [7],
TransD [22], TransR [28], and TransH [41]. The purpose of this evaluation aims to
address the following research questions: RQ1) What is the impact of traced hy-
perparameters in the KGE models decision-making process? RQ2) To what extent
does InterpretME enhance the interpretability of the KGE models?

We first extract the required RDF data from the benchmarks and then utilize
InterpretME [12] for training and tracing the KGE models. Further, the fine-tuned
KGE models are ultimately assessed in the Link Prediction (LP) task. For each eval-
uation of the translation model, we compare the evaluation metrics (e.g., Hits@10)
for the benchmark KGs reported in Table 6.2. Moreover, an ablation study for the
influence of hyperparameters is illustrated in Section 6.5.2. The benchmark KGs,
scripts for training and optimizing hyperparameters, and a SPARQL query tem-
plate for the statistical analysis over the InterpretME KG are publicly available in
GitHub10 repository.

Table 6.1: Benchmark KGs statistics

Knowledge Graph #triples #entities #relations
French Royalty KG 4424 2212 10
Enriched French
Royalty KG

12544 2212 12

10https://github.com/STdove/Neo_masterthesis

47

https://github.com/STdove/Neo_masterthesis

Chapter 6. Experimental Evaluation

(a) French Royalty KG (b) Enriched French Royalty KG

Figure 6.1: Exemplar Sub-Graph. Figure 6.1a shows an instance
dbr:AfonsoII of Portugal with relations, such as dbo:parent, dbo:mother,

dbo:sposue, dbo:child. While, Figure 6.1b demonstrates the neighborhood
sub-graph of dbr:AfonsoII of Portugal with enriched heuristics edges (e.g.,
dbo:predecessor, dbo:successor) generated by SPaRKLE approach.

6.1 Benchmarks

The following two benchmark datasets are considered: French Royalty KG [18] and
Enriched French Royalty KG [31]. Table 6.1 provides statistics for these datasets and
their respective entities and relations counts. Figure 6.1a and Figure 6.1b shows the
exemplar instances from this two benchmark KGs. The French Royalty KG is fully
curated from DBpedia [27], by retrieving information about the french royal families.
For each person in the KG, we require the class dbo:Person, the name of children
(if has one or more), the name of the parent (father and mother in this context),
the gender of french person, and additional triple related counts like the number of
spouse, successor, and predecessor. Furthermore, we added the ground truth for the
relationship dbo:hasSpouse which states the marital status of a french royal member.
On the Contrary, the Enriched French Royalty KG is obtained from SPaRKLE [31]
method–hybrid AI–inductive learning that incorporates the fusion of sub-symbolic
(i.e., KGE) and symbolic learning (i.e., Rule Mining) for the assessment of knowledge
graph completion (KGC). Thus, the second dataset is materialized using the defined
concept of PCA heuristics edges in [31]. Here, the proposed approach relies on
SPaRKLE to provide the refined semantic description of an entity. Moreover, the
trained embeddings for both benchmarks are obtained to perform the LP task, i.e.,

48

6.2. Metrics

”Whether a french royal person has a spouse?”. Lastly, the proposed approach is
compatible with di↵erent data sources:

• one is handling the data from the SPARQL endpoint.

• another is accessing the file stored locally in CSV, N-triples, TSV format.

Henceforth, to show this implementation, the pipeline is evaluated with two data
sources: the French Royalty KG will be provided in the SPARQL endpoint, and the
dataset Enriched French Royalty can be accessed locally in TSV format.

6.2 Metrics

This section describes the metrics utilized for the evaluation of testbeds for LP. The
e�ciency is assessed through Mean Reciprocal Rank (MRR), Hits@10, and Execution
Time.

• MRR and Hits@10 : MRR is the arithmetic mean of reciprocal ranks, Hits@10
describes the percentage of true entities that appear in the top 10 entities of
the sorted rank list. The values for MRR and Hits@10 is range in [0,1].

• Execution Time: This metric is measured as the elapsed time spent by the
pipeline to complete the extraction of the training dataset, HPO configuration,
model training, evaluation, and generating an InterpretME KG; it is measured
in seconds reported by the time.time() command which is supported by Python.

6.3 Implementation Details

The following configuration is set up to answer our research questions. The proposed
approach–Trace KGE over InterpretME–an interpretable framework is implemented
based on a hybrid design pattern mentioned in [13]. Here, the traditional ML models
are replaced with the translation distance KGE models (e.g., TransE) to perform the
prediction task. The experiments are executed in a Windows 10 OS equipped with
a CPU Intel (R) Core (TM) i9-9900KF@3.60 GHz, 32 GB memory with Python 3.9
version. For optimizing the hyperparameters of the KGE models (e.g., embedding
dimensions), the proposed pipeline relies on PyKEEN hpo() function. Executing
HPO configuration required a GPU NVIDIA Tesla T4, with CUDA version 12.0
and PyTorch version 2.0. HPO configuration provides a set of predefined settings
that enable hyperparameters to be computed and generate optimal solutions under

49

Chapter 6. Experimental Evaluation

the same conditions. Moreover, the time out is set to 3 hours since the HPO part,
which is supported by PyKEEN to avoid memory issues. During the dataset splitting
phase, the random state was set to 1234 to ensure that the training, testing, and
validation datasets were consistent across each experimental testbed.

6.4 Baseline

The experiments used source codes from the PyKEEN [5] pipeline to run several
KGE models, which include TransE, TransH, TransD, and TransR. We use the same
hyperparameter optimization tool provided by PyKEEN to tune the hyperparameter
settings of the KGE model based on the benchmark KGs. The translation distance
KGE models, including TransE, TransH, TransD, and TransR, translate the embed-
ding of the target head entity and the given relation to make them together closer
to the target tail entity. The transformed embedding vector is then calculated using
the scoring function provided by the KGE models. Here, the tail entities is ranked
based on their di↵erence from the predicted entity. This ranking helps identify the
true tail entity for a given head entity and relation. Executing several testbeds,
the evaluation reveals that the experimental results are slightly di↵erent. However,
during the model building phase, lots of hyperparameters is defined by pipeline for
each testbed, there are still unknown parts of the computation in PyKEEN that
will generate new random numbers to perturb the results, and cannot be traced by
interacting with the PyKEEN module.

6.5 Results

The following multiple sets of data comparison, are able to answer RQ1: tracing a
wide variety of data in the whole pipeline, convenient for users to quickly access the
results of the experiment, with the test setup, users can compare the data in time
to data visualization of the test is carried out under what conditions, to facilitate
the user to complete the following operations: 1) Compare the performance of the
di↵erent models under the same conditions; 2) To a single parameter adjustment of
a single parameter to analyze the e↵ect of the parameter on the model performance.
3) The HPO function provided by PyKEEN now has a certain degree of random-
ness, which makes it possible to analyze the e↵ect of this randomness on the model
performance with the presentation of a large amount of experimental data. 4) The
data from multiple experiments will be retained in InterpretME KG, which enables
us to quickly review and reproduce the experiments according to the stored settings.

50

6.5. Results

6.5.1 Baseline Experiment

Table 6.2: Evaluation Results. KGE models evaluation is represented in terms of
Hits@10 and MRR over benchmark KGs. Bold represents better values.

Knowledge Graph Metrics TransE TransH TransR TransD
Hits@10 0.436 0.755 0.390 0.530

French Royalty KG
MRR 0.151 0.528 0.301 0.182
Hits@10 0.488 0.761 0.452 0.578

Enriched French Royalty KG
MRR 0.176 0.507 0.381 0.201

Table 6.2 show the performance of the French Royalty KG and the Enriched
French Royalty KG respectively, in the absence of HPO considering it as a baseline
experiments for the four models of translation family. Figure 6.2 based on afore-
mentioned Table 6.2 reveals that the TransH model performs the best on both KGs,
where Hits@10 could reach more than 70% and MRR has more than 50%. TransE has
a poor performance compared to other models, which is in the expectation because
there are one-to-many and many-to-many relationships in the KG, e.g., a person will
have more than one child, and a person will usually have two parents. Thus, TransE
because of its modeling properties, is not very good at handling 1 � N , N � 1 and
N � M relations resulting in worst performance than the other translation mod-
els. In French Royalty KG, TransE is reported with Hits@10 0.436, while TransD
is 0.530 and TransH is 0.755. Simultaneously, we are able to observe that the En-
riched French Royalty KG is able to slightly improve the performance of the model
on Hits@10 as well as on MRR, which is as expected because from Table 6.1 we
know that the database itself has more triples, while the number of entities remains
unchanged, indicating that there is more contextual information to describe the en-
tities. Resulting Hits@10 for TransH be 0.761, while TransE is 0.488. Moreover,
TransH is slightly up in Hits@10 and the MRR performance is down 2%, suggesting
that the correctly predicted triple is more often found in the first 10 predictions, but
this correct triple is not ranked so highly in top-10. Intriguingly, without optimize
parameters the TransR model is performing worst in both benchmark KGs.

6.5.2 Influence of HPO

The HPO function provided by PyKEEN, based on the target model, and the data
source finds the best optimal hyperparameters. For the statistical analysis and visu-
alization of experimental data, Figure 6.3 and Figure 6.4 are provided based on the

51

Chapter 6. Experimental Evaluation

Figure 6.2: Hit@10 and MRR Comparison Plot based onTable 6.2

comparison of the KGE models evaluation with, without and custom hyperparame-
ters settings. Here, we can analyze the impact of the HPO module on experimental
results, it can be concluded that the HPO function provided by PyKEEN is cur-
rently beneficial in improving the performance of the TransE, TransH and TransD
models. However, this assistance is exceedingly limited and even falls short of being
comparable to manually customizing parameter settings, a possible reason for this is
that the way HPO now looks for optimal hyperparameters can only find relatively
good hyperparameters, but it is di�cult to find an optimal solution. Simultaneously,
we observed that adjusting hyperparameters has a significant positive impact on the
performance of the TransE model in Hits@10, but it also has a negative e↵ect on the
performance of the TransR model, which is shown in Table 6.4. In the meanwhile,
under the MRR metric, observed from Figure 6.4, the radar chart shows that it has
a limited e↵ect on the TransH and TransD. And customizing hyperparameters that
negatively a↵ect the most models while making TransE perform better, probably
because customized hyperparameters hardly take into account di↵erent parameters
of other translation models, and may only improve TransE model performance with
this setting. Through the comparison of model training results using without, with
and custom hyperparameters presented in Table 6.3, we were able to find that custom
hyperparameters can have a positive impact on the model, and the hyperparameters
provided by HPO can also optimize model performance, but di�cult to reach opti-
mal solution. In French Royalty KG, TransH is peforming better with Hits@10 0.709
in custom hyperparameters settings, whereas with HPO fucntion from PyKEEN is
reported 0.609. Thus, the experimental findings of HPO influence addresses RQ1)

52

6.5. Results

Figure 6.3: Figure based on Table 6.3, a better visualization of the impact, that
HPO has made on the models. In metrics Hits@10. As shown in the figure, HPO
has no impact on TransR, while the use of custom Hyperparameters for these three
models has a better performance than the use of the hyperparameters provided by
HPO.

Figure 6.4: Figure based on Table 6.3, a better visualization of the impact, that
HPO has made on the models. In metrics MRR. As one can see from the figure,
it has a limited impact on the MRR performance of TransH and TransD. And the
customized hyperparameters can still bring better performance for TransE.

53

Chapter 6. Experimental Evaluation

Table 6.3: Evaluation results of setting hyperparameters on TransFamily.
The first group is without setting hyperparameters, the second group is when the
model was built with embedding dimension set to 200 and epochs set to 100, and
the third group is when the model uses the PyKEEN HPO function to calculate the
hyperparameters. And the bold represents the best-performing data for each type of
model in this run.

HPO TransE TransH TransR TransD
Hits@10 0.220 0.434 0.432 0.343

Without HPO
MRR 0.081 0.397 0.381 0.144
Hits@10 0.776 0.709 0.422 0.485

Custom HPO
MRR 0.510 0.495 0.165 0.134
Hits@10 0.594 0.609 0.402 0.448

With HPO
MRR 0.233 0.514 0.365 0.156

which have a great impact in the evaluation of the model outcomes.

6.5.3 Influence of hyperparameters in TransR

Table 6.4: Evaluation of the TransR model in di↵erent hyperparameters settings
reported with Hits@10 and MRR.

Run ID Model Hits@10 MRR Dimension Batch Size Epochs
1706103208087 TransR 0.429 0.381 168 3712 15
1706103692128 TransR 0.432 0.406 200 3712 15
1706104410104 TransR 0.420 0.388 136 3712 15
1706104450287 TransR 0.324 0.236 168 3712 100
. . . TransR

Using a customized SPARQL query, we are able to obtain the formulated results
from the InterpretME KG demonstrated in Table 6.4. This query retrieves follow-
ing relevant information about the trained TransR model in multiple runs, which
contains a specific Run ID, model, Hits@10, MRR, embedding dimensions, batch
size and epochs, and allow user to explore the e↵ect from various hyperparameters.
The data is sorted based on Run ID, so often the positions of the data that the
user wishes to analyse are not aligned. Thus, there is a need to access specific data
from the IntepertME KG through the methods proposed in Subsection 6.5.5 to help

54

6.5. Results

the user to perform better analyses. An ablation study of comparing di↵erent hy-
perparameters such as embedding dimensions in Table 6.5, batch size in Table 6.6,
and epochs in Table 6.7 individually a↵ecting the evaluation of the TransR model.
We separately study the impact of each hyperparameter on the models performance.
Based on the above three tables, three line charts in Figure 6.5 are used to provide
a more intuitive comparison. In Table 6.5, the experiments on the hyperparameter
embedding dimension states that the model performed optimally with dimension at
180, with Hits@10 and MRR higher than the other settings. Meanwhile independent
trials of epoch with a setting of 115 resulted in a model that performed much better
than the other models. In the meanwhile, batch size has a tendency to grow with
fluctuations, and although the performance of the model improves as the batch size
increases, there is no guarantee that this growth trend will be maintained. From
the three line charts, we can observe that as the hyperparameters change, the two
metrcis maintain the similar trend, which can explicitly confirm that the hyperpa-
rameters have an impact on the performance of the model, not the performance of a
single metric. At the same time, this trend shows that di↵erent parameters produce
di↵erent impacts impact on the model. And we find that parameters that are too
large or too small can a↵ect the results, it is not possible to find the optimal hyper-
parameters directly through a linear associationand, this increases the di�culty in
optimizing the performance of the model. Based on the above experimental results
and analyses, we additionally set up one experiment by setting the hyperparameters
Embedding dimension to 176, Epochs to 115, and batch size to 4736. We could build
and train a model TransR and get performance in Hits@10 at 0.441 and MRR at
0.407, a significant improvement compared to the testbeds of French Royalty KG in-
put into TransR model in Table 6.2. However, the di↵erences compared to adjusting
them individually are very slight, but, due to the range of experimental parameters
and step size settings, we cannot guarantee that the experiments conducted are not
local optimal hyperparameters but global optimal hyperparameters. This my caused
by the hyperparameters still not optimal. Meanwhile, according to the above anal-
ysis and compared to the testbeds in Table 6.3 we can confirm that HPO has some
limitations in finding the optimal hyperparameters.

6.5.4 Operations required to initialize the pipeline

The use of the integrated pipeline can greatly simplify the various stages of the op-
eration and is also required with limited input from users. Listing 6.1 depicts the
required inputs are simplified compared to setting up separate tests, ”Endpoint”
can also be set to ”path to data” to allow Pipeline to access the local RDF graph,

55

Chapter 6. Experimental Evaluation

Table 6.5: This table is used to analyze the e↵ect of embedding dimensions, step for
adjustment is 32, the hyperparameters not shown here will remain the same.

Run ID Model Hits@10 MRR Dimensions
1706275630133 TransR 0.421 0.385 208
1706275630133 TransR 0.439 0.400 176
1706274900713 TransR 0.417 0.369 144
1706275110524 TransR 0.368 0.301 112
1706275187105 TransR 0.412 0.381 80
1706278942768 TransR 0.412 0.356 48

Table 6.6: This table is used to analyze the e↵ect of batch size, step for adjustment
is 1024, the hyperparameters not shown here will remain the same.

Run ID Model Hits@10 MRR Batch size
1706103208087 TransR 0.430 0.403 4736
1706276551129 TransR 0.390 0.323 3712
1706274900713 TransR 0.417 0.369 2688
1706276428746 TransR 0.390 0.323 1664
1706276487034 TransR 0.343 0.249 640

Table 6.7: This table is used to analyze the e↵ect of epochs, step for adjustment is
20, the hyperparameters not shown here will remain the same.

Run ID Model Hits@10 MRR Epochs
1706277109460 TransR 0.356 0.303 155
1706277036531 TransR 0.423 0.365 135
1706277036531 TransR 0.430 0.403 115
1706276806125 TransR 0.392 0.347 95
1706276896928 TransR 0.406 0.359 75

56

6.5. Results

Figure 6.5: The line chart clearly shows the impact of hyperparameters on model
performance. The similar trend of MRR and Hits@10 can prove that hyperparame-
ters a↵ect the performance of the evaluation metrics.

note that there can only be one ”Endpoint” or one ”path to data” at the same time.
”model” is used to set the type of model that users want to test in this round of
experiments, and HPO trials is used to set the ability of the PyKEEN HPO module
to optimize the model. The three variables are used to define the input data of
the model, and the prediction content, Independent variable is the target Entities,
”Independent Optional variable” can be regarded as the enrichment of the target
Entities, and ”Dependent variable” is the setting for the prediction task. ”Inde-
pendent Optional variable” is simplified compared to the actual experiment. For
instance, for the testing of multiple models, routinely need to repeat a number of
data acquisition and preparation, parameter setting, model building, and other op-
erations. Whereas, experimental results and experimental evaluations are displayed

57

Chapter 6. Experimental Evaluation

directly in the process each time, or stored in a folder separately, and need to be
manually integrated again by the experimenter for further comparisons and analy-
ses. These pipeline overcomes such issues e�ciently and automates these processes
so that the user only needs to use SPARQL queries at the final stage of the pipeline
to get the interpretability of the models decisions from the InterpretME KG.

Input JSON configuration

{

"Endpoint": "https :// labs.tib.eu/sdm/InterpretME -og/

sparql",

"model": ["TransE","TransH","TransR","TransD"],

"HPO_trials": {"TransE": 20,"TransR": 20,"TransH": 20,"

TransD": 20},

"Independent_variable": {

"person": "?person <http ://www.w3.org /1999/02/22 -

rdf -syntax -ns#type > <http :// dbpedia.org/ontology

/Person > ."

},

"Independent_Optional_variable": {

"father": "?person <http :// dbpedia.org/ontology/

father > ?father.",

"parent": "?person <http :// dbpedia.org/ontology/

parent > ?parent.",

"name": "?person <http :// xmlns.com/foaf /0.1/ name > ?

name.",

},

"Dependent_variable": {

"hasSpouse": " ?person <http :// dbpedia.org/

ontology/numSpouses > ?numspouses. BIND(IF(?

numspouses >0 ,\"Yes\",\"No\")as ?hasSpouse)

"

}

}

Listing 6.1: Example of input setting required from User.

58

6.5. Results

6.5.5 SPARQL queries over the IntepretME KG

After the execution of the pipeline, an InterpretME KG will be generated. Figure 6.6
demonstrates an exemplar of a Run ID instance (i.e., intr:Run 1705961838474) which
includes the traced metadata such as features definition, data sources, KGE model
characteristics, which with all hyperparameters suggested by HPO function. The
Target Entity could have multiple Models, and these model entities will have the same
number of relations and corresponding subjects as TransE. To query all instances
same as the instance shown in the Figure 6.6, we need to build a query to access the
IntepretME KG, one example could be found in Listing 6.2, SELECT section defined
all the columns we want to extract, WHERE section defines the graph patterns to
make sure we get correct feedback, (?runID rdf:type intr:RunID) going to make sure
the instances in ?runID is class Intr:RunID, and also the same purpose of (?Model
rdf:type intr:Model), with this two restrict, make sure we get correct target entity in
instances, and other patterns used to get the corresponding nodes and literals. The
complete flow of this process will be like in the Figure 6.7.

Figure 6.6: An entity instance of InterpretME KG, where the triple owned by TransR
and TransD is omitted and the target entity could have one to four intr:hasModel
relation, it depends on the setting of the corresponding run.

59

Chapter 6. Experimental Evaluation

Example of Query over the InterpretME KG

SELECT ?runID , ?modelName , ?Hits_at_10 , ?MRR ,? Embeddings

,?Batch ,? Epochs

WHERE{

?runID rdf:type intr:RunID.

?runID intr:hasModel ?Model.

?Model rdf:type intr:Model

?Model intr:ModelName ?modelName.

?Model intr:hasHitAt10 ?Hits.

?Model intr:hasMRR ?MRR.

?Model intr:hasEmbeddingDimensions ?Embeddings.

?Model intr:hasBatchSize ?batchSize.

?Model intr:hasEpochs ?Epochs.

}

Listing 6.2: This is a sample statement to access all the runs and the model
used by that run, as well as the hyperparameters of the model with the model’s
performance from the InterpretME KG. By accessing the IntepretME KG,
we are able to track down previously run models, quickly access the model’s
performance, and through the hyperparameters stored in the KG, quickly
reproduce the results of the experiment.

Figure 6.7: With the SPARQL query in Listing 6.2, we are able to get a list of
corresponding results Table 6.4 from the InterpretME KG.

60

6.6. Summary of the Chapter

6.6 Summary of the Chapter

This chapter presents three research questions, and introduces benchmarks, and
metrics for the experiments. With the RDF example, we were able to directly observe
what kind of features their entities have in di↵erent databases. We experimentally
evaluated and compared the performance of the KGE model provided by PyKEEN
and tested the usefulness of PyKEEN’s HPO module. Based on the results of these
two sets of experiments, we conducted extended experiments to additionally test the
utility of TransR’s hyperparameters. RQ2 in Chapter 6 was tested and answered
through multiple sets of experiments. In the evaluation phase of the experiments, we
accessed the IntepretME KG generated by the pipeline and used the data therein to
help us analyze the performance of the model in each run and the possible reasons for
the good and bad performance, which showed that the pipeline was able to address
the issues raised by RQ1 in Chapter 6 well.

61

Chapter 7

Conclusions and Future Work

This chapter presents the evaluation of the proposed pipeline with the contributions.
Also, the current limitations and future research for the pipeline are discussed.

7.1 Conclusions

This thesis proposes a model-agnostic framework, InterpretME, that tackles the prob-
lem of tracing and interpretability of KGEs over KGs especially with the translation
distance models. The proposed approach enables or improves the functionality of the
pipeline to adapt the CONSTRUCT clause build query and supports multiple ways
to load RDF KG. In addition, a new mode is created to execute the KGE model,
which provides the flexibility to easily take other updated ML models into consid-
eration. Firstly, InterpretME extracts the RDF data and then transfers the optimal
parameters to learn the KGE models in an e�cient way. The approach reduces a
large number of repetitive experiments for the selection of hyperparameters. The cur-
rent version of InterpretME utilizes the optimization techniques from PyKEEN HPO
module. Further, the proposed approach has shown that the translation models have
an influence of certain parameters in the training phase. Additionally, the pipeline
traces all the relevant data and generates an InterpretME KG, to enable users to
access various data and metadata for a better understanding of the model-decision
making process. Thus, the approach sheds a perception of having the semantic rep-
resentation of the models’ interpretability in human and machine readable format.
In related work, di↵erent approaches have been explored for extracting the inter-
pretations such as LIME and SHAP for the KGE models. While, such data-driven
frameworks is less compatible to KGs where the data is represented by a RDF triples.
Henceforth, the generated InterpretME KG aids the user to understand and analyze

62

7.2. Limitations

the model performance. A large number of experimental results covered in the afore-
mentioned section are generated through InterpretME pipeline. With the help of
abundant available traced metadata that are relevant to the experimental context,
the researchers are able to better understand the justification for the KGE model
outcomes. This pipeline not only provides interpretations, but also provides struc-
tured visualization functionality that enlightens the empirical results with intuitive
explanations.

7.2 Limitations

• According to the evaluation part and results from multiple experiences, we
can see that the hyperparameters used by the model are not guaranteed to
be optimal. The HPO module of PyKEEN is well optimized for TransE but
is not reliable for other models, we need to find a better way to help users
find optimal hyperparameters and achieve a better performance of the model.
Possible solution is to find other stat-of-the-art AutoML tools to help users
obtain better model performance, or by providing various charts to provide
optimization information, which is then selected by the user to ensure that the
hyperparameters used are as optimal as possible.

• Currently, the generated InterpretME KG for tracing the KGE models have
excluded SHACL constraints which validate and control the quality of the
RDF data. Shortly, inclusion of SHACL constraints will add one more layer to
the interpretability for the prediciton task.

7.3 Future Work

• Knowledge Graph Embedding (KGE) models can be expanded to include ad-
ditional models, such as RotatE, MuRE, and others [6, 36]. Validating the
pipeline enhances interpretability, and incorporating these state-of-the-art mod-
els into the pipeline o↵ers users a broader range of choices to address various
usage needs and scenarios.

• We are also eager to explore improved and more accurate HPO solutions to
enhance the performance of the model. Resulting in less concern for users in
the hyperparameters selection and model-building phases.

63

Chapter 7. Conclusions and Future Work

• This current work focuses on improving model interpretability by understand-
ing the performance of the model, but there is still a lack of explanations for the
link prediction task, e.g. for (Dirk V Count of Holland, hasSpouse, ?), which
particular fact leads the model to predict missing link as No. Additionally, one
area for research will be to explore removing such neighborhood facts impact
to change in the link prediction result.

• The current version of InterpretME o↵ers SHACL validaiton for ML models.
Adding SHACL validation to ensure the high quality input data for training
the KGE models could be one research direction.

• Moreover, one area of improvement for the performance of KGE models could
be detecting bias and the role of mediator nodes [3] in KGs.

64

Bibliography

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. “Op-
tuna: A Next-generation Hyperparameter Optimization Framework”. In: Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
2019.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Op-
tuna: A Next-generation Hyperparameter Optimization Framework. 2019. arXiv: 1907.10902
[cs.LG].

[3] Farahnaz Akrami, Mohammed Samiul Saeef, Qingheng Zhang, Wei Hu, and Chengkai Li.
“Realistic Re-evaluation of Knowledge Graph Completion Methods: An Experimental Study”.
In: CoRR abs/2003.08001 (2020). arXiv: 2003.08001. url: https://arxiv.org/abs/2003.
08001.

[4] Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail Galkin, Sahand
Sharifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann. “Bringing Light Into the Dark:
A Large-Scale Evaluation of Knowledge Graph Embedding Models Under a Unified Frame-
work”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 44.12 (2022),
pp. 8825–8845. doi: 10.1109/TPAMI.2021.3124805.

[5] Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifzadeh,
Volker Tresp, and Jens Lehmann. “PyKEEN 1.0: A Python Library for Training and Eval-
uating Knowledge Graph Embeddings”. In: Journal of Machine Learning Research 22.82
(2021), pp. 1–6. url: http://jmlr.org/papers/v22/20-825.html.

[6] Ivana Balažević, Carl Allen, and Timothy Hospedales. Multi-relational Poincaré Graph Em-
beddings. 2019. arXiv: 1905.09791 [cs.LG].

[7] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, JasonWeston, and Oksana Yakhnenko.
“Translating Embeddings for Modeling Multi-Relational Data”. In: Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2. NIPS’13.
Lake Tahoe, Nevada: Curran Associates Inc., 2013, pp. 2787–2795.

[8] Jeremy Carroll and Graham Klyne. Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C Recommendation. https://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/. W3C, Feb. 2004.

[9] Arthur D Chapman. Principles and methods of data cleaning. GBIF, 2005.

65

https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/2003.08001
https://arxiv.org/abs/2003.08001
https://arxiv.org/abs/2003.08001
https://doi.org/10.1109/TPAMI.2021.3124805
http://jmlr.org/papers/v22/20-825.html
https://arxiv.org/abs/1905.09791

Bibliography

[10] Xu Chu, Ihab F Ilyas, Sanjay Krishnan, and Jiannan Wang. “Data cleaning: Overview and
emerging challenges”. In: Proceedings of the 2016 international conference on management
of data. 2016, pp. 2201–2206.

[11] Yashrajsinh Chudasama. “Exploiting Semantics for Explaining Link Prediction Over Knowl-
edge Graphs”. In: The Semantic Web: ESWC 2023 Satellite Events. Ed. by Catia Pesquita,
Hala Skaf-Molli, Vasilis Efthymiou, Sabrina Kirrane, Axel Ngonga, Diego Collarana, Renato
Cerqueira, Mehwish Alam, Cassia Trojahn, and Sven Hertling. Springer Nature Switzerland,
2023.

[12] Yashrajsinh Chudasama, Disha Purohit, Philipp D Rohde, Julian Gercke, and Maria-Esther
Vidal. “InterpretME: A Tool for Interpretations of Machine Learning Models Over Knowledge
Graphs”. In: ().

[13] Yashrajsinh Chudasama, Disha Purohit, Philipp D. Rohde, and Maria-Esther Vidal. “En-
hancing Interpretability of Machine Learning Models over Knowledge Graphs”. In: Pro-
ceedings of the Posters and Demo Track of the 19th International Conference on Semantic
Systems co-located with 19th International Conference on Semantic Systems (SEMANTiCS
2023), Leipzing, Germany, September 20 to 22, 2023. Ed. by Neha Keshan, Sebastian Neu-
maier, Anna Lisa Gentile, and Sahar Vahdati. Vol. 3526. CEUR Workshop Proceedings.
CEUR-WS.org, 2023. url: https://ceur-ws.org/Vol-3526/paper-05.pdf.

[14] Richard Cyganiak, Seema Sundara, and Souripriya Das. R2RML: RDB to RDF Mapping Lan-
guage. W3C Recommendation. https://www.w3.org/TR/2012/REC-r2rml-20120927/. W3C,
Sept. 2012.

[15] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau,
and Sebastian Thrun. “Dermatologist-level classification of skin cancer with deep neural
networks”. In: nature 542.7639 (2017), pp. 115–118.

[16] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hut-
ter. “Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning”. In: arXiv:2007.04074 [cs.LG]
(2020).

[17] Ronald Gould. Graph theory. Courier Corporation, 2012.

[18] Nicholas Halliwell, Fabien Gandon, and Freddy Lecue. “User scored evaluation of non-unique
explanations for relational graph convolutional network link prediction on knowledge graphs”.
In: Proceedings of the 11th on Knowledge Capture Conference. 2021, pp. 57–64.

[19] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia D’amato, Gerard De Melo, Clau-
dio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neu-
maier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas
Schmelzeisen, Juan Sequeda, Ste↵en Staab, and Antoine Zimmermann. “Knowledge Graphs”.
In: ACM Computing Surveys 54.4 (July 2021), pp. 1–37. issn: 1557-7341. doi: 10.1145/
3447772. url: http://dx.doi.org/10.1145/3447772.

[20] Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. “Knowledge graph embedding
based question answering”. In: Proceedings of the twelfth ACM international conference on
web search and data mining. 2019, pp. 105–113.

66

https://ceur-ws.org/Vol-3526/paper-05.pdf
https://doi.org/10.1145/3447772
https://doi.org/10.1145/3447772
http://dx.doi.org/10.1145/3447772

Bibliography

[21] Enrique Iglesias, Samaneh Jozashoori, David Chaves-Fraga, Diego Collarana, and Maria-
Esther Vidal. “SDM-RDFizer: An RML interpreter for the e�cient creation of RDF knowl-
edge graphs”. In: Proceedings of the 29th ACM international conference on Information &
Knowledge Management. 2020, pp. 3039–3046.

[22] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. “Knowledge graph embedding
via dynamic mapping matrix”. In: Proceedings of the 53rd annual meeting of the association
for computational linguistics and the 7th international joint conference on natural language
processing (volume 1: Long papers). 2015, pp. 687–696. doi: 10.3115/v1/P15-1067. url:
https://aclanthology.org/P15-1067.pdf.

[23] Michael I Jordan and TomMMitchell. “Machine learning: Trends, perspectives, and prospects”.
In: Science 349.6245 (2015), pp. 255–260.

[24] Shristi Shakya Khanal, PWC Prasad, Abeer Alsadoon, and Angelika Maag. “A systematic
review: machine learning based recommendation systems for e-learning”. In: Education and
Information Technologies 25 (2020), pp. 2635–2664.

[25] Lars Kottho↵, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-Brown.
“Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA”.
In: Journal of Machine Learning Research 18.25 (2017), pp. 1–5.

[26] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer, et al. “Dbpedia–
a large-scale, multilingual knowledge base extracted from wikipedia”. In: Semantic web 6.2
(2015), pp. 167–195.

[27] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N.
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and Christian
Bizer. “DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia.” In:
Semantic Web (2015). url: http://dblp.uni-trier.de/db/journals/semweb/semweb6.
html#LehmannIJJKMHMK15.

[28] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. “Learning Entity and
Relation Embeddings for Knowledge Graph Completion”. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence 29.1 (Feb. 2015). doi: 10.1609/aaai.v29i1.9491. url:
https://ojs.aaai.org/index.php/AAAI/article/view/9491.

[29] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predictions”.
In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates, Inc.,
2017, pp. 4765–4774. url: http://papers.nips.cc/paper/7062-a-unified-approach-
to-interpreting-model-predictions.pdf.

[30] Alireza Osareh and Bita Shadgar. “Machine learning techniques to diagnose breast cancer”.
In: 2010 5th international symposium on health informatics and bioinformatics. IEEE. 2010,
pp. 114–120.

[31] Disha Purohit, Yashrajsinh Chudasama, Ariam Rivas, and Maria-Esther Vidal. “SPaRKLE:
Symbolic caPtuRing of knowledge for Knowledge graph enrichment with LEarning”. In: Pro-
ceedings of the 12th Knowledge Capture Conference 2023. K-CAP ’23. Pensacola, FL, USA:
Association for Computing Machinery, 2023, pp. 44–52. doi: 10.1145/3587259.3627547.
url: https://doi.org/10.1145/3587259.3627547.

67

https://doi.org/10.3115/v1/P15-1067
https://aclanthology.org/P15-1067.pdf
http://dblp.uni-trier.de/db/journals/semweb/semweb6.html#LehmannIJJKMHMK15
http://dblp.uni-trier.de/db/journals/semweb/semweb6.html#LehmannIJJKMHMK15
https://doi.org/10.1609/aaai.v29i1.9491
https://ojs.aaai.org/index.php/AAAI/article/view/9491
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.1145/3587259.3627547
https://doi.org/10.1145/3587259.3627547

Bibliography

[32] Faiza Qamar, Seemab Latif, and Asad Shah. “Techniques, datasets, evaluation metrics and
future directions of a question answering system”. In: Knowledge and Information Systems
(2023), pp. 1–34.

[33] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why Should I Trust You?”:
Explaining the Predictions of Any Classifier”. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’16. San Fran-
cisco, California, USA: Association for Computing Machinery, 2016, pp. 1135–1144. isbn:
9781450342322. doi: 10 . 1145 / 2939672 . 2939778. url: https : / / doi . org / 10 . 1145 /
2939672.2939778.

[34] Andrea Rossi, Donatella Firmani, Paolo Merialdo, and Tommaso Teofili. “Explaining Link
Prediction Systems Based on Knowledge Graph Embeddings”. In: SIGMOD. 2022.

[35] Andy Seaborne and Eric Prud’hommeaux. SPARQL Query Language for RDF. W3C Rec-
ommendation. https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/. W3C, Jan.
2008.

[36] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. “Rotate: Knowledge graph em-
bedding by relational rotation in complex space”. In: arXiv preprint arXiv:1902.10197 (2019).

[37] Yi-Lin Tuan, Sajjad Beygi, Maryam Fazel-Zarandi, Qiaozi Gao, Alessandra Cervone, and
William Yang Wang. “Towards large-scale interpretable knowledge graph reasoning for dia-
logue systems”. In: arXiv preprint arXiv:2203.10610 (2022).

[38] Denny Vrandečić and Markus Krötzsch. “Wikidata: a free collaborative knowledgebase”. In:
Communications of the ACM 57.10 (2014), pp. 78–85.

[39] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. “Knowledge Graph Embedding: A
Survey of Approaches and Applications”. In: IEEE Transactions on Knowledge and Data
Engineering 29.12 (2017), pp. 2724–2743. doi: 10.1109/TKDE.2017.2754499.

[40] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. “Kgat: Knowledge
graph attention network for recommendation”. In: Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining. 2019, pp. 950–958.

[41] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. “Knowledge Graph Embedding
by Translating on Hyperplanes”. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence 28.1 (June 2014). doi: 10.1609/aaai.v28i1.8870. url: https://ojs.aaai.org/
index.php/AAAI/article/view/8870.

[42] Jianfeng Zhao, Bodong Liang, and Qiuxia Chen. “The key technology toward the self-driving
car”. In: International Journal of Intelligent Unmanned Systems 6.1 (2018), pp. 2–20.

68

https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1609/aaai.v28i1.8870
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://ojs.aaai.org/index.php/AAAI/article/view/8870

