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Abstract: The AUC margin loss is a valuable loss function
for medical image classification as it addresses the problems
of imbalanced and noisy labels. It is used by the current win-
ner of the CheXpert competition. The CheXpert dataset is a
large dataset (200k+ images), however datasets in the range of
1k-10k medical datasets are much more common. This raises
the question if optimizing AUC margin loss also is effective in
scenarios with limited data. We compare AUC margin loss op-
timization to binary cross-entropy on limited, imbalanced and
noisy CheXpert5000, a subset of CheXpert dataset. We show
that AUC margin loss is beneficial for limited data and consid-
erably improves accuracy in the presence of label noise. It also
improves out-of-box calibration.
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1 Introduction

Computer-aided diagnosis (CAD) from X-ray, CT, and MRI
images is becoming a valuable support tool for diagnosing and
treating clinical pathologies. With the success of deep learning
for image classification more and more applications are within
reach of becoming standard tools for radiologist. The objective
of binary/multi-label image classification is the maximization
of the area under the ROC curve (AUC or AUROC). Albeit the
common practice to optimize these classification tasks using
the binary cross entropy (BCE), it would seem to be the win-
ning strategy to directly maximize the AUC score. Due to the
nature of AUC being a score loss, it is not possible to optimize
the AUC score using gradient descent (required for neural net-
work optimization). Therefore, Yuan et al. recently proposed
the AUC margin (AUCM) loss which is a surrogate loss to in-
directly optimize the AUC score [1]. The authors provide ex-
tensive ablation studies of their work on common computer vi-
sion benchmarks like CIFAR10/100, and STL10 and show that
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Fig. 1: Sample images from the X-ray image classification CheX-
pert [2] dataset.

AUCM improves accuracy in the presence of imbalanced and
noisy labels, which are very common problems in CAD, and
they are currently leading the CheXpert competition [2]. They
combined 25 models to win this competition and added addi-
tional label smoothing to handle label uncertainty (and there-
fore also label noise). As they do not include an ablation study
on CheXpert in their work, the effects of the various compo-
nents, including AUCM, are not clear. In addition, the original
CheXpert dataset (200k+ images) is huge compared to com-
mon medical datasets, where 1k-10k datasets are much more
common. This raises the questions of the impact of AUCM
optimization without additional noise handling strategies and
if AUCM generalizes to a limited data scenario. We therefore
investigate AUCM in more details in a limited data scenario
and study AUCM on the CheXpert5k [3], a subset of the Stan-
ford CheXpert dataset [2], meant for the study of limited data
scenarios. Our contributions are (1) a comparison study of
AUCM to BCE for limited, noisy and imbalanced X-ray
image classification and (2) we show that AUCM is benefi-
cial also for limited data especially for noisy labels.

2 CheXpert5k and label noise

CheXpert5000 (CheXpert5k) [3] is a subset of the public
CheXpert dataset [2] to explicitly study limited data scenarios.
It provides five different training and validation sets sampled
from the official CheXpert dataset with 5000 training samples
each. CheXpert5k only has samples in frontal and AP view.
The label statistics of the 5k training sets are similar to the of-
ficial CheXpert training set. The official CheXpert validation
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Tab. 1: Label distribution of one of the five CheXpert5k (imbalanced) training sets [3] and a summary of the results of the original CheX-
pert paper [2] if label mapping of uncertain labels (u) improves model performance compared to ignoring the uncertain labels.
u-zeros: uncertain labels are mapped to 0; u-ones: uncertain labels are mapped to 1; u-3-classes: optimized as 3-class problem.
++: strong improvement, +: slight improvement, –: strong decrease, -: slight decrease

Label Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion

1 813 637 363 1443 2086
0 16 146 368 367 485
u 810 178 666 332 271

not labeled 3361 4039 3603 2858 2158
1 16.3% 12.7% 7.3% 28.9% 41.7%
0 0.3% 2.9% 7.4% 7.3% 9.7%
u 16.2% 3.6% 13.3% 6.6% 5.4%

not labeled 67.2% 80.8% 72.1% 57.2% 43.2%

u-zeros - + - - +
u-ones ++ + – + +

u-3-Class + ++ o - +

set is used as test set. It contains 235 images, all manually an-
notated by three medical experts.

The original CheXpert is a large medical dataset of 200k+
X-ray images which has been automatically annotated using
neural language processing on patient files. It provides labels
for 14 pathologies. It was introduced as part of the CheXpert
Challenge which benchmarks the performance on five patholo-
gies, see Table 1. As CheXpert was annotated using a neural
network, the labels are not only 0 and 1 for each pathology be-
ing present or not but also u for uncertain and _ for unlabeled
to address uncertainty of the language model or abstinence of
the predefined pathologies in the patients’ files.

Common practice for supervised training on the CheXpert
dataset is to map category _ to 0, and map u to 0 or 1 depending
on the pathology. This approach is based on the original work
[2], where they study how the model’s performance improved
or decreased for different mappings of the uncertain labels.
We provide a summary in Table 1. The mapped uncertain and
unlabeled labels will generally have a higher noise level than
the confident labels 1 and 0.

3 Experiments

In our experiments we compare models trained on BCE to
models trained with AUC margin (AUCM) loss. We explic-
itly study AUCM loss for label imbalance and label noise. We
perform our experiments on CheXpert5k.

We provide area under the receiver operating character-
istic curve (AUC or AUROC), area under the precision-recall
curve (AUPRC) and the expected calibration error (ECE) on
the official CheXpert validation set. The ECE is computed
from 10 bins. We report the mean and standard deviation over

five runs with different training/validations sets. We also pro-
vide the average amount of images the model has seen until
convergence (image iterations).

We provide results for the Big Transfer Model BiT50x1
[4] which is a ResNet50 variant with optimized architecture
for transer learning and trained on a larger dataset. It signifi-
cantly outperforms ResNet50 on CheXpert5k (with identical
model capacity and memory consumption) and was recom-
mended as a drop-in substitute for ResNet50 [3]. We also pro-
vide results for ResNet50 as an established baseline model for
comparison.

3.1 Imbalanced and noisy data

We perform two experiments to investigate AUCM on imbal-
anced data, and imbalanced data with noise.

Imbalance only: For our first experiment we create im-
balanced but non-noisy training sets. We do that by using only
the confident labels from CheXpert5k (labels 0 and 1). We
mask all other labels, to have no influence on the loss compu-
tation. The first training set then consists of 5000 images and
7599 labels, i. e., all confident labels for all five classes (multi-
label classification). The label statistics can be seen in Table 1.
AUROC, AUPRC and ECE are computed for each class and
averaged with equal weights.

Imbalance and label noise: For our second experiment
we picked the class with the worst performance when includ-
ing the uncertain labels in previous studies [2] which is Con-
solidation, see Table 1. Results for Consolidation did not im-
prove when mapping the uncertain labels (u) neither to 0 nor
to 1. We can therefore assume that these labels are very noisy
when we map them to a single label. In this experiment we
map the uncertain labels to 1 and all unlabeled samples to 0
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Tab. 2: Results for imbalance only experiments: multi-label AUCM trained only on confident labels i.e. 1 and 0 (approx. no noise). Re-
sults are averaged over all five training sets of CheXpert5k and we provide standard deviation. We do see some instability in the training
with the original training protocol BCE-3+AUCM where some models degenerate.

Model Training Stategy Image Iterations AUROC AUPRC ECE

Bit-50x1 BCE only 34k 0.8225±.0200 0.5982±.0340 0.404±.0234
Bit-50x1 BCE-3+AUCM 15k+68k 0.8208±.0135 0.6061±.0166 0.1245±.0124
Bit-50x1 BCE-c+AUCM 34k+48k 0.8231±.0151 0.6055±.0311 0.2028±.0252

ResNet50 BCE only 184k 0.8007±.0081 0.571±.0224 0.3823±.0242
ResNet50 BCE-c+AUCM 184k+38k 0.7941±.0037 0.5679±.0167 0.2325±.0177

(a) BCE only

(b) BCE-c+AUCM

Fig. 2: Class-wise reliability/calibration plots for BiT-50x1 tested on CheXpert validation set (manual, hence non-noisy labels). AUCM
optimization considerably improves calibration for all pathologies.

(following common protocol). We therefore have training sets
with 5000 images and 5000 (noisy) labels. Benign to malign
ratio is 20.6 to 79.4, i. e., a so called imratio of approx. 0.2.

3.2 BCE vs. AUCM

AUCM training proposes a two-step optimization protocol [1]:
first, a model is initially pretrained with BCE loss for a small
amount of epochs on the target data, and then fine-tuned with
AUCM loss on the target data. For our experiments CheX-
pert5k training sets are used as target data.

In our study we performed two different training proto-
cols: (BCE-3+AUCM) following the proposed protocol and
(BCE-c+AUCM) a variation where we alter the BCE pretrain-
ing. In both protocols AUCM fine-tuning is identical and al-
ways performed until convergence of validation loss. As sug-
gested, the classifier is reset before AUCM optimization [1].

BCE-3+AUCM: This first protocol follows the recom-
mendations of [1]. The original work uses 400k image iter-
ations (2 epochs) for 200k-CheXpert. With CheXpert5k, the

training converges long before that. We therefore chose a pre-
training with 3 epochs to mimic the short pretraining.

BCE-c+AUCM: We found that in some cases BCE-
3+AUCM leads to model divergence during AUCM optimiza-
tion. [1] states that BCE pretraining is essential for good re-
sults which leads to the assumption that our pretraining might
not be long enough. We therefore adapted our BCE pretrain-
ing. In our second protocol BCE optimization is performed
until convergence of validation loss.

BCE only: We compare our models to models trained
only on BCE (until convergence). These models are identical
to the models obtained in the first step of BCE-c+AUCM.

3.3 Implementation and
Hyperparameters

Our implementation is based on the timm [5] and libauc [6]
library. All models and pretrained weights are from timm.

For BCE training, we use ResNet pretrained on ImageNet
and Bit-50x1 pretrained on the larger ImageNet21k and BCE
loss. Following [3] we use a batchsize of 32, SGD as opti-
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Tab. 3: Results for imbalance and noise experiments: Single-class AUCM optimization of BiT50x1 on CheXpert5k for Consolidation only.
Uncertain labels are mapped to 1 and not labeled samples are mapped to 0 for training which presumably leads to a high amount of
noisy labels in the training set.

Model Training Strategy Image Iterations AUROC AUPRC ECE

Bit-50x1 BCE only 34k 0.8405±.0172 0.4252±.0483 0.0895±.0200
Bit-50x1 BCE-3+AUCM 15k+8k 0.8258±.0304 0.3872±.0720 0.0604±.0152
Bit-50x1 BCE-c+AUCM 34k+42k 0.8622±.0143 0.4730±.0207 0.0531±.0153

mizer with momentum 0.9, weight decay 2e-5, and learning
rate 0.003. During training, a plateau scheduler is used for the
learning rate with decay rate 0.1 and patience 10.

For AUCM training, we use the BCE models as described
above (pretrained on CheXpert5k). We use the AUCM loss and
the corresponding PSEG optimizer from libauc [6]. For the
optimizer, we keep the default settings from [6] with weight
decay 1e-5 and learning rate 0.003. We again use a batchsize
of 32 and a plateau scheduler with decay rate 0.1 and patience
10. We use the same hyperparameters for all runs.

4 Results
We provide results for our imbalance only experiments in Ta-
ble 2 and Figure 2, and the combined imbalance and noise
experiments in Table 3.

Imbalance only: There is a slight improvement (AUROC,
AUPRC) in accuracy after AUCM optimization for BiT-50x1
(not for ResNet50). However this change is so small, it is not
conclusive. We do see however a drastically improved out-of-
box calibration (ECE) while maintaining the same accuracy.
The improved calibration can be seen for all pathologies. This
is especially interesting for the strongly imbalanced class At-
electasis which has only 16 0-labels in all 5000 images. We
see that BCE-only Bit-50x1 model (Figure 2a) is less cali-
brated than in [3] where the models had very good calibration
values. We assume this is due to the absence of noise in our
training data for this experiment. The noise in the full CheX-
pert5k might lead to better calibrated models. We found that
only short pretraining with BCE (BCE-3+AUCM) leads to de-
terioration of the model in some cases.

Imbalance and label noise: In our noisy experiment we
see a strong improvement in model accuracy with our adapted
pretraining strategy (BCE-c+AUCM). AUCM seems to show
its strength especially in robustness to label noise. Shorter
BCE pretraining (BCE-3+AUCM) unfortunately led to poorer
model performance. Calibration is high for all training proto-
cols (also BCE only) right from the start. Impressively, both
AUCM optimizations improved out-of-box calibration even
further. So overall, BCE-c+AUCM again improved the mod-
els’ calibration without any loss in accuracy.

5 Conclusion

We find that the AUCM loss is beneficial for our limited
data scenario especially in the presence of label noise. BCE-
c+AUCM optimization outperforms BCE-only by over 2% in
the presence of label noise. We furthermore see improvement
in out-of-box calibration for all AUCM optimizations with no
loss in accuracy (except for too short BCE-training for Con-
solidation). We find that an initial longer BCE-training is more
robust than a too short training and leads to higher accuracy.
We see good results with a fully converged BCE model as a
starting point for AUCM optimization. This actually simplifies
the original training protocol by removing a hyperparameter.

AUCM optimization from BCE-c models generally re-
sulted in better models than BCE-only models. The concept
of AUC optimization is very promising for medical image di-
agnosis and we would like to see wider application and more
in-depth research on this.
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