
Dynamics of ion Coulomb crystals

Von der Fakultät für Mathematik und Physik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften
Dr. rer. nat.

genehmigte Dissertation von
M.Sc. Lars Timm

2023



Referent/-in:
Prof. Dr. Luis Santos
(Gottfried Wilhelm Leibniz Universität Hannover)
Prof. Dr. Tanja E. Mehlstäubler
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Abstract

The field of quantum simulations has achieved a remarkable success through the
development of highly controllable and accessible quantum platforms, which pro-
vide insights into the microscopic properties of complex large-scale systems that
are otherwise difficult to analyze. Many of the platforms utilized in this pursuit are
derived from the field of atomic, molecular, and optical physics. One particularly
popular candidate is provided by trapped ions, whose vibrational and electronic
degrees of freedom can be effectively combined through laser pulses to engineer
desired model Hamiltonians or quantum circuits. Trapped ions constitute as well
the basis for modern atomic clocks, the most precise frequency standards currently
available. They find further applications in metrology, geodesy, and fundamental
physics experiments.

In this Thesis, we investigate the dynamics of vibrational modes in trapped
ion crystals, utilizing them as a versatile platform to explore various many-body
phenomena.

We first focus on the expansion dynamics of local excitations and on heat
transport within ion crystals hosting structural defects that undergo a sliding-
to-pinned transition. We observe a significant reduction in conductivity when
the crystal symmetry is spontaneously broken during the transition, and show
that resonances between crystal eigenmodes lead to distinct softening signatures
associated with energy localization. We then delve into the effects of thermal and
quantum fluctuations on the vibrational modes of ion crystals near two distinct
structural transitions. We observe the emergence of a prolonged symmetric phase
stabilized by thermal and quantum fluctuations, and develop effective theories that
reduce the degrees of freedom to the modes that drive the transitions.

Finally, we discuss how to engineer spin-orbit coupling and on-site interaction
energies for vibrational quantum excitations using two different external driving
schemes. While the simulation of spin models with ions typically involves the use
of two electronic states, we propose interpreting the two local oscillation modes
in an ion crystal as a pseudospin. We show how using Floquet engineering ideas
allows for spin flips in Coulomb-induced vibron hopping, resulting in a non-trivial
coupling between spatial motion and spin evolution, that results in a markedly non-
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Abelian dynamics. Subsequently, we explore the simulation of Hubbard models in
trapped ions by coupling the vibrational Fock states to an internal level system.
Our findings include the observation of bound states in the strong interaction limit
of the resulting Jaynes-Cummings-Hubbard model.

By investigating these topics, we aim to contribute to the understanding of
vibrational dynamics in trapped ion crystals, and shed light on their potential for
simulating condensed matter systems, offering insights into phenomena that are
otherwise challenging to explore.

Keywords
� Trapped ions

� Nanofriction

� Phase transitions

� Localization

� Topological defects

� Quantum simulation

� Spin-orbit coupling

� Hubbard model
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Zusammenfassung

Quantensimulationen haben durch die Entwicklung hochkontrollierbarer und zugänglicher
Quantenplattformen zahlreiche Einblicke in die mikroskopischen Eigenschaften
komplexer Vielteilchensysteme ermöglicht.

Viele der in diesem Feld verwendeten Plattformen stammen aus dem Bereich
der Atom-, Molekül- und Optikphysik.

Ein besonders beliebter Kandidat ist die Verwendung von gefangenen Ionen,
deren Schwingungs- und elektronische Freiheitsgrade durch Laserpulse effektiv
kombiniert werden können, um gewünschte Modell-Hamiltonians oder Quante-
nalgorithmen zu implementieren.

Gefangene Ionen bilden auch die Grundlage für moderne Atomuhren, die derzeit
genauesten Frequenzstandards. Sie finden weitere Anwendungen in der Metrologie,
Geodäsie und in Experimenten der Grundlagenphysik.

In dieser Arbeit untersuchen wir die Dynamik von Schwingungsmoden in gefan-
genen Ionenkristallen und nutzen sie als vielseitige Plattform zur Erforschung ver-
schiedener Vielteilchenphänomene.

Wir konzentrieren uns zunächst auf die Expansionsdynamik lokaler Anregun-
gen und den Wärmetransport in Ionenkristallen mit strukturellen Defekten, die
einen Aubry-Übergang durchlaufen. Wir beobachten eine signifikante Reduzierung
der Leitfähigkeit, wenn die Kristallsymmetrie während des Übergangs spontan ge-
brochen wird, und zeigen, dass Resonanzen zwischen den Eigenmoden des Kristalls
zu einer Wiederherstellung des Energietransports führen.

Anschließend widmen wir uns den Auswirkungen thermischer und quanten-
mechanischer Fluktuationen auf die Schwingungsmoden von Ionenkristallen in der
Nähe von zwei verschiedenen strukturellen Phasenübergängen. Wir beobachten
die Vergrößerung der symmetrischen Phase, die durch thermische und quanten-
mechanische Fluktuationen stabilisiert wird, und entwickeln effektive Theorien,
die die Freiheitsgrade auf diejenigen Moden reduzieren, die die Übergänge treiben.

Schließlich diskutieren wir, wie Spin-Bahn-Kopplung und Wechselwirkungsen-
ergien für lokale Schwingungsquanten mithilfe von externen Anregungsschemata
erzeugt werden können.

Während die Simulation von Spin-Modellen mit Ionen normalerweise zwei elek-
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tronische Zustände berücksichtigt, schlagen wir vor, die beiden lokalen Schwingungsmodi
in einem Ionenkristall als Pseudospin zu interpretieren.

Wir zeigen, dass durch die Verwendung von ”Floquet-Engineering” Spinflips
bei der gekoppelten Bewegung der Ionen auftreten, was zu einer nichttrivialen
Wechselwirkung zwischen räumlicher Bewegung und Spin führt, die resultierende
Dynamik ist nicht-Abelsch.

Anschließend untersuchen wir die Simulation von Hubbard-Modellen in gefan-
genen Ionen, indem wir die Fock-Zustände der Schwingungsmoden mit einem
internen Niveausystem koppeln. Unsere Ergebnisse umfassen die Beobachtung
von gebundenen Zuständen im Bereich starker Wechselwirkung des resultierenden
Jaynes-Cummings-Hubbard-Modells.

Durch die Untersuchung dieser Themen tragen wir zum Verständnis der Schwingungs-
dynamik in gefangenen Ionenkristallen bei und bieten Einblicke in deren Potenzial
zur Simulation von Systemen der Festkörperphysik, um Phänomene zu erforschen,
die sonst schwer zugänglich sind.

Schlagwörter
� Gefangene Ionen

� Nanoreibung

� Phasenübergänge

� Lokalisierung

� Topologische Defekte

� Quantensimulation

� Spin-Bahn-Kopplung

� Hubbard Modell
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Chapter 1

Introduction

In their quest to explore and comprehend the intricacies of nature, quantum physi-
cists face challenges in accessing and controlling the individual constituents of the
systems they study. Consequently, their observations often revolve around macro-
scopic quantities such as electric or thermal conductivities, specific heat, friction
coefficients, or total magnetization. Over the years, their measurement and theo-
retical analysis have led to remarkable discoveries, such as superfluidity, supercon-
ductivity, and quantum Hall effects, among others [1–5]. However, the analysis and
simulations of the underlying many-body systems are hindered by the exponential
growth of the Hilbert space dimension with particle number, imposing limitations
on our understanding.

To overcome these limitations, researchers have proposed simulating the sys-
tems of interest using artificial quantum systems that provide increased control
over individual particles and interactions [6]. This bottom-up approach, em-
ployed in various implementations stemming from atomic, molecular, and optical
(AMO) physics, utilizes single photons, ultracold atoms and molecules, and, no-
tably, trapped ions [7–31]. Each platform offers different advantages in terms of
coherence times, interactions, and accessibility, making them suitable to varying
degrees for simulating many-body systems of interest, as for example spin and
Hubbard lattice models [32, 33].

Trapped ion systems are nowadays at the forefront of quantum simulation and
computation, utilizing the electronic levels of the ions as qubits, and employing
common motional modes as buses for two-qubit operations [8, 17, 19, 24]. These
systems allow for the exploration of diverse crystal geometries resulting from the
interplay between the long-range Coulomb repulsion and trap confinement, lead-
ing to one-, two-, and three-dimensional crystals separated by structural phase
transitions [34–40]. These transitions break the Z2 symmetries of a linear ion ar-
rangement, providing opportunities to create crystalline defects within the system.
Interestingly, these findings open new possibilities for the emulation of paradig-
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matic models in the field of nanofriction, encompassing the motion of atomic in-
terfaces [41–48].

This Thesis places a particular emphasis on the observed sliding-to-pinned
transition in triangular ion ladders, shedding light on the dynamics of ions within
such structures. The low-energy dynamics of these systems is determined by the
spectrum of phonon modes, which crucially depend on the equilibrium dictated
by the external confinement. Understanding these dynamics is essential for both
quantum simulation applications and advanced laser cooling schemes [49–53].

The structure of the Thesis is as follows:

� The Thesis starts with two introductory chapters, in which we set the frame
for the rest of the Thesis. In Chapter 2, we review the physics of trapped
ion systems, including how to trap and cool ions, and basic elements of the
theory of ion Coulomb crystals [38, 39, 54–57]. Chapter 3 briefly introduces
nanofriction, and in particular the Frenkel-Kontorova model, and how to
emulate nanofriction with ion crystals [41, 43, 45, 46, 58–60].

� Chapter 4 investigates how a topological defect modifies energy transport
in an ion Coulomb crystal [61–64]. We explore the delocalization dynamics
of local vibrational excitations through the system, observing a controllable
valve-like behavior of topological defects. While kinks in the sliding phase
are transparent to energy flow, they significantly handicap the dynamics
when the trap confinement is tuned into the pinned phase. This behavior
arises from the creation of asymmetric phonon modes at the sliding-to-pinned
transition. Nonlinear resonances between phonon modes partially weaken
the energy blockade, leading to a delicate interplay between harmonic energy
localization and nonlinear long-term delocalization. Additionally, we analyze
the heat conductivity of ion crystals in the presence of solitonic defects,
finding a similar reduction in heat flux in the pinned phase, accompanied by
the emergence of abrupt temperature gradients in the steady state. The heat
flux exhibits intricate dependencies on confinement arising from the density
of trap configurations that result in degenerate phonon modes.

� Chapter 5 focuses on the nonlinear dynamics of the system near structural
phase transitions [36, 65, 66]. In the first part, we investigate the motional
mode spectrum under the influence of thermal fluctuations at the linear-
to-zigzag transition. Numerical simulations support the experimental ob-
servation of a smooth crossover in mode frequencies, differing from the soft
mode predicted by phonon mode calculations. We attribute this behavior
to thermally activated switches between the two equilibrium configurations
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1 Introduction

in the symmetry-broken phase, with fast-rate switches leading to a time-
averaged maintenance of system symmetry. Employing a higher-order ex-
pansion around this effective crystal shape, we derive an effective mode cou-
pling model for low-energy modes, which agrees well with mode frequencies
obtained from Fourier analysis of numerical simulations. Furthermore, we
study the manifestation of the quantum nature of the ions in the vicinity of
the sliding-to-pinned transition of topological defects. Employing a collec-
tive excitation formalism, we distill the essential degree of freedom driving
the transition from the many-body problem, and identify a finite window
of observable quantum tunneling effects in the pinned phase. Similar to the
thermal switches in the first part, these effects connect the two classical equi-
libria and alter the phonon mode spectrum. We also provide estimates for the
required temperature scale at which coherent quantum tunneling dominates
the incoherent jumps induced by temperature.

� Finally, in Chapter 6, we present two methods to manipulate the quantum
walks of vibrational excitations (vibrons), enabling simulations of spin-orbit
coupled particles and interacting Hubbard physics [23, 67–69]. We inter-
pret the two decoupled vibron modes of individual ions as a spin-1/2 de-
gree of freedom, employing Floquet engineering to create anisotropic two-
dimensional hopping matrices that allow for spin flips when vibrons move
within the lattice structure. The non-commutativity of the hopping matri-
ces along different lattice axes introduces a dependence of the spin state of
the vibron on its trajectory and vice versa. We demonstrate this form of
spin-orbit coupling in a simple square plaquette, extending it to a larger
lattice structure. While lattice vibrations of ion crystals typically do not
interact, we discuss the possible coupling to the electronic level structure
through sideband dressing, resulting in tunable local interaction strengths
controlled by laser intensity and detuning. The resulting JCH model has
been analyzed in coupled cavities and trapped ions, featuring a superfluid-
to-Mott insulator transition. Building on these findings, we report on the
creation of bound states in the many-body spectrum and study their motion
within the lattice structure.

In summary, this Thesis advances the field of (quantum) many-body dynamics
in trapped ions, showcasing its versatility as a tool for addressing questions arising
in crystalline systems.
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Chapter 2

Trapped ion systems

2.1 Trapping ions

In order to map out and understand the physics of atoms and eventually harness
their properties for a series of applications researchers are motivated to improve
the obtainable experimental signals [70]. In the early days of atomic, molecular
and optical (AMO) physics, this translated into enlarging the interrogation time
for a better signal-to-noise ratio, improving the isolation of the atoms from its
environment, and preparing them in a desirable configuration [71, 72]. Although
these challenges remain up to date, their boundaries have shifted immensely due to
the invention of several key techniques. The two main examples for developments
that boosted the field are trapping techniques and laser cooling. Both of them
have been awarded with Nobel prizes [73–80]. They enabled the transition from
experiments on atomic beams with severe limitations on interrogation times and
state preparation, to trapped atoms and ions with much improved readout and
preparation precision.

In order to confine charged atoms in a defined spatial region physicists can
rely on the coupling between their dynamics and electromagnetic fields [81]. This
coupling comes naturally due to the electromagnetic force, and hence simplifies
their control in comparison to neutral atoms, for which the connection needs to be
engineered, e.g. via laser radiation in a magneto-optical trap [53, 82]. However,
all trapping techniques for charged particles face a common obstacle, which is
known as Earnshaw’s theorem [83]. From the Poisson equation in vacuum for a
static electric potential Φ = ax2 + by2 + cz2 it follows that a + b + c = 0, or
as stated in the words of the theorem: No static electric field can be confining
in all three dimensions. Researchers have developed two fundamental ways to
circumvent Earnshaw and reach three-dimensional confinement, today known as
Penning traps and Paul traps [79, 84].
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2.1 Trapping ions

The former uses a homogeneous magnetic field in order to force the charged
particles onto a tight cyclotron orbit perpendicular to the field lines [55]. For
strong enough magnetic fields this can be used to counter the deconfining effect of
an electric quadrupole field. In Dehmelt’s group this technique was first used to
trap single electrons and subsequently investigate their properties, in particular its
magnetic moment [80, 85–87]. Although this approach bears some advantages, an-
other approach celebrates nowadays a wide success in the field of trapping charged
particles.

Simultaneously to the advances made by Dehmelt, Paul’s group investigated
the focusing of neutral particles with magnetic and electric dipole moments by
electromagnetic multipole fields [71, 88–90]. Initially, the particles of a beam
passed a series of lenses with alternating sign in the field configurations, which
lead to an effective focusing if certain conditions for the spacing of the lenses were
met. Paul realized that the time-dependent electric field the particles experience
in their own reference frame can be created in the lab frame to confine particles
in his so-called ”Ionenkäfig” [91]. His ideas are the fundament of modern-day
experiments in the field of quantum computing, metrology and condensed matter
physics with trapped ions [7, 8, 11, 17, 19, 27, 28, 38, 92–95].

The Paul trap would have not been as successful as it is without the invention
of the laser and the associated cooling, manipulation, and readout schemes [53, 56,
57]. With the upcoming of the first lasers, they were first used in the 1970s to slow
down neutral and charged atoms via Doppler cooling and lead to the crystallization
in the case of ions [78, 96–98]. While the achieved level of isolation and readout
is already remarkable, enabling for example the first electronic state detection via
electron shelving [99], more involved sub-Doppler schemes were soon after realized,
most prominently resolved sideband cooling [100–103]. This marks the departure
from the classical motion of the particles, and the entrance into a fully quantized
description. Subsequently, physicists succeeded in preparing non-classical motional
states of single ions in Paul traps [104, 105]. Today the manipulation of the internal
and motional states of single ions is an established technique with fidelities close
to perfection and opens not only possibilities to study the particles themselves,
but also to build highly sensitive quantum sensors for metrological applications
and quantum computing devices [27, 38, 94, 95, 106–123].

In the following sections, we introduce in detail the physics of ions trapped in
Paul traps, focusing on the vibrational dynamics of crystalline structures that form
for sufficiently low temperatures, reachable by Doppler cooling. In the last part of
the chapter, we discuss the discovery of crystal defects, which play a key part in
following chapters. All together, the concepts presented here are fundamental for
the understanding of the results shown in the second part of this Thesis.
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2 Trapped ion systems

2.1.1 Paul traps

The electrode configuration in a Paul trap, schematically shown in Fig. 2.1, pro-
duces an electric potential that can be written in the form [57] :

Φ =
∑

µ=x,y,z

(udc
2
ϕµ +

urf
2
ϕ′
µ cos(Ωrf t)

)
µ2 (2.1)

where udc and urf denote the relative static and oscillating field strengths which
depend on the trap geometry and voltages applied to the electrodes. ϕµ and ϕ′

µ

describe the anisotropy of the trap and Ωrf is the frequency of the radiofrequency
(rf) drive. The Poisson equation ∇2Φ = 0 in the vacuum between the electrodes
is fulfilled for

∑
µ ϕµ = 0 and

∑
µ ϕ

′
µ = 0, which is the central statement of

Earnshaw’s theorem, as previously mentioned [81, 83]. In a static field this leads
to a repulsive potential in at least one dimension.

In a typical linear Paul trap, ϕ′
z = 0 is chosen such that the confinement along

z is purely given by the static term, it follows that ϕ′
x = −ϕ′

y. In addition, we
normalize the static potential by fixing ϕz = 1. The Newtonian equations of
motion that result from this potential are then commonly written in terms of the
so-called stability parameters aµ and qµ[

d2

dt2
+

Ω2
rf

4
(aµ + 2qµ cos(Ωrf t))

]
µ = 0 (2.2)

aµ =
4Qudc
mΩ2

rf

ϕµ, qµ =
2Qurf
mΩ2

rf

ϕ′
µ (2.3)

where m is the particles mass and Q its charge.
The three independent equations (2.2) have the form of Mathieu equations and

can be solved with the help of Floquet’s theorem [54, 124–128]. This theorem states
that the solutions of a linear differential equation with a time-periodic coefficient
matrix have the form µ(t) = esµtfµ(t). fµ(t) is periodic in time with the same
period as the coefficient matrix, and hence we can write it in a Fourier series fµ =∑

n f
n
µ exp(−inΩrf t), and plug this ansatz into Eq. (2.2). We obtain a recurrence

relation for the coefficients fn
µ that can be formally solved, giving the dependence

of sµ and fµ(t) on the stability parameters aµ and qµ [129]. Interestingly, there
exist regions in the parameter space of aµ and qµ for which the trajectory of the
ion stays bound for all times, denoted as the stability regions of the trap. The
most important one can be found close to the origin, i.e. for |aµ|, q2µ ≪ 1 (see
Fig. 2.1), so that we can expand the solution to lowest order in qµ and find

µ(t) ∝ cos(ωµt)(1 +
qµ
2
cos(Ωrf t)) (2.4)
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2.1 Trapping ions

Figure 2.1: Left: Schematic depiction of the electrode alignment in a linear
Paul trap. Right: Minimal stability region as a function of the Mathieu sta-
bility parameters. Picture taken from Ref. [54].

where 4ω2
µ = Ω2

rf (aµ+q
2
µ/2) is the secular oscillation frequency of the trap [54, 129].

Note that the condition for a stable trap configuration simplifies close to the
origin of the parameter space to aµ + q2µ/2 > 0, which needs to be valid for all
µ = x, y, z. Due to our choice of ϕz and ϕ′

z, the potential along z is always
confining, but it is not obviously so for the two other directions. The motion
with the secular frequency is superimposed by a term oscillating with the driving
frequency Ωrf , as seen in the trajectory depicted in Fig. 2.2. This effect is called
micromotion [74, 129, 130]. It comes from the fact that we employ a fast rf drive to
create an effective time-averaged confinement along x and y and is absent when the
ion is placed exactly on the z axis of the trap. For the stability region close to the
origin we have ωµ ≪ Ωrf so that the period of this so-called micromotion is much
shorter than 2π/ωµ. However, throughout this Thesis we are interested in effects
that occur on a timescale given by the secular frequencies of the trap. We hence
separate the micromotion from the discussion due to its off-resonant frequency.
When we neglect the micromotion, the dynamics of the charged particle can be
described by a harmonic oscillator potential with frequencies ωµ which we write in
the form

V =
mω2

z

2

(
z2 + α2(x2 + β2y2)

)
(2.5)

where we have introduced the trap aspect ratios

α =
ωx

ωz

, β =
ωy

ωz

(2.6)
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2 Trapped ion systems

Figure 2.2: Trajectory of a charged microparticle in a Paul trap, taken from
Ref. [74]

as the main parameters for the trap configuration. They can be controlled by
the applied electrode voltages, but also depend on the charge to mass ratio of the
particle, which is of importance in the case of an ion mixture of different species.

2.1.2 Optical trapping and surface traps

Although capturing charged atoms with radiofrequency traps has been very suc-
cessful, there exist limitations of their applicability. One issue already discussed is
that the radiofrequency driving causes micromotion in two-dimensional ion crys-
tals, which in turn can contribute to the heating of the system. Moreover, Paul
and Penning traps offer only a limited control over the positions and vibrational
frequencies of the ions in the crystal. The ions align in a self assembled way,
settling in the minimal energy configuration, which depends on the trap frequen-
cies and the ion number, in addition the quadratic effective potential leads to an
inhomogeneous ion density [21, 34, 131–133]. The distances between neighbor-
ing particles are smallest in the central region of the trap, while the ions at the
edges of the crystal structure are further apart. This effect is particularly relevant
when the number of particles is scaled up, as a sufficient ion spacing needs to be
maintained for their individual laser addressing [16]. While in general this level of
control suffices for the study of structural transitions, when the trap configuration
is altered it can create problems for quantum simulation applications, especially
in two-dimensional models [28].

These arguments have prompted trapped ion researchers to explore possible
extensions or alternatives to conventional trap techniques. A natural choice is
the usage of segmented and surface traps, which builds on the Paul trap ap-
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2.1 Trapping ions

proach [30, 134–140]. Segmented Paul traps use multiple electrodes to create
separated trapping regions via their electrostatic potentials. This design opens
the possibility to store several chains of ions, which by default do not interact
since they share no motional modes, but can be transferred into the same trap
region to e.g. apply quantum gates if necessary. Surface traps add more flexibility,
as the integration of the electrodes into a chip enables the creation of a two-
dimensional array of trapping regions. Experiments pursuing these approaches
have demonstrated already the trapping and shuffling of ions in different trap ge-
ometries [141–147]. However, the usage of micro-fabricated surface electrode traps
brings on its own some disadvantages. Typically, the depth of the trap potentials is
significantly reduced in comparison to three-dimensional Paul traps, which makes
the loss of particles more likely [148]. Also, the short distance between the ions
and the electrodes themselves makes them prone to electric field noise [149–152].
Researchers have worked towards the compensation and reduction of noise sources,
by e.g. reducing the temperature of the trap chip [153–156]. In addition, the in-
tegration of the manipulation and readout mechanisms into the chip is another
direction of research that enables the upscaling of the system [157–161]. Most
of these efforts are targeted at analogue quantum simulations using the internal
degrees of freedom of the particles as constituents.

A young approach to circumvent the issues of rf field traps aims to use the
dipole force exerted on the ions by strong focused lasers [162–165]. This technique
is widely used in the field of neutral atom physics, where the particles do not react
to electric fields due to their missing charge monopole [15, 166].

The basic mechanism behind this way of confining atoms can be understood in
a classical picture of a particle with an electric dipole moment induced by the lights
electric field. Consequently, the interaction of the induced dipole with the electric
field creates a potential proportional to the lights intensity I(r⃗). When the relevant
physics of the atom is approximated by an electron that is elastically bound to the
nucleus with frequency ω0 a small derivation for the atoms polarizability yields

Udip(r⃗) =
3πc2

2ω3
0

∆ω

δ
I(r⃗) (2.7)

where δ describes the lasers detuning from ω0, c is the speed of light. ∆ω de-
scribes the damping of the electrons motion via radiation due to its acceleration.
It becomes clear that depending on the detuning high intensity regions become re-
pellent or attractive for the atom in the ground state. This classical picture can be
complemented by a derivation of the dressed states in a fully quantum mechanical
picture which reveals that the excited state experiences an inversed dipole poten-
tial. The functional dependence of the created potential agrees with the classical
derivation, ω0 plays the role of the transition frequency that is adressed by the
light and ∆ω is its natural linewidth. While a single laser beam creates a single

10



2 Trapped ion systems

trap region, the creation of a standing wave by counter-propagating beams creates
a periodic lattice potential for the atoms [12, 20, 167–170]. This technique im-
presses with its flexibility concerning the possible crystal structures and bears the
opportunity to shuffle single particles around by tunable laser beams, transporting
atoms between different traps [171, 172]. Another major advantage of dipole traps
is the supression of micromotion, as the oscillation frequency of the confinement
field, the electric field of the laser light in this case, lies in the optical regime in
comparison to the rf electric field of Paul traps [164]. However, in practice, there
are some drawbacks.

The off-resonant absorption of photons that changes the electronic state of the
ion will lead to the loss of the particle, as the light field becomes repulsive [165, 173–
175]. Moreover, with available laser powers the depth of the created confinement is
typically on the order of several mK, much lower than the trap depths achievable in
Paul traps. This necessitates the initial trapping in an rf field and the subsequent
transfer into an optical trap after the application of a laser cooling routine. While
the additional issues of laser-beam amplitude and wavevector noise are inherent
to optical trapping techniques, the coupling of the ions to electric fields introduces
additional challenges. As already discussed, according to Earnshaw’s theorem any
electrostatic potential adds a deconfining force, and consequently the depth of
the optically-created potential is reduced. In particular, this holds for the electric
potential from the electrodes of the Paul trap as well. Unwanted electric stray fields
aggravate this issue as they can tilt the potential landscape experienced by the ion,
and further lower the effective trap depth. Hence, their careful compensation is
essential to enable the confinement of ions by laser fields [176].

Note that the charge of the ions themselves creates an electric field experienced
by the other particles in a multi-ion crystal.

When the ions are confined by an array of laser beams, the local trapping po-
tential is affected by the Coulomb repulsion inside the specific geometry, and makes
it not only ion-dependent, but also further weakens the confinement strength. Due
to these complications mixed experiments employ rf traps due to their robust and
deep confinement, while simultaneously shaping the vibrational properties of the
ions at will by shining in additional focused laser beams [177].

2.2 Laser cooling

The cooling of ions trapped in rf fields by means of light fields is a pillar of modern-
day experiments [53, 57, 178]. It counters the heating of the particles due to
imperfections of real setups, leads to the crystallization of the system in the multi-
ion case, and reduces the thermal fluctuations of the ions, possibly up to a point for
which a quantum mechanical description is required [49, 56, 97, 100, 103, 131]. The
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Figure 2.3: Left: Doppler damping rate γDopp (red), given by Eq. (2.8), and
the Doppler bath temperature TDopp (blue), given by Eq. (2.9), as a function
of the detuning δ. Right: Schematic depiction of resolved sideband transi-
tions between the electronic ground state manifold |g, n⟩ and the excited states
|e, n⟩. The carrier (black) transition and the sideband transitions are denotes
by arrows, the spontaneous decay is sketched by the wavy arrows.

techniques available can be categorized by their attainable temperature regimes
into Doppler and sub-Doppler cooling.

2.2.1 Doppler cooling

Usually, the absorption of directed photon momenta is employed in the first ex-
perimental stage. When the frequency of a running-wave laser field is tuned close
to resonance with a dipole transition, photons are absorbed by the atom, changing
the atoms center of mass momentum by the photon momentum ℏk⃗ [163, 179]. Sub-
sequently, on the timescale of the transition linewidth (≈ ns), the photon is either
spontaneously emitted again or undergoes stimulated emssion into the laser mode.
Most importantly, the momentum kick due to absorption happens in the direction
of the laser wavevector k⃗, while the spontaneous emission is isotropic [180]. As
a result, on average, a directed momentum transfer occurs [96]. In the case of a
stimulated emission event no net momentum transfer occurs as a photon with the
same momentum is created.

This mechanism can be employed to effectively cool the motion of the atom
when the laser frequency is tuned slightly below the resonance frequency [53, 78,
181]. If the atom moves in any direction with a finite overlap with the wave-vector
of the laser, the frequency of the laser field experienced in the rest frame of the
atom is Doppler shifted. Depending on the direction of the velocity it is increased
or decreased. Consequently, if the projection of the velocity of the atom onto
the wave-vector is negative, the atom experiences a laser frequency that is shifted
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2 Trapped ion systems

closer to resonance, hence leading to an increased absorption probability and a
slowdown of the atom. The opposite is the case if the atom moves along the laser
direction so that less photons are absorbed, not further accelerating the atom. As
a result, in total, the laser exerts a damping force on the atom if it propagates
towards the laser source. This leads to overall cooling along the direction of the
wave-vector if a free atom is illuminated by two counter-propagating beams. In
the case of ions confined in a Paul trap a single laser beam is sufficient, it dampens
the oscillation of the particle during half of the period which results in an average
damping rate [53]

γDopp = −8ℏk⃗
2

m

sδ/∆ω[
1 + 4

(
δ

∆ω

)2]2 (2.8)

where s = 2Ω2/∆ω2 is the saturation parameter with the carrier Rabi frequency
Ω and ∆ω is the natural linewidth of the addressed transition.

For a detuning of δ = −∆ω/2 it has a value γDopp = ℏk⃗
2
s/m and its maximum

is given by 3
√
3γDopp/4 at δ = −∆ω/

√
12.

However, the undirected spontaneous emission of photons leads to stochastic
momentum kicks, which balance the decelerating effect of the directed absorption
at a certain temperature given by [53]

TDopp =
ℏ∆ω
8kB

(
∆ω

|δ| + 4
|δ|
∆ω

)
(2.9)

and lead to a diffusive trajectory. The ions temperature is bounded from below by
TDopp =

ℏ∆ω
2kB

. This value is often referred to as Doppler temperature. It is solely
determined by the linewidth of the transition, and lies typically on the range of
hundreds of µK. However, it is important to note that, as shown in Fig. 2.3, the
temperature can be increased by choosing a different detuning. In order to reach
colder temperatures, a more involved cooling scheme needs to be employed, which
we briefly discuss in the following.

2.2.2 Sub-Doppler cooling

A variety of sub-Doppler cooling schemes have been introduced in the past in
order to overcome the limitations of Doppler cooling, and to reach the quantum
mechanical ground-state of the atomic oscillations. This is not only desirable in
order to reduce the thermal fluctuations of the ions, but also as a first step in the
initialization process of quantum computations, such that the motional degree of
freedom of the atom is in a fixed known state [183]
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(a)

(b)

(c)

Figure 2.4: (a) Λ level scheme considered for Electromagnetic induced trans-
parency (EIT) cooling with Rabi frequencies Ω1 and Ω2 and detuning ∆. (b)
Absorption spectrum from the probe laser with detuning ∆p (in units of decay
rate). The detuning of the coupling lasers has been tuned to ∆ = 2.5 for which
the absorption vanishes. Pictures (a) and (b) have been taken from Ref. [182].
(c) Sketch of the Polarization gradient (PG) cooling scheme. The two ground
states experience phase-shifted periodic potentials with circular (σ) and linear
polarization. At the potential maxima the ground state occupation flips due
to virtual transitions to the excited state manifold, and subsequent decay via a
carrier transition, indicated by the dashed arrows. Diagram taken from Ref. [57]
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2 Trapped ion systems

One of the first schemes implemented in a trapped-ion experiment was resolved
sideband cooling, which builds on the subsequent destruction of vibration quanta
in the so-called strong-confinement limit [57, 100, 129]. When ωµ is much larger
than the cooling transition linewidth ∆ω, the absorption spectrum is altered. In
addition to the so-called carrier transition for δ = 0, sidebands at δ = lωµ with
integer l appear [179]. They correspond to the transition of the electronic state
of the atom accompanied with the creation or destruction of l vibronic quanta
as visible from the schematic level scheme depicted in Fig. 2.3 (right). A crucial
parameter in this discussion is the so-called Lamb-Dicke parameter, which is given
by ηLD = |⃗k|

√
ℏ/mωµ, assuming that k⃗ and the direction of the ion oscillation

with frequency ωµ are parallel. It compares the extend of the harmonic oscillator
length of the ion with the wavelength of the laser radiation and therefore gives a
measure for the coupling strength between light and atomic motion. Another way
of interpreting this quantity is the fact that its square gives the ratio between the
recoil energy the atom gains upon absorption and the level spacing of the local
oscillator states. When η2LD(2n + 1) ≪ 1, often referred to as the Lamb-Dicke
regime, only sidebands with |l| < 2 contribute significantly to the dynamics as
higher sideband contributions decay polynomially with the Lamb-Dicke parameter.
The strategy for the manipulation of the motional state of the ion is to detune
the laser frequency away from the carrier frequency to make use of the sidebands
as they change the electronic and n simultaneously. When the laser is detuned to
either of the sidebands l = −1, 1 there still exists a finite probability to drive off-
resonant transitions like the carrier or the respectively opposite sideband. However,
these transitions are negligible in the strong-confinement limit with ωµ ≫ ∆ω as
the respective terms rotate in an appropriate interaction picture with a mulitple of
ωµ. After the application of a π-pulse to the first red or blue sideband the excited
electronic state spontaneously decays due to its finite lifetime. Most importantly,
in the Lamb-Dicke regime it does so with the highest probability via the carrier
mode, not altering the vibron number during this step. This spontaneous decay
completes one cycle of the scheme, which leads to an effective cooling/heating by
|l| vibron quanta.

When the motional ground state is reached, the atom cannot further absorb
light quanta anymore, and hence it turns dark, since no Fock state with lower
energy exists. In that case, the sideband laser light can only lead to heating
transitions. The scheme is therefore fundamentally limited by an average vibration
quantum number n̄ ∝ (∆ω/ωµ)

2 [54, 184].
On a side note, the sidebands can also be used to assess the motional state,

i.e. the temperature or displacement amplitude, of the ion [63, 185–190]. This
technique relies on the change of the absorption probability of the sidebands,
which scales like ∝ n for the red sideband, and like ∝ n+1 for the blue sideband.
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In the most extreme case n = 0, it is clear that the absorption amplitude at the red
sidebands needs to vanish, whereas a blue sideband transition is always possible.
In a more general scheme, the measurement of the absorption probabilities can be
used to infer the average Fock number of a thermal state or the amplitude of a
displaced state by comparing the strength of the sidebands.

Note that in the traditional red sideband cooling scheme only one mode of
oscillation with frequency ωµ is efficiently cooled. Other vibrational modes intro-
duce additional sidebands that can be substantially off-resonant depending on their
frequency. Hence the cooling of a wide range of vibrational frequencies requires
additional effort, by changing the cooling laser frequency in time or employing
more laser fields [191]. Since sideband cooling is only possible in the strong con-
finement regime, it is typically performed on a quadrupole transition, in contrast
to the Doppler cooling scheme, which works as well for a dipole-allowed transi-
tion. This fact can drastically reduce its speed because it involves spontaneous
decay events, which occur on a timescale given by the linewidth of the selected
cooling transition. This effect can be countered by repumping the population of
the excited state into the ground state with the help of an intermediate state [52].

In addition to sideband cooling more complicated schemes have been imple-
mented. The two most prominent ones are EIT cooling and PG cooling. They
make use of a more involved level scheme of the electronic states to boost the
performance of sideband cooling.

In EIT cooling schemes, typically a Λ scheme is considered, containing two
ground states |f⟩ and |g⟩ and an excited state |e⟩ [50, 182, 192–195]. When the
ground states are coupled to the excited state by strong, blue-detuned laser fields
with equal detuning δ, the eigenstates are given by a set of dressed states. One
of them is called a dark state because it has no projection onto the excited state,
which is prone to decay. Consequently, the whole population is trapped in this
state after a characteristic decay time. Most importantly, the absorption spec-
trum obtained by a weak probe laser, driving the transition between one of the
ground-states and the excited state, vanishes if the probe laser is detuned by δ. In
addition, it exhibits Fano-like resonances centered around the frequencies of the
other dressed states, see Fig. 2.4 (top). If the shift of one of the dressed states
from δ is equal to the motional vibration frequency ωµ, transitions involving the
reduction of oscillation quanta are possible. The key point of EIT cooling lies in
the elimination of carrier transitions during the cooling, as the absorption spec-
trum vanishes for δ, leaving blue sideband transitions as the only heating process.
Their probability is reduced due to the asymmetry of the absorption spectrum.
The cooling cycle after a red sideband transition is again completed by the decay
of the excited state, returning to the dark state. This scheme hence enables a
speedup of the sideband cooling scheme discussed above, but also can lead to an
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efficient cooling of a wider motional frequency range, determined by the width of
the resonances in the absorption spectrum.

PG cooling employs two counter-propagating laser beams with different polar-
izations, which off-resonantly excite an electronic transition |jg = 1/2,mg = ±1/2⟩ →
|je,me⟩, where j are total angular momentum numbers, and m the magnetic quan-
tum numbers [51, 196–201]. Due to the position-dependent polarization of the elec-
tric field, the two magnetic sub-levels |mg = ±1/2⟩ experience periodic light shifts,
which are phase-shifted by π. These potentials alone do not result in cooling of
the motion, as the atom in any ground-state can travel in the potential landscape,
given it has sufficient kinetic energy. The trick of PG cooling lies in the transition
probability via virtual transitions to the excited state manifold, that is increased
at the respective potential maxima, see Fig. 2.4 (bottom). Let us consider that
the atom is in the state |jg,mg = −1/2⟩, and climbs up the respective potential
barrier. At the potential maximum it experiences the maximal probability to get
transferred to the |jg,mg = 1/2⟩ ground state, which has a potential minimum at
that position via virtual excitation and subsequent spontaneous emission. As a
result, the atom has lost an amount of kinetic energy given by the amplitude of
the periodic potentials. Since the atom only moves uphill during this cycle, this
scheme is also referred to as Sisyphus cooling. The above discussion only holds
for slow velocities, as it relies on spontaneous emission processes which occur on a
timescale given by the linewidth of the electronic transition.

2.3 Ion Coulomb crystals

If many ions are captured in a rf trap, they repel each other since they have the
same charge, which introduces an additional energy scale given by their Coulomb
potential. For large temperatures, the presence of multiple ions does not quali-
tatively change their dynamics, as their kinetic energy is the dominating energy
scale, the system is in a plasma-like state [132]. When the system temperature is
brought below that Coulomb energy scale by laser cooling schemes, the ions crys-
tallize since the temperature does not suffice to bring the ions close [38, 39]. The
appearance of trapped ion clusters was observed in early experiments demonstrat-
ing the power of laser cooling [97, 202]. As the temperature plays a subordinate
role in the crystalline phase, the shape of the system is determined by the compe-
tition between the two potential energy terms, i.e. the trap energy Vtrap, and the
Coulomb repulsion of the ions VCoul. The former can be controlled by the choice
of the Paul trap electrode voltages and the ion species while the latter is solely
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given by the ion charge. The overall Hamilton function is of the form:

H = Ekin + Vtrap + VCoul

=
∑
i

p⃗ 2
i

2mi

+
miω

2
iz

2

(
z2i + α2

i (x
2
i + β2

i y
2
i )
)
+

1

2

∑
i,j ̸=i

QiQj

4πϵ0|r⃗i − r⃗j|
, (2.10)

where ϵ0 is the vacuum permittivity. The trap frequencies depend on the ion
charges and their masses, as indicated by the index i [129]. This dependence needs
to be considered in a system with mixed ion species. However, in this Thesis we
study only crystals containing a single type of ions, which allows for the uniform
definition of the Coulomb strength C0 =

Q2

4πϵ0
. We also drop from now on the ion

index for the masses and trap frequencies, as the confinement is uniform for all
particles, solely altered by the electrode voltages. When writing Eq. (2.10) as a
function of dimensionless quantities, in addition to the particle number N , the
only parameters of the system are the trap aspect ratios α and β:

H ′ =
∑
i

p⃗ 2
i

2
+

1

2

(
z2i + α2(x2i + β2y2i )

)
+

1

2

∑
i,j ̸=i

1

|r⃗i − r⃗j|
. (2.11)

In the previous expression, positions are given in units of 3
√
C0/mω2

z , time is

measured in units of 1/ωz, and the energy unit 3
√
mω2

zC0
2 is used [21]. We consider

α, β > 1 such that the ions tend to stay close to the z-axis in most cases. Note that
the Hamiltonian is invariant under inversion in all three dimensions separately, i.e.
crystals that are mirror images along one of the trap axes are guaranteed to have
the same energy. Whereas the Coulomb repulsion favors larger ion distances, the
trap pushes the ions closer together, the competition between these two forces finds
expression in several phases of the crystal structure, segregated by transitions that
spontaneously break one of the inversion symmetries [34–36, 40, 203–206].

The simplest arrangement with the highest level of symmetry occurs for large
values of α, namely an ion chain where all ions align on the z-axis of the trap,
i.e. xi = yi = 0, for all i [131]. In this phase, the trap frequencies perpendicular
to the string are so stiff that the Coulomb term is unable to push the particles
away from the z-axis. All Zµ

2 symmetries of the potential terms are independently
preserved. Due to this unique configuration, the z-axis is often referred to as
axial dimension, and the other two dimensions as radial or transversal directions.
The relatively large frequencies in the radial directions make the ions motion in
these directions suitable for sideband cooling schemes. Moreover, as discussed in
Sec. 2.1.1, micromotion is suppressed when the particles stay close to the z-axis.
These properties make linear ion crystals preferable for a variety of applications
in the fields of quantum simulation and computation [19].
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Figure 2.5: Top: Ion crystal for N = 30 in the linear phase for α = 12.5
(a), zigzag phase for α = 8.0 (b) and three-dimensional helix for α = 7.0 and
β = 1.0 (c) and (d). All lengths are given in units of 3

√
C0/mω2

z . Bottom:
Phase diagram of the crystal structure with zigzag, linear chain and three-
dimensional phase as a function of the trap aspect ratios for N = 30.

As seen in Fig. 2.5 (top), the spacing of the particles is not homogeneous. The
central ions are closer together than the outer particles, which can be partially
corrected by higher-order potentials or by employing ring traps [133, 207–209].
Consequences of this breaking of translational invariance will be observable at
various points, most dominantly at the transition to the two-dimensional phase.

Decreasing α weakens the transversal trapping, such that at a critical point
αlin−zz the ions buckle into the x-direction. This structural transition into a two-
dimensional alignment is known as the linear-to-zigzag transition and has been
intensely studied [36, 203, 210–214]. Its critical value is in good approximation
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given by

αlin−zz ≈
√

7ζ(3)C0

2mω2
z

√
1

d3(N)
(2.12)

where ζ(x) is the Riemann zeta-function and d(N) is the distance between neigh-
boring ions. It occurs when the energy gain from the increased ion distances in
the Coulomb potential overcomes the energy penalty due to the transversal trap
energy when displacing the ions radially. Since the former depends not only on the
ion charges but also on the ion spacing, we can infer that the transition occurs first
at the center where the distances d(N) are minimal, as also clear from Eq. (2.12).
The larger ion distances at the edges of the chain reduce the α at which the ions
buckle locally, such that there exists a window of the trap aspect ratio in which
the inhomogeneous spacings translate into a crystal with two structural phases, a
zigzag at the center and a linear chain at the boundaries [213, 215]. For simplicity,
we nonetheless refer to these structures in the following as two-dimensional crys-
tals. Their name ”zigzag” comes from the triangular ladder alignment, see Fig. 2.5
(top).

It has been shown that in a properly defined thermodynamic limit, restoring
the translational invariance of the linear chain, the linear-to-zigzag transition is
a second-order phase transition [36]. At αlin−zz the Landau free energy develops
a double-well structure as a function of the radial diameter of the crystal, which
serves as an order parameter [66, 216]. As such, it also spontaneously breaks one
of the Z2 symmetries of the potential (2.10). For odd N , the inversion symmetry
along x is broken, while for even N the two-dimensional crystal exhibits neither
Zx
2 nor Zz

2 symmetry, but conserves their combination [217].
Consequently, the minimal energy configuration in the two-dimensional phase

is two-fold degenerate. The positions of the ions can be flipped along the x-axis
(independent of N), which yields a non-equivalent state with the same energy,
called zagzig. This feature is a precondition for the existence of stable solitonic
excitations, as we will discuss in Sec 2.3.1 [60, 218].

Upon further reduction of α, the system exhibits other structural transitions
introducing more strings in the triangular lattice. Ultimately, at α = 1 the trap
has rotational symmetry around the y-axis and the ground state of the crystal
describes a circular disk shape [97, 205, 206, 219, 220]. The discussion above is
valid for strong enough ωy, such that the ions are forced into the z − x plane.
Three-dimensional crystals are created when β is quenched below a critical value.
The structures typically have a ellipsoidal form, consisting of helical ion chains
or stacked shells, with increasing radial size for larger ion numbers, see Fig. 2.5
(top) [40, 221, 222]. A diagram of the different phases as a function of the trap
aspect ratios α and β is depicted in Fig. 2.5 (bottom). These structures typically
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show other forms of degeneracy, e.g. by the chirality of the helical chain, so that
the creation of crystal defects is not restricted to two-dimensional systems.

2.3.1 Crystal defects

Due to their degeneracies of the ground-state structure, two- and three-dimensional
ion crystals can host a set of solitonic defects (kinks). They have been categorized
in Ref. [217] and are subject of research until today [40, 46, 222–224]. All of them
can be understood as a domain wall between different, energetically equivalent,
ground-states. They share many physical properties with the topological solitons
introduced in models discussed in Chap. 3, which is why we focus here on their
characteristics specific to ion crystals.

Within this Thesis, we focus on the defects in the zigzag phase, where defects
are only stable if the extension of the central zigzag phase is large enough, i.e. for
α < αK . In that case, they can take one out of three different shapes [217, 225].
For large α, the defect is given by an excess ion close to the z-axis located in
between the regular zigzag alignment. This localized form is sometimes referred to
as an odd defect. At smaller α, there exists a crossover that converts the localized
defect into one of two possible extended kinks, as the excess ion slips away from
x = 0 [226, 227]. The two types of extended kinks are denoted according to the
orientation of the ion link that breaks the regular zigzag configuration. We speak
of an horizontal kink when two neighboring ions have xi · xi+1 > 0 (assuming z
ordering of the ions), and of a vertical kink for zi − zi+1 = 0. All three types of
defects are shown in Fig. 2.6. Which of the two extended kink forms is adopted
by the system at the crossover from the localized regime depends on the position
of the defect, as well as on the particle number.

In experiments, defects are created when α is quenched below αK , crossing
the linear-to-zigzag transition at a sufficient rate [227–233]. Intuitively, the cre-
ation process can be understood as an inhomogeneous choice of the ground-state
adopted at the transition. The information about the chosen configuration (zigzag
or zagzig) is transmitted with the speed of sound inside the crystal, if α is quenched
on a faster timescale the information cannot reach the whole region that is driven
into the two-dimensional alignment. This leads to the formation of defects with a
finite probability.

The mechanism behind the creation of defects when a continuous phase transi-
tion is crossed at a finite quench rate is described by a theory developed by Kibble
and Zurek [234, 235]. In general, it makes predictions about the scaling of the
mean distance between created kinks with the quench rate at which the transition
parameter is changed. It is based on the polynomial scaling of the so-called healing
length and the equilibration time when the critical point of the transition is ap-
proached. As the equilibration time increases at the transition there exists a point
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at which it is equal to the inverse of the quench rate, i.e. the system cannot relax
into the instantaneous ground state since the transition parameter is changed at
a similar timescale as the equilibration would take. Kibble-Zurek theory assumes
that the defects occur at an average distance equal to the healing length at this
point. Ultimately, a scaling of the defect density can be derived which crucially
depends on the critical exponents of the transition.

A careful correction to this theory has to be taken into account in inhomo-
geneous systems since not the whole system undergoes the transition simultane-
ously [228, 230]. Most importantly, the system undergoes the transition at different
times at different positions when the control parameter is quenched due to the spa-
tial dependence of its critical value. The dependence yields a propagating phase
front at which the critical value is reached and whose velocity vF needs to be com-
pared to the speed of a local perturbation, typically given by the sound velocity
vs. For vs ≫ vF in the whole system the dynamics is adiabatic as the information
about the new ground state can be transported at a sufficient speed, leading to the
suppression of defect creation. In turn, when vs ≪ vF the homogeneous Kibble-
Zurek theory is applicable as the transition is crossed almost simultaneously in
the region of interest. Consequently, the inhomogeneous Kibble-Zurek mechanism
shows significant deviations from the regular Kibble-Zurek scaling for comparable
phase front velocity and speed of sound, i.e. it predicts a pronounced dependence
of the defect density on the quench rate. Experiments have demonstrated the
validity of the Kibble-Zurek scaling in a finite window of the quench rate, limited
by the capability to detect the defects and their finite lifetime [227, 232]. When
the quench rate is increased outside this window, more than a single defect are
likely to be created, their possibly attractive interaction can lead to their anni-
hilation such that the counting statistics becomes inaccurate. In addition to the
experimental validation of the Kibble-Zurek scaling, the discussed crystal defects
are fundamental for the study of nanofriction in two-dimensional ion crystals as
discussed below in Sec. 3.3.

2.3.2 Vibrational system

In the crystalline phase, the ions oscillate around their equilibrium positions r⃗i,0 [131,
221]. For small kinetic energies, this dynamics is captured by a Taylor expansion
of the potential energy terms for small fluctuations in the ion positions. The first
non-vanishing term is quadratic in the displacements and describes the coupled
harmonic oscillations of the ions [21, 236, 237]. Higher-order terms become more
relevant with increasing energies and lead to non-linear corrections to the ion os-
cillations [111, 113, 238].

The benefit from the calculation of the Taylor expansion is two-fold. It provides
linear equations of motion that are analytically solvable and provide insight into
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the fundamental motional excitations of the crystal, the phonon modes. In addi-
tion, the computational effort for the analysis of the crystal dynamics is drastically
reduced since the determination of the equilibrium positions and the second order
derivatives of the Hamiltonian are sufficient to describe all dynamical properties
of the system. Moreover, by comparing the results obtained from the approxi-
mation with a calculation considering the full, non-linear Hamilton equations, we
may assess the importance of the non-linearity of the Coulomb interaction for
the dynamics. This analysis is of particular interest close to phase transitions
and for questions regarding the equilibration and conductivity in a thermal en-
semble [61, 239–242]. On a side note, the second-order expansion also provides a
benchmark for all numerical calculations of the dynamics in the low-energy limit.
All results should converge to the prediction of the approximation if e.g. the
system energy scale is reduced. In the following, we present a derivation of the
expansion up to second order, and its diagonalization.

We consider the deviations of the ion positions from a static configuration,
dr⃗i = r⃗i − r⃗i,0, to be small in comparison to the ion spacings in equilibrium r⃗ij,0.
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2.3 Ion Coulomb crystals

We then expand Vtrap + VCoul = V (0) + V (1) + V (2) +O(dr⃗ 3
i ), where

V (0) =
1

2

∑
i

mr⃗i,0 · ω2 · r⃗i,0 +
1

2

∑
j ̸=i

C0

|r⃗ij,0|
(2.13)

V (1) =
∑
i

[
mω2 · r⃗i,0 −

∑
j ̸=i

C0r⃗ij,0
|r⃗ij,0|3

]
· dr⃗i (2.14)

V (2) =
1

2

∑
i

dr⃗i ·
[
mω2 +

∑
j ̸=i

Wij

]
· dr⃗i −

1

2

∑
i,j ̸=i

dr⃗i ·Wij · dr⃗j (2.15)

with r⃗ij,0 = r⃗i,0 − r⃗j,0 = (xij,0, yij,0, zij,0), ω = ωzdiag(1, α, αβ) and

Wij =
C0

|r⃗ij,0|3
(

3

|r⃗ij,0|2
(r⃗ij,0)⊗ (r⃗ij,0)− 1

)
. (2.16)

We used the notation (⃗a⊗ b⃗)ij = aibj for the outer product. For a mixed species ion
crystal, the trap frequencies experienced by the ions become species-dependent and
the Coulomb interaction strength is different for intra- and inter-species couplings.
Both effects lead to modifications of the expansion.

The zeroth-order term V (0) is a constant and can hence be ignored for the
dynamics. The first-order term can be written in the form V (1) = −∑i F⃗i · dr⃗i,
where F⃗i is the force vector the ion i experiences due to the trap confinement and
the Coulomb repulsion at the static position r⃗i,0. Per definition F⃗i = 0⃗, so that
V (1) = 0. Therefore, the first non-vanishing term in the expansion is given by V (2),
which is a sum of local oscillator terms and the coupling of the ions vibrations
through the matrices Wij. The first term describes the local confinement the
ion experiences at its equilibrium position, which can be interpreted as a three-
dimensional harmonic oscillator. It consists of the trap confinement regularized by
the repulsion from the other crystal ions. The second term describes the harmonic
coupling of the local oscillations as a consequence of the Coulomb interaction.

A special case occurs for α > αlin−zz, when the equilibrium configuration is a
linear chain along the z-axis of the trap. Then, Wij becomes diagonal for all i and
j, as r⃗ij,0 = |r⃗ij,0|e⃗z and the dynamics in the three different directions decouple,
so that we can treat them separately [21]. We can write the potential as a sum of
contributions in the different dimensions µ = x, y, z via

V (2)
µ =

1

2

∑
i

mω2
iµdµ

2
i −

1

2

∑
i,j ̸=i

W µ
ijdµidµj (2.17)

where W µ
ij = C0

|r⃗ij,0|3 (3δµz − 1) and ω2
iµ = ω2

µ + 1
m

∑
j ̸=iW

µ
ij. Note that ωiµ is the

local vibrational frequency of ion i in the direction µ.
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Note the opposite sign of the coupling strengths of the z vibrations in com-
parison to the radial W µ

ij. This results below in a inverted ordering of the phonon
modes. As the Coulomb potential is reduced for larger ion distances, it favors
the in-phase vibration of neighboring ions along the chain (the ion distance is not
reduced) and the out-of-phase motion in any of the radial directions (the distances
between neighboring ions increase). This effect is also seen in the oscillator fre-
quencies, which are inhomogeneous due to the position dependent distances in
the linear chain. The axial frequencies νiz are maximal in the central region with
minimal distances, whereas the radial frequencies are minimal there, as seen in
Fig. 2.7 (left).

For a higher-dimensional crystal, the principal axes of the local vibrations of
the ions are generally rotated away from the trap axes, which is caused by the
off-diagonal terms of Wij, see Fig. 2.7 (right). In that case, a diagonalization of
the local confinement matrices mω2 +

∑
j ̸=iWij = mUi · N2

i · UT
i provides the

local principal axes of vibrations in the columns of the 3× 3 matrices Ui, and the
respective frequencies Ωi = diag(ωi1, ωi2, ωi3). We can locally change the basis via

dR⃗i = UT
i · dr⃗i and obtain

V (2) =
1

2

∑
i

mdR⃗i · Ω2
i · dR⃗i −

1

2

∑
i,j ̸=i

dR⃗i · tij · dR⃗j (2.18)

where tij = UT
i · Wij · Uj is the coupling matrix in the rotated bases. In many

cases it is convenient to condense the displacement vectors into a state vector
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2.3 Ion Coulomb crystals

dR⃗ = (dR⃗1, . . . , dR⃗N), which allows for the short-hand notation

V (2) =
1

2
dR⃗ ·K · dR⃗. (2.19)

K is often referred to as the Hessian matrix of the potential.

2.3.3 Phonon modes

The diagonalization of the Hessian matrix K provides the phonon modes of the
system. They describe the fundamental excitations in second-order approximation,
and their shape results from the coupling of the local harmonic oscillators [236, 237,

243, 244]. We denote by θ⃗ = V T · dR⃗ the amplitude vector of the phonon modes,
where V is a 3N × 3N matrix containing the eigenvectors of K as columns. The
potential in this basis takes the simple form of 3N uncoupled harmonic oscillators:

V (2) =
1

2

3N∑
r=1

λrθ
2
r (2.20)

where λr are the eigenvalues ofK. The shape of the phonon mode vectors and their
frequency dispersion constitute the crystal properties that determine the dynamics
in second-order approximation, and are essential for the analysis of the structural
phase transitions [36, 237]. When r⃗i,0 describe a stable equilibrium, λr > 0, ∀r,
such that the modes oscillation frequency is given by ωr =

√
λr/m.

There exist three special modes in the spectrum independent of the crystal
structure, which are referred to as the common modes. They describe the rigid
oscillation of the whole crystal inside the Paul trap and hence have a mode fre-
quency equal to one of the three trap frequencies and an equal projection onto all
ions [21]. They are also the only modes that translate the center of mass of the
crystal and therefore are isolated from the coupling to other phonon modes via
higher order terms in the Taylor expansion, see Sec. 2.3.5 [238].

The form of the rest of the phonon modes depends on the equilibrium posi-
tions. For a crystal that possesses any inversion symmetry, the phonon modes
are either symmetric or antisymmetric under the transformation that leaves the
crystal invariant, see Fig. 2.8 (right). This enables the ordering of the modes by
the number of their nodes in the mode vectors.

As already visible from the vibration potential given by Eq. (2.17), the modes
for a linear chain arrangement can be separated into three sets of N modes that
only have support in one of the dimensions [21]. We can therefore speak of axial

and radial modes in the x and y direction. Due to the fact that W µ
ij/W

µ′
ij = const

the spatial shapes of the phonon modes in each of the decoupled sets is the same.
As an example, a mode with a single node in the mode vector, often referred to as
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Figure 2.8: Left: Phonon mode dispersion relation in a linear chain when the
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lines shows the dispersion in the axial direction, the dashed line depicts the
dispersion of the x modes. Right: A set of phonon mode vectors containing
the common mode (red), breathing mode (blue) and zigzag mode (purple).
Their frequencies in the dispersion relations is shown by the points with the
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breathing mode (see Fig. 2.8), can be found in the axial as well as the two radial
phonon mode sets, their projections onto the motion of the single ions has the
same spatial shape . However, their mode vectors that determine the phonon mode
shapes are still perpendicular as they are restricted to one dimension respectively.
Due to the different sign in the coupling terms W µ

ij, the ordering of the phonon
modes in the axial direction is different than in the two radial directions. While
axially the mode with the lowest frequency is the common mode, the other two
common modes in the radial directions are the modes with the highest eigenvalues
in the respective set. The breathing mode has an eigenvalue with a fixed relation
to the eigenvalue of the common mode [21]. The frequencies of modes with more
nodes can only be calculated numerically.

The dispersion relation of the phonon modes is acoustic in the axial dimension
and optical in the transversal modes, see Fig. 2.8 (left) [237]. This has consequences
for the delocalization dynamics of vibrational excitations. In a chain, axial wave
packets travel with a substantial group velocity, but dephase only weakly and get
reflected at the crystal boundaries. The linear dispersion relation leads to revivals
for which the excitation returns to it initial state as seen in Fig. 2.9 [63, 64]. The
opposite is the case for radial excitations, which dephase on a larger timescale.

At the linear-to-zigzag transition, the lowest radial mode in x-direction, having
N−1 nodes in the mode vector, becomes soft as seen in Fig. 2.10 [36]. It describes
the motion of the central ions in the x-direction with alternating sign, and it
therefore is often denoted as the zigzag mode, as it drives the transition into the
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two-dimensional phase. Due to the coupling of the vibrations in the plane via
Wij, we cannot speak of axial and radial modes in the two-dimensional phase.
The motion out of the plane still decouples from the other degrees of freedom in
second-order approximation. -

2.3.4 Quantum vibron model

When the ion oscillations are cooled down into a sub-Doppler regime, potentially
to the motional quantum ground state, the continuous classical displacements
need to be described by quantum Fock states [100, 183, 196]. This leads to the
quantum equivalent of second order Hamiltonian described so far. We refer to the
quantum excitations of the ion harmonic oscillations as vibrons, they are created
(destroyed) by the ladder operators a†iµ (aiµ). They enter via the conventional

quantization of X⃗i = Li · (ψ⃗†
i + ψ⃗i)/

√
2 where we have introduced the matrix

Li = diag(Li1, Li2, Li3) which contains the harmonic oscillator lengths given by

L2
i = ℏΩ−1

i /m. The ladder vectors ψ⃗i = (ai1, ai2, ai3)
T are a short-hand notation

for the vibron ladder operators. Together with the quantized momentum p⃗j =

iℏL−1
j (ψ⃗†

j − ψ⃗j)/
√
2 the quantization results in the Hamilton operator

H =
∑
i

ℏψ⃗†
i · Ωi · ψ⃗i −

ℏ
2

∑
i,j ̸=i

(
ψ⃗†
i + ψ⃗i

)
· T ij ·

(
ψ⃗†
j + ψ⃗j

)
(2.21)

with ℏT ij = Li · tij · Lj. The hopping term contains parts that are not vibron
number conserving but are typically neglected as they are oscillating with ωiµ+ωjν

in a frame rotating with the vibron frequencies [64, 110]. If this frequency sum is
much larger than the hopping rates tij it is justified to apply the rotating wave
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approximation. This condition might be met or not depending on the geometry
of the ion crystal and the trap frequencies, if it is then we arrive at the Vibron-
Hubbard (VH) model

H =
∑
i

ℏψ⃗†
i · Ωi · ψ⃗i −

ℏ
2

∑
i,j ̸=i

ψ⃗†
i · T ij · ψ⃗j + ψ⃗i · T ijψ⃗

†
j (2.22)

2.3.5 Higher-order expansion

For larger fluctuations, the description of the ion vibrations in a harmonic approx-
imation becomes eventually invalid as the kinetic energy reaches a regime in which
the particles probe the non-linearity of the Coulomb potential.

A direct calculation of the higher orders up to the fourth order of the expansion
of the potential VCoul yields

V (3) =
1

6

∑
i,j ̸=i

Lµνσ
ij dµi(dνidσi + 3dνjdσj) (2.23)

V (4) =
1

24

∑
i,j ̸=i

Mµνσξ
ij dµidνi(dσidξi − 4dσidξj + 6dσjdξj) (2.24)

(2.25)
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where

Lµνσ
ij =

3C0

|r⃗ij,0|5

(
−5

µij,0νij,0σij,0
|r⃗ij,0|2

+
1

2

∑
p

δµνσij,0

)
(2.26)

Mµνσξ
ij =

3C0

|r⃗ij,0|5

(
35
µij,0νij,0σij,0ξij,0

|r⃗ij,0|4
+

1

4

∑
q

δµν

[
δσξ
2

− 5
σij,0ξij,0
|r⃗ij,0|2

])
(2.27)

are, respectively, the three- and four-dimensional tensors describing the higher-
order dynamics. In the previous expressions, p and q denote all possible per-
mutations of (µ, ν, σ) and (µ, ν, σ, ξ) respectively, such that the two tensors are
symmetric under permutation of any of the indices [238].

They translate to interaction terms for the phonon modes when written as

V (3) =
1

6

∑
r,s,m

L̃rsmθrθsθm (2.28)

V (4) =
1

24

∑
r,s,m,n

M̃rsmnθrθsθmθn (2.29)

where we have applied the same change of basis that resulted in (2.20), i.e.

L̃rsm =
∑
i,j ̸=i

Lµνσ
ij vriµ(v

s
iνv

m
iσ + 3vsjνv

m
jσ) (2.30)

M̃rsmn =
∑
i,j ̸=i

Mµνσξ
ij vriµv

s
iν(v

m
iσv

n
iξ − 4vmiσv

n
jξ + 6vmjσv

n
jξ) (2.31)

where vriµ is the projection of the r-th phonon mode onto dµi. They describe
the nonlinearity of the local oscillation potentials via their diagonal terms, but
also the off-diagonal interaction of vibrational excitations. The common modes
constitute a special case, as they couple neither via L̃, nor via M̃ to the rest of the
phonon mode spectrum, because the rigid center-of-mass motion of the crystal is
unaffected by the internal dynamics.

30



Chapter 3

Nanofriction and solitons

In recent years trapped ion systems have successfully proven to be a suitable
scenario for the investigation of nanofriction models [43, 45, 46]. Nanofriction is
the field of physics that deals with friction phenomena on the atomic scale when
two surfaces come into contact [58, 245]. Since its main ideas and results are
fundamental to understand the physics of topological defects in ion crystals, we
review them in this chapter, in particular the Frenkel-Kontorova model, and then
elaborate how these ideas translate into the trapped-ion context.

3.1 Introduction

Friction is a phenomenon encountered almost constantly [59, 246–248]. It is well
understood on the macroscopic scale, given by the phenomenologically deducted
laws by Amontons and Coulomb, which state that two solids dragged across each
other experience a force [249–251]:

|F⃗fric| = µfric|F⃗N | (3.1)

that damps their motion. Its strength, which is independent of the contact surface
area, is determined by the normal force F⃗N that is applied perpendicular to the
surface plane, and by a material- and roughness-specific friction constant µfric.
There are different types of friction forces, with different friction constants each.
Most notably, the forces can be categorized into static friction and kinetic friction,
observable when the applied force exceeds the static friction force.

The field of nanofriction focuses on the friction phenomena appearing on the
atomic scale, i.e. considering the lattice or atomic structure of the two surfaces,
and their connection to macroscopic friction [58, 60]. Ultimately, one goal is to
employ the results on the nanoscale to engineer the macroscopic friction behavior
into a desired regime for a specific application.
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Figure 3.1: Top: Schematic depiction of the Prandtl-Tomlinson (PT) model;
single classical particle harmonically coupled to a support, dragged across the
periodic corrugation potential. Bottom: Harmonically coupled particle chain
in the Frenkel-Kontorova (FK) model.

In theoretical models, the physics of nanofriction is typically simplified by em-
ulating the effect of one of the surfaces by a static sinusoidal potential, commonly
denoted as corrugation potential, and assuming a harmonic interaction among the
particles of the moving solid [58, 252–255]. In most cases, the surprisingly rich
physics of nanofriction is ultimately caused by the competition between these two
energies and their length scales.

The simplest model of nanofriction is the so-called Prandtl-Tomlinson (PT)
model and consists of a single particle that is harmonically coupled to a support
that moves with a finite velocity parallel to a surface emulated by a sinusoidal
potential, see Fig. 3.1(top) [252, 256, 257]. Its potential term is given by

VPT =
κ

2
(x− x0)

2 +
V0
2

[
1− cos

(
2π

aP
x

)]
(3.2)

where x0 = vt is the position of the support, κ is the spring constant connecting
the atom to the support, V0 is the amplitude of the corrugation potential, and aP
is its period. When using aP as a length unit and κaP

2 as an energy unit, the
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3 Nanofriction and solitons

model is characterized by the relative corrugation strength η = V0/κaP
2. We will

write all quantities in dimensionless form by using these units in the rest of the
chapter.

For weak η, the particle prefers to minimize its interaction with the support
and hence follows its movement in a continuous trajectory [258–261]. Although
the presence of the corrugation potential leads to a modulation of the particle
velocity around v, it is not strong enough to pin the particle in one of its wells.
Consequently, no energy is dissipated in this phase, and the motion is friction-
less. Above a critical value of η, the particle enters a stick-slip regime. In this
regime, the particle favors to minimize its potential energy, and remains in one
potential well until the support forces it to slip into the neighboring well abruptly.
The sudden slip across a potential maximum is followed by an oscillation of the
particle inside a neighboring potential well, this kinetic energy marks the onset
of friction forces as it is subsequently dissipated. This friction force depends on
the velocity v of the support in a logarithmic fashion [262, 263]. In a typical
experiment the lateral force applied by the support is measured as a function
of the support position, see Fig. 3.2. In the frictionless regime the lateral force
follows the corrugation potential and is of sinosoidal shape as a function of x0.
This changes in the friction regime as the slip events lead to an abrupt drop in
the lateral force which adopts a sawtooth structure. Lastly, an obvious distinction
between the two cases is the reversibility of the trajectory in the frictionless regime,
i.e. inverting the direction of the motion of the support (v → −v) yields the same
lateral forces. In the friction regime a finite offset between the two directions exists
which can be taken as a measure for the dissipated energy in a hysteresis loop,
moving the support to a neighboring potential minimum and back. Despite the
simplicity of the model, it demonstrates first signs of the non-trivial dynamics of
nano-tribological systems due to the competition of inter-particle interaction with
the pinning effect of the corrugation potential.

While the PT model aims to simulate the bulk of the solid by the support that
drags the particle across the corrugation, it neglects the effect of the particle lattice
in a solid. Therefore, this basic idea has been extended to a chain of harmonically
coupled particles subject to the corrugation potential. This model has become
famous as the so-called Frenkel-Kontorova (FK) model, named after their Soviet
inventors, and is discussed in more detail in the following section [60, 254, 254].

3.2 The Frenkel-Kontorova model

The original Frenkel-Kontorova model deals with a one-dimensional system of an
infinite number of particles of mass m, with neighboring atoms coupled by springs
with constant κ and equilibrium length aS [60]. The particles experience a potential
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3.2 The Frenkel-Kontorova model

Figure 3.2: Top: Measurement of the lateral force as a function of the support
position x0 in a friction force microscope experiment in the stick-slip regime
(left) and the frictionless regime (right). The solid line and the dotted line
show the results for opposite directions of the support motion. Bottom: The
corresponding numerical results from the PT model. Diagrams taken from
Ref. [261].

with period aP , simulating the surface of the solid the particle chain slides across,
see Fig. 3.1 (bottom). Using the same units as in the PT model together with√
κ/m as a time unit we can write the Hamiltonian of the model as:

HFK =
∑
i

p2i
2

+
1

2
(xi+1 − xi − θFK)

2 +
VFK

2
(1− cos(2πxi)) (3.3)

where pi =
∂xi

∂t
is the particle momentum. In addition to the parameter VFK , which

compares the strength of the coupling amongst the particles κ and the potential
amplitude V0, as in the PT model, the ratio θFK = aS/aP is also of relevance
for the FK model. The FK model is called commensurate if θFK = p

q
∈ Q, since

the two lengths scales aS and aP possess a least common multiple. The system is
therefore invariant under translations by qaS = paP , which is not the case if θFK

is irrational, in which case the FK model is referred to as incommensurable [264].
This difference has essential consequences for the minimal energy configuration of
the particle chain as well as its excitations. Moreover, the choice of the boundary
conditions alters details in the ground state and their excitations.
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The Hamiltonian (3.3) gives rise to the equations of motion

d2xi
dt2

+ 2xi − xi−1 − xi+1 + VFKπ sin(2πxi) = 0. (3.4)

In the following, we first discuss the properties of the FK model in the continuum
limit, since many concepts and mechanisms found in the discrete FK model are
already present there.

3.2.1 Continuum approximation

In the case of small values of θFK , we can derive a continuum limit approximation
of the dynamical equations (3.4), promoting the discrete deviations of the particles
from their equilibrium in the absence of the corrugation potential to a scalar
field of continuous space xi − iθFK → φ(iθFK) ≈ φ(x) [265]. For simplicity
we take θFK ∈ N in the following derivation but analogue arguments hold for
arbitrary rational coverage parameters that lead to a unit cell with more than one
atom. We can then approximate the positions of the neighboring particles that
enter the equation of motion for the atom i by a Taylor expansion, i.e. xi±1 ≈
(i± 1)θFK + φ(x)± ∂φ

∂x
θFK + 1

2
∂2φ
∂x2 θFK

2 +O(θFK
3). Inserting the expansion up to

second order into Eq. (3.4) yields in lowest order:

∂2φ

∂t2
− θFK

2∂
2φ

∂x2
+ VFKπ sin(2πφ) = 0 (3.5)

which has the form of a Sine-Gordon equation (SGE) [224]. This model has at-
tracted attention due to its Lorentz invariance (note the invariant d’Alembert
operator ∂2

∂t2
−θFK

2 ∂2

∂x2 ) and integrability, but it is most famous due to its solitonic
excitations, which we elaborate later [266–268].

For the SGE, there exist three different classes of excitations, one of them
describes small fluctuations in φ around the trivial vacuum state φ(x, t) = 0 [269].
For the calculation of the resulting phonon modes it is valid to linearize the SGE
sin(2πφ) ≈ 2πφ and insert a plane-wave ansatz φ(x, t) ∝ exp(i(kx−ωphont)). This
results in the dispersion relation of the phonons [224]

ω2
phon(k) = ω2

0 + θFK
2k2 (3.6)

with ω2
0 = 2π2VFK . It is always gaped and non-linear for a finite value of the

corrugation potential strength, and it is asymptotically linear for large k values.
The group velocity of the phonons is bounded by

∂ωphon

∂k
≤ θFK , indicating the

Lorentz invariance of the model, with θFK taking the role of the speed of light in
special relativity.
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Figure 3.3: The kink solution sK = +1 for v = 0 (solid red) and v =
0.9θFK (dashed red), as well as the antikink solution sK = −1 for v = 0 (blue).

While the phonon spectrum describes small oscillations and hence it is not prob-
ing the non-linearity of the SGE, there exists another class of solutions, referred
to as solitons, that are only possible due to the non-linearity [223, 266, 269, 270].
They can be found by assuming a solution with a time-independent profile, their
dynamics is then determined solely by a Lorentz boost with a velocity v. The fact
that these solutions do not change their spatial shape during the time evolution
distinguishes them from the phononic excitations, which always disperse due to
their non-linear dispersion relation. The ansatz φ(x, t) = φK(x − vt) results in
the solution

φK(x, t) =
2

π
arctan exp

sK ω0

θFK

x− vt√
1− v2

θFK
2

 , (3.7)

which is commonly denoted as kink for the sK = +1 solution and antikink for
sK = −1. These solutions are shown in Fig. 3.3. Centered around the kink position
X = vt the kink solutions interpolate over a finite length the two degenerate values
φ = 0 and φ = sK . They carry a topological charge φ(x → ∞)− φ(x → −∞) =
sK , which is preserved during the dynamics. Simply speaking, these solutions are
stable since their destruction requires to change φ(x > X) by an integer, a process
that requires an infinite amount of energy [268].

We can understand their emergence and many of their properties by noting
that the trivial ground state φ = 0 is infinitely degenerate since adding an integer
gives the same vacuum energy sin(2πφ) = 0. The kink solutions are connections
between neighboring degenerate vacuum solutions, schematically shown in Fig.
3.3, in the periodical potential landscape VFK(1− cos(2πφ))/2. In this picture it
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3 Nanofriction and solitons

is not surprising that they move with a constant velocity v, since the translation
of the point at which the two solutions are connected leaves the potential energy
untouched [270–272]. In the quasiparticle picture this results in a flat effective
potential for the kink solutions. They move like a free particle, a feature worth
noting since it relies on the continuity approximation of the original FK model.

In addition to their obvious Lorentz invariance, these solutions also exhibit
Lorentz contraction, a phenomenon known from special relativity, as the width of

the area with non-trivial φ given by
√

1− v2/θFK
2 shortens for increasing veloc-

ities. It becomes also obvious that the solution only exists for v < θFK . These
analogies make them interesting for the study of special relativity [266].

The presence of a kink in the system modifies the phonon mode spectrum
discussed above. Assuming small perturbations of the kink solution by writing
φ = φK/AK+δφ(x)e

−iωphont, we find the emergence of a localized mode with ωphon =
0 [224]. This mode corresponds to the translation of the kink and consequently has
vanishing frequency. The rest of the phonon modes keep their gapped dispersion
relation ω2

phon = ω2
0+θFK

2k2 but their shape δφ(x) is distorted close to the position
of the kink. The creation of a localized kink mode that is detached from the rest of
the spectrum, and the distortion of the residual phonon modes due to the presence
of the soliton, are important observations for this Thesis.

So far we only discussed solutions that include a single soliton, however the
analysis of multi-soliton states reveals the third class of solutions of the SGE,
namely breathers [273–281]. Analyzing the collision of two solitons reveals that
equal sign solutions repel each other, i.e. a kink experiences a repulsive effective
potential in the vicinity of another kink. However, the interaction between a
kink and an antikink is attractive. In addition to the scattering states for large
relative velocities there exist states that can be interpreted as bound kink-antikink
solutions and describe their localized relative oscillations around each other. These
solutions are known as breathers and have similar solitonic properties, although
their spatial shape is not time-invariant as in the case of the (anti-)kink. It is
important to note that the total topological charge of the breather vanishes as for
the phonon excitations and hence in the presence of dissipation they exhibit a finite
lifetime, a property which distinguishes them from the topologically protected
(anti-)kinks.

While the SGE gave meaningful insight to understand the properties of the
FK, we now come back to the discretized description, emphasizing the effects of
the discreteness of the particle chain that lead to a modification of the minimal
energy state and its excitations.
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3.2 The Frenkel-Kontorova model

3.2.2 Ground states and solitonic excitations

The ground state of the SGE proved to be trivial and infinitely degenerate due to
the translational invariance with a multiple of θFK . While the latter still holds in
the FK model, the calculation of the ground state is not as simple. According to
Eq. (3.4) the ground state requires to find solutions {xi} that fulfill

xi+1 + xi−1 − 2xi = πVFK sin(2πxi), (3.8)

an equation that by defining di+1 = xi+1−xi can be transformed into the Chirikov
Standard map [282, 283]:(

di+1

xi+1

)
=

(
di + πVFK sin(2πxi)

xi + di+1

)
=M

(
di
xi

)
. (3.9)

Hence, we can understand each stationary state as a trajectory in the phase space
of the vector X⃗i = (di, xi) with a non-linear propagation operator M . Due to
the form of Eq. (3.9), the study of the stationary states of the FK model is also
interesting for research on chaotic systems [282, 284–286].

For a rational value of θFK = p
q
the atoms align in a commensurate configura-

tion that can be defined by xi+p = xi + qθFK [60, 264, 287]. In the picture of the

standard map this is expressed by the fact that MpX⃗i = X⃗i if the positions are
taken modulo 1. Due to this translational invariance, the particles sit only at a
finite number of phases relative to the corrugation potential, the sequence xi mod 1
repeats after p particles. With increasing VFK the particles are forced closer to
the potential minima such that their ground state positions change, however the
general properties of the state given above hold for all values of the corrugation
potential amplitude. This is not the case for the irrational values of θFK .

In the incommensurate FK model, the ground state shows no periodicity of
xi mod 1 due to the mismatch between the equilibrium length of the unperturbed
chain aS and the corrugation period aP [288]. For small values of VFK the harmonic
interaction stabilizes the particles close to their unperturbed equilibrium positions
xi = iθFK . Hence, we can find particles arbitrarily close to any position relative
to the nearest potential minimum or maximum. Another way of interpreting this
state is by considering the translation of the chain by external forces. Since all
relative positions ximod1 are found in the ground state, the translation of particles
by any arbitrarily small distance leads to an equivalent realization of the ground
state. Hence the system must be friction-less, and this regime is referred to as
sliding phase. Note that this is never true in the commensurate phase where the
particles are always pinned by the corrugation potential and only a finite set of
values of ximod1 are allowed.

If VFK is increased above a certain threshold this stationary state becomes
unstable, and the particles are pinned by the corrugation potential in its wells [283,
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3 Nanofriction and solitons

289, 290]. Consequently, particles sitting close to the maximum of the potential are
pushed away from their unperturbed positions, and there exist regions in which
we do not find particles due to the large potential energy. This transition has
been named after its discoverer Serge Aubry, and is sometimes also known as the
breaking of analyticity. The naming of this phase transition aims to offset it
against continuous phase transitions that are accompanied by the breaking of a
symmetry by the ground state. Consequently, its description cannot be cast into a
Landau theory as neither the sliding phase nor the pinned phase exhibit any kind
of symmetry in the particle positions. Aubry noted that the incommensurate
ground state can be characterized by its so-called hull function xi = h(iθFK), which
describes the position of the particles as a function of their position in absence of
the corrugation potential [283, 289]. For VFK = 0 it is trivial h(x) = x and
remains continuous and analytic for small VFK . At the transition of analyticity,
gaps open in the hull function marking the onset of unoccupied regions relative
to the potential, see Fig. 3.4. When a dragging force is applied, the particle
chain exhibits stick-slip motion, the pinning of the particles leads to a non-zero
friction force similar to the PT model. For these reasons this phase is commonly
called pinned phase. In the picture of the Chirikov standard map this leads to
a breaking of the continuous orbits of vectors X⃗i into Cantor sets [291]. The
destruction of the incommensurate trajectories follows an order, i.e. orbits with
an θFK close to a ”simple” rational value (1, 1/2, 1/3,...) are destroyed for smaller
values of VFK with the most robust orbit having a coverage parameter given by
the golden mean [285, 286]. Therefore, in most studies the ratio between aS and
aP is approximated by a rational series of approximants with increasing accuracy
to the golden mean to reach a strong signal of the desired incommensurability.

Analogue to the discussion of the SGE we can split the excitations of the
ground-state configurations into different categories. The phonon modes describe
small amplitude modulations of the particle positions and are always gapped for
the commensurate FK model [293–296]. Exemplary, we can calculate for the simple
case of p = 1 that the phonon spectrum has the form

ω2
phon = ω2

0 + 2(1− cos(k)) (3.10)

where ω2
0 = 2π2VFK is the same as in the SGE case [60]. In general, the elementary

cell of the chain contains p particles and therefore the phonon spectrum contains
p gapped bands.

In addition to the phonons, there exist kink excitations that can be once again
understood as the localized connection between degenerate ground states. Their
existence relies, analogous to the continuum limit, on the infinite degeneracy of
the ground state, a global translation of the particles by a multiple of the potential
period and/or the relabelling of the atoms leads to another ground state. The kink
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3.2 The Frenkel-Kontorova model

Figure 3.4: Left: Analytic hull function in the sliding phase. Right: Hull
function with discontinuities in the pinned phase. Both diagrams are from
Ref. [292]

solution interpolates between two ground states {x−i } and {x+i }. Alternatively,
they can be interpreted as the result of the removal or addition of particles. In the
simple case of θFK = 1, a kink constitutes a doubly occupied potential well, while
an antikink is marked by an empty minimum, see Fig. 3.5.

The properties of kinks in the discrete FK model share many similarities with
the solitons of the SGE model. For example, when defining φi = xi − x−i ≈
φK(iθFK), they carry a topological charge φ∞−φ−∞ = sK , and we can treat them
as a quasiparticle that moves inside the lattice structure by the hopping of single
particles over the potential barriers. Moreover, their presence affects the phonon
spectrum in a similar way, i.e. a localized kink mode emerges that is energetically
decoupled from the residual spectrum, whose dispersion remains untouched. How-
ever, the discreteness of the particle chain leads to the emergence of a non-trivial
effective potential for the quasiparticle motion, known as the PN potential from
dislocation theory [297, 298]. Since the motion of the kink takes place by the trans-
fer of an atom across a potential barrier, which is not energetically compensated
by the motion of the neighboring atoms, there exist periodic barriers, called PN
barriers. These barriers with amplitude EPN lead to a non-vanishing frequency
of the kink mode, something that distinguishes it from the solitons of the SGE.
An approximation of of the PN potential in lowest order of aS yields a periodic
form VPN(X) ∝ EPN(VFK)(1 − cos(2πX/q) with the kink position X. As in the
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3 Nanofriction and solitons

x

Figure 3.5: The two kink configurations (top: antikink, bottom: kink) for
θFK = 1 in the unstable configuration (left) corresponding to a maximum in
the Peierls-Nabarro (PN) potential and the stable configuration (right) in the
minimum of the PN potential. The dashed lines indicate the kink positions.

case of the continuum approximation the kink position is calculated via

X = sK

∫ ∞

−∞
dx x

dφi(x)

dx
(3.11)

which can be interpreted as an average position calculated from the kink density
dφi(x)/dx.

To describe the dynamics of the kink inside the particle lattice it is instructive to
employ a collective variable formalism [299–301]. This framework defines a position
and momentum of the quasiparticle and promotes them to canonical variables of
the model. Assume that the positions of the particles can be written as a sum of
an isolated kink solution with a kink position X and a dressing

xi = φi(X) + χi ;
dxi
dt

=
dφi(X)

dX

dX

dt
+
dχi

dt
. (3.12)

Since writing the particle configuration as a sum of two contributions is ambiguous,
we require that for a given set of xi [302, 303]

C1 =
−1

2

d

dX

∑
i

(xi − φi(X))2 =
∑
i

χi
dφi(X)

dX
= 0. (3.13)

Inserting the velocities into the kinetic energy term yields∑
i

m

2

(
dxi
dt

)2

=
Mφ

2

(
dX

dt

)2

+
∑
i

m

2

(
dχi

dt

)2

+
m

2
C2
dX

dt
(3.14)
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where Mφ = m
∑

i

(
dφi

dX

)2
is the quasiparticle mass, which is in general dependent

on the kink position X [60]. We can set C2 =
∑

i
dφi

dX
dχi

dt
= 0, and obtain a result

that is the sum of the quasiparticle kinetic energy and the dressing kinetic energy.
Hence the conjugate momenta for the position variables are given by P = Mφ

dX
dt

and ρi = mdχi

dt
.

Note that we need to constraint the system via C1 = C2 = 0 in order to make
the transformation of variables (xi, pi) → (χi, ρi, X, P ) canonical. The introduc-
tion of two new dynamical variables is countered by the two constraints so that
the number of degrees of freedom remains constant. C1 guarantees that for a
given configuration the closest respective kink solution is chosen for the separation
(3.12), and hence determines X. In a similar fashion C2 is necessary for a sensible
definition of the kink momentum P leading to a particle-like separation of the
kinetic energy [302]. The equations of motion of the new set of variables is given
by the Hamilton equations with a modified Poisson bracket

{A,B}∗ = {A,B} −
∑

α,β=1,2

{A,Cα}(C−1)αβ{Cβ, B} (3.15)

where Cαβ = {Cα, Cβ} and {A,B} denotes the Poisson bracket with respect to
the new variables (χi, ρi, X, P ).

An explicit calculation of dP
dt

= {P,H}∗ and dρi
dt

= {ρi, H}∗ reveals a set of
coupled equations of motion caused by the potential term V ({φi + χi}). This
shows that, in addition to the PN potential, the motion of the kink inside the
discrete particle lattice causes the excitation of dressing amplitudes χi, that are
for small energies synonymous with the phonon modes. If the system is initiated
with χi = 0 but P ̸= 0, the kinks motion is dampened as it radiates energy
into the dressing degrees of freedom, eventually it will become trapped in one of
the minima of the PN potential, see Fig. 3.6 [304–310]. This process occurs in
different stages with subsequently weaker damping rates. When the kinks kinetic
energy surpasses EPN the kink travels across the barriers in the PN potential,
its momentum P oscillates with a frequency that depends on its kinetic energy.
This oscillation excerts a periodic driving force on the dressing modes leading to
the radiation of the kinks kinetic energy into the dressing mode spectrum. This
process creates a damping force onto the kinks motion with a damping rate that
is determined by the density of states of the phonon spectrum at multiples of the
oscillation frequency of P . When initialized at a large momentum the frequency
of P lies within the phonon spectrum so that the resonant driving of the dressing
leads to a fast decay of the kink momentum, as seen for v < v1 in Fig. 3.6. At a
critical P its oscillation frequency falls into the gap of the phonon modes (compare
Eq. (3.10)) so that higher order resonances remain the only process enabling the
energy transfer which reduces the damping rate, see v2 < v < v1 in Fig. 3.6.
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3 Nanofriction and solitons

Figure 3.6: Velocity of a kink in the FK model as a function of time. Diagram
from Ref. [306]

Remember that the kink solitons in the discrete FK model only exist in the com-
mensurate ground state. However, the discussion of their properties for rational
θFK also helps to understand the dynamics of the incommensurate configuration,
as we can think of it as a lattice of kinks in the commensurate state with the
closest rational θFK . The phonon spectrum in the incommensurate ground state
breaks into two bands that are associated to the kink translations and the phonon
modes. While the phonon modes exhibit an optical dispersion relation similar
to the phonons in the commensurate case, the low-wave-number excitations are
acoustic in the sliding phase. In particular, the sliding mode with vanishing energy
appears due to the friction-less nature of this phase. If the corrugation potential
amplitude is tuned across the Aubry transition, the kink modes become gapped
as well, a sign of the pinning of the particles by the potential minima.

To conclude, the main features of topological solitons, i.e. the emergence of
localized kink modes describing their motion in the PN potential, hold in a discrete
FK model. However, the discreteness introduces a damping of their motion and a
periodic modulation of the effective potential.
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3.2 The Frenkel-Kontorova model

3.2.3 Finite-size Frenkel-Kontorova model

While the original FK model describes an infinite chain of particles it is worthy
to understand what remains of its physical phenomena in systems with a finite
particle number N , in particular the effect of free-end boundary conditions become
important in this case. The results discussed so far in this chapter concentrated
on the case of fixed-density boundary conditions, where the length of the chain
xN − x1 and the particle number N are externally fixed and increased to infinity
while keeping a fixed ratio between them. For free-end boundary conditions the
chain length is not set externally, in the case of a finite particle number it is
determined by θFK . In this context we define L as the integer number of potential
periods over which the particles spread [60]. The ground state configurations for
a fixed N as a function of the two parameters θFK and VFK can be categorized via
two properties: the chains symmetry and its so-called chain order n = N−L. The
latter gives the amount of doubly occupied potential wells which coincides with
the number of kinks (or anti-kinks for n < 0) in the system. Let us first discuss
its behavior for the ground state when θFK is tuned while keeping VFK > 0 fixed,
starting in the trivial case θFK = 1 for which all particles sit at a corrugation
potential minimum. For small changes of θFK away from unity n = 0 holds as only
the boundary particles slightly shift away from xi = i due to their missing neighbor
particles which leads to a reduced pinning via the interaction potential, see the
top configuration in Fig. 3.7. In this regime the potential energy of the ground
state grows quadratically with θFK until it becomes energetically favourable to
change n by ±1 and thereby introduce a (anti-)kink. This transition occurs when
the energy from the interaction potential (corrected by the particle shifts away
from the potential minima at the boundaries) is equal to the kink energy and its
repulsion energy from the boundaries. The process of soliton absorption from the
systems boundaries here exhibited by the particles through their deviation from
the potential minima is known as Frank-van-der-Merwe growth [311–314]. After
the introduction of a single (anti-)kink in the systems center, it is stabilized there
due to its repulsion from the boundaries, further changing θFK leads to a repetition
of the kink absorption process, however for the subsequent creation of defects their
repulsion energy among each other has to be taken into account.

Next to the jumps in n as a function of θFK , associated with the creation of
defects in the ground state, the chains symmetry under reflection on the systems
center of mass is a quantity of interest.

For even N and odd N but even n the ground state is symmetric independent of
VFK [315], see the top and bottom configuration in Fig. 3.7. Among the stationary
states we find in any case asymmetric metastable states next to the ground state,
compare the states ⟨1′⟩a and ⟨2⟩a in Fig. 3.7 to the respective ground state.

A special case occurs when N and n are odd simultaneously for which we
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find one particle in the systems center at a potential maximum for small values
of VFK , see the state ⟨1⟩s in Fig. 3.7. This kink particle is stabilized there due
to the dominating interaction with the other atoms which remain close to the
potential minima. This balance becomes unstable when VFK is increased to the
critical value of what turns out to be the equivalent of the Aubry transition in
finite chains [316, 317]. In the pinned regime of the finite FK model the kink
particle rolls away from the potential maximum and the system spontaneously
falls into one of two degenerate asymmetric ground states, see the state ⟨1⟩a in
Fig. 3.7. Note that the described symmetry breaking cannot be described by
a Landau theory as its equivalent in the thermodynamic limit is the breaking
of analyticity in the incommensurate FK model. While for the original Aubry
transition in the incommensurate FK model the sliding phase was characterized
by a zero-frequency sliding mode, the kinks repulsion from the boundaries and
potentially existing other defects leads to a gapped phonon spectrum for all values
of VFK except the critical value of the transition, where the ground state becomes
unstable. The kink mode describes, as in the infinite FK model, the oscillation
of the defect in an effective PN potential when the energy of the excitation is
insufficient to reach the boundaries.

In addition to the phonon modes there exist two non-linear edge modes when
the excitation energy becomes sufficient [318, 319]. They describe the periodic re-
flection of a kink at the chains edge with the simultaneous conversion to an antikink
(and vice versa), which can be understood as a breather excitation bound to the
systems boundary. If the excitation energy of this mode and hence the oscillation
amplitude of the involved (anti-)kink surpasses a critical value a caterpillar-like
motion of the whole chain is triggered [320]. This can be understood as a cou-
pling of the two edge modes as the (anti-)kink reaches the crystals center during
the oscillation period. The caterpillar-like motion is desribed by a periodically
repeting sequence of defects moving across the chain as follows. A kink travels
to one boundary where it gets reflected and transformed into an antikink which
subsequently moves to the opposing boundary where its gets reflected and trans-
formed again into a kink (followed by a repetition of the sequence). This process
translates the whle chain after one period. Note that the edge mode as well as
the caterpillar motion are damped as they feature the motion of (anti-)kinks, see
Fig. 3.6 [319].

3.2.4 Quantum Frenkel-Kontorova model

In many cases discussed so far, the particles of the classical FK model are pinned
by the corrugation potential, it is therefore intriguing to ask about the role of
quantum fluctuations in a quantum mechanical description [322, 323]. Due to
tunneling effects, we can expect that the properties of the ground state in the
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3.2 The Frenkel-Kontorova model

Figure 3.7: Stationary configurations for N = 5 with decreasing aS , from top
to bottom. The notation of the states ⟨n⟩z indicates the chain order and the
symmetry, i.e. z = a for asymmetric configurations and z = s form symmetric
ones. Diagram from Ref. [321].

pinned regimes are modified as the particle wave function might be delocalized
over more than one potential well. Writing the quantum Hamiltonian of the FK
in position representation gives rise to an effective Planck’s constant [324–327]

H =
∑
i

−ℏ̃2

2

∂2

∂x2
+
VFK

2
(1− cos(2πxi)) +

1

2
(xi+1 − xi − θFK) (3.16)

ℏ̃ =
ℏωκ

mω2
κaP

2
=

l2κ
aP 2

(3.17)

where ωκ =
√
κ/m. ℏ̃ is a direct measure for the importance of quantum effects in

the model as it is given by the ratio of the quantum mechanical energy or length
scales and their classical equivalents, e.g. it can be written as a comparison be-
tween the quantum mechanical harmonic oscillator length lκ due the the harmonic
interaction and the corrugation potential period. It is obvious that for small ℏ̃ we
approximately recover the physics of the classical FK model.

If ℏ̃ is increased the quantum fluctuations soften the pinning effects of the cor-
rugation potential and result in modifications in the quantities used to characterize
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the classical ground state, e.g. the hull function. As discussed above, in the pinned
regime it shows discontinuities with several gaps that are opened at the critical
value of the Aubry transition. When computed with the expectation values of the
quantum ground state, these gaps become more and more filled by particles whose
wave functions show significantly enhanced fluctuations in comparison to the ones
in the plateaus of the hull function. This is a directly observable consequence of
quantum tunneling through barriers of the corrugation potential.

Another noteworthy effect of the quantum fluctuations is the departure of the
particle positions from the classically allowed ones. To demonstrate this, one may
introduce the function

gi =
1

πVFK

(xi+1 + xi−1 − 2xi). (3.18)

For any stationary state of the classical FK model, it is clear from Eq. (3.8) that
the points of gi as a function of ximod1 lie on g(x) = sin(2πx). In the pinned
regime, {gi} form a Cantor subset of sin(2πx). In the quantum delocalized regime,
however, the particles can explore classically unavailable states. It has been found
that {gi} changes into a saw-tooth shaped set, as shown in Fig. 3.8 [322, 323, 328–
332].

3.3 Emulation of nanofriction in ion crystals

The experimental investigation of the theoretical predictions of the classical FK
model has been successfully performed in well-controllable trapped ion systems. In
particular, two different approaches have been followed in order to demonstrate the
finite Aubry transition and its accompanied change in the dynamics and phonon
spectrum.

There are two main ingredients required for a real implementation of the FK
model: a periodic potential and a one-dimensional interacting chain of parti-
cles [60, 334–336]. Note that although the original FK model considered harmonic
particle interaction with an equilibrium distance θFK , it can be extended to anhar-
monic interactions and, most importantly for the case of trapped ions, to repulsive
interactions in the presence of an external confinement [60, 292, 337].

3.3.1 Lattice approach

One series of experiments, first proposed in Ref. [45], features a string of ions
trapped in a Paul trap subject to the optical lattice created by an off-resonant
standing-wave laser field (see Sec. 2.1.2) [169]. A schematic depiction of the setup
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Figure 3.8: Hull function and {gi} for the incommensurate quantum FK model
in the pinned regime for different values of the effective Planck’s constant ℏ̃.
Diagram from Ref. [333]

described by the Hamiltonian

HionFK =
∑
i

p2i
2m

+
mω2

z

2
z2i + VFK cos

(
2π

aP
zi + ϕ0

)
+

1

2

∑
j ̸=i

C0

|zi − zj|
(3.19)

is shown in Fig. 3.9. In the case of a single ion system, this approach directly
implements the PT model from Eq. (3.2). Its transition from continuous friction-
less motion to a stick-slip regime can be probed when the center of the Paul trap
is moved with velocity v [42, 47].

In a multi-ion system, the commensurability of the ion chain with respect
to the optical lattice is tuned by the value of the trap frequency ωz, since it
determines the average ion distances [45]. When the ion distances are chosen
to be incommensurate to the lattice period given by the laser wavelength the
ground state exhibits the breaking of analyticity of the hull function when the laser
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3 Nanofriction and solitons

Figure 3.9: Left: Schematic depiction of the one-dimensional implementation
of the FK model with trapped ions. The trap potential is corrugated by a
standing wave laser. The ion fluorescence due to laser cooling is collected in a
lens. Right: Fluorescence image of a three-ion chain with an ion distance of
6 µm, for comparison the optical lattice is shown in the same scale. Diagrams
from Ref. [42].

amplitude is increased. The gap of the phonon spectrum, depicted in Fig. 3.10
(top), increases significantly at this Aubry transition but stays finite in the sliding
phase due to the finite, even number of ions considered. As in the finite FK model,
the low-energy phonons exhibit an acoustic dispersion and become optical in the
pinned regime [45].

In addition to the analysis of the hull function, which requires the absolute
measurement of the ion positions and the phonon dispersion, the hallmark of the
Aubry transition for the static friction force has been proposed in Ref. [41] as
an experimentally accessible quantity. To measure the static friction force, the
trap center is translated adiabatically, which moves the ions against the optical
lattice, eventually the ions slip into the neighboring potential well, and the released
potential energy is dissipated via continuous laser cooling. Since the electronic
states are shifted depending on the lattice laser intensity the fluorescence from the
cooling laser depends on the ions position, making it possible to determine at what
point the slip event occurs.

Results in the multi-ion case, shown in Fig. 3.10 (bottom), reveal the effect of
incommensurability in the system by a substantial reduction of the static friction
force [42, 43, 338]. In the case of a commensurate chain, the result follows closely
the expectation for the single particle case, i.e. the PT model, independent of the
particle number. If the trap frequency is tuned such that the central ion distances
do not match the lattice period, the system shows a non-zero static friction force
only for much higher VFK . The transition point of this finite-size Aubry transi-
tion increases with the total ion number. For larger N , the particle distances in
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3.3 Emulation of nanofriction in ion crystals

Figure 3.10: Top: Minimal phonon mode frequency of a linear ion string
subject to a periodic potential as a function of the potential amplitude. The
different graphs are for increasing particle numbers: N = 50 (blue squares),
N = 150 (pink circles) and N = 300 (red triangles). Diagram taken from
Ref. [45]. Bottom: Measured static friction force as a function of lattice depth
in the incommensurate case. The inset shows the same measurement for the
commensurate case, the dashed line indicates the prediction from the PT model.
Diagram taken from Ref. [43]

the center of the chain become more uniform, making them all incommensurate,
leading to a stronger effect.

This straightforward implementation of the FK model in trapped ion systems
can also be used to study the velocity dependence of the friction forces occurring,
i.e. when the ramp rate of the trap center is increased [263]. Moreover, the
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3 Nanofriction and solitons

incommensurate regime can be reached for multiple values of the trap frequency.
When it is reduced, the ions may exhibit slip events over a distance larger than
one lattice period, referred to as multi-slip [339]. This experiment has also some
drawbacks, mainly due to the necessity of confining the ions by the rf field. This
poses a harsh breaking of the translational invariance that was of importance in
many occasions for the FK model. In particular, the location of the trap center is
crucial for the ground state of the system. Moreover, the inhomogeneity of the ion
distances makes it hard to enter a truly incommensurate regime, since the match
between the ion distances and the lattice period changes with position.

Although the measured results clearly indicate the onset of friction at finite val-
ues of VFK at the stick-slip transition of the PT model and the Aubry transition
already for small ion numbers, inhomogeneous ion distances constitute a modifi-
cation of the original FK model, which is only negligible for N < 4 for which the
system can be approximately described by the PT model.

3.3.2 Kink approach

In addition to the implementation discussed above, another experiment has ob-
served the Aubry transition in a two-dimensional ion crystal with a defect [46].
The idea is to understand the zigzag structure (see Sec. 2.3) as the sum of two
individual ion chains on top of each other, indicated in Fig. 3.11 (top) by the
two different ion colors. Via its charge density, the lower chain creates a corruga-
tion potential for the upper chain. Vice versa, its amplitude VFK is tuned by the
distance between the chains determined by the radial trap frequency.

In the absence of a topological defect the two chains are trivially commensurate
(corresponding to θFK = 1), each ion sits in a minimum of the potential created
by the opposite chain, and therefore no breaking of analyticity can be observed.
If an extended kink is introduced, a local incommensurability is created in the
chain center. The situation resembles the finite FK model with odd N and even
n (see Sec. 3.2.3), e.g. localized kink modes can be found in the motional mode
spectrum of the crystal [60, 224, 294]. Upon change of the trap aspect ratio
α, the crystal symmetry is broken due to the increase of the corrugation of the
chains [340, 341]. Counter-intuitively, the finite Aubry transition can only be
observed for a horizontal kink. The vertical defect with two ions sitting above each
other does not exhibit a symmetry breaking. This difference in their behavior is
due to the fact that the corrugation potential is not created externally but by the
self-organized crystal itself. Hence, a change in the distances of one of the sub-
chains backacts onto the opposite chain, altering the created corrugation potential
ultimately leading to the stabilization of the vertical defect. Their difference is
also observable in the shape of the PN potential, derived in the following.

Unlike in the original FK model where the kink solution can be approximated
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Figure 3.11: Top: Two-dimensional ion crystals with extended horizontal
(left) and vertical (right) topological defect, the ions of the two sub-chains
(x > 0 and x < 0) are depicted red and blue, respectively. The line indicates an
equipotential surface of the Coulomb potential created by the lower sub-chain,
emulating a corrugation potential. Bottom: PN potential of the horizontal
(left) and vertical (right) kink for different α values: α− αA = −0.409 (black),
α− αA = 0.191 (red) and α− αA = 0.591 (blue).

by the continuum soliton solution (φi = xi − x−i ≈ φK(iθFK)), it is unclear how
the ion positions look like as a function of the kink position X in an ion crystal. In
this case, we can nonetheless determine them by defining a kink position function
K which returns X for given ion positions. In a two-dimensional ion crystal, the
kink solution continuously connects the zigzag and the zagzig configuration which
are a radial mirror image of each other. Therefore, we only consider the axial ion
positions as a measure for the deviation from the regular zigzag alignment because
they are the same for both ground states. One useful definition that captures the
character of the kink is [225]

K({r⃗i}) =
∑

i z̄i(δzi − δzzzi )2

K0

(3.20)

where δzi = zi+1−zi is the axial ion distance, assuming z ordering of the ions. δzzzi
are the ion distances for a defect-free zigzag crystal and K0 =

∑
i(δzi − δzzzi )2 is a

normalization constant. 2z̄i = zi+1 + zi denotes the average axial position of the
links between neighboring ions. We can interpret this definition as an expectation
value of the link positions z̄i weighted by the deviations from the ground state
distances. The spatial spread of the transition between the two ground states
is described by δzi − δzzzi as shown in Fig. 3.12. In the case of the extended
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α = 8.5) kink as defined in Eq. (3.20). Right: Kink mass for a horizontal (red,
α = 6) and vertical (blue, α = 7) kink as a function of the kink coordinate
X. Discontinuities at the maxima are caused by numerical instabilities as the
z-ordering of the ions changes. All lengths are given in units of 3

√
C0/mω2

z .

forms (vertical and horizontal) the configuration changes from zigzag to its radially
inverted counterpart over approximately 10 ions with an larger spread in the case
of the horizontal kink, while the odd kink is highly localized.

Subsequently, the ion positions for a certain kink positon φ⃗i(X) are found
by minimizing the systems energy in a Lagrange formalism with the constraint
K({r⃗i}) = X. This requires solving the 2N + 1 equations given by

({∇⃗i}, ∂/∂λ) [Vtrap + VCoul + λ(K({r⃗i})−X)] = 0. (3.21)

where λ is the introduced Lagrange multiplier corresponding to the constraint. As
in the collective excitation formalism discussed in Sec. 3.2.2, we can then canon-
ically transform the classical equations of motion by defining a dressing field χ⃗i,
that describes the motion of the ions that do not translate the kink. In that
model, the dressing and the kink are coupled by the potential terms of the Hamil-
tonian, the PN potential is obtained if the dressing field is neglected such that
UPN(X) = (Vpot + Vtrap)({φ⃗(X)}). In addition, the kink mass is calculated as
usual from

Mφ = m
∑
i

(
dφ⃗i(X)

dX

)2

. (3.22)

Its dependence on the kink position is shown in Fig. 3.12. While the effective
kink mass is smaller than the mass of a single ion in all cases it shows a periodic
behavior with maxima at those positions for which the kink constitutes two ions
at the same value of z. These positions coincide with the maxima of the PN
potential for the horizontal kink in the sliding phase and the minima in the case
of the generally heavier vertical kink.
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3.3 Emulation of nanofriction in ion crystals

At the Aubry transition, the PN potential develops periodical modulations, i.e.
the PN barriers, that pin the defects, in addition to the globally confining shape
due to the repulsion from the systems boundaries, see Fig. 3.11 (bottom) [225, 341].
For the vertical defect, the modulations have a minimum in the crystal center so
that the ground state of the system is not destabilized. The opposite occurs for the
horizontal kink, a PN barrier emerges at z = 0, destabilizing the ground state of
the sliding phase. For T = 0, in the classical regime, the defect falls spontaneously
into one of the newly build local minima of the PN potential and simultaneously
breaks the crystals symmetry, as observed in Fig. 3.13. Analogue to the finite-size
Aubry transition, this phenomenon is accompanied by the softening of the localized
kink mode that describes the axial motion of the defect. These observables of the
Aubry transition, i.e. the breaking of symmetry and the existence of a soft mode,
have been experimentally observed at Doppler temperatures [46]. In this system,
the translation of the trap center is not able to reveal the change in the systems
frictional behavior, as it moves both sub-chains simultaneously. In the experiments
conducted, this has been solved by shining in a light field that creates a differential
force between the two sub-chains and probes their shear motion, see Fig. 3.13.
However, the spectroscopy of the kink mode is limited by the Doppler temperature
of the crystal in the experiment, an issue that is addressed in Chapter 5.

This two-dimensional emulation of the FK model has the advantage of removing
the effect of the inhomogeneity of the ion spacing in the ion chains [342]. Since the
corrugation potential is created by another sub-chain in the same trap potential,
the mismatch between the two is spatially homogeneous (in the commensurate con-
figuration), a feature that is missing in the implementation via an optical lattice.
For the same reason, the coverage parameter θFK = aS/aP of the emulated FK
model cannot be chosen arbitrarily, but it is always close to unity. This makes it
easy to obtain the ion positions in relation to the corrugation potential. A photo of
the fluorescence light is sufficient, in comparison to the one-dimensional approach
discussed above. There, the ion distances are typically a magnitude larger than
the lattice period determined by the lasers wavelength, which necessitates a more
involved measurement of the ion fluorescence intensity to determine the ion lattice
position.

However, in the two-dimensional case the system exhibits back-action from the
sub-chains onto their respective corrugation potential, a feature that can signifi-
cantly change the system behavior, as seen from the absence of an Aubry transition
for the vertical kink.

54



3 Nanofriction and solitons

Figure 3.13: Top: Two-dimensional ion crystal with a horizontal defect,
with increasing radial trap frequency from top to bottom, the values of α are
indicated in the grey bar. (b) Photos from the experiment with an exposure time
of 700ms; (c) Time-averaged ion positions from molecular dynamics simulations
with finite temperature T = 1mK. The blurring of the central particles close
to the Aubry transition (αA ≈ 6.4) is caused by their thermal oscillations.
Bottom: Kink mode frequency (in units of the axial trap frequency) close
to the Aubry transition. The solid line indicates the result from the harmonic
approximation for T = 0. Red points show the experimental data obtained from
the parametric excitation of the kink mode by cooling laser with periodically
modulated intensity. Frequencies determined from a Fourier analysis of the ion
positions calculated by molecular dynamics simulations are shown for T = 5 µK
(black triangles), T = 50 µK (grey squares) and T = 1mK (blue points). The
blue dashed line is shown to guide the eye. Diagrams from Ref. [46].
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Chapter 4

Energy transport in trapped ion
chains with defect

The transport of energy in crystalline systems through lattice vibrations, and the
analysis of the underlying phonon structure constitute quintessential questions
of solid-state physics [343]. The study of conductivity properties in condensed
matter systems concentrates mostly on macroscopic observables due to the gigantic
number of degrees of freedom [344]. Engineered (quantum) many-body systems
emerging in AMO physics, such as trapped ions or cold atoms, offer important
insights into the microscopic structure and dynamics of toy-model solids [19, 23].

In addition, the zoo of powerful manipulation techniques by means of laser
fields, driving internal transitions or creating light forces, and of electric fields allow
for the manipulation of the microscopic properties of the constituents [57, 163, 179].
Relevant examples include the engineering of non-linear potentials coming from
optical lattices, electric fields from trap electrodes or the dressing of motional
states with electronic levels, as well as the control of inter-particle interactions
and crystal geometries [12, 20, 27, 36, 69, 209, 345–347]. These systems enable the
study of the connection between microscopic and macroscopic observations. This
connection is especially intriguing if the microscopic results do not conform with
macroscopic expectations, such as in the case of heat transport in one-dimensional
oscillator chains discussed in Sec. 4.2 [61, 62].

Of particular interest in this Thesis is the role of solitonic defects in the crystal
structure [224]. Trapped-ion systems allow for the detailed study of their influence
on the energy conductivity in the system [217, 226, 227, 231]. This topic is the
main focus of this chapter. We present in the following our results on the blockade
of a vibrational wave packet by a topological defect, and its influence on the
temperature profile and heat flux of the crystal coupled to different heat reservoirs.
These findings have been published in Refs. [348] and [349].
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4.1 Energy localization in trapped ion crystals with topological defects

4.1 Energy localization in trapped ion crystals

with topological defects

The dynamics in low-dimensional atomic systems has attracted major interest as a
vehicle to understand not only the macroscopic properties of solids, but also funda-
mental concepts in physics like thermalization and localization. Homogeneous har-
monic oscillator chains are probably the oldest example of such systems [350, 351].
In their simplest form their dynamics is fully described by Bloch bands. How-
ever, they cannot describe real systems due to the absence of important physical
concepts like ergodicity and thermalization. The striking result of Fermi, Pasta,
Ulam and Tsingou was that ergodicity is not automatically recovered if a weak
non-linear interaction potential is included [352].

Today, the questions of thermalization and transport remain relevant and
timely for quantum many-body systems. The effects of disorder and interactions,
leading to the celebrated results of Anderson and many-body localization, in con-
ceptually simple one-dimensional systems in the quantum realm, constitute a very
active field of research [353–360]. This field has not only a fundamental interest.
It also finds applications in quantum chemistry (energy transport in molecules),
and biophysical research in DNA strains [334, 361–364].

Trapped-ion experiments have demonstrated their ability to probe (quantum)
walks of vibrational excitations in particle chains [365–368]. The controlled cre-
ation of displaced states has been achieved by a parametric drive of the ion os-
cillations by means of an amplitude modulated dipole force [63]. The propaga-
tion of this coherent state can be monitored by a sideband measurement relying
on the dependency of the transition probability on the quantum vibration num-
ber [186, 187]. While the dynamics of classical states in a Doppler cooled crystal
has been measured with great accuracy in this way, the quantum walk of a single
vibrational energy quantum (vibron) has been realized for small system sizes as
well (see Fig. 4.1) [64, 369]. These pioneering works have been conducted in clean
systems, that is crystals with a high degree of symmetry.

As discussed in Chapter 3, the presence of defects results in an altered phonon
mode spectrum, introducing localized kink modes, and in particular for horizontal
kinks, the symmetry-breaking Aubry transition [46, 224, 294, 370]. In this section,
we show the consequences of these phenomena caused by the defect onto the motion
of coherent vibrational excitations.

4.1.1 Blockade of an energy wave packet

As we are interested in the role played by a topological defect on the transport of
vibrational energy, we initialize the crystals by finding the equilibrium positions
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4 Energy transport in trapped ion chains with defect

Figure 4.1: Top panel Measured (top) and calculated (bottom) evolution of
the displacement amplitude in a linear ion chain of five ions after the leftmost
ion has been excited. Figure from Ref. [63] Bottom panel Measured (top) and
calculated (bottom) propagation of a quantum vibron in a ground state cooled
4 ion chain. A single vibrational quantum is initialized at ion 2. Figure from
Ref. [64].
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4.1 Energy localization in trapped ion crystals with topological defects

of the particles in the presence of a horizontal topological defect in the systems
center. This is done by molecular dynamics simulations of the system with an
additional friction term leading to an exponential decay of the kinetic energy of the
ions. In the sliding phase the found configurations are stabelized by the repulsion
of the defect from the crystals boundaries. While this holds for the horizontal kink
in the pinned phase the localized (odd) defect is held inside the system by the PN
barriers that emerge at the Aubry transition.

Then, at time t = 0, we create a vibrational excitation by displacing a single ion
in an arbitrary direction and release it. Since we are interested in the effect of the
kink on the conductivity of the underlying crystal structure, i.e. the zigzag, and
not the dynamics of the kink itself we choose to excite ions in the outer parts of the
crystal. These displacements have in first order little overlap with the translation
of the kink. The displacements chosen here have in first order little overlap with
the translation of the kink which can be seen from comparing their position with
the width of the defect, see Fig. 3.12. The subsequent evolution of the excitation
through the crystal is evaluated in two ways, by the numerical solution of the full
Hamilton equations, and by a harmonic analysis of the dynamics of the excited
phonon modes determined from a second-order approximation.

In Fig. 4.2, we illustrate with an example the time evolution of the kinetic
energy after an ion displacement in the axial direction. If the trap aspect ratio
is tuned into the sliding regime of the kink the kinetic energy travels through the
central region and distributes equally on both sides of the defect. Due to the
symmetry of the crystal, and consequently of the phonon modes, the energy of
those ions opposite to the site where the displacement was created is increased.
The energy distribution maintains its memory of the initial state at large times,
indicating the robustness of the harmonic oscillations of the phonon modes from
non-linear corrections.

The dynamics becomes restricted when the aspect ratio α is increased and
tuned across the Aubry transition. As visible in the right diagram of Fig. 4.2, the
defect blocks the propagation of the wave packet, which leads to its localization
on one side of the kink.

At the Aubry transition the crystal symmetry is spontaneously broken, such
that it exhibits no Z2 symmetry in the crystal plane. As a consequence, the phonon
spectrum hosts asymmetric modes whose amplitude is predominantly localized in
one of the system halves. Those of them with a large overlap with the initial state
are strongly excited, but do not transfer energy into the opposite crystal half since
their mode vector has no support there, see Fig. 4.2.

While the shape of the phonon modes (and their dispersion relation) dictates
the excitation dynamics in the low energy limit, we can expect corrections to this
picture coming from the non-linear Coulomb potential.
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Figure 4.2: Time-evolution of the kinetic energy after an initial axial dis-
placement of the seventh ion in the sliding phase (left, α = 5.5) and the pinned
phase (right, α = 6.8)) of a horizontal defect. The axial ion position is given in
units of 3

√
C0/mω2

z , and the energy is normalized by the excitation energy. In
the top diagrams, we show the spatial structure of the phonon mode with the
largest amplitude during the time-evolution by its projection onto the oscilla-
tion of the different ions.

4.1.2 Energy imbalance and non-linear resonances

In order to assess the strength of the observed energy localization we define the
energy imbalance ∆E =

∑
z<0 ⟨Ei⟩ /E, which gives the ratio between the time

averaged kinetic energy ⟨Ei⟩ =
∫ t

0
p⃗ 2
i /2m(t′)dt′/t of the ions in the left half of

the trap and the total kinetic energy introduced by the displacement. With this
definition, a symmetric energy distribution, which is expected in the sliding phase,
would give ∆E = 0.5, while any form of localization on one side of the crystal
would result in a deviation from this value. Note that due to its normalization,
this observable is independent from the amplitude of the initial dislocation in the
harmonic regime. This definition is only appropriate because the defect is confined
by the edges of the inhomogeneous crystal. In a translation invariant zigzag crystal,
the kink can be stabilized in various equilibrium positions so that a calculation of
the energy imbalance would have to take into account the initial position of the
defect.

We depict in Fig. 4.3 the energy imbalance as a function of α for an initial
displacement of the leftmost ion along the x-axis. First, we discuss the result from
the harmonic approximation for a finite averaging time t = 100ms. For α < αA

a calculation of the infinite time limit t → ∞ indicates no energy localization as
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Figure 4.3: Energy imbalance ∆E as a function of α for a crystal with an
horizontal kink, for an initial displacement of the leftmost ion of 1 µm in the x-
direction The blue solid line indicates the results from harmonic approximation,
whereas the red one indicates the numerical results. The averaging time as been
set to 100ms in both cases, which should be compared to 2π/ωz = 40 µs. The
grey vertical bars mark the Aubry transition, the crossover to the odd form of
the defect, and the end of the stability region of the kink αK .

∆E = 0.5 holds, independent of the trap aspect ratio.
However, when the averaging time t is set to a finite value, we observe peaks in

the energy imbalance in the sliding phase. These can be traced back to degeneracies
in the phonon mode spectrum, for distinct values of α the frequencies of two modes
participating in the dynamics cross. This leads to an increased relaxation time to
the steady state as the modes dephase infinitesimally slow. Ultimately, this effect
cannot be attributed to the presence of the defect, similar phenomena can be
observed in a zigzag crystal and are of importance in Sec. 4.2.

When the trap confinement is tuned across the Aubry transition, the energy
imbalance increases abruptly and peaks at α ≈ 6.8 with a maximal value of ∆E ≈
90%. It reduces towards the crossover to the odd kink and another parameter
window with strong localization appears in the odd regime at α ≈ 8.4. For α >
9.0 the kink becomes unstable, and the energy imbalance returns to 50%, which
indicates the zigzag crystal without defect. Note that additional calculations show
that the energy distribution stays symmetric at αA for a vertical defect and only
departs from ∆E = 0.5 at the crossover to the odd kink.

The results from the phonon modes show pronounced energy localization in ion
Coulomb crystals, however they are a first-order approximation of the Coulomb
interaction between the ions. Hence, we can expect deviations from the discussed
results, in particular close to the transition point (see Sec. 5), when the introduced
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energy is sufficient to probe the higher-order contributions from the Coulomb re-
pulsion. We observe good agreement between the approximation and results of
numerical simulations in the sliding phase, which hints at negligible non-linear
effects in this regime.

This changes in the symmetry broken phase, as we obtain ∆E = 50% when α is
tuned close to αA in the pinned phase. The numerical result departs from ∆E = 0.5
at a larger trap aspect ratio marking the entrance into the energy localized regime.
Close to the Aubry transition, the energy injected into the system is sufficient to
overcome the PN barriers EPN , which localize the defect off the trap center. Hence,
it is possible for the defect to occupy, over time, both potential minima, which are
created at the transition, with distinct hopping events in between. During these
events the defect is able to transfer energy between the two system halves, reducing
the energy imbalance significantly.

The responsible process is clearly not included in the harmonic approximation
description, as the non-linear region of the PN potential between the local min-
ima is probed. A detailed discussion of this mechanism and its influence on the
motional spectrum of the crystal can be found in Chapter 5. Similar effects can
be observed close to the crossover to the odd kink as well as the instability of the
kink solution at α ≈ 9.

In the regime of strong imbalance, the non-linear Coulomb interaction intro-
duces sharp parameter windows with long-term delocalization intertwined with
robust localization. While in the former the inclusion of higher-order terms, cou-
pling the phonon modes, leads to the relaxation of the energy imbalance on long
timescales, the latter show good agreement with the analytical results again, mean-
ing the absence of relevant non-linear couplings. In Fig. 4.4 (top), we show a zoom
of the ∆E graph, resolving the closely alternating linear and non-linear regimes.
As visible, the width of the non-linear parameter windows is influenced by the
displacement amplitude. A weak excitation narrows the delocalized regimes, as
the non-linearities are less relevant. In the limit of an infinitesimal oscillation en-
ergy, we recover the harmonic prediction, which always prevails in the low energy
limit. The comparison with a smaller time average result indicates a delocalization
timescale of tens of ms.

The slow delocalization of the energy is caused by higher order resonances in the
phonon spectrum. They occur when the parametric conversion of two (or more)
mode amplitudes into a higher frequency mode becomes resonant, i.e. ωr + ωr′ =
ωs, see Fig. 4.4 (bottom). As a consequence, the otherwise suppressed higher-order
mode-coupling terms derived in Sec. 2.3.5 lead to the occupation of phonon modes
with substantial overlap in the opposite crystal half. There are potentially more
non-linear resonances than revealed by ∆E since not all of the coupled modes are
excited by the initial displacement. This mechanism has been proposed for the
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panel: Frequency of a localized (red) and the sum of two delocalized phonon
modes (blue) as a function of α, for the same range as in the top figure. The
projection of the respective phonon mode vectors onto the ions oscillations is
depicted in the insets, where z is normalized by 3

√
C0/mω2
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Figure 4.5: Energy imbalance as a function of α and the amplitude of the
initial dislocation d of the leftmost ion in the x direction. The averaging time
of these numerical results was 100ms, the same as for Fig. 4.3. The dislocation
size has been normalized by the crystal length scale 3

√
C0/mω2

z = 32 µm. In
these units the distance of the leftmost ion to its neighbor ion is ≈ 0.625

entanglement of different phonon modes in the quantum regime [238] As observed
in the figure, this process makes the non-linearities non-negligible for long-enough
averaging times.

A more comprehensive study of the importance of the size of the initial dis-
location on the non-linear delocalization is shown in Fig. 4.5, where we show the
energy imbalance for a fixed averaging time as a function of α and the displacement
amplitude d.

In the ranges of α with robust localization we can observe the substantial effect
of the symmetry breaking for excitations up to d ≃ 1.5 µm in the zoomed in region
of α. For stronger dislocations no localization is observable in the long-time limit,
independent of α, marking the departure from the validity range of the harmonic
approximation.

Close to a resonance, the crossover to a non-linear delocalized regime decreases
linearly with α. Figure 4.5 also demonstrates the requirements for the observation
of the discussed energy localization imposed on the control of the system. The
delicate sensitivity to the trap aspect ratio demands a stable and precise control
of the trap potentials on the scale of 1 %. Moreover, the α-independent crossover
into the delocalized regime implies a limitation for the temperature of the crystal.
If thermal fluctuations surpass the depicted threshold, the localization signal will
be lost for long times independent of the displacement amplitude. Note in this

65



4.2 Heat transport in ion Coulomb crystals

sense, that for a fixed temperature the relative importance of thermal fluctuations
can be controlled, since the vibrational energy scale can be tuned by the axial trap
frequency ωz (ωx is dictated by the value of αA).

In addition, we have neglected the micromotion induced by the traps rf field,
which affects the dynamics in the two-dimensional crystal considered here and
cannot be countered by any cooling scheme during the time evolution since they
would damp the induced coherent dynamics. These issues put aside, the blockade
of vibrational excitations by the defect could be probed by experiments similar to
Ref. [63]. The arrival of the wave packet at the opposite end of the crystal, possibly
quantified by a time average of the displacement of the ions as an experimentally
accessible quantity [63], serves as a measure for the conductivity of the system.

4.2 Heat transport in ion Coulomb crystals

One peculiar feature of harmonic oscillator chains is the breaking of Fourier’s
law, already pointed out by Schrödinger in 1914 [371]. For a solid coupled to
thermal reservoirs at opposite boundaries, Fourier’s law connects the flux of heat
through the system with the slope of the linear temperature profile via a pro-
portionality factor, the thermal conductivity [372–374]. The latter assesses the
capability of the solid to transport energy but is unbounded in oscillator chains
in the thermodynamic limit [241, 375, 376]. This result is accompanied with a
flat temperature profile in the bulk of the system [377, 378]. In the aftermath
of Schrödinger’s conclusion, researchers were attracted by this stark contrast be-
tween this microscopic prediction and the established macroscopic observations
described by Fourier. They proposed different mechanisms like non-linearities or
quantum fluctuations that would reinstate Fourier’s law in one-dimensional sys-
tems [242, 379–390].

Trapped ion systems have been proposed as a testbed to study the heat con-
ductivity of low-dimensional systems, and its change under the mentioned effects.
A seminal work by L. M. Duan has demonstrated the ability to obtain the absence
of temperature gradients in the harmonic regime of the ion fluctuations [391].
Other theoretical works have extended the approach to two-dimensional systems,
crossing the linear-to-zigzag transition, or the quantum limit [392–400, 400–407].
Motivated by the observation of a strong energy blockade by a pinned kink, we
show in the following its influence on the steady state temperature profiles and
heat flux in ion crystals. Our results have been reported in Ref. [349].
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4 Energy transport in trapped ion chains with defect

4.2.1 Langevin heat baths

The concept of temperature is deeply rooted in the idea of thermal baths or reser-
voirs that host an infinitely large number of degrees of freedom. When the consid-
ered system is brought into contact to such an entity it does not change the state
of the bath, but the reservoir ensures the Brownian trajectory of the system while
fulfilling an equipartition theorem. While there are multiple ways to emulate such
a state, one of the most successful ones is provided by the Langevin formalism. It
adds two forces to the dynamical equations of the particles that are attached to
the bath: a damping force and stochastic kicks ξ. The Langvin equation of motion
for a free particle in one dimension reads

dp

dt
= −γp+ ξ (4.1)

with γ the damping rate. This stochastic differential equation describes a form
of Wiener process (sometimes also referred to as Brownian motion), so that we
can resort to Ito calculus for its analysis and numerical solution [408]. We can
formally solve it, which gives for the second order moment in the momentum of
the particle:

⟨p2(t)⟩ = e−2γtp2(0) + 2e−2γtp(0)

∫ t

0

eγt
′ ⟨ξ(t′)⟩ dt′ (4.2)

+ e−2γt

∫ t

0

dt′
∫ t′

0

dt′′eγ(t
′+t′′) ⟨ξ(t′)ξ(t′′)⟩ . (4.3)

The particle loses its memory of the initial state on a timescale of 1/γ, and subse-
quently performs a diffusive random walk for ⟨ξ(t)⟩ = 0. We demand that in the
non-equilibrium steady state the particle fulfills the equipartition theorem which
leads to the so-called fluctuation-dissipation theorem

⟨ξ(t)ξ(t′)⟩ = 2mγkBTδ(t− t′) (4.4)

It connects the amplitude of ξ to the bath temperature and damping rate and
describes the balance between dissipation and stochastic kicks that is required to
equilibrate at the bath temperature.

In this section, we assume that the effect of focused cooling lasers can be
modelled by Langevin baths. In the case of Doppler cooling, the damping rate and
reservoir temperature depend on the laser parameters as discussed in Sec. 2.2.1.
Contrary to the temperatures reachable by Doppler cooling, we do not restrict
ourselves to T > ℏ∆ω

2kB
, since we expect a temperature-dependent conductivity as

already hinted at in Fig. 4.5. Moreover, the laser wavevector generally introduces
an anisotropy of the damping rate since it can have different projections onto
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4.2 Heat transport in ion Coulomb crystals

the trap axes. For the results discussed in this section, we assume that the ion
oscillations in all three dimensions experience an equal damping rate.

As mentioned above there are different models to simulate the heat reser-
voirs that trigger the heat current. A mentionable alternative is the Nose-Hoover
bath [61]. In contrast to the Langevin bath, it does not introduce a stochastic
force to the equations of motion of the considered particle but introduces an aux-
iliary particle coupling to the particle motion. This approach has the advantage of
producing the usual Hamilton equations for an enlarged phase space and preserves
time-reversal symmetry.

4.2.2 Dynamical equations and heat flux

We study the effect of the Aubry transition onto the transport of heat through
an ion crystal with the four outermost ions coupled to Langevin reservoirs with
different temperatures T h > T c. The dynamical Langevin equations of the ions
are of the form:

dp⃗i
dt

= m
d2r⃗i
dt2

= −∇i(Vtrap(r⃗i) + VCoul)− γip⃗i + ξ⃗i(t) (4.5)

where ∇i = d/dr⃗i denotes the gradient with respect to the ion positions, γi = γ
for i = 1, . . . , 4, N − 3, . . . , N and γi = 0 for all other ions. The stochastic force

vector ξ⃗i(t) describes the Gaussian noise whose strength is determined by

⟨ξ⃗i(t)⟩ = 0⃗ ⟨ξ⃗i(t)⊗ ξ⃗j(t
′)⟩ = 2mγikBT i1δijδ(t− t′) (4.6)

with T i = T c for i = 1, . . . , 4 and T i = T h for i = N − 3, . . . , N .
When the ions in any initial state are put into contact with the thermal reser-

voirs at t = 0, they start to thermalize and eventually will reach a non-equilibrium
steady state. This state is characterized by local dynamical temperatures, which
we define as an ensemble average of the kinetic energy

τi =
⟨p⃗ 2

i ⟩
3mkB

. (4.7)

The system has reached thermal equilibrium when dτi/dt = 0 for all ions.
In addition to the temperature distribution, we are also interested in the

amount of heat the crystal can transport per time unit, described by the heat
flux J . It is given by the energy that the hotter reservoir pumps into the system
per unit time and gets dissipated in the colder bath at the opposite end. In ther-
mal equilibrium, these two quantities possess the same amplitude but opposite
signs. In the crystal bulk the ions transport J from one side to the other via their
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4 Energy transport in trapped ion chains with defect

Coulomb coupled oscillation. To describe this continuous flow of energy, we define
an ion energy given by

hi =
p⃗2i
2m

+ Vtrap(r⃗i) +
1

2

∑
k ̸=i

U(|r⃗i − r⃗k|) (4.8)

where U(x) is the interaction energy, U(x) = C0/x in our case. The change of the
ion energy per time is given by the time derivative of hi. We insert the dynamical
equation (4.5), and obtain

dhi
dt

=
∑
k ̸=i

− 1

2m
p⃗i · ∇iU(|r⃗i − r⃗k|)︸ ︷︷ ︸

jik

+
p⃗i
m

·
(
ξ⃗i − γip⃗i

)
︸ ︷︷ ︸

jBi

. (4.9)

Here we have introduced the heat flux jik between ion i and k, accounting for the
coherent exchange of energy, and the flux jBi describing the dissipation of energy by
the reservoirs. Since the first term describes the energy exchange among the ions,
fulfilling jik = −jki for interactions that only depend on the particle distances, the
change in the total energy is given by the heat fluxes from the baths

dH

dt
=
∑
i

dhi
dt

=
∑
i

jBi . (4.10)

The local heat fluxes jik and jBi are stochastic quantities. In order to assess the
average properties of the system, independent of the concrete realization of the
Wiener process, we take their ensemble averages. For the calculation of ⟨jBi ⟩,
we need to compute terms of the form ⟨p⃗iξ⃗i⟩, which can be done via Novikov’s
theorem [409]

⟨f [ξ]ξ(t)⟩ =
∫
ds ⟨ξ(s)ξ(t)⟩ ⟨ δf [ξ]

δξ(s)ds
⟩ , (4.11)

where f [ξ(t)] is a functional of the stochastic forces, and δf [ξ]/δξ(s)ds denotes the
functional derivative. While the first term in the integral of the theorem is given
by the fluctuation-dissipation theorem (see Eq. (4.6)), the second factor can be
calculated from the formal solution of the Langevin equation (4.5)

Applying this theorem to pi[ξ⃗i] yields

⟨dH
dt

⟩ =
∑
i

3kBγi(T i − τi). (4.12)

This change in total energy is non-zero during the thermalization process since
energy is dissipated (pumped) from (to) the system, depending on the initial state.
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4.2 Heat transport in ion Coulomb crystals

After equilibration, these two processes level out as mentioned before and hence
⟨dH/dt⟩ = 0. We can compute the steady state heat flux by taking

J =
3kB
2

∑
i

γi|T i − τi|. (4.13)

The challenge in computing J lies in the determination of the steady state values of
τi, which requires a sufficiently long equilibration time and the ensemble averaging.

4.2.3 Linearized theory

For small temperatures the dynamics of an ion Coulomb crystal is well approxi-
mated by its phonon modes, which result from a second-order approximation of
the Coulomb interaction around the equilibrium positions of the ions. As discussed
in Sec. 2.3.2, the decisive quantity in this linearized theory is the dynamical matrix
K.

Applying the harmonic approximation to the Langevin equations (4.5) yields

d

dt
q⃗ = −

(
0 −1/m
K Γ

)
· q⃗ +

(
0⃗

ξ⃗

)
(4.14)

with q⃗ = (dR⃗, P⃗ ), P⃗ = (p⃗1, . . . , p⃗N)
T and dR⃗ defined as in Sec. 2.3.2. In this com-

pact notation, the dissipation rates are included in the matrix Γ = diag(γ11, . . . , γN1)
and the stochastic forces are aggregated in ξ⃗ = (ξ⃗1, . . . , ξ⃗N)

T . For later convenience,
we also introduce the temperature matrix T = diag(T11, . . . , TN1).

In addition to the advantages inherent to this approximation, such as its ana-
lytical solutions and computational simplicity, addressed in Sec. 2.3.2, it provides
as well a hint at the thermalization time. While for non-interacting particles it
is trivially given by 1/γ, the motional modes can exhibit extraordinary long equi-
libration times when they have poor overlap with the spatial distribution of the
driving [391]. The calculations in second order can give an upper bound for the
necessary computation time in molecular dynamics simulations.

Let us proceed with the solution of Eq. (4.14) by transforming it into the
phonon mode picture by diagonalizing the dynamical matrixK = V ·Λ·V T with the
diagonal eigenvalue matrix Λ and the orthogonal matrix V . The transformation
does not simplify the solution of the dynamical equations because it maintains
the form of the dynamical equations. The local oscillation and the phonon mode
picture are physically equivalent as they are connected by a coordinate change
via V . However, it provides a better understanding of the heat transport because
the phonon modes are the fundamental vibrational excitations of the system. We
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introduce the mode vector Θ⃗ and obtain

d

dt
Θ⃗ =

(
V T 0
0 V T

)
· dq⃗
dt

= −
(
0 −1/m

Λ Γ̃

)
︸ ︷︷ ︸

A

·Θ⃗ +

(
0⃗

UT · ξ⃗

)
︸ ︷︷ ︸

Ξ⃗

, (4.15)

with the transformed dissipation matrix Γ̃ = V T ·Γ ·V . The stochastic mode forces
Ξ⃗ fulfill a dissipation-fluctuation theorem that reads

⟨Ξ⃗(t)⊗ Ξ⃗(t′)⟩ =
(
0 0

0 2mkBΓ̃ · T̃

)
︸ ︷︷ ︸

B

δ(t− t′) (4.16)

with the transformed mode temperatures T̃ = V T · T · V .
Note that the mode dissipation and temperature matrices, Γ̃ and T̃ , are in

general not diagonal. This is a consequence of the inhomogeneous couplings γi
and bath temperatures Ti, and can be understood as a dissipative mode coupling.
During the dynamics, the spatial distribution of the damping and stochastic forces
is imprinted in the energy distribution in the ion crystal. For an intuitive example,
let us assume an initial state of homogeneous energy distribution that is damped
on one end of the system. Consequently, the symmetry of the energy distribution
will be broken, as we can expect that the particles coupled to the damping are
cooled the fastest. In the phonon mode picture, this process is described by a shift
of the relative amplitudes between the symmetric and the antisymmetric modes,
given by the respective terms in Γ̃. The details of the off-diagonal terms of Γ̃ and
T̃ therefore depend on the symmetry of the crystal as well as γi and Ti.

The Langevin equations (4.15) are formally solved by

Θ⃗(t) = e−At · Θ⃗(0) +

∫ t

0

eA(s−t) · Ξ⃗(s)ds. (4.17)

In order to calculate the dynamical temperatures and the heat flux we introduce
the correlation matrix C = ⟨Θ⃗⊗ Θ⃗⟩. Inserting Eq. (4.17) into C gives the result

C(t) = e−At · C(0) · e−AT t +

∫ t

0

eA(t′−t) ·B · eAT (t′−t)dt′. (4.18)

As visible from this solution, the information about the initial steady and simul-
taneously the timescale to reach the steady state are given by the minimal real
part of all eigenvalues of A. Therefore, this value gives an upper bound for the
thermalization time in numerical simulations or a possible experiment.
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4.2 Heat transport in ion Coulomb crystals

The explicit form of the elements of the 6N × 6N matrix C reads

Cµν =
6N∑

r,s,u,v

NµrNνsN
∗
urN

∗
vs

[
e−(ar+ar)tCuv(0) +Buv

1− e−(ar+as)t

ar + as

]
, (4.19)

where we have diagonalized A = N ·diag(a1, . . . , a6N)·NH . In thermal equilibrium,
i.e. t→ ∞ the only surviving term is given by

Cµν =
6N∑

r,s,u,v

NµrNνsN
∗
urN

∗
vs

B̃uv

ar + as
. (4.20)

The dynamical temperature of each mode is described by τ̃i = Ci+3N,i+3N/(3mkB).
A derivation of the mode heat flux, analogue to the one resulting int Eq. (4.9),
yields

⟨j̃i⟩ = (Γ̃ · T̃ )ii −
3N∑
j

Γ̃ijCj+3N,i+3N (4.21)

Since the phonon mode vectors are spatially delocalized, they couple to both ther-
mal reservoirs simultaneously. Hence, the ensemble-averaged mode heat flux in
the steady-state vanishes for each phonon mode individually as the same amount
of energy is absorbed from the hotter bath as dissipated into the colder bath. To
calculate this amount of energy, we can unambiguously split the dissipation matrix
Γ̃ = Γ̃h + Γ̃c and the temperature matrix T̃ = T̃ h + T̃ c into the contributions from
the different reservoirs. Inserting one of these summands into Eq. (4.21) gives
the individual contributions of the two baths which add up to zero. The absolute
value of any of these contributions is the heat that is transported by the respective
mode, summing the heat fluxes of all phonon modes results in the total heat flux
of the system.

As it is clear from the functional form of the total heat flux (4.21), it vanishes
for γ → 0 due to its proportionality to Γ̃. The analytical solution, obtained for a
homogeneous oscillator chain, results in

J =
kBNγγ

2

(
T h − T c

)
, γ → 0, (4.22)

where Nγ is the number of particles coupled to the reservoirs at each boundary.
This result agrees well with the temperature profiles in a linear chain reported
in Ref. [391]. Note that the result (4.22) in the vanishing γ limit, coincides with
Eq. (4.13) for τi = T̄ . In the opposite limit γ → ∞ the coupled ions adapt the
bath temperatures Ti such that the system does not transport energy in the strong
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Figure 4.6: Total heat flux computed from linear theory for a linear ion chain
with N = 10, as a function of the damping rate γ. The two outermost ions
are coupled to heat reservoirs with a temperature difference T h − T c (red) and
(T h − T c)/2 (blue). J is normalized by kBωz(T

h − T c)/2.

coupling limit. In that limit the heat flux in a homogeneous system with nearest
neighbor coupling κ decays like

J =
κkBNγ

2mγ

(
T h − T c

)
, γ → ∞ (4.23)

Between these two limits there exists a value of the damping rate with maximal
J , the full dependence of the heat flux on γ for a linear ion chain in the harmonic
regime is shown in Fig. 4.6.

4.2.4 Steady-state temperature profiles

In the following section, we apply the theory discussed above to a crystal of N =
30 172Yb+ ions. We fix the damping rate γ = 20 kHz for the four outermost ions
and set the temperature difference of the two reservoirs to T h − T c = 0.2mK.
We keep their average temperature T̄ adjustable in order to probe the response
of the system to the heat current at different temperatures. We investigate the
heat current and the equilibrium temperature profiles as a function of the trap
inhomogeneity, which triggers the linear-zigzag transition and the Aubry transition
in the presence of a kink.
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4.2 Heat transport in ion Coulomb crystals

We employ the results of the linearized theory from Sec. 4.2.3, but also perform
direct numerical calculations of the Langevin equations (4.5). In order to calculate
the ensemble average of the kinetic energy of the ions we compute 500 independent
trajectories of the crystal and build the average of them. Subsequently, we average
over 50ms, a much larger timescale than the typical oscillation period 2π/ωz =
40 µs of the crystal, after the system has reached its steady state.

In order to choose an adequate simulation time, we show in Fig. 4.7 (top)
the thermalization timescale predicted by the linearized dynamical equations. It
is given by the inverse of the minimal real part of the eigenvalues of A and lies
typically on the order of a second. This extraordinarily long timescale has been
already reported in previous studies, and it is due to the inhomogeneous ion density
in a harmonic confinement [391]. Since the ion distances are smaller in the trap
center, high-frequency modes are more localized in that area and hence couple
weakly to the reservoirs at the edges, which slows down their thermalization. Non-
linear mode couplings can transfer energy from a strongly coupled mode to the
isolated phonons, which reduces the time to reach the steady state. A typical
equilibration process is depicted in Fig. 4.7 (bottom).

We show the steady state temperature profiles in Fig. 4.8. The results for the
zigzag without defect show a flat profile in the bulk of the crystal and abrupt
steps at the ions in contact with the reservoirs. This observation is to some extend
independent of the chosen trap asymmetry, however the extend of the region with
close to vanishing temperature gradient is reduced when comparing the choice
α = 7.0 to α = 6.0. Note that by increasing the trap aspect ratio also the size of
the zigzag phase in the crystal center shrinks, which influences the phonon mode
structure.

The graphs resemble those obtained from homogeneous model systems with
harmonically coupled particles exhibiting anomalous heat conductivity. It is im-
portant to note that this result is supported by the numerical calculations which
show a very good agreement to the results from the second order approximation.
This indicates the absence of non-linear dynamics at the temperature scales en-
countered here.

Ref. [404] reported a different result in two-dimensional zigzag crystals for the
same particle number, arguing that the transition from a linear to two-dimensional
crystal gives rise to a linear temperature slope. We attribute the discrepancy be-
tween the two results to the difference in the temperatures and damping rates and
claim that the observed gradient is due to non-negligible non-linear mode couplings
discussed later. We expect that with increasing T̄ above the scale considered here
the higher order terms in the Coulomb interaction will activate a non-zero temper-
ature slope in the bulk. In return, our results suggest that the onset of a gradient
is not an inherent property of the linear-zigzag transition but rather is caused by
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Figure 4.7: Top panel: Thermalization timescale in harmonic approximation
given by the minimal real part among the eigenvalues of the matrix A, i.e.
t−1
th = 2minai (Re ai), for a crystal with (red) and without kink (blue). The
four outermost ions are coupled isotropically to the reservoirs with γ = 20 kHz.
Bottom panel: Thermalization of the 4th (blue) and 15th (red) ion in a
zigzag crystal (α = 7) calculated from numerical calculations of the Langevin
equations (4.5).
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Figure 4.8: Steady state temperature profiles for a defect-less zigzag crys-
tal (blue) and zigzag with horizontal defect (green and red) for α = 6.0 (left,
sliding phase) and α = 7.0 (right, pinned phase). The average bath tempera-
ture is T̄ = 0.6mK for the blue and green graphs. In addition, the red points
shows the result for the kink with T̄ = 0.15mK. The dashed lines show the
corresponding prediction from linear theory. The z coordinates of the ions have
been normalized by 3

√
C0/mω2

z . The grey boxes indicate the spatial region con-
sidered for the calculation of dT .

an increase in the strength of the mode coupling terms.
The presence of a kink in the sliding phase smoothens the profile by shrinking

the region of vanishing temperature slope in the center. Since the local transla-
tional invariance in the bulk of the crystal is broken by the defect, the shape of
the phonon mode vectors is altered, most prominently by creating a localized kink
mode, reducing the flat temperature profile. We also observe good agreement with
the result from the second-order approximation, which shows that the introduction
of the topological defect does not a priori result in non-linear dynamics. This can
be understood from the shape of the kinks PN potential. It is in good approxima-
tion quadratic in the chosen α regime, see Fig. 2.6. The kink fluctuations around
the unique energy minimum are unable to resolve the deviation from the linearized
theory prediction for the energy scales depicted.

The temperature profile drastically changes when the trap aspect ratio is tuned
into the pinned regime of the defect. Linear theory predicts an abrupt temperature
drop at the position of the kink, breaking the point symmetry of the profile. Similar
to the energy blockade observed in the coherent energy transport in Sec. 4.1.1, this
behavior is due to the emergence of asymmetric phonon modes in the spectrum.
Since the mirror symmetry of the crystal is spontaneously broken at the Aubry
transition the mode vectors generally possess no fixed symmetry. Moreover, some
of them are localized on one side of the defect. These modes are coupled to
only one of the reservoirs, and hence adapt the corresponding temperature which
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leads to a step-like temperature distribution. For low T̄ , the non-linear result
shows an inhomogeneous temperature gradient with the steepest incline at the
kink position. This result qualitatively supports the linear theory prediction of
a sharp temperature drop due to the symmetry breaking, but demonstrates the
relevance of non-linear dynamics for temperatures below the Doppler limit in this
phase. Increasing the average bath temperature modifies the temperature profile
by smoothening the step in the central region to a close to uniform temperature
gradient for T̄ = 0.6mK. This clearly shows the lack of validity of the linearized
theory.

In order to investigate the signal of the Aubry transition in the temperature
gradient, we take the temperature difference dT over the ten central ions as a mea-
sure for the structure of the steady-state temperature profile. The corresponding
region of the crystal is marked by vertical bars in Figs. 4.8. In Fig. 4.9 (top),
we show dT as a function of α for T̄ = 0.6mK in the case of a defect-free zigzag
crystal, serving as a benchmark for the effect of the kink. The gradient in the
center remains small for all choices of the trap aspect ratio when compared to the
difference of the two reservoirs T h − T c. This matches the observation of Fig. 4.8.
Although the temperature gradient is not identically zero, it is significantly smaller
than what can be expected for a uniform temperature gradient. The reason for
the nonzero gradient in the harmonic regime is discussed later.

The result for a crystal with a defect is shown as a function of α and T̄ in
Fig. 4.9 (bottom). In the sliding phase (α < 6.4), dT is on the similar order as for
the defect-less case, irrespective of the value of α and T̄ . The temperature slope
increases significantly for small T̄ as soon as α is tuned across the critical point
of the Aubry transition and reaches a maximal value of dT ≈ 0.4(T h − T c). Note
that for the chosen value of γ the outer ions do not thermalize at τi = Ti such that
τN − τ1 ≈ 0.6(T h − T c) independent of α. As dT only considers the central 10
ions, a value of dT ≈ 0.4(T h − T c) indicates a larger temperature slope than can
be expected for a linear temperature profile that continuously connects τ1 and τN .

When the T̄ is increased for a fixed value of α the steady state of the system
changes, as has already been seen in Fig. 4.8. At a crossover temperature the profile
adopts a more uniform slope, which consequently decreases dT , since the defect
ions do not exhibit a step-like energy distribution. The origin of this behavior can
be traced back to the shape of the PN potential discussed in Sec. 2.3.1.

If the thermal energy of the kink is insufficient to overcome the central barrier
in the PN potential, it remains in one of the minima for a dwelling time much
longer than the typical timescale of its oscillations in that minimum. Therefore, the
approximation of the dynamics to second order is adequate to a certain extend, and
the temperature profile exhibits the sharp temperature drop at the kink position
due to the broken crystal symmetry. Nonetheless, the dynamics of the kink inside
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Figure 4.9: Top: Temperature gradient dT as a function of α, for a zigzag
crystal with T̄ = 1.28TD. The dashed line shows the linear theory prediction
and the points the numerical results. Bottom: The same for a crystal with
topological defect, as a function of α and the average bath temperature T̄ .
The latter is normalized by the Doppler limit temperature for Yb ions, i.e.
TD ≈ 0.47mK.
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4 Energy transport in trapped ion chains with defect

the double well structure delivers non-linear corrections to the linearized theory
for smaller temperatures than in the sliding phase. This increased sensitivity to
temperature is observable in Fig. 4.8, for example for T̄ = 0.15mK.

When the average temperature is increased, the kink has a finite probability to
transfer between the two minima in the PN potential and delocalizes via discrete
hopping events. They lead to the decrease of the temperature localization, since the
defect transports heat at each hopping event between the spatial regions that were
separated by the energy step before. The occurrence of the thermally activated
hops marks the crossover point T̄deloc(α) into a thermally delocalized phase. Note
that the temperature gradient in this phase is still larger than in the defect-less
case and therefore a signal of the Aubry transition is observable. We expect that
for much larger temperatures the kink dynamics becomes totally insensitive to the
PN barriers due to their negligible height in comparison to the thermal energy of
the kink ions. In this regime, the global shape of the PN potential determines the
steady state of the system, and, since it does not change at the Aubry transition,
we expect no sign of energy localization in the T̄ ≫ 1mK limit.

The crossover temperature T̄deloc(α) is a non-trivial function of the trap aspect
ratio. It is determined mostly by the size of the central barrier in the PN potential.
For α > 6.4, it increases linearly at first, reaching a maximal value at α ≈ 7.0, and
decreases for α > 7.5. The initial incline is caused by the growth of the PN barrier
in the pinned phase while the existence of a maximal value of T̄deloc(α) is due to
the crossover to the odd kink shape around α ≈ 7.8. As discussed in Sec. 2.3.1,
the global form of the PN potential shifts to an inverted harmonic oscillator, so
that the PN barriers are the only mechanism to stabilize the defect and protect it
from moving to the crystal edges and vanish. At the odd crossover, the kink is less
strongly confined in the PN potential minima and therefore T̄deloc(α) decreases.
In the odd regime, there exists another parameter window with a temperature
step robust against thermal fluctuations, and finally for α > 8.5 the size of the
stabilizing PN barriers decreases, and with it T̄deloc(α). Note that in the odd
phase the hops over the PN barriers introduce a finite chance to lose the kink
by successive jumps towards the systems edge. Therefore, the crossover to the
thermally delocalized phase has the consequence that some of the system copies
in the thermal ensemble do not contain a defect anymore in the calculated steady
state. The result shown in Fig. 4.9 does not distinguish between those trajectories
in which the kink is lost and those in which, by chance, the kink survives.

While we argued that the behavior of the temperature profile at the kinks
position is caused by the changes in the shape of the PN potential, this connection
is not rigorous. As suggested in Sec. 2.3.1, the PN potential discussed so far
neglects motional excitations, called dressing modes, that are perpendicular to the
translation of the kink position X. However, in a comprehensive treatment these
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Figure 4.10: Total heat flux J as a function of α, for a zigzag crystal with-
out (blue) and with (green and red) defect. For the blue and green graphs, the
average bath temperature is set to T̄ = 0.6mK. The red graph for the case with
kink is calculated for T̄ = 0.15mK. The dashed lines show the corresponding
result from linear theory, whereas the points are obtained from numerical sim-
ulations. The heat flux is normalized by γkB(T

h − T c)/2.

thermally populated modes couple to the dynamics of the defect and consequently
inject energy to its motion. A consequence of the simplification made to discuss
the crossover to the delocalized regime is that the temperature scale of T̄deloc(α)
and the typically barrier size of several mK do not match. Naively, one would
expect that the crossover occurs when the defect temperature, i.e. the thermal
energy of the ions constituting the kink, becomes comparable to the energy of
the barrier EPN . Further work could shine light onto the relation between the
dynamics of the crystal dressing and the kink dynamics in a collective excitation
formalism, see Sec. 2.3.1.

4.2.5 Heat flux

Fourier’s law describes the connection between the temperature slope discussed so
far and the total heat flux J . In Fig. 4.10, we show J as a function of α for the
different phases in a zigzag crystal. For α > 8.25, the heat flux of a defect-less
crystal increases linearly with the trap aspect ratio, and has a global minimum in
the range of 6.5 < α < 8.0. For smaller values of α the heat flux increases in an
irregular manner.
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4 Energy transport in trapped ion chains with defect

The inclusion of the non-linear dynamics speeds up the transport of heat but
does not change the functional behavior of J(α) as the numerical data points
show a constant positive offset in comparison to the analytical result. A similar
dependence on α has been reported in Ref. [404], but the authors did not obtain
the presence of a minimum of J .

The result for the crystal with defect shows a smaller heat flux for α > 6, note
that αA = 6.4 for the considered particle number. In the sliding phase, the heat
flux of the crystal is reduced due to the distortion of the phonon mode vectors by
the presence of the kink. An extreme example is the formation of localized kink
modes that are only weakly attached to the heat reservoirs and therefore are not
contributing to the transport of heat between them. At the Aubry transition point,
J abruptly drops, and subsequently two local minima around α ≈ 7.0 and α ≈ 8.25
can be observed. These points match well with the regions of robust temperature
gradient (large T̄deloc) in Fig. 4.9, and with the largest energy imbalance in Fig. 4.3.

The numerical results for small temperatures show a good agreement with
the linear theory. The constant offset due to non-linear coupling mechanisms
that speed up the heat transport has already been observed in the zigzag case.
Increasing the temperature results in the crossover to the thermally delocalized
phase, which shows a larger heat flux due to the thermal hops of the kink. Although
in this phase the abrupt change in J at the Aubry transition is washed out, the
heat flux stays reduced in comparison to the defect-free curve marking a signal of
the presence of the defect.

4.2.6 Resonances

In the following, we address the unexplained presence of a trap configuration ex-
hibiting minimal J in the zigzag structure.

In Ref. [404], the linear increase of the heat flux when approaching the linear-
to-zigzag transition was explained by the decreasing ion distances. For larger
ion distances the coupling of the ion vibrations becomes weaker and hence the
transport of energy slower. However, our results show a violation of this linear
trend of J deep in the zigzag phase, which contradicts the connection between the
ion distances and the heat flux in the steady state. Since the ion distances are
monotonically increasing with decreasing α for α > 1.0, the heat flux should be a
monotonous function as well if it was dominated by the coupling strength among
the ions.

Towards an explanation of this issue, we show in Fig. 4.11 (top) the heat flux
in the limit of γ → 0. In this diagram, we only show the result of the linearized
theory since the choice of a small damping rate requires a larger equilibration
time that leads to unrealistically long simulation times for the numerics. However,
due to the observed agreement between the numerical results and the harmonic
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approximation in the considered temperature regime for a zigzag crystal, it is
reasonable to assume that the linear theory covers the relevant physics.

We observe a constant normalized heat flux for all values of α in the absence
of a kink, and a strong reduction of J at the Aubry transition of a crystal with
defect. In addition, the graphs show distinct peaks, which reduce the heat flux for
the symmetric crystals (zigzag and sliding phase of a defect) and boost the heat
transport on the pinned phase of a crystal with a kink. We study the contribution
by a set of phonon modes as a function of α and find that those modes whose
frequencies cross exhibit a reduced heat flux, see Fig. 4.11 (bottom). We therefore
deduce that the disturbances in J are caused by degeneracies in the phonon mode
spectrum

In a zigzag crystal, all phonon mode vectors are either symmetric or antisym-
metric upon point reflection on the trap center (for the even particle number case
considered here). Therefore, a pair of modes neighboring in frequency consists
of one symmetric and one antisymmetric mode. For equal frequencies, the two
modes of interest oscillate in a correlated way. Consequently, the shape of their
mode vectors leads on one site of the crystal to a constructive amplification, while
on the other edge the sum of the two mode vectors leads to an opposed motion. In
this way, the heat flux is reduced and the crystal builds up a temperature gradient.

For a crystal with a defect, some phonon modes do not possess point symmetry,
such that a resonance can increase or decrease the heat flux. Similar to a damped-
driven harmonic oscillator these mode resonances are broadened when the damping
coefficient γ is increased. Away from any resonance, we recover the prediction
J = 3kBγ

2
(T h − T c)Nγ for harmonic oscillator chains in the weak damping limit,

that is also valid for a linear chain (see Fig. 4.6). This analysis shows that the
heat flux of ion crystals is influenced by the density of resonances in its phonon
mode spectrum. It causes the reduction of J when the zigzag phase is entered
and explains the observed minimum in the total heat flux. Due to their dense
structure and their broadening with stronger damping rates the resonances could
not be resolved in Fig. 4.10.

4.3 Conclusion

In this chapter, we have demonstrated the strong influence of the Aubry transition
in trapped ion crystals onto its ability to transport energy from one boundary to
the other.

We have seen that in the low-energy limit, for which the phonon modes dic-
tate the dynamics, the symmetry breaking leads to a robust and strong energy
localization. In the case of a coherent excitation, discussed in the first part of the
chapter, this resulted in a prominent blockade observable in the time evolution
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Figure 4.11: Top panel: Total heat flux in linear theory for a zigzag crys-
tal (blue) and crystal with defect (red), normalized by γkB(T

h − T c)/2. The
solid lines are calculated for γ = 2Hz, the dashed lines are for γ = 20 kHz.
Bottom panel: Normalized heat flux of selected phonon modes of the zigzag
crystal as a function of α. The top diagram shows the inverse frequency differ-
ence between the frequencies of the respective phonon modes.
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4.3 Conclusion

of the system. We analyzed its dependence on the parameters of the trap, and
the initial state with the help of the energy imbalance ∆E. For the transport
of thermal energy between two heat reservoirs this phenomenon translated into
a step-shape temperature profile in the steady state with two thermally isolated
regions. Ultimately, these stark observations could always be traced back to the
occurrence of asymmetric phonon modes that have a significant support only in
one crystal half.

The non-linear form of the Coulomb potential softens these effects. In addition
to the trivial departure from the harmonic-approximation regime for large energy
scales, we have seen that the strong energy imbalance and the temperature gradient
are broken by resonances in the phonon mode spectrum in an intermediate energy
regime. In first order, mode crossings lead to a decreased group velocity of the
coherent excitations, while their density reduces the heat flux through the crystal.
In addition, we observed non-linear resonances that enabled parametric conversion
between phonon mode amplitudes and can transfer energy across the defect in this
way [238]. We have not been able to pinpoint their effect on the heat conductivity,
but we think that they lead to an even finer resonance structure in the γ → 0
limit.

Further questions for the heat transport include the scaling of the heat flux
J with the ion number N [241]. This issue lies at the root of the breaking of
Fourier’s law. This analysis would also be interesting from another perspective.
For the crystal size considered here, the extend of the defect covers close to all of the
zigzag phase in the center. For larger systems, boundary effects by the finite length
of the zigzag phase and the relatively large number of ions coupled to the thermal
reservoirs are reduced, and the temperature profile could qualitatively change.
Moreover, the trapped-ion system is not translationally invariant, and the defect
is confined close to the Paul trap center for the majority of cases. The translation
of the defect adds a new channel for energy transport in a homogeneous system,
as hinted at in our study by the thermal hops between two different equilibrium
configurations [306, 370, 395]. The heat transport study discussed in this Thesis
may be extended to different geometries that are also able to host solitonic defects,
like triangular disk-shaped crystals or helices of ion chains [40, 205–208, 220, 222,
410, 411].

Finally, the observed non-trivial heat transport is very much of practical im-
portance for the sympathetic cooling of ion crystals [412]. As seen, we cannot
assume that coupling the ions vibrations to a form of dissipation reaches all de-
grees of freedom and could leave different regions poorly cooled when no global
cooling scheme is accessible or desired.
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Chapter 5

Fluctuations and phase
transitions

The discovery, study and theoretical description of classical and quantum phase
transitions constitute a key issue in physics [66, 413]. Their theoretical description
often falls back on simplified models such as Hubbard or Ising models [33, 343,
414, 415]. Interestingly, these models may be controllably studied using cold atoms
and ions [27, 32, 69, 219, 345, 416–419]. In particular, ions in rf traps exhibit sev-
eral structural phase transitions that have been studied theoretically, and probed
experimentally [35, 36, 46, 204, 209, 211, 420, 421]. Prominent examples are the
linear-to-zigzag transition occurring at the onset of a two-dimensional crystal, and
the sliding-to-pinned transition introduced by a topological defect. As most tran-
sitions, they are prone to forms of fluctuations close to the critical point, be they
of thermal or quantum origin. This has direct consequences for their experimental
observation, as both sources of fluctuations cannot be eliminated in experiments
and do alter the measurement. In this chapter, we analyze the effect of fluctua-
tions on the linear-to-zigzag transition and the Aubry transition, and investigate
the change in the particle dynamics and the motional spectrum.

5.1 Thermal spectrum at linear-to-zigzag transi-

tion

In this section, we discuss the thermal modification to the phonon mode spectrum
from the second-order expansion introduced in Sec. 2.3.2 in the vicinity of the
linear-to-zigzag transition at αlin−zz. As discussed in Sec. 2.3, this structural
transition connects the linear phase with α ≫ 1 in which the equilibrium crystal
has xi = yi = 0, and the zigzag phase with a triangular ladder as the minimal
energy configuration, see Fig. 5.1 (top).
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Figure 5.1: Top: Experimental photo of an ion crystal in the linear phase
and the zigzag phase. Bottom: Size of the zigzag barrier Ezz (red squares)
and radial size ∆x of the equilibrium configuration (blue circles) as a function
of α. The dashed line depicts a quadratic fit of the barrier. The insets show
the potential along the adiabatic path connecting the two ground states from
which Ezz is taken, the aspect ratio is chosen as α = 12 and α = 11.8.

It breaks the reflection symmetry along x of the linear chain as the ions buckle
out of the z-axis of the trap, therefore the radial size of the crystal approximated
by ∆x = xN/2 − xN/2+1 qualifies as an order parameter for the two phases, see
Fig. 5.1 (bottom) [36]. In the zigzag phase, it can take two equilibrium values
∆x = ±d0 which differ only in sign due to the degeneracy between the zigzag and
the zagzig configuration. These two equilibrium states are separated by an energy
barrier which emerges at αlin−zz. We map out the adiabatic path connecting the
zigzag and the zagzig by employing a Lagrange formalism to minimize the potential
energy of the system while dictating a given value for ∆x. Towards this, we need
to solve (

∇, ∂
∂λ

)
(Vtrap + VCoul + λ(∆x− d)) = 0 (5.1)

where Vtrap and VCoul are given by Eq. (2.10). The zigzag energy barrier Ezz(α)
is given by the difference between the potential energy of the equilibrium con-
figuration and the minimal energy state with ∆x = 0. Close to the transition
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5 Fluctuations and phase transitions

point, the size of the barrier increases quadratically ∝ (α− αlin−zz)
2 in the zigzag

phase [36, 213].
In warm ion crystals the finite temperature causes fluctuations of the systems

state in the effective potential landscape approximated by the adiabatic path be-
tween the zigzag and the zagzig. For small thermal energies in comparison to Ezz

the system is unable to overcome the effective potentials barrier and hence remains
close to the configuration spontaneously chosen at the linear-to-zigzag transition.
However, if transitions of the system between the two degenerate equilibrium po-
sitions become thermally activated the dynamics qualitatively change and with it
the motional spectrum. We encountered a similar situation in the crossover to
the thermally delocalized regime in the pinned phase of a crystal with topological
defect discussed in Sec. 4.2. Note that the occurrence of switches between the
zigzag and the zagzig does not only depend on the temperature but also on the
trap aspect ratio through Ezz(α). For any non-zero temperature value we can find
a regime for α for which kBT > Ezz(α) so that the value of T should only rescale
the α window for which the spectrum is altered, but not change our general results.

In the following, we first show how the motional frequency spectrum changes
close to αlin−zz determined by a Fourier analysis of the position of the ions, and
experimental spectroscopic measurements. Secondly, we derive an approximate
model that include higher-order mode coupling terms in order to describe the
frequency shifts of the low-lying phonon modes.

5.1.1 Molecular dynamics simulations

To describe the stochastic motion of the ions when an ion crystal is uniformly
Doppler-cooled, we resort to the Langevin equations introduced in Eq. (4.5). As-
suming that the Doppler cooling laser has equal projection onto all three trap axes,
and a width much larger than the extend of the considered crystal, such that each
ion experiences the same field amplitude, we can set the damping rates γi = γ and
temperatures T i = T . For all relevant numerical simulations in the following, we
set the bath coupling to the experimentally motivated value of γ = 8.75 kHz, but
keep the temperature variable to fit the results to experimental observations. Note
that the value of the damping rate γ has influence on the width and the location
of the resonance peaks when the motional spectrum is spectroscopically mapped
out, it is therefore desirable to reduce γ, which increases the thermalization time
in turn.

For a certain set of parameters (α and T ) we initialize the ions in their equilib-

rium positions, determined by ∇⃗r⃗i(Vtrap+VCoul) = 0, and subsequently thermalize
the system at the chosen temperature over a simulation time of 100 µs, confirming
the arrival at a thermal velocity distribution via the equipartition theorem. We
then monitor the ions positions with a time resolution of 1.9 µs over a simulation
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5.1 Thermal spectrum at linear-to-zigzag transition

Figure 5.2: Example of a Fourier signal Sz(ω) depicted by the blue data
points for α = 11.7 and T = 0.1mK. The red dotted line indicates the running
mean averaged over 30 data points and the orange vertical bars indicate the
automatically detected peak locations. Horizontal orange lines show the peak
widths taken from the running mean graph. The inset shows a zoom into the
low frequency regime, most relevant for the analysis.

time of 10ms as input data for the following Fourier analysis. For these choices
the Fourier spectrum F(r⃗i) has a frequency resolution of 100Hz and a maximal
frequency of 263 kHz, much larger than the frequency range of interest that is fixed
by the axial trap frequency ωz ≈ 2π · 25 kHz. For noise reduction, we average the
Fourier spectra of five independent simulations and then build the absolute value
of the Fourier transform to obtain the spectrum of the motion in the crystal plane
of ion i. We expect to observe peaks in the Fourier spectra at the frequencies of
the collective motion of the particles. However, they are only observable if the
spatial shape of these non-linear modes has a projection onto the motion of ion
i. Since the spatial shape of the non-linear modes is unclear, when the dynamics
depart from the harmonic approximation we take the sum of the Fourier spectrum
in one direction of all ions as a signal to detect the collective mode frequencies

Sµ=z,x(ω) =
∑
i

|F̄(µi)| (5.2)

As seen in the example of Fig. 5.2, Sµ(ω) typically shows distinct peaks in the
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low frequency range and a less pronounced peak sequence for large frequencies due
to the increased mode density. This enables us to extract the frequencies of the
low-frequency modes, which we expect to be affected most by the thermal fluctu-
ations. We build a running mean over 20− 30 data points to smooth out further
the fluctuations in the signal and use a peak search algorithm to automatically
determine the location of the peaks. This can be repeated for the Fourier signals
for both directions µ = z, x individually.

In Fig. 5.3 we show the motional spectrum determined by the numerical simu-
lation of the Langevin equations as a function of α for different values of the crystal
temperature T . In all plots we simultaneously show the peaks in the spectra in
both directions. For the smallest temperature shown, T = 0.1mK, we recover
the harmonic approximation prediction for most values of α. Only directly at the
transition point αlin−zz ≈ 12 we observe an increase of the zigzag mode frequency
due to the thermal fluctuations. For larger temperatures, an α window with devia-
tions from the T = 0 result appears, with two main effects. Starting already in the
linear phase, the finite temperature causes a positive frequency shift of the zigzag
mode. The simulation results suggest that the zigzag mode frequency becomes soft
at αlin−zz(T ) < αlin−zz. In addition, the frequency of the axial breathing mode
in the linear phase converts smoothly into the frequency of the first non-trivial
mode in the zigzag phase (note that the axial common mode is always present at
ω = ωz = const.). At αlin−zz(T ), for which the zigzag mode frequency touches
zero, the numerical results begin to fit well with the harmonic approximation. A
similar behavior has been observed in other works. It has been argued that the de-
layed vanishing of the soft mode in the presence of temperature can be interpreted
as a thermal shift of the transition point [212–214, 422].

In addition to the Fourier analysis, the molecular dynamics simulations enable
us to reveal the time-resolved dynamics of the ions, in particular we are interested
in the occurrence of thermal hops between the two minimal energy configurations
for α < αlin−zz. Towards this end, we show the radial coordinate of the central ion
as a function of time for two different values of α in Fig. 5.4 (left). We observe
a qualitatively different behavior between the two cases, when α is tuned further
away from the transition point the ion oscillates around one of the equilibrium
positions for a substantial dwelling time τe and occasionally switches its sign. For
α tuned closer to αlin−zz we cannot mark discrete switching events anymore since
the ions constantly oscillate between the two equilibria with different sign. This
behavior is due to the double-well shape of the effective potential described by
the adiabatic path between the two degenerate zigzag and zagzig states [423]. At
α = 11.7 the energy barrier separating the two states has an energy of about
kB10mK, so that the thermal energy of kB2mK chosen in the diagram is smaller
and only rarely activates the switch. In the other case Ezz ≈ kBT , so that during
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Figure 5.3: Motional spectrum for different temperatures: T = 0.1mK (a),
2mK (b) and 3.5mK (c). The dashed lines show the phonon mode frequen-
cies calculated from the harmonic approximation around the equilibrium state.
Highlighted in red and green are the zigzag and axial breathing mode, respec-
tively. The black data shows the motional frequencies obtained from the axial
(circles) and radial (triangles) Fourier spectrum calculated from molecular dy-
namics simulations, the error bars indicate the FWHM of the running mean
average of the peaks. In (d) we show additionally the experimental results in
the blue squares. The solid lines show the motional frequencies calculated from
the effective theory presented in Sec. 5.1.3, with the zigzag mode (red) and axial
breathing mode (green) taken as system modes.
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Figure 5.4: Left: Radial dynamics of the central ion in a crystal of N = 30
particles from molecular dynamics simulations. In the top graph α = 11.7,
whereas in the bottom one α = 11.85. The temperature is T = 2mK in
both cases. Right: Average dwelling time τe as a function of α for different
temperatures: T = 3.5mK (red points), 2mK (blue points), 0.5mK (green
points) and 0.1mK (orange point). The solid lines show an exponential fit
∝ exp[(α − αlin−zz)

2]. The zigzag mode period TZZ is indicated by the grey
line.

almost every oscillation period around one of the equilibrium configurations a
switch is thermally triggered. To pinpoint the deviations in the motional spectrum
from the harmonic approximation to the thermal switches, we compare the average
dwelling time τe in one of the minima of the effective potential to the period Tzz of
the first non-trivial harmonic phonon mode in the zigzag. To calculate the average
dwelling time, we divide the simulation time by the number of sign changing
events of the radial coordinate of the center ion. In Fig. 5.4 (right), we observe
the expected decrease of the ratio τe/Tzz when the linear-to-zigzag transition is
approached from underneath, and when the systems temperature is increased.

For τe/Tzz > 1 the crystal fulfills at least one full oscillation of the motional
mode, so that we expect the motional spectroscopy to deliver a motional frequency
close to the harmonically approximated result. The opposite is the case for τe <
Tzz, we expect strong modifications to the motional spectrum in this regime. We
take α = αlin−zz(T ) such that τe/Tzz = 1 as a crossover point between the (close
to) harmonic approximation phase and the regime for which the non-linearity of
the effective Landau potential is probed, and hence strong spectral modifications
occur. We show these values in the numerically calculated spectrum and see good
agreement with the transition points taken from the extrapolation of the thermal
zigzag mode frequency.
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5.1.2 Experimental measurements

The experimental measurement of the motional frequency spectrum close to the
linear-to-zigzag transition is shown in Fig. 5.3 by blue points. It shows a good
agreement with the numerical results for a crystal temperature of T = 3.5mK. In
the conducted experiment, the ion crystal, trapped in a linear rf trap, is illumi-
nated uniformly by a Doppler-cooling laser addressing the 2S1/2 → 2P1/2 transition
of Yb. In addition, another Doppler-cooling laser incident from a different angle
is focused to a beam waist of 80 µm and aligned such that it only addresses a
fraction of the crystal. Its intensity is modulated in time with a tunable frequency
ωd, which results in a periodic light force that triggers coherent ion oscillations.
When ωd is tuned in resonance to a collective mode frequency the amplitude of the
oscillations of the ions increases linearly in time in the absence of damping. The
global Doppler-cooling laser leads to a simultaneous damping of the ion velocities,
such that after a thermalization time a steady state amplitude of the addressed col-
lective mode is reached. The amplitude of the created displacements is observable
from the ion fluorescence light collected via an EMCCD camera. As the expo-
sure time of the camera is on the order of hundreds of milliseconds, a much larger
timescale than the typical periods of the ion oscillation, the spatial extension of the
washed-out region from which fluorescence light is collected increases on resonance.
Moreover, the amplified ion velocity Doppler-shifts the frequency of the cooling
laser experienced by the ion, resulting in a decreased scattering rate. In total, we
can take the light intensity collected from a small region covering the equilibrium
position of a selected ion as a signal to detect the motional resonances. It shows
dips when the oscillations of the ions are driven by the resonantly modulated laser
light, such that the ion partly leaves the selected square, see Fig. 5.5.

Note that the presented motional spectroscopy by means of parametric driving
necessarily increases the crystals temperature leading to stronger non-linear effects.
As seen in Fig. 5.3 the experimental data fits best with the simulated Fourier
spectra for T = 3.5mK, a value which is considerably larger than the temperature
of the crystal without driving close to the Doppler cooling limit TD ≈ 0.5mK.
This effect also depends on the driving lasers intensity, as it dictates the steady
state amplitude of the excited mode. A consequence of this increase in non-linear
dynamics can be seen in the resonance dips shown in Fig. 5.5, the peak for the
axial breathing mode shows a shift for stronger laser powers. In addition, the line
shape becomes more asymmetric for larger amplitudes. The measurement results
shown in Fig. 5.3 have been taken from an experiment with a laser power of 6µW.
In addition, the selected method is unable to effectively excite collective modes
with a short wavelength, such as the zigzag mode in the linear phase, due to their
small spatial overlap with the driving force. The excitation laser drives several
ions close to uniformly such that a motion with a finer spatial resolution than the
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5 Fluctuations and phase transitions

Figure 5.5: Experimental measurement of the motional frequencies via the
fluorescence collected from a square region, covering the equilibrium position
of the ion. The power of the driving laser has been subsequently increased, see
legend. The red line indicates a running mean over 50 data points, the vertical
dashed line marks the maximal excitation of the axial breathing mode.

size of the beam waist cannot be addressed. This problem can be solved in modern
experiments with single-ion addressing techniques.

5.1.3 Effective theory for the mode coupling

It has become clear that the thermally activated switching between the two de-
generate ground states in the zigzag phase causes the altered motional spectrum
close to the transition point. In the following, we derive an effective theory for
the thermal spectrum based on the expansion of the Coulomb potential discussed
in Sec. 2.3.2. In order to include non-linear effects, we extend the expansion to
fourth order in the mode amplitudes, which leads to the higher-order tensors L̃ and
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5.1 Thermal spectrum at linear-to-zigzag transition

M̃ given by Eqs. (2.28) and (2.29). The resulting approximated potential cannot
describe the existence of multiple local minima when the expansion is done around
one of the ground states as usual and is therefore not suitable for the description
of the switching dynamics observed. At this point it is important to note that in
the α window with substantial deviations from the harmonic spectrum, bounded
by τe < Tzz as shown above, the time-averaged state is given by the linear chain
even though it is a stationary but unstable state for α < αlin−zz. It is therefore
justified in this regime to expand the Coulomb potential around the linear chain
corresponding to the maximum of the central barrier in the effective Landau po-
tential. This choice is also capable to reproduce the double-well structure of the
potential in the zigzag phase, we can write the fourth-order expansion

V ≈ 1

2

∑
r

mω2
rθ

2
r +

1

6

∑
r,s,m

L̃rsmθrθsθm +
1

24

∑
r,s,m,n

M̃rsmnθrθsθmθn. (5.3)

Since we expand around an unstable configuration, we have that the zigzag mode
frequency ω2

r < 0 for α < αlin−zz.
As a next step, we employ timescale separation arguments to reduce the system

to the modes of interest, i.e. the low-lying modes like the zigzag mode. In this
regard, the axial common mode takes a special role, as it has typically the lowest
frequency but does not couple to any other mode through the non-linear tensors,
since it is one of the three phonon modes that translate the crystals center of
mass [238]. In the following, we focus on the l modes with the lowest frequencies
ω2
r close to the transition point, excluding the common mode. We refer to them

as system modes, while the rest of the phonon modes are denoted as bath modes
in the following. In the finite-size crystal, the gaps between the mode frequencies
in harmonic approximation remain finite such that we can identify a timescale
2π/ωl < δt < 2π/ωl+1, when the mode frequencies are ordered in ascending order.
We are interested in slow oscillations and neglect dynamics occurring on timescales
larger than δt. For that reason, we time average the potential given by Eq. (5.3),
and make the simplifying assumption that the l low-lying-mode amplitudes vary
slowly on the timescale δt, such that

⟨θi(t)⟩δt =
1

δt

∫ t+δt2

t−δt/2

θi(t
′)dt′ ≈ θi(t), i ≤ l (5.4)

while ⟨θi(t)⟩δt ≈ 0 for i > l. Moreover, due to their stochastic motion, we neglect all
higher-order correlations between different modes so that the only terms surviving
after taking the time average of the fourth-order potential are

⟨V ⟩δt ≈
1

2

l∑
r

(
3N∑

s=l+1

L̃rss ⟨θ2s⟩δt

)
θr +

1

2

l∑
r,r′

(
mω2

rδrr′ +
1

2

3N∑
s=l+1

M̃rr′ss ⟨θ2s⟩δt

)
θrθr′ .

(5.5)

94



5 Fluctuations and phase transitions

Here, we did not include terms that do not contribute to the dynamics of the
system modes. Finally, we assume that the bath modes are in thermal equilibrium
and fulfill the equipartition theorem resulting in ⟨θ2s⟩δt ≈ kBT/mω

2
s for s > l.

From Eq. (5.5), we can determine effective mode frequencies since we have
reduced the time-averaged non-linear expansion back to an effective quadratic
potential. The first term is linear in the system mode amplitudes and yields a
constant force but does not affect their oscillatory frequency. The second term
is quadratic and gives the modified mode frequencies after diagonalization. From
the form of the derived potential, it is visible that the resulting mode frequencies
are proportional to the square root of the temperature through

∑
s M̃rr′ss

kBT
mω2

s
.

In addition, the effective mode frequencies depend on α through the non-linear
tensor elements M̃rr′ss and the unperturbed bath mode frequencies ωs. The model
breaks down if the minimal eigenvalue of the quadratic term becomes zero as a
function of α and T .

In Fig. 5.3, we plot the effective frequencies when only the zigzag mode and
the axial breathing mode are considered as system modes, i.e. l = 2. In that case,
the two system modes are not coupled byM12ll, sinceM can only couple two axial
with two radial modes for a linear chain. For the smallest temperature considered
the effective model converges towards the harmonic approximation, which is valid
in the regime T → 0. With increasing temperature, we observe positive shifts of
the zigzag frequency together with an approximately unaffected breathing-mode
frequency up to the breakdown of the effective model.

The observed results agree within the full-width at half maximum of the Fourier
peaks from the molecular dynamics simulations. For lower α, the expansion of the
Coulomb interaction up to fourth order around the linear chain becomes invalid as
it cannot capture the shape effective Landau potential when the equilibria depart
further away from ∆x = 0. The breakdown of the effective coupling model occurs
at larger values of α than the transition to the harmonic approximated spectrum,
determined from the dwelling time τe. However, the crossover point τe = Tzz has
been chosen arbitrarily. The α and T resolution of our calculations is insufficient
to precisely determine at which ratio between the two timescales the harmonic
approximation fails. In order to increase the precision of the effective model, the
number of considered system modes l could be increased and terms in even higher
order of the expansion of the Coulomb potential could be included.

5.1.4 Conclusion

To conclude, we have observed positive frequency shifts of the transition driving
zigzag mode that are caused by thermally activated switches between the degen-
erate ground states. They effectively stabilize the linear-chain configuration for α
values below the critical point. In addition, the axial breathing mode smoothly
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5.1 Thermal spectrum at linear-to-zigzag transition

converts into the frequency of the zigzag mode in the symmetry broken phase, a
phenomenon that has been experimentally observed as well. Based on timescale
separation arguments and the equipartition theorem, we have derived an effective
model that is able to reproduce the spectrum determined from the Fourier analysis
of molecular dynamics simulations. Both the effective model and the simulations
show a crossover to a regime at which the harmonic expansion around one of the
ground states of the zigzag phase becomes valid away from the critical point.
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5 Fluctuations and phase transitions

5.2 Quantum fluctuations close to finite Aubry

transition

In addition to the fluctuations caused by finite temperatures in classical systems,
quantum mechanics is the dominant origin of fluctuations in the positions of the
ions on a much lower energy scale [100, 129]. In this section, we focus on the alter-
ation of the dynamics and motional spectrum caused by the quantum-mechanical
ion fluctuations close to the Aubry transition occurring in two-dimensional ion
crystals with a topological defect [46]. It is important to note that the concepts
of this chapter are directly applicable to the structural linear-to-zigzag transi-
tion, a detailed study of the quantum linear-to-zigzag transition can be found in
Refs. [36, 203, 204, 210, 424, 425] In reality, both fluctuation sources are non-
zero such that special care needs to be taken when trying to backtrack physical
observations close to the transition to either one of the fluctuation sources.

5.2.1 Linear ion chain

The quantum equivalent of the emulation of the FK model with a one-dimensional
ion chain has been investigated theoretically in Refs. [45, 331, 426]. They com-
monly demonstrate the departure from the classical results if the effective Planck’s
constant introduced in Sec. 3.2.4 has a considerable value. In the single-particle
case, the stick-slip motion of the PT model is modified by a sequence of Landau-
Zener tunneling events, which can be seen as quantum slips, visible in Fig. 5.6.
They are caused by resonances between the Wannier states of neighboring poten-
tial minima when the center of the harmonic confinement is dragged across the
optical lattice. When initialized in a chosen Wannier state most resonances lead
to the occupation of a different Wannier state after the transfer of the confine-
ments center to the neighboring potential well, their individual importance for the
dynamics is determined by the velocity of the process. In this way the support
velocity influences the overall friction force, only in the small velocity regime the
adiabatic dynamics yields the same (translated by one corrugation potential pe-
riod) Wannier state, i.e. vanishing quantum friction force. At sufficient transfer
rates the drag triggers Wannier excitations whose energies are subsequently dissi-
pated, giving rise to a non-zero friction force. Its amplitude is significantly reduced
in comparison to the classical PT model due to the quantum slips that precede
the classical slip event.

For a chain of ions subject to an optical corrugation potential, quantum tunnel-
ing results in a delocalization of the ion wavefunctions. In particular, the pinning
effect of the potential is countered by the ability of the ions to transfer through
the potential maxima. For strong quantum effects, quantified by ℏ̃, this results
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5.2 Quantum fluctuations close to finite Aubry transition

Figure 5.6: Average position of the particle in a quantum equivalent of the
PT model introduced in Sec. 3.2.4. The confinement is translated with a
finite velocity. The red line for the quantum particle shows tunneling slips, the
classical equivalent slips over the corrugation potential maxima at a later point.
The vertical lines at t1,2,3 indicate resonances of Wannier states of neighboring
potential wells, ts is the time at which the classical particle is forced to slip.
Plot from Ref. [426].

in the loss of the discrete structure of the classical result [45]. This has been de-
scribed in the literature in the framework of instanton excitations, which couple
the stationary classical states with quasi-degenerate energies for intermediate val-
ues of ℏ̃ [328]. In this regime, ion wavefunctions with a double-peak structure are
observable due to the splitting by the emerging potential maxima [323, 331]. This
departure of the classical regime with an occupation of two (or more) potential
wells by a single ion leads to a softening of the Hull function, see Sec. 3.2.4. To
quantify the emergence of quantum effects, the Binder cumulant has been investi-
gated. This cumulant is defined as

B = 1− ⟨(x− ⟨x⟩)4⟩
3 ⟨(x− ⟨x⟩)2⟩2

. (5.6)

A non-zero value of B indicates a double-peak form, whereas B vanishes for a
Gaussian state. In the case of odd N and a potential maximum located at the
center of the trap, the wavefunction of the middle ions is split exactly, as shown
in Fig. 5.7. When taken as a measure of the Aubry transition, the onset of in-
commensurability is seen in the increase of the critical value of VFK at which B
becomes non-zero.

These results are limited to the emulation of the FK model with a linear string
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5 Fluctuations and phase transitions

Figure 5.7: Binder cumulant of the central ion in an N = 5 particle chain
exposed to a sinusoidal corrugation potential with amplitude K (VFK in our
notation). The different graphs correspond to different values of the incommen-
surability parameter ∆, the chain is maximally incommensurate to the potential
for ∆ = 1. The results have been obtained from a path integral Monte Carlo
calculation. The wave functions of the central particle for two values of K in
the case ∆ ≈ 0.22 are shown above. Plots from Ref. [331].

of ions and relied on Monte Carlo methods with a small but finite temperature.
This method overestimates the parameter regime for which coherent quantum tun-
neling is observable as we discuss below. In order to investigate the quantum effects
close to the Aubry transition in a two-dimensional ion crystal with a topological
defect, we aim to simplify the problem with the knowledge of the PN potential.
This approach enables the exact diagonalization of the effective kink Hamiltonian.

5.2.2 Static quantum effects

We consider the effective potential landscape of the kink given by the PN po-
tential introduced in Sec. 3.3. In the collective excitation formalism employed to
determine the potential, the dressing field and the kink degrees of freedom are
then coupled by the potential terms of the Hamiltonian [301]. For the purpose
of a subsequent quantification of the problem, we assume that we can neglect
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5.2 Quantum fluctuations close to finite Aubry transition

this coupling due to sufficient cooling of the ion crystal. In addition, close to the
Aubry transition the kink degrees of freedom and the dressing excitations are typ-
ically energetically separable. The axial kink mode describing the oscillation of X
inside the PN potential has the smallest frequency in comparison to the delocal-
ized phonon modes. Therefore, in what follows, we consider that the important
quantum features are covered by the single-particle dynamics of the kink with
coordinate X in the classical PN potential given by U(X).

To introduce quantum fluctuations we promote the kink to a quantum particle
with a wavefunction ψ(X). The Hamiltonian of the problem can be written as

Ĥ = P̂
1

2M̂
P̂ + U(X̂) (5.7)

where we denote quantum operators with hats. Note that due to the position
dependence of the effective kink mass, the momentum operator P̂ and M̂ do not
commute, so that extra care needs to be taken when writing the kinetic energy of
the kink in a Hermitian form.

Since we reduced the complexity of the quantum Aubry transition in two-
dimensional ion crystals to a single particle problem, we can exactly diagonalize
the Hamiltonian to obtain its eigenstates and eigenvalues as a function of α. In
Fig. 5.8, we show the two eigenstates with the lowest energy together with the PN
potential in the vicinity of the Aubry transition. We can divide the results into
three regimes, depending on α.

In the classical sliding phase with α−αA < 0, the PN potential is in very good
approximation harmonic due to the repulsion of the kink from the boundaries of
the inhomogeneous crystal. Therefore, it is no surprise that the eigenstates are
given by Hermite polynomials, and that the ground state is of a Gaussian shape.

At the Aubry transition the smooth PN potential develops periodic modula-
tions caused by the enhanced influence of the two sub-chains with xi > 0 and
xi < 0 onto each other. In particular, a PN barrier emerges at X = 0 that leads
to the spontaneous symmetry breaking in the classical model as it yields two new
equilibrium positions away from the crystal center, see Fig. 5.8. For α slightly
above αA, we observe a quantum delocalized regime with substantial consequences
of the quantum nature of the kink. In this phase, the small size of the PN barrier
yields a non-negligible tunnel effect such that the two potential wells are coupled,
the low-lying states exhibit a double peak structure. It is important to note that
the shown tunnel coupling on a length-scale of 1 µm is fulfilled by the quasiparti-
cle. In reality, the ground state describes the coherent superposition of ion states
that are separated in space by dr⃗i/dX · 1 µm, which typically lies on the order of
100 nm.

The central PN barrier grows quadratically ∝ (α − αA)
2 in size in the pinned

phase, making the quantum coupling of the two classical equilibrium states less
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Figure 5.8: PN potentials (black) and ground-state (red) and first-excited
state (blue) wavefunctions for different values of α − αA: −0.14 (a), 0.04 (b),
0.11 (c) and 0.29 (d). In (d) we additionally show by the dashed line the kink
mass M(X) in units of 0.1m. We do not see significant changes of the mass
position dependence when α is tuned.

important. As a consequence, for values further away from the critical point
the ground state symmetry is broken and the two lowest eigenstates describe the
Gaussian harmonic oscillator ground states of the two unconnected potential wells.
This suppression of their tunnel coupling marks the entry of the quasi-classical
regime that was not observable in the path integral Monte Carlo calculations in
Ref. [331]. In analogy to the thermal fluctuations close to the linear-to-zigzag
transition discussed in the section above, the transition into the quasi-classical
regime can be seen as a shifted transition into a quantum pinned phase. Its critical
point does not coincide with the classical value due to the quantum fluctuations
that stabilize a symmetric configuration in the classical supercritical regime. For
comparison we calculated the eigenstates of the Hamiltonian with a constant kink
mass, set to the value at the minimum of the PN potential, and do not observe
any significant effect of the position dependence of M̂ in all regimes.

We can assess the extend of the quantum delocalized region by calculating the
Binder cumulant of the kinks ground state wavefunction, see Fig. 5.9 (top). It is
zero in the sliding phase as expected from the Gaussian shape centered around
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5.2 Quantum fluctuations close to finite Aubry transition

X = 0, and increases at the Aubry transition point. In the quantum delocalized
regime, we observe the maximal value of B = 2/3 due to the double peak structure
caused by the tunnel coupling. We terminate the graph of B when the quasi-
classical regime is entered as the value of the Binder cumulant becomes ambiguous;
the negligible tunnel coupling leads to two independent harmonic oscillator copies
around the local minima of the PN potential. Hence, any superposition of the
Gaussian ground-state wave functions shown in Fig. 5.8 is a ground state of the
kink. However, the resulting Binder cumulant depends on the chosen amplitudes
in the superposition. It is therefore possible to find a minimal energy eigenstate
for any arbitrary value of B so that its value is insufficient for the assessment of
the presence of quantum tunneling. In particular, an incoherent superposition for
T ̸= 0 will yield B = 2/3 [331].

The decoupling of the two potential minima can also be observed in the energy
spectrum depicted in Fig. 5.9 (bottom). Deep in the pinned phase the eigenstates
consist of degenerate pairs of harmonic oscillator states that are centered around
the two potential minima. When reducing α quantum tunneling couples the states
of one set and consequently a gap between them opens. In a Wentzel, Kramers
and Brillouin (WKB) approximation the tunneling probability scales exponentially
with the square root of the energy of the considered Wannier states, thus higher
energy states are coupled for larger α and enter the quantum delocalized phase.

In the subsequent quantum delocalized regime, the eigenenergies of the pair
states are smaller than the PN barrier size but are non-degenerate due to the
non-negligible tunnel coupling, leading to a maximal Binder cumulant. When the
eigenstates energies become larger than the PN barrier, they are approximately
given by perturbed harmonic oscillator states, e.g. the ground state exhibits a flat
top profile due to the increased potential energy at X = 0. Finally, for α−αA < 0
the energy spectrum is equispaced, as expected for a harmonic potential.

It is important for the discussion of the quasi-classical regime that the tunnel
coupling between the two potential minima is never exactly zero, but only becomes
exponentially small as suggested by WKB theory. The discussion above holds
for all practical purposes but is not rigorously exact, e.g. the α value at which
the pairs of states become degenerate ultimately depends on the precision of our
calculations. The two pair states remain non-degenerate in the quasi-classical
regime, but their energy gap will not have any observable consequences, e.g. for
the dynamics of the kink.

The importance of quantum effects, i.e. the extend of the quantum delocalized
regime, can be quantified by an effective Planck’s constant like for the quantum
FK model

ℏ̃ = ℏ
(

ωz

mC0

)1/3

(5.8)
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Figure 5.9: Top: Binder cumulant of the kinks ground state wavefunction as
a function of α for different particle numbers N . The vertical bars show the
beginning of the quasi-classical regime for which there is not a unique value
of the Binder cumulant. Bottom: Energy spectrum of the kink as function
of α. The black solid line shows the size of the central PN barrier EPN , the
dashed line indicates the classical kink mode energy calculated from a harmonic
approximation of the ion dynamics.

Clearly, the choice of the ion species entering via the mass m influences the ampli-
tude of the quantum fluctuations through the kinetic energy term. Moreover, the
axial trap frequency ωz determines the overall length scale of the crystal, i.e. the
interaction energies. In agreement with Eq. (5.8), we observe an increased size of
the quantum tunneling regime for stronger confinement, see Fig. 5.10.
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As visible from Fig. 5.9 (top), the ion number N shows an additional influence
on the transition point to the quasi-classical regime. As discussed above, EPN is
the deciding quantity that causes the emergence of degenerate eigenstate pairs due
to negligible tunneling. It is raised by the mutual Coulomb repulsion of the ions
with xi > 0 and xi < 0, determined by the radial extend of the crystal ∆x. The
necessary increase of α in order to decrease ∆x by a certain amount depends on the
particle number, more ions mean stronger stiffness against the radial squeeze by the
trap. Therefore, the increased extend of the regime with B ̸= 0 of Fig. 5.9(top) for
larger particle numbers can be explained by the different derivatives d ∆x/dα(N),
and is not a sign of stronger quantum effects.

For the Aubry transition occurring in two-dimensional ion crystals, the two
length scales aS and aP of the emulated FK model cannot be tuned indepen-
dently. The creation of the corrugation potential of one of the sub-chains by the
system itself effectively cancels the influence of the inhomogeneous ion density but
restricts the ratio of the two competing length scales to values close to unity. It
is therefore impossible to tune ℏ̃ arbitrarily, as it is in principle the case for the
system consisting of a linear ion string subject to an optical lattice potential.

A possible strategy to measure the presence of quantum effects at the Aubry
transition aims to probe the modified spectrum of the kink motion presented in
Fig. 5.9 (bottom). Due to the close to vanishing energy of the ground state, the
cooling of the crystal is done more conveniently away from the transition point
deep in the pinned phase, making sure that the kink motion stays energetically
isolated from the residual spectrum. There, a typical ground state cooling scheme
consisting of Doppler and subsequent sub-Doppler cooling could in principle be
implemented, see Sec. 2.2.2. Experiments have demonstrated the common cooling
of the phonon modes into a regime of n̄ ≈ 8, which is sufficient to suppress the
coupling between the dressing modes χ⃗i of the crystal and the kink motion. The
latter can be further cooled to even lower temperatures n̄ ≈ 1, which means
reaching a temperature scale of µK in the effective kink model. Experiments have
shown that the kink mode is less prone to dc electric field noise than other low-
frequency modes, which leads to a suppressed kink heating and enables effective
cooling [427]. Subsequently, the trap aspect ratio can be ramped down to approach
the Aubry transition point in an adiabatic way. The ramping rate is limited by the
average lifetime of the defect. As the ground-state population is kept fixed during
the ramp, the motional spectrum of the kink can be spectroscopically mapped out,
e.g. by blue sideband transitions.

5.2.3 Tunneling dynamics

The presence of quantum tunneling has significant implications for the dynamics
of the kink and can therefore provide another powerful approach to demonstrate

104



5 Fluctuations and phase transitions

0.01

0.015

0.02

0.025

0.03

0.035

0 0.5 1 1.5 2 2.5 3

α
q
−
c
−
α
A

ωz/m [kHz/u]

Figure 5.10: The extend of the quantum delocalized regime as a function of the
ratio of the axial trap frequency and the ion mass. The red points are taken from
a calculation of the Binder cumulant of the kinks ground state wavefunction,
αq−c is the trap aspect ratio at which the Binder cumulant becomes inconclusive.
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the different regimes close to the Aubry transition. Moreover, we can expect to
observe thermal effects that wash out the tunneling dynamics if the temperature
approaches a value comparable to EPN .

In order to observe the coherent oscillation between the left and the right
potential minimum we need to initialize the kink on one side of the PN barrier. We
do so by breaking the potentials symmetry with a linear potential that uniformly
pushes the kink into the region X > 0. We assume that

V (X̂) = U(X̂)− hX̂ (5.9)

with the force h. In order to localize the kink close to the classical equilibrium
X0 > 0 irrespective of the temperature we choose h such that the two potential
minima are gapped by the thermal energy kBT . In an experiment, this external
breaking of the systems symmetry along z could be done by controllable higher-
order potentials of the Paul trap.

We then assume that the kink is in a thermal state of the tilted Hamiltonian
described by a diagonal density matrix

ρ =
1

Z

∑
i

exp
(
−Eh

i /kBT
)
|ψh

i ⟩ ⟨ψh
i | (5.10)
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with Z the partition function. The elements are written in the basis of the eigen-
states of the tilted Hamiltonian |ψh

i ⟩, such that Eh
i are the eigenenergies if h is

non-zero. At t = 0, we set h = 0 in order to trigger the inter-well tunneling
dynamics. The evolution of the density matrix is dictated by the von Neumann
equation iℏdρ

dt
= [H, ρ] where H is given by Eq. (5.7), which has the solution

ρ(t) =
1

Z

∑
lmn

exp

[
−
(
Eh

l

kBT
+
it

ℏ
(Em − En)

)]
clmc

∗
ln |ψm⟩ ⟨ψn| , (5.11)

where H |ψi⟩ = Ei |ψi⟩. cik = ⟨ψk|ψh
i ⟩ describes the basis change of the set of

eigenstates at t = 0. In order to monitor the tunneling dynamics of the kink, we
investigate the probability to find the kink at X < 0. We therefore introduce the
projection operator P̂< = θ(−X̂), where θ(x) is the Heaviside step function. We
then find the probability

P<(t) = tr(P̂<ρ(t)) =
∑
lmn

exp

[
−
(
Eh

l

kBT
+
it

ℏ
(Em − En)

)]
clmc

∗
lnP

<
mn (5.12)

where P<
mn = ⟨ψm| P̂< |ψn⟩ =

∫ 0

−∞ dxψ∗
m(x)ψn(x).

In Fig. 5.11, we plot P< as function of time after the switch to h = 0 for
different values of the temperature T . When the trap aspect ratio has been tuned
into the quantum delocalized regime, we observe coherent oscillations between the
two potential minima for low T . The maximal amplitude of the oscillations is
determined by the employed gradient, i.e. increasing h leads to a stronger initial
localization and consequently to larger values of P<.

For increasing temperatures, states that are higher in energy than EPN become
thermally populated, so that the long timescale oscillation of the quantum tunnel-
ing is washed out by faster oscillations. Consequently, the signal strength of the
tunneling dynamics gets reduced. Values of P< ̸= 0.5 are caused by dephasing of
fast oscillating modes. We plot a running mean of 20 data points of P<(t) to sup-
press the fast oscillating terms. We observe oscillations on the timescale expected
for the coherent quantum tunneling.

In the inset, we compare the amplitude of the oscillations of the running mean
with the fluctuations within the blocks used for the determination of the running
mean, in order to assess the signal-to-noise ratio. The results show that for T <
5 µK the running mean variance is larger than the fast fluctuations such that a
tunneling signal could in principle be observed, given the chosen value of α.

On the contrary, in the quasi-classical regime we observe the absence of dy-
namics in P<. As the kink is unable to reach the opposite end of the PN barrier,
it stays localized at X > 0. With increasing temperature, P< departs from the
minimal value obtained in Fig. 5.11 only due to the thermally populated states
above EPN .
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Figure 5.11: Tunneling dynamics indicated by P< for different temperatures
T = 0.1 µK (red),T = 1 µK (blue) and T = 10 µK (green). The trap aspect ratio
has been tuned to α − αA = 0.11 for the colored data. The black line shows
the result for T = 1 µK and α − αA = 0.31. The transparent points show the
time evolution, the opaque graph indicate a running mean over 20 subsequent
data points. In the inset, we show the ratio between the variance of the running
mean and the variance of P< within the running mean data blocks as a function
of the temperature.

5.2.4 Conclusion

To conclude, we have observed direct consequences of quantum tunnelling in the
vicinity of the classical Aubry transition point. Similar to the thermal stabilization
of the linear chain in the zigzag phase, the quantum fluctuations shift the break-
ing of the symmetry of the ground state to larger α. Deep in the supercritical
regime, the system exhibits negligible quantum tunneling with degenerate eigen-
states describing the classical equilibria. The importance of the quantum effects
is determined by the trap confinement through ωz and the ion mass m, unlike the
one-dimensional case in which the corrugation potential period can be tuned in-
dependently. The experimental observation of the altered energy spectrum or the
dynamics triggered by the presence of quantum tunneling poses a challenge due to
the required control of the temperature on the order of µK and trap frequencies
δα ≈ 0.01 [49, 428].
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Chapter 6

Vibron-Hubbard models in ion
Coulomb crystals

The simulation of quantummany-body systems is a major driving force for research
on trapped ions [16, 17, 19, 24]. The hopping of local oscillations of the ions in a
crystal lattice, described in Sec. 2.3.2, already provides one natural step towards
the simulation of Hubbard-type models [33, 347, 417, 429–432]. Moreover, spin
degrees of freedommay be encoded in a selected level scheme of the electronic states
of the atoms, allowing for the simulation of spin lattice models [11, 32, 114, 416,
433–438]. These subsystems can be manipulated separately or brought together by
external driving, either in the form of laser radiation or a temporal modulation of
the trap parameters [439–444]. The combination of these ingredients can then be
used to study a variety of phenomena of relevance for condensed-matter physics to
high-energy physics, while their sensitivity to fundamental constants can be used
for tests of paradigmatic models and their possible extensions [92, 94, 445].

Here we build on this extensive field and present an approach to mimic a
spin system by means of vibrational excitations in different directions, instead
of electronic states. Their hopping in a two-dimensional ion crystal exhibits a
non-trivial coupling between their external motion and spin in the simple form
of spin-orbit coupling [67, 68]. Moreover, vibrational excitations can be brought
into an interacting regime by means of sideband laser addressing, leading to the
simulation of Jaynes-Cummings-Hubbard (JCH) models [69, 419, 446–459]. This
type of Hubbard model offer some advantages compared to the competing platform
of cold neutral atoms in optical lattices [23].
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6.1 Non-Abelian dynamics in the vibrational system

6.1 Non-Abelian dynamics in the vibrational sys-

tem

Due to their high degree of tunability of the model parameters, cold atoms and ions
are particularly suitable scenarios for the simulation of many-body systems with
broken time-reversal symmetry and topological properties. Prominent examples
are provided by the creation of artificial gauge fields and spin-orbit coupling [67,
460–467]. Particularly relevant in this sense is the possibility to drive periodically
the system, allowing for the Floquet engineering of the specific Hamiltonians, and
in particular for the external breaking of time-reversal symmetry [124, 439, 441,
468–471].

In the context of trapped ions there have been proposals to harness the power
of external driving to simulate gauge fields [417, 430, 435, 472]. First experiments
have demonstrated the controlled hopping of vibrational excitations in a simple
triangular crystal [469, 473, 474]. There, the flexibility of a surface electrode trap is
used to prohibit the dynamics by off-resonant oscillator frequencies. Hopping is re-
established in a controlled way by modulating the trap voltages. In this section, we
report on the creation of non-Abelian dynamics of vibrational excitations, building
on similar ideas.

6.1.1 Floquet driving and hopping matrix shaping

In the following, we consider a two-dimensional ion array in microtraps with local
vibrations described by harmonic oscillators with two different frequencies ω1 > ω2

in two perpendicular directions within the array plane. We assume external control
of these frequencies, as well as the orientation of the oscillator modes. We discuss
possible experimental strategies below in the chapter.

Since the dynamics perpendicular to the plane decouple in second-order ap-
proximation (see Sec. 2.3.2), we can separate it, and only consider in-plane motion.
When the ions are cooled close to the motional ground state, the excitations of
the systems are quanta of vibrations, called vibrons in the following, in the two
directions. We may then define the Fock states |ψ⟩ = |n1, n2⟩, which for each ion
characterize the number of vibrons in each of the two local directions. The local
vibron Hamiltonian can be written in the form

Hvib = ℏ
∑
i

ψ⃗†
i · Ω · ψ⃗i (6.1)

where we employ a similar notation as that employed in Sec. 2.3.4 restricted to
the in-plane vibrons. Here Ω = diag(ω1, ω2) is the homogeneous vibron frequency

matrix, ψ⃗i = (ψi,1, ψi,2), and ψi,α destroys a vibron in the direction α for ion i.
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6 Vibron-Hubbard models in ion Coulomb crystals

Figure 6.1: (top) Schematic depiction of two ions subject to vibron frequencies
ω1 and ω2 that are rotated away from the vector r⃗AB,0 joining the two equilib-
rium positions. (bottom) Sketch of the vibron levels and their coupling via the
hopping elements of the matrix T̃AB, together with the respective amplitude
factors.

The vibrations of the ions are coupled by their Coulomb repulsion via the hop-
ping matrix T ij, the quantum equivalent of the classical tij discussed in Sec. 2.3.2.
The hopping Hamiltonian can be written as

Hhop = −ℏ
∑
i,j ̸=i

ψ⃗†
i · T ij · ψ⃗j. (6.2)

The overall strength of the hopping matrix is determined by the distance between
the ions, whereas the relative importance of the different components depends on
the vibron orientation relative to r⃗ij,0 = r⃗i,0 − r⃗j,0. We consider that the ω1 vibron
mode of ion i forms an angle θi with the vector connecting the two equilibrium
positions r⃗i,0, as depicted in Fig. 6.1. This yields the hopping matrix

ℏT ij = L · UT
i ·Wij · Uj · L (6.3)

=
ℏC0

m|r⃗ij,0|3

(
2cicj−sisj

ω1
−2sjci+cjsi√

ω1ω2

−2cjsi+sjci√
ω1ω2

2sjsi−cjci
ω2

)
(6.4)

where Uj = exp (−iθjσy) is a two-dimensional rotation matrix, si/ci is a short-
hand notation for sin(θi)/cos(θi), L

2 = ℏΩ−1/m, and Wij = C0 diag(2,−1)/|r⃗ij,0|3
is the classical coupling matrix for θi = 0, introduced in Sec. 2.3.2.

Note that the resulting hopping matrix is generally not diagonal and hence the
two directions of local oscillations are coupled even for a linear chain crystal. The
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6.1 Non-Abelian dynamics in the vibrational system

assumed shaping of the local vibrons enables the external control of the relative
strength of diagonal and off-diagonal hopping rates, which is not possible in a self-
assembled crystal. Note that T ij is diagonal, as in a linear chain crystal, only if
both angles θi and θj are a multiple of π/2, i.e. one of the vibron modes is parallel
to r⃗ij,0.

The overall Hamiltonian is then given by the sum of Hvib and Hhop. The
vibrons are the fundamental particles of the model as the total number operator
N =

∑
i ψ⃗

†
i · ψ⃗i commutes with the Hamiltonian and therefore is constant during

the dynamics.
As already discussed in Sec. 2.3.2, the vibron frequencies and the orienta-

tion of the respective modes are generally non-homogeneous in self-organized two-
dimensional ion crystals. They are determined by the diagonalization of the matri-
ces mω2 +

∑
j ̸=iWij which depend on the crystal geometry through the Coulomb

couplingsWij. ω = ωzdiag(1, α) describes the global confinement frequencies com-
ing from the Paul trap.

In order to externally dictate the properties of the local vibron modes and
reach the homogeneous frequencies Ω and tunable θi the ions can be addressed
by strongly focused dipole lasers creating optical trapping potentials as discussed
in Sec. 2.1.2. Alternatively, the confinement of the individual ions in separated
segments of surface electrode traps offers a robust way to reach the desired model.
The departure from the self-organization of the ions in a global rf trap leads to
the desired vibron directions and frequencies if we can neglect the effect of the
Coulomb repulsion from the other ions. The latter has two effects, it modulates
the vibron frequencies dictated by the microtraps via the diagonal terms of Wij,
which we can neglect for

mω1,2 ≫
C0

d3
(6.5)

where d is the typical ion separation. In addition, the oscillations in the two per-
pendicular principal axes are coupled by the off-diagonal Coulomb terms. How-
ever, we can apply rotating wave arguments to neglect this shift of the vibron
orientations away from the microtrap axes if

ω1 − ω2 ≫
3C0

4m
√
ω1ω2d3

, (6.6)

is fulfilled. In that case the vibron frequencies are strongly off-resonant so that the
Coulomb induced coupling between the local vibron modes is suppressed. Note
that this second condition for the microtraps is qualitatively different, as it de-
mands a strong asymmetry between the two vibron frequencies, whereas the first
one made constraints for their absolute value. It is only necessary if the vibrons
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6 Vibron-Hubbard models in ion Coulomb crystals

need to be rotated away from their crystal geometry dictated orientation for the
desired value of θi.

An important consequence of the engineering of homogeneous vibron frequen-
cies with flexible orientation is that the off-diagonal hopping is strongly suppressed
due to Eq. (6.6). In order to break the separation between the two modes and
re-establish the importance of the off-diagonal terms of the hopping T ij we con-
sider a Floquet driving scheme discussed in the following. The implementation
of the proposed techniques is in reach of current optical trapping setups and has
already been demonstrated in an experiment employing three surface electrode
traps [165, 469, 473, 474].

We assume that the local vibron frequencies are externally modulated by a
periodic drive of the form:

ωi,µ(t) = ωµ + ηiµωd cos(ωdt+ ϕiµ) (6.7)

where ωd is the frequency of the drive, ηiµ characterizes the driving strength, and
ϕiµ is the driving phase. In order to keep the discussion as general as possible
we consider the possibility to have different driving strengths and phases in the
two directions µ = 1, 2, although this might be experimentally challenging. The
oscillating vibron frequencies affect Hvib but also the hopping part through L.
We can neglect the fast oscillation of the harmonic oscillator lengths due to the
timescale separation between the relatively slow vibron hopping and the much
faster driving period. Transforming into the the interaction picture with respect
to Hvib yields:

H int(t) = ℏ
∑
i,j ̸=i

ψ⃗i

† · T int
ij (t) · ψ⃗j (6.8)

with (
T int

ij (t)
)
µν

(T ij)µν
= ei(ωµ−ων)tei(ηiµ sin(ωdt+ϕµ)−ηjν sin(ωdt+ϕjν). (6.9)

In addition to the usual time-dependence due to the phase evolution of the Fock
states, the driving results in an exponential term in the hopping matrix. In the
absence of the external drive the off-diagonal elements of T int

ij would rotate with
a frequency ω1 − ω2 while the diagonal terms are constant in time. Through a
rotating wave approximation we could neglect the former terms in the limit of
ω1 − ω2 ≫ T ij. Hence, as discussed above, off-diagonal terms would be negligible.
However, for non-zero driving this is not the case as a Jacobi-Anger expansion of
the driving terms shows:(

T int
ij (t)

)
µν

(T ij)µν
=
∑
s,s′∈Z

Js(ηiµ)Js′(ηjν)e
i(ωµ−ων+(s−s′)ωd)tei(sϕiµ−s′ϕjν) (6.10)
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6.1 Non-Abelian dynamics in the vibrational system

where Js(x) is the s-th Bessel function of the first kind. For the diagonal elements
µ = ν, we find the resonant time-independent terms in the expansion by setting
s = s′, while the residual parts are oscillating with a frequency of multiple ωd.
We neglect the latter in a rotating wave approximation for ωd ≫ (T ij)µ,µ as the
driving is oscillating much faster than the dynamics we are interested in. For the
off-diagonal elements the terms s = s′ are rotating with ω1−ω2, but if the driving
frequency is chosen such that ω1 − ω2 = nωd, the terms with s′ = s + n become
resonant, and hence the corresponding term becomes significant. All other terms
in the double sum can be neglected for the same reason as for the µ = ν terms.

We may then write the hopping matrix T̃ ij in the rotating wave approximation
in the form: (

T̃ ij

)
µν

(T ij)µν
= F(ηiµ, ηjν , f(µ, ν), ϕiµ − ϕjν)e

−if(µ,ν)(ϕiµ+ϕjν)/2 (6.11)

with

F(a, b, f, ϕ) =
∑
s∈Z

Js(a)Js+f (b)e
i(s+f/2)ϕ (6.12)

where f(µ, ν) = n(ν − µ). Using the Neumann-Graf formula and introducing the
parameters

Z(a, b, ϕ)2 = a2 + b2 − 2ab cos(ϕ), (6.13)

γ(a, b, ϕ) = arctan

(
a sin(ϕ)

b− a cos(ϕ)

)
, (6.14)

which fulfill Z(a, a, ϕ) = 2|a sin(ϕ
2
)| and γ(a, a, ϕ) = (π − ϕ)/2, we may re-write:

F(a, b, f, ϕ) = Jf (Z(a, b, ϕ))e
i(γ(a,b,ϕ)+ϕ/2)f . (6.15)

Inserting this compact form of F into Eq (6.11) yields(
T̃ ij

)
µν

(T ij)µν
= Jf(µ,ν)(Z(ηiµ, ηjν , ϕiµ − ϕjν))e

i(γ(ηiµ,ηjν ,ϕiµ−ϕjν)−ϕjν)f . (6.16)

The elements of the effective hopping matrix gain an amplitude factor given by
a Bessel function, as well as a phase. Note that in the resulting effective Floquet
Hamiltonian, the energy gap between the two vibron modes has been overcome
by the absorption of n energy quanta from the driving field, and hence the off-
diagonal hopping is triggered as seen in Fig. 6.2. In typical schemes aiming at
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6 Vibron-Hubbard models in ion Coulomb crystals

Figure 6.2: Vibron dynamics between two ions for resonant vibron frequencies
(a) and detuned vibron frequencies (b). In (c) the hopping is re-established
via a parametric drive, the dynamics is slowed down due to the reduction of
the hopping amplitude via the Bessel functions. (d) Maximal vibron number
observed at ion B after initializing a single vibron at A as a function of the
driving amplitude. The dips at which no hopping is observed indicate the
dynamical decoupling. Diagrams from Ref. [417].

the creation of artificial gauge fields, the engineered phase, also denoted as Peierls
phase, is used to emulate an Aharanov-Bohm phase a charged particle gains in the
presence of a magnetic flux through its trajectory [430, 462, 475].

In addition, the amplitude factor possesses roots that can be used to cancel the
hopping between sites when the driving parameters are tuned adequately. Note
that this cancellation of the hopping amplitude is not to be confused with the
suppression of hopping due to off-resonant vibron frequencies. It can also set the
resonant hopping via the diagonal elements of the hopping matrix to zero. The
set of parameters that lead to Jf (Z(ηiµ, ηjν , ϕiµ − ϕjν)) = 0 are shown in Fig. 6.2.

We can understand the derived model as a spin-1/2 Hubbard model, where
an ω1 (ω2) vibron corresponds to a spin-up (spin-down) particle. Vibrons hop
in the lattice, but due to the generally non-diagonal form of T̃ ij, hopping may
be accompanied by the flipping of the spin state. As a result, spin and hopping
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6.1 Non-Abelian dynamics in the vibrational system

dynamics are not separable leading to a form of spin-orbit coupling.

6.1.2 Non-Abelian plaquette dynamics

With the goal of demonstrating the consequences of the modified hopping in a
two-dimensional ion crystal, we consider for simplicity a square alignment of four
ions as shown in Fig. 6.4 (left). We label the ions as i = A,B,C,D in a counter-
clockwise way. We assume that the tilting angle between the ω1 mode and the
x-axis is uniform with θi = π/4. In this way, the hopping matrix coupling ions at
opposite sites of a diagonal of the plaquette has vanishing off-diagonal terms, since
one of the vibron modes becomes parallel to the vector connecting the ions. The
hopping amplitude is also reduced by a factor of 2

√
2 in comparison to the hopping

matrices at the edges of the plaquette due to the increased particle distance along
the diagonal.

To exclude diagonal hopping completely we aim to find ηiµ and ϕiµ such that
T̃AC = 0 and T̃BD = 0. To reach this regime, the parameters need to fulfill
Z(ηAµ, ηCν , ϕAµ − ϕCν) = jk0 and Z(ηAµ, ηCν , ϕAµ − ϕCν) = jk

′
0 where jki is the

k-th root of the i-th Bessel function. These constraints do not impose a strong
restriction onto the driving amplitudes and phases, as shown by the solutions de-
picted in Fig. 6.3. The solution with the weakest driving amplitude is obtained for
ηAµ = ηCν and ϕAµ−ϕCν = π (with the same conditions for ions B and D, respec-
tively). Note at this point that the approximations made in the derivation of the
effective hopping matrix T̃ ij only impose requirements on ωd, without constraining
the possible driving amplitudes.

In addition to the restrictions imposed by diagonal decoupling, the number of
free parameters is further reduced if the hopping matrices along the two dimen-
sions are homogeneous, i.e. T̃AB = T̃DC and T̃AD = T̃BC . This imposes that the
amplitude factors and phases given by Eq. (6.16) need to be equal along the re-
spective links. There exists a set of parameter choices that simultaneously lead to
homogeneous hopping matrices along the edge links and cancellation along the di-
agonal links, namely ηiµ = η = jk0/2 for all i and µ, and ϕAµ−ϕCµ = ϕBµ−ϕDµ = π
for all µ. In that case, the driving phases are equal for both spin states so that
ϕD −ϕA = ϕ and n = (ω1−ω2)/ωd are the only free parameters left. The hopping
matrices along the x and y directions become of the form:

T̃ x =
C0

2md3

(
1
ω1
J0(j

k
0 | cos(ϕ/2)|) − 3√

ω1ω2
Jn(j

k
0 | cos(ϕ/2)|)e−inϕ/2

− 3√
ω1ω2

Jn(j
k
0 | cos(ϕ/2)|)einϕ/2 1

ω2
J0(j

k
0 | cos(ϕ/2)|)

)

T̃ y =
C0

2md3

(
1
ω1
J0(j

k
0 | sin(ϕ/2)|) 3in√

ω1ω2
Jn(j

k
0 | sin(ϕ/2)|)e−inϕ/2

3in√
ω1ω2

Jn(j
k
0 | sin(ϕ/2)|)einϕ/2 1

ω2
J0(j

k
0 | sin(ϕ/2)|)

)
.
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Figure 6.3: Driving amplitude a that leads to Z(a, a − c, ϕ) = j10 , as a
function of ϕ. The color of the curves denotes the value of the driving am-
plitude c between the two linked traps. Using Eq. (6.14), it is given by

2a = c +
√
c2 + [(j10)

2 − c2]/ sin2(ϕ/2). These parameter choices lead to a dy-

namical decoupling of the respective vibron modes.

where d is the length of the square edges. Although the overall form of the two
matrices is the same they are generally non-commuting:

[T̃ x, T̃ y] ∝ (ω1 − ω2)

(
inJ0(j

k
0 | cos

ϕ

2
|)Jn(jk0 | sin

ϕ

2
|) + J0(j

k
0 | sin

ϕ

2
|)Jn(jk0 | cos

ϕ

2
|)
)
.

Note that the commutator of the two hopping matrices trivially vanishes for ϕ =
π/2 and n = 2+4l, l ∈ Z as T̃ x = T̃ y in that case. The non-commutativity of the
hopping matrices for any other choice has direct consequences for the dynamics
of vibrons and results in an interesting interplay between spatial motion and spin
dynamics. In the following, we investigate this form of spin-orbit coupling by
monitoring the expansion dynamics of a single vibron.

We initialize a vibron on ion A in a fixed spin state |ψ(t = 0)⟩ = (a†A,1 +

a†A,2) |0⟩ /
√
2 and let it evolve along two different paths. In one path the vibron

reaches the ion C diagonally opposite in a clockwise path (⟳), whereas in the
other it does in counter-clockwise way (⟲). This can be achieved by tuning the
trap frequencies of the sites B or D out of resonance for all hopping processes.
Then, the corresponding ion does not participate in the vibron dynamics, and
hence the created vibron can only populate 3 of the 4 ions in the plaquette.

In Fig. 6.4 (right), we display for ϕ = π/3 the occupation of the two spin
states of the vibron in ion C for the two different trajectories as a function of
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Figure 6.4: Left: Sketch of an ion square plaquette with uniform θi = π/4 and
the respective hopping matrices T̃ x and T̃ y along the two crystal axes. Right:
Spin state of the C ion as a function of time (normalized by mω2d

3/C0). We
use n = 2 for all graphs. The system has been initialized with a single vibron at

ion A with the spin state
(
a†A,1 + a†A,2

)
|0⟩ /

√
2. The excitation has been forced

onto the clockwise (red) and counter-clockwise (blue) path around the square
with ϕ = π/3. The orange squares depict the result from the full time evolution
from Hamiltonian (6.8) including the time-dependent hopping matrices with
2π/ωd = 2 µs and mω2d

3/(2πC0) = 238 µs. In addition, we show the result for
ϕ = π/2, depicted in green. The two paths are equivalent for this parameter
choice since T̃ x = T̃ y.

time. We see clearly that the spin state strongly depends on the chosen path. In
contrast, for ϕ = π/2, both paths result in exactly the same spin dependence of the
vibron state in ion C. While initially the spin state populations are flipped, they
deviate for later times. The timescale of the dynamics is the same for both cases
since the overall amplitude of the hopping elements is the same. Therefore, the
discrepancy between the graphs can only come from the fact that the two different
hopping matrices are probed in a different order for the different trajectories. This
constitutes a coupling between the spin of the vibron and its trajectory.

In Fig. 6.4 (right), we compare the results of the theory in rotating wave approx-
imation to calculations in the interaction picture with all rotating terms building
the time-dependent hopping matrices T int

ij (t). We find good agreement between the
two approaches indicating the validity of the approximation employed for typical
trap configurations reported in early two-dimensional quantum simulation experi-
ments [469] (the parameters of relevance are included in the caption of the figure).

The non-Abelian character of the time evolution may be characterized by in-
tegrating the difference between the vibron occupations for the two paths in time.
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Figure 6.5: Left: Time-averaged vibron occupation difference at ion C, as
defined in Eq. 6.17, as a function of ϕ for n = 1 (red), n = 2 (blue), n = 3
(green) and n = 4 (orange). Right: Time-averaged angular momentum L, as
a function of the spin state angles a and b defined in Eq. 6.18. The values are
normalized by mω2d/C0. In both diagrams, the averaging time has been set to
10mω2d

3/C0.

Towards that end we define

dµ =
1

T

∫ T

0

|n⟲
µ (t)− n⟳

µ (t)|dt (6.17)

where n⟳
µ (n⟲

µ ) is the occupation of the spin state µ = 1, 2 at site C when the vibron
travels in clockwise (counter-clockwise) direction. We compute this quantity for a
fixed integration time T for different choices of ϕ and n and show the results in
Fig. 6.5 (left).

The observation of non-Abelian dynamics is insensitive to the exact choice of
the driving parameters as long as the symmetric parameter set is avoided. Note
that the plot in Fig. 6.5 (left) is symmetric around ϕ = π since this is the symme-
try point of the argument | sin(ϕ/2)| (| cos(ϕ/2)|) of the amplitude factors. The
robustness of the non-Abelian character of the dynamics is beneficial for its exper-
imental observation, as a fine tuning of the drive is not required.

So far we investigated the effect the trajectory of the vibron has on the spin
state. Conversely, the spin state of the vibron leads to a different dynamics when
we allow it to travel along both paths. To demonstrate this, we consider an
excitation initialized in site A with a spin state parametrized as

|ψ(t = 0)⟩ = (eib sin(a)a†A,1 + cos(a)a†A,2) |0⟩ (6.18)

with the two angles a and b as spin state parameters. As the vibron expands around
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the square we characterize its trajectory be the time-averaged angular momentum

L =
1

T

∫ T

0

dtr⃗vib(t)× v⃗vib(t) (6.19)

where r⃗vib(t) =
∑

i(ψ⃗
†
i · ψ⃗i)r⃗i,0 is the vibrons position and v⃗vib(t) = dr⃗vib(t)/dt

its velocity. In Fig. 6.5 (right) we show the angular momentum as a function
of the spin state parameters (note the invariance of the initial state under the
simultaneous addition of multiples of π to a and b). We observe that the orientation
of the trajectory of the vibron depends on its initial spin state, demonstrating
the bidirectional coupling between spin and orbit in the vibron dynamics. The
orientation for a certain set of (a, b) obviously depends on the driving parameters
but is always inverted when changing ϕ→ −ϕ.

Note that the result for L decreases for larger integration times since the angu-
lar momentum oscillates in any case around zero. We can therefore only conclude
that for short time scales the vibron exhibits a preferred rotation orientation but
does not fulfill a cyclotron like orbit as it is the case for a particle exposed to an
artificial gauge field.

6.1.3 Non-Abelian dynamics in a square lattice

We may extend the previous discussion to the case of a two-dimensional square-
lattice crystal, by adding copies of the plaquette discussed so far, and monitoring
the free expansion dynamics of a vibron excitation initialized in the center of the
lattice. Note that in contrast to the small plaquette case, for which we could de-
couple the vibrons at ions diagonally opposite to each other, the vibron in the lat-
tice can accomplish long-distance hops to the next-nearest and next-next-nearest
neighbor sites that cannot be cancelled. They in turn are described by additional
hopping matrices whose amplitudes are reduced because of the 1/|r⃗ij,0|3 decay of
the Coulomb interaction. This decay is partly countered by the fact that next-
nearest neighbors along the x and y axes have a drive that oscillates in phase such
that the amplitude factor for the diagonal hopping rates is maximal (J0(0) = 1).

In Fig. 6.6 we show the expansion of a vibron initially delocalized over the cen-
tral plaquette with an equal superposition of the two spin states. As the excitation
delocalizes its spin state separates as the two vibron spin components perform dif-
ferent trajectories. Note that this is not due to a faster expansion of one of the
spin components, but rather to the anisotropy of the relative hopping rates (and
not their amplitudes).

We observe, however, a similar phenomenon for the Abelian driving parameters
which resulted in T̃ x = T̃ y. This is explained by the presence of long-distance hops
along the diagonals that cause the breaking of the Z4 symmetry of the system in
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Figure 6.6: Spin magnetization of a vibron expanding in a square lattice
after t = 2mω2d

3/C0, with an initial spin state given by Eq. (6.18), with a =
π/4, b = 3π/5. The driving parameters are given by n = 2 and ϕ = π/3 (left)
and ϕ = π/2 (right).

this case. Additional computations confirm this argument by showing the recovery
of the Z4 symmetry of the vibron spin distribution at all times for the isotropic
case when the hopping is restricted to nearest neighbors. On the opposite, the
spin distribution remains Z4 broken for all other driving parameter choices in this
restricted case.
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6.2 Jaynes-Cummings-Hubbard systems in trapped ions

6.2 Jaynes-Cummings-Hubbard systems in trapped

ions

Hubbard models attract a major attention because of their ability to model in
a minimal way the interplay between kinetic hopping terms and inter-particle
interaction [343, 429]. As discussed in the previous section, the emulation of these
models in trapped ion crystals via vibron excitations occurs naturally due to the
Coulomb coupling between the ions [63, 64]. However, vibrons are excitations
of the quantum harmonic oscillations of the ions, and as such non-interacting.
Therefore, the creation of an interaction term by means of non-linear corrections
requires additional effort.

There have been several proposals to achieve this goal [113, 238, 347, 418].
One approach deals with the coupling of the motional Fock states to an electronic
two-level system via sideband transitions [69, 476]. This leads to the dressing
of the vibrons by the highly non-linear electronic subsystem [179]. This model,
known as the JCH model, rose to fame first in coupled cavity systems, but has
been successfully implemented in trapped ion crystals as well [369, 419]. In the
following, we derive its Hamiltonian and discuss its physical properties.

6.2.1 Jaynes-Cummings-Hubbard Hamiltonian

We consider an electronic transition between states |↓⟩ and |↑⟩, with transition
frequency ω0 and linewidth ∆ω, of ions with vibron frequencies ωiµ, µ = 1, 2, 3.

The ions are illuminated by a laser with frequency ωl and wavevector k⃗.
The local Hamiltonian is then given by

HJC =
∑
i

ℏψ⃗†
i · Ωi · ψ⃗i +

ℏω0

2
σz
i +Hi,las (6.20)

where the same notation as in Sec. 2.3.4 is employed, and σz
i is the z Pauli matrix

acting on the pseudo-spin of ion i. Hi,las describes the ion-laser interaction that
takes the form

Hi,las = DE−
i σ

−
i + h.c. (6.21)

with

E−
i = Ei,0e

i(ωlt+ϕ)eik⃗r⃗ (6.22)

where D is the strength of the dipole moment of the transition, and Ei,0 is the
amplitude of the electric field of the laser at the location of ion i. The ion position
operators r⃗i can be expressed by the ladder operators of the vibrons via r⃗i =

122



6 Vibron-Hubbard models in ion Coulomb crystals

r⃗i,0 +Ui ·Li · (ψ⃗†
i + ψ⃗i)/

√
2, as discussed in Sec. 2.3.4. The matrices Ui contain the

local principal axes of the ion vibrations as columns, and Li is a diagonal matrix
consisting of the respective harmonic oscillator lengths. The electric field has a
different phase k⃗ · r⃗i,0 at the equilibrium positions r⃗i,0 of the ions, however they
have no physical consequences for the vibron dynamics, we can absorb them in the
definition of the electronic spin states. Inserting the form of the position operator
into the ion-light interaction yields

Hi,las = ℏΩie
i(ωlt+ϕ) exp

[
−iη⃗i · (ψ⃗i + ψ⃗†

i )
]
σ−
i + h.c. (6.23)

where we have introduced the Rabi frequency Ωi = DEi0/ℏ and the Lamb-Dicke

parameter vector η⃗i = k⃗ · Ui · Li. The latter depends on the projection of the
laser wavevector onto the vibron directions given by the columns of Ui. The laser
introduces a distinct direction in the system, as the light field only couples the
motion along k⃗ to the electronic states. It is therefore possible to address multiple
vibron modes and generally translational invariance is broken due to the geometry
and ion dependent principal axes Ui.

In the following derivation we concentrate on the case where the laser frequency
is tuned close to the red sideband of the electronic transition. For the assumed
coherent evolution the resulting physics is equivalent if the blue sideband is ad-
dressed, this case can be reached by switching the roles of the electronic states,
i.e. taking |↑⟩ ↔ |↓⟩. We transform the Hamiltonian into the interaction picture
with respect to

H0 =
∑
i

ℏωxψ⃗
†
i · ψ⃗i +

ωx + ωl

2
σz
i (6.24)

where we have selected the trap frequency ωx as a typical frequency of the vibron
dynamics. This choice is arbitrary due to the inhomogeneous vibron frequen-
cies in a multi-ion crystal (see Fig. 2.7) and might be inconvenient for specific
laser/crystal configurations. Nonetheless, we take ωx as a frequency scale for ωiµ

to keep the derivation as general as possible. The transformation yields

HJC =
∑
i

ℏψ⃗†
i · Ω̃i · ψ⃗i +

ℏδi
2
σz
i + H̃i,las (6.25)

H̃i,las = ℏΩie
−i(ωxt+ϕ) exp

[
−iη⃗i · ((ψ⃗†

i e
iωxt + ψ⃗ie

−iωxt)
]
σ−
i + h.c. (6.26)

where δ = ω0 − ωx − ωl describes the detuning of the laser frequency from the red
sideband and Ω̃i = Ωi−ωx1. In the Lamb-Dicke limit with Liµ ≪ 1/|⃗k| we can ex-
pand the exponential in Hi,las up to first order in η⃗i and neglect terms O(η⃗2i ) [179].
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6.2 Jaynes-Cummings-Hubbard systems in trapped ions

This approximation needs to hold for all vibron directions simultaneously to guar-
antee the validity of

H̃i,las ≈ ℏΩie
−i(ωxt+ϕ)

[
1− iη⃗i · ((ψ⃗†

i e
iωxt + ψ⃗ie

−iωxt)
]
σ−
i + h.c. (6.27)

Finally, we apply a rotating wave approximation to neglect all terms oscillating
with a multiple of ωx which is justified for Ωi|η⃗i| ≪ ωx.

This results in the Jaynes-Cummings Hamiltonian [179, 477]

HJC =
∑
i

ℏψ⃗†
i · Ω̃i · ψ⃗i +

ℏδ
2
σz
i + ℏg⃗i ·

(
ψ⃗†
iσ

−
i + ψ⃗iσ

+
i

)
(6.28)

where the coupling constants vectors are given by g⃗i = Ωiη⃗i. The total Hamiltonian
of the JCH model consists of the local terms derived above and a vibron hopping
term which has been derived in Sec. 2.3.4

HJCH = HJC − ℏ
2

∑
i,j ̸=i

(
ψ⃗†
i · T ij · ψj + ψi · T ij · ψ†

j

)
. (6.29)

The JCH Hamiltonian conserves the number of excitations N =
∑

i Ni with

Ni = ψ⃗†
i · ψ⃗ + σ+

i σ
−
i which enables the block diagonalization in the subspaces

N = const.. Moreover, HJC commutes with Ni, ∀i that has the vibron Fock
states |n1, n2, n3, s⟩ as eigenstates. The diagonalization of HJC in the Hilbert
subspaces with constant Ni leads to dressed states denoted by |Ni, r⟩, they are also
referred to as polariton states due to the dressing analogy to solid state physics.
r = 1, 2, . . . , (Ni +1)2 is an index that indicates the different dressed states in the
Ni subspace with cardinality of (Ni + 1)2.

In general, the computation of the polariton states is non-trivial in itself due
to the inhomogeneous g⃗i and Ω̃i that depend on the crystal structure. Albeit one
of the elements of the coupling vector, describing the vibration perpendicular to
k⃗, can vanish, we typically cannot separate the respective vibrons dynamics as it
can couple to distant polaritons via the hopping term. One special case occurs in
two-dimensional ion crystals, when k⃗ lies within the crystal plane. In that setup
the vibron modes perpendicular to the plane couple neither to the dressing laser
nor the in-plane vibrons. As a consequence, the number of different polariton
states for a given Ni shrinks to 2Ni + 1.

In order to study the dynamics of the polaritons in a simple setup, we consider
in the following a linear chain with the dressing laser parallel to one of the trap
axes, say e⃗x. The choice of k⃗ in this scenario does not matter for the discussion.
Then, g⃗i = gie⃗x since Ui = 1 for all ions. Moreover, the vibron dynamics in the
three dimensions decouple as Wij becomes diagonal (see Sec. 2.3.2) so that we
only consider the x vibrons in the following. The ground state |0, ↓⟩ is dark to
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6 Vibron-Hubbard models in ion Coulomb crystals

Figure 6.7: Left: Schematic depiction of the creation of dressed states mixing
the vibron levels with an electronic two-level system via continuous sideband
driving (here depicted by the red sideband). The dashed line depicts the poten-
tial carrier decay on the timescale of the linewidth ∆ω. Right: Energy levels
of the polariton states in the zero (black), one (red) and two (green) polariton
subspace. The red dashed lines indicate the double of the one polariton levels,
demonstrating the polariton interaction energies U±(1).

the dressing and is therefore always an eigenstate of HJC . The dressed states with
ni > 0 are superpositions of the bare states |ni, ↓⟩ and |ni − 1, ↑⟩ which are coupled
via gi, see Fig. 6.7 (left). Since the cardinality of the dressed state subspaces is
fixed for all values of ni we can write the Jaynes-Cummings Hamiltonian as a 2×2
matrix

Hi,JC(ni) =
ℏ
2

(
ω̃ix − δ 2gi

√
ni

2gi
√
ni δ − ω̃ix

)
+ ℏ(ni −

1

2
)ω̃ix1 (6.30)

The diagonalization leads to the polariton energies

E(0) = −ℏδ
2

(6.31)

E±
i (ni) = ℏω̃ix

(
ni −

1

2

)
± ℏ

2

√
(δ − ω̃ix)2 + 4g2i ni︸ ︷︷ ︸

dE±
i (ni)

(6.32)

where ± indicates the polariton type. The energy levels are shifted apart from the
equispaced spectrum of the Fock states, see Fig. 6.7 (right). The corresponding
polariton state vectors |ni,±⟩ are characterized by an angle ϑi(ni) via(

|ni,+⟩
|ni,−⟩

)
= RT (ϑi(ni))

(
|ni, ↓⟩

|ni − 1, ↑⟩

)
(6.33)
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6.2 Jaynes-Cummings-Hubbard systems in trapped ions

where R(ϑ) is a two-dimensional rotation matrix and the polariton angles are given

by tan(2ϑi(ni)) =
2gi

√
ni

ω̃ix−δ
. Obviously, ϑi(ni) = 0 without the dressing laser.

6.2.2 Superfluid-to-Mott insulator transition in trapped
ions

The major consequence of the coupling of the vibrons to the ions two level scheme
is the rise of an effective on-site vibron interaction due to the departure from the
equispaced vibron spectrum [369]. If more than a single polariton is created at
the same ion, the energy of the system differs from the states with delocalized
excitations. This energy discrepancy depends on the total polariton number, for
a homogeneous crystal (neglecting off-diagonal hopping) it would be given by

U±(n) = E±(n+ 1) + E±(n)− 2E±(n) (6.34)

which is non-zero because dE±(n) ∝ √
n.

In a system of more than two ions, the on-site interaction has a more compli-
cated dependency on the position and dressing. As for the Bose-Hubbard model,
the competition between the on-site interaction and the hopping term leads to a
superfluid-to-Mott insulator transition in the many body ground state [429, 478–
480]. It is driven by the ratio between U±(n) and the nearest neighbor hopping,
for large U±(n)/T ij the energy penalty by doubly occupied sites dominates the
hopping. Hence, the ground state is given by a Mott insulator with restricted
dynamics. On the opposite, for small U±(n)/T ij the polaritons delocalize and
experience no scattering by other excitations. In the JCH model in ion strings
this transition can be driven for a fixed laser intensity by the detuning of the
laser frequency from the side-band. In the limit |δ − ω̃ix| ≫ gix, the energy shifts
dE±

i (ni) → |δ − ω̃ix| so that U±(n > 2) → 0 and U±(1) → (ω̃x − δ)Θ(±(δ − ω̃x)).
In the latter case, the behavior of the two polariton types differs and depends on
the sign of δ − ω̃x. For δ = ω̃x the homogeneous interaction energy simplifies to
U±(n) = ±ℏg(

√
n+ 1 +

√
n− 1− 2

√
n)/2, its amplitude declines with growing n

so that the repulsion is the strongest when an ion hosts two polaritons.
Note that with the detuning also the mixing angles ϑi(ni) changes and hence

the composition of the polariton states is not equal in the two phases [448]. A
maximal mixing of the spin and vibron states is achieved for the resonant case,
interpolating between the bare states for δ − ω̃x → ±∞.

The fluctuation of the local polariton number ⟨N 2
i ⟩ serves as an order param-

eter for the transition [446, 447, 456]. It is zero in the Mott insulator phase for
integer filling factor ⟨Ni⟩, as no particle is able to hop because of the strong in-
teractions with the neighboring polaritons. In the superfluid phase the particles
delocalize such that the hopping leads to non-zero fluctuations. Experiments have
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demonstrated the change of the order parameter at the transition δ = ω̃x as well
as the difference in the polariton states between the two phases [419].

Moreover, an analysis of the hopping dynamics reveals the polariton blockade,
i.e. the absence of double occupied sites for ⟨Ni⟩ = 0 as measured in Fig. 6.8. This
constraints the dynamics in a one-dimensional system like the ion chain and leads
ultimately to the emergence of a Tonks-Girardeau gas [481, 482]. In the emulation
of the JCH model in trapped ions not only nearest neighbor hops are permitted,
such that the effect of the blockade is weakened because the polaritons can change
their order by jumping ”over” each other. To monitor the polariton dynamics
in an experiment it is necessary for the measurement scheme to be sensitive to
the vibron number as well as the spin state. This has been solved in Ref. [369]
by projecting the different state occupations onto auxiliary electronic states that
are long-lived and can be readout independently after freezing out the hopping
dynamics [187].

One major drawback of the discussed implementation of the JCH model in
trapped ions is the inhomogeneity of the vibron frequencies ω̃ix. This issue is
only absent in the case of a two-ion chain as used in the experiment. In a larger
chain this effect leads to an potential landscape for the polaritons similar to the
vibron energies, see Fig. 2.7. As a consequence, the superfluid-to-Mott insulator
transition does not occur simultaneously across the system, resembling the case
of the linear-to-zigzag transition, which also suffered from the inhomogeneous ion
distances. In addition, the slopes in the energy landscape can lead to the suppres-
sion of hopping dynamics for the polaritons. When the energy levels of polaritons
states of neighboring ions are much stronger detuned by ω̃ix than the respective
hopping rate the dynamics is frozen, as can be easily seen in an interaction pic-
ture of HJCH . In special cases, hopping can be enabled by a resonance between
adjacent + and − energy levels. Typically, this is only possible for a small subset
of the ions. This effect is emphasised in the second-order hopping dynamics of
bound polariton states discussed in the next section.

6.2.3 Bound polariton states

In this section, we elaborate on another effect of the effective on-site interaction of
the dressed states, namely the presence of bound states [459, 483, 484]. Contrary
to the observation of the blockade when two excitations are initialized in separated
sites, the on-site interaction also can bind the particles when they are placed on
the same site. The dissipation of this bi-polariton state via single vibron hopping
needs to overcome the energy difference of U±(1) that is released or absorbed
when one of the excitations moves away. Hence, in the Mott insulating phase with
strong on-site interaction, we can expect that states with two excitations localized
at the same site are energetically separated from the scattering states with distant

127



6.2 Jaynes-Cummings-Hubbard systems in trapped ions

Figure 6.8: Experimental observation of the polariton blockade in the Mott
insulator phase when the blue sideband is dressed. During the time evolution of
the system, initialized in the bare ground state |0, ↓⟩ |0, ↓⟩, the state maintains
a vanishing projection on the zero polariton state |0, ↑⟩ at each ion. Diagram
taken from Ref. [369].

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

4 6 8 10 12 14 16 18 0 1 2 3 4
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

E
/h̄
ω
x

g/T

P
(r
)

r

0.0

1.0

2.0

z

n

Figure 6.9: Left: Polariton many-body spectrum of a five-ion chain in the
N = 2 subspace as a function of the coupling strength. δ has been set to
the average of ω̃ix. T is the average nearest-neighbor hopping rate of the x
vibrons and g = Ω|⃗k|

√
ℏ/mωx. Right: Probability P (r) to find polaritons at a

distance of r ions evaluated for all eigenstates in the N = 2 subspace. The red
graphs correspond to the energy levels shown in red on the left. In the inset
the respective polariton number distribution of the states is shown.

polaritons. In the context of the Bose-Hubbard model these states are known as
repulsively bound pairs and have been predicted as well in coupled cavity systems
simulating the JCH model [459, 483].

In Fig. 6.9 (left) we plot the eigenspectrum of a N = 5 ion JCH model in the
subspace of N = 2 polariton excitations in the system, as a function of the laser
parameters. We observe three bands of states that can be explained by the three
different possibilities for the polariton types of the two particles, i.e. (+,+), (+,−)
and (−,−). In the band gaps for large g, we find N distinct states, marked in
red. These describe bound pairs, as an analysis of the correlation function P (r) in
Fig. 6.9 (right) shows. P (r) describes the probability to observe the excitations at
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Figure 6.10: Top: Schematic depiction of the second-order hopping that leads
to bi-polariton dynamics. The two excitations initially located at one ion (red)
separate with the single vibron hopping amplitude T and subsequently reunite
at another ion (blue). The intermediate state is detuned by U(1). Bottom:
Bi-polariton dynamics in the central (red) and neighboring (blue) ions of a
equidistant chain of 5 ions. A bi-polariton in the state |2,−⟩ ((a) and (c)) or
|2,+⟩ ((b) and (d)) has been initialized at ion 3. In (a) and (b) g/T = 10 and
in (c) and (d) g/T = 20, the quantities are defined as in Fig. 6.9. The laser
detuning δ has been set to the average value of ω̃ix. In grey we show the result
from the effective bi-polariton model defined in Eq. (6.36).

a distance of r ions. The states in the gaps exhibit almost maximal probability for
r = 0 while the scattering states of the bands have a vanishing overlap with the bi-
polariton states. The bound pair states do not delocalize as seen from the inset in
Fig. 6.9 (right), but are approximately given by the symmetric and antisymmetric
superposition of the states |2i,±⟩ and |2N−i,±⟩. Since the vibron frequencies are
symmetric these two states are degenerate (assuming equal laser intensities) and
coupled via a second-order hopping amplitude.

This process describes the subsequent hopping of the two polaritons of the
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bound pair via an intermediate, off-resonant scattering state, schematically de-
picted in Fig. 6.10 (top). In order to derive an effective hopping rate for this
process we employ a van-Vleck transformation [485, 486]. We divide the N = 2
Hilbert subspace into bi-polariton states |2i,±⟩, and the set B containing all states
with separated polaritons. We diagonalize the JCH Hamiltonian projected to the
B set which results in good approximation in the bands depicted in Fig. 6.9. The
effective bi-polariton hopping rate is then given in first order by

J±
ij =

1

2

∑
k∈B

c±ikc
±
jk

(
1

E±
i (2)− ϵBk

+
1

E±
j (2)− ϵBk

)
. (6.35)

where ϵBk is the k-th eigenenergy in the subset of the scattering states and c±ik is
the hopping coupling between the respective eigenstate and the bi-polariton state
|2i,±⟩ due to vibron hopping. This quantity scales like T 2

ij/U
±(1), i.e. it vanishes

for a infinitely strong on-site interaction. This is a remnant of the intermediate
scattering state that is energetically separated from the bi-polariton states by
U±(1). In an intermediate regime of U±(1)/T ij the bound states coexist with a
finite J±

ij that is however much reduced in its amplitude in comparison to the single
polariton hopping. Then, the dynamics of the bound pairs can be approximated
by an effective Bose-Hubbard model given by

HBP
JCH =

∑
i,r=±

Er
i (2)B

†
irBir +

1

2

∑
i,j ̸=i,r

Jr
ij

(
B†

irBjr +BirB
†
jr

)
(6.36)

where B†
i± creates a bi-polariton at ion i.

As in the single-polariton hopping case, the bound-pair hopping is countered
by the energy differences of the local bi-polariton states which lead to the localiza-
tion of the bound pair eigenstates depicted in Fig. 6.9 (right). Only the resonant
hopping between the ions with the same vibron frequency is non-negligible, how-
ever due to the larger distance between the coupled ions the effective hopping rate
is further reduced. Hence, we can expect bi-polariton hopping only between the
two ions connected by the Zz

2 symmetry of the linear chain on a slow timescale
given by J±

i,N−i. In the energy spectrum depicted in Fig. 6.9 (left) the resulting
splitting of the respective symmetric and antisymmetric superposition states is not
resolvable, indicating the slow hopping dynamics.

The polariton localization can be mitigated in principle by various strategies.
The simplest one is to increase the radial trap frequency so that the ion dependent
corrections of the vibron frequency coming from the Coulomb repulsion of the
other ions becomes less relevant, in this limit ω̃ix → 0, ∀i. While this approach
also facilitates the cooling stage, it ultimately faces technical limitations. Alter-
natively, the number of ions in the chain can be increased resulting in a (locally)
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homogeneous chain in the trap center, since the boundary effects are less relevant,
but also in a more complex ground-state cooling stage due to the larger number of
motional modes. More involved ways to cancel the spatial variation of ω̃ix include
the creation of higher-order trap potentials to reach a more equispaced crystal, or
the employment of optical dipole traps to engineer the local confinement of the
individual ions [133, 174, 207, 487]. All approaches mentioned so far target the
bare vibron frequencies, however for the polariton dynamics their energies E±

i (n)
are crucial. Since they also depend on the dressing laser intensity they can be
in principle tuned at will if the ions are addressed independently by fields with
spatially inhomogeneous intensity or frequency.

Finally, in Fig. 6.10 (bottom) we show the dynamics of a bound pair assuming
equidistant ions, for which we can observe hopping in the systems center. The
vibron frequencies of the outer ions are detuned because of the finite size of the
chain and therefore do not participate in the dynamics. We compare the result
from the calculation of the full JCH Hamiltonian with the effective theory (6.36)
and observe good agreement for large values of gi. However, increasing U

±(1)/T ij

leads to more robust bound pairs but also to a slowdown of the hopping dynamics,
as discussed before.

6.3 Conclusion

We have illustrated in this chapter two ways to manipulate the dynamics of vibra-
tional quantum excitations in trapped ion crystals by ways of external drives to
engineer spin-orbit coupling and vibron interactions.

The former may be achieved by employing the capabilities for engineering the
vibron shapes available in two-dimensional surface traps, or by means of optical
trapping methods. We have shown that the two perpendicular local vibron modes
can be understood as a spin degree of freedom, which couples with the vibron
motion. During hopping processes the spin state is not left invariant as it can
flip due to the generally non-diagonal hopping matrices. We showed that these
off-resonant processes may be controlled by means of a parametric drive of the
vibron frequencies. We derived an effective Hubbard model and demonstrated the
dependence of the spin state of the vibron on the chirality of the trajectory in
a simple ion plaquette. We showed as well that, conversely, the vibron motion
is affected by the initial spin state. This system could be extended to larger ion
lattices where the expansion dynamics of a single excitation exhibits spin state
separation, but is also more complex due to inevitable long distance hops.

The parametric drive offers great flexibility which could be of use for the study
of other crystal geometries or the creation of disordered systems, for which the
simultaneous presence of spin-orbit coupling could be an interesting extension
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of the physics discussed here [358, 488, 489]. Moreover, the model derived here
features non-interacting particles which is why we focused on the single-particle
regime. A non-linear extension leads to an interaction energy that enriches the
physics of spin-orbit-coupled particles.

One possible way to engineer interacting vibrons has been highlighted by the
introduction of a dressing of the motional states with an electronic level scheme,
resulting in polariton states [69, 179, 446, 447]. Their superfluid-to-Mott insulator
transition has been discussed, and the presence of bound polariton states in the
strong interaction regime has been worked out. Their dynamics is considerably
slowed down and requires additional effort to create homogeneous polariton ener-
gies to speed up the hopping. As in the case for the parametric drive of the vibron
frequencies, the dressing laser offers in principle the possibility to create arbitrary
potential landscapes for the polaritons. While the energies of the polariton states
are determined by the laser intensity and detuning, which can be in principle ad-
justed individually by single-ion techniques, the direction together with the crystal
geometry plays an important role as well. Two-dimensional ion crystals exhibit
position-dependent vibron orientations, and therefore couple in different ways by
the laser dressing resulting in different dressed states.

Moreover, in the derivation of HJCH it is assumed that the hopping dynamics
is faster than the decay of the excited electronic state, so that its natural lifetime
can be neglected. If this assumption is invalid, an spontaneous decay via a car-
rier transition creates or destroys polaritonic excitations, depending on whether
the dressing laser drives the blue or red side-band. This incoherent process con-
sequently breaks the conservation of N . While the inclusion of a spontaneous
decay rate alone leads to a trivial steady state (⟨N⟩ → 0/∞), i.e. cooling or
heating, the introduction of a coherent process that counters the decay results
in a driven-dissipative version of the JCH model. The study of open Hubbard
models has demonstrated a non-trivial steady state phase diagram [490–497]. The
simulation of the interplay between particle creation and loss in the JCH model
has the advantage that the polaritons are not physical particles unlike the bosonic
atoms in optical lattices that are a standard platform for Hubbard models in AMO
physics. In those systems, the potential loss of particles can only be countered by
the trapping of additional atoms during the systems time evolution.
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Chapter 7

Summary and Outlook

We have reported in this Thesis on our theoretical findings on the vibrational
dynamics of trapped-ion crystals. We have particularly focused on two-dimensional
zigzag crystals with and without topological defects, showing that the dynamics
crucially depends on the crystal geometry. Apart from the external control of the
shape of the self-assembled crystals in global rf traps, exhibiting multiple structural
phase transition, the dynamics can be engineered with great flexibility by external
drivings, coming from additional lasers or electric fields [36, 37, 40, 205, 208, 209,
217, 219, 222, 226, 227, 410, 411, 419, 469, 498, 499].

We have divided the results of this Thesis into three major parts treating
coherent and incoherent transport of energy, the change of the motional excitations
close to phase transitions caused by thermal and quantum fluctuations, and lastly
the emulation of peculiar vibron-Hubbard models.

In the first part, discussed in Chapter 4, we have observed a strong reduction in
transmission and conductivity in an ion crystal with a topological defect when the
Aubry transition is crossed. This has found expression in a robust energy imbal-
ance between the two crystal halves on a long timescale when a local displacement
is introduced on one side of the defect. For the driving of a heat current through
the crystal, we have seen the decline in steady state heat flux together with the
rise of a strong and localized temperature gradient. In the low energy limit, these
findings could be traced back to the breaking of mirror symmetry of the crystal at
the Aubry transition, which leads to localized phonon modes. The spectrum of the
latter plays a crucial role for the non-linear effects for larger energies. Third-order
resonances lead to the reestablishment of energy transport through parametric
mode couplings. In what concerns the heat flux, the density of degeneracies in the
spectrum leads to sharp peaks for small values of the reservoir coupling, which are
washed out in a typical intermediate range of the damping rate γ.

In the second part, presented in Chapter 5, we have explored the regime close
to structural phase transitions, which is particularly sensitive to the non-linear
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dynamics introduced by the Coulomb potential and triggered by fluctuations. In-
dependent of the source of the fluctuations, we observed a regime in the symmetry-
broken phase in which the system effectively behaves like in the symmetric phase.
This can be interpreted as a fluctuation-induced shift of the transition point [212–
214, 422]. When we considered the thermal zigzag transition, we observed smooth
motional mode frequencies, and the absence of a soft mode when the critical trap
aspect ratio is crossed. The experimental measurements where supported by nu-
merical simulations. We have found that this effect is due to thermal jumps be-
tween the two symmetry-broken configurations over the energy barrier in a free
energy potential. In the parameter window in which these jumps occur, we as-
sumed in a time-scale separation Ansatz that the system Zx

2 stays effectively un-
broken, and derived an effective theory that includes the non-linear corrections to
the motional mode frequencies, obtaining good agreement with simulations. As
for the quantum fluctuations of a crystal with defect, we found that in an ultra
cold regime quantum tunneling events through the PN barrier occur. An effective
theory based on a collective excitation formalism reduces the problem drastically
to a single particle formulation [299, 301].

Finally, in the third part of the Thesis, discussed in Chapter 6, we discussed a
scheme to engineer non-Abelian dynamics in an homogeneous two-dimensional ion
crystal. Our approach relied on external control of the local vibrational degrees of
freedom, which may be realized by means of individual laser addressing of the ions.
We propose to make use of their flexibility to implement a Floquet driving scheme
that results in effective, non-commuting hopping matrices that act on the pseudo
spin of vibrons during their motion. We demonstrated a form of spin-orbit coupling
in these systems by revealing the relation between the spin-state and the center of
mass dynamics of the vibrons. While this system is non-interacting we discussed
as well one possible scheme to create an interaction energy potential by coupling
the motional Fock state to an electronic two level system. This emulates the JCH
model and exhibits a superfluid-to-Mott insulator transition [419, 446, 447, 456].
We have studied bound pair states in the strong coupling limit and demonstrated
the restricted hopping of these modes in the inhomogeneous potential landscape
of a small ion chain.

The work presented here could be expanded in several directions. Concern-
ing the energy transport in ion crystals with topological defects open questions
remain concerning the scaling of the heat flux and the temperature profiles with
increasing particle number. The recovery of a finite heat conductivity in the ther-
modynamic limit, and possible qualitative changes in the steady state when an
extended zigzag region with translational invariance is considered, are potentially
interesting. Also, the observation of energy localization rest upon the small radial
diameter of the structure. In a truly two-dimensional triangular ion lattice energy
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could flow around the defect [222]. Lastly, it may be certainly interesting to ad-
dress the consequences of our results on the sympathetic cooling of ion crystals
with defects [412, 500, 501].

Concerning the second part, a comprehensive analysis of the quantum many-
body dynamics close to the Aubry transition is still missing. Including the effect
of the dressing modes and their non-linear coupling to the kink dynamics in a
collective excitation formalism is the correct approach to characterize the tunneling
dynamics. A comparison to the simplified effective model discussed here could
benchmark its validity. In addition, possible strategies to boost the signal strength
of quantum effects at the Aubry transition in ion crystals remain a major challenge.

For the last part, the flexibility of the applied external control of the local vibron
modes could be exploited to engineer disorder in the hopping matrices [358]. In
addition, we concentrated our effort on a simple square lattice, other geometries
like triangular or honeycomb lattices could be of interest due to the different
coordination number [219, 502, 503]. Moreover, the creation of vibron interactions
by the introduction of non-linear potentials constitutes an interesting extension
of the discussed spin-orbit coupled vibron system. Lastly, the study of driven-
dissipative JCH models in trapped ion systems is a direction of research widely
unexplored but interesting for their steady-state phase diagram [492].
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[403] A. Ruiz-Garćıa, J. J. Fernández, and D. Alonso, Phys. Rev. E 99, 062105
(2019).

[404] A. Ruiz, D. Alonso, M. B. Plenio, and A. del Campo, Phys. Rev. B 89,
214305 (2014).

[405] D. Segal and B. K. Agarwalla, Annu. Rev. Phys. Chem. 67, 185 (2016).

[406] J. Wang, S. V. Dmitriev, and D. Xiong, Phys. Rev. Research 2, 013179
(2020).

[407] O. V. Zhirov, J. Lages, and D. L. Shepelyansky, Eur. Phys. J. D 73, 149
(2019).

[408] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential
Equations (Springer Berlin Heidelberg, Berlin, Heidelberg, 1992).

[409] E. A. Novikov, J. Exptl. Theoret. Phys. 20, 1290 (1965).

[410] Z. Liu, L. Chen, J. Li, H. Zhang, C. Li, F. Zhou, S. Su, L. Yan, and M. Feng,
Phys. Rev. A 102, 033116 (2020).

162

http://dx.doi.org/ 10.1103/PhysRevLett.119.153602
http://dx.doi.org/ 10.1103/PhysRevLett.119.153602
http://dx.doi.org/ 10.1103/PhysRevE.102.012155
http://dx.doi.org/ 10.1103/PhysRevE.102.012155
http://dx.doi.org/10.1088/0031-8949/91/1/013007
http://dx.doi.org/ 10.1103/PhysRevE.97.032102
http://dx.doi.org/ 10.1103/PhysRevE.97.032102
http://dx.doi.org/10.1103/PhysRevE.86.061118
http://dx.doi.org/10.1103/PhysRevE.86.061118
http://dx.doi.org/ 10.1103/PhysRevA.105.033107
http://dx.doi.org/ 10.1103/PhysRevA.105.033107
http://dx.doi.org/10.1103/RevModPhys.93.041001
http://dx.doi.org/ 10.1126/science.aad6320
http://dx.doi.org/10.1103/PhysRevE.99.062105
http://dx.doi.org/10.1103/PhysRevE.99.062105
http://dx.doi.org/10.1103/PhysRevB.89.214305
http://dx.doi.org/10.1103/PhysRevB.89.214305
http://dx.doi.org/10.1146/annurev-physchem-040215-112103
http://dx.doi.org/10.1103/PhysRevResearch.2.013179
http://dx.doi.org/10.1103/PhysRevResearch.2.013179
http://dx.doi.org/10.1140/epjd/e2019-100048-1
http://dx.doi.org/10.1140/epjd/e2019-100048-1
http://dx.doi.org/10.1007/978-3-662-12616-5
http://dx.doi.org/10.1007/978-3-662-12616-5
http://dx.doi.org/ 10.1103/PhysRevA.102.033116


Bibliography

[411] P. Weckesser, F. Thielemann, D. Hoenig, A. Lambrecht, L. Karpa, and
T. Schaetz, Phys. Rev. A 103, 013112 (2021).

[412] G.-D. Lin and L.-M. Duan, Quantum Inf Process 15, 5299 (2016).

[413] H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena
(Oxford University Press, New York, 1987).

[414] R. J. Baxter, “Exactly Solved Models in Statistical Mechanics,” in Integrable
Systems in Statistical Mechanics , Vol. 1 (World Scientific, 1985) pp. 5–63.

[415] A. Dutta, G. Aeppli, B. K. Chakrabarti, U. Divakaran, T. F. Rosenbaum,
and D. Sen, Quantum Phase Transitions in Transverse Field Spin Models:
From Statistical Physics to Quantum Information, 1st ed. (Cambridge Uni-
versity Press, 2015).

[416] P. C. Haljan, K.-A. Brickman, L. Deslauriers, P. J. Lee, and C. Monroe,
Phys. Rev. Lett. 94, 153602 (2005).

[417] A. Bermudez, T. Schaetz, and D. Porras, New J. Phys. 14, 053049 (2012).

[418] W. Chen, J. Gan, J.-N. Zhang, D. Matuskevich, and K. Kim, Chinese Phys.
B 30, 060311 (2021).

[419] K. Toyoda, Y. Matsuno, A. Noguchi, S. Haze, and S. Urabe, Phys. Rev.
Lett. 111, 160501 (2013).

[420] J. Zhang, B. T. Chow, S. Ejtemaee, and P. C. Haljan, npj Quantum Inf 9,
68 (2023).

[421] T. Dessup, T. Maimbourg, C. Coste, and M. Saint Jean, Phys. Rev. E 91,
022908 (2015).

[422] T. Dessup, C. Coste, and M. Saint Jean, Phys. Rev. E 91, 032917 (2015).

[423] M. I. Dykman, R. Mannella, P. V. E. McClintock, F. Moss, and S. M.
Soskin, Phys. Rev. A 37, 1303 (1988).

[424] J. D. Baltrusch, C. Cormick, G. De Chiara, T. Calarco, and G. Morigi,
Phys. Rev. A 84, 063821 (2011).

[425] J. D. Baltrusch, C. Cormick, and G. Morigi, Phys. Rev. A 86, 032104 (2012).

[426] T. Zanca, F. Pellegrini, G. E. Santoro, and E. Tosatti, Proc. Natl. Acad.
Sci. U.S.A. 115, 3547 (2018).

163

http://dx.doi.org/ 10.1103/PhysRevA.103.013112
http://dx.doi.org/10.1007/s11128-015-1161-3
http://dx.doi.org/10.1142/9789814415255_0002
http://dx.doi.org/10.1142/9789814415255_0002
http://dx.doi.org/ 10.1017/CBO9781107706057
http://dx.doi.org/ 10.1017/CBO9781107706057
http://dx.doi.org/10.1103/PhysRevLett.94.153602
http://dx.doi.org/10.1088/1367-2630/14/5/053049
http://dx.doi.org/ 10.1088/1674-1056/ac01e3
http://dx.doi.org/ 10.1088/1674-1056/ac01e3
http://dx.doi.org/ 10.1103/PhysRevLett.111.160501
http://dx.doi.org/ 10.1103/PhysRevLett.111.160501
http://dx.doi.org/10.1038/s41534-023-00741-5
http://dx.doi.org/10.1038/s41534-023-00741-5
http://dx.doi.org/ 10.1103/PhysRevE.91.022908
http://dx.doi.org/ 10.1103/PhysRevE.91.022908
http://dx.doi.org/10.1103/PhysRevE.91.032917
http://dx.doi.org/ 10.1103/PhysRevA.37.1303
http://dx.doi.org/ 10.1103/PhysRevA.84.063821
http://dx.doi.org/10.1103/PhysRevA.86.032104
http://dx.doi.org/10.1073/pnas.1801144115
http://dx.doi.org/10.1073/pnas.1801144115


Bibliography

[427] D. Kalincev, L. S. Dreissen, A. P. Kulosa, C.-H. Yeh, H. A. Fürst, and T. E.
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A. Browaeys, Nature 534, 667 (2016).

164

http://dx.doi.org/10.1088/2058-9565/abee99
http://dx.doi.org/10.1063/1.4948734
http://dx.doi.org/10.1063/1.4948734
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1103/PhysRevLett.107.150501
http://dx.doi.org/10.1103/PhysRevLett.107.150501
http://dx.doi.org/10.1088/1367-2630/17/10/103021
http://dx.doi.org/ 10.1103/PhysRevLett.107.260501
http://dx.doi.org/10.1103/PhysRevLett.107.207209
http://dx.doi.org/ 10.1088/1367-2630/14/9/093042
http://dx.doi.org/ 10.1088/1367-2630/14/9/093042
http://dx.doi.org/10.1103/PhysRevLett.109.010501
http://dx.doi.org/10.1038/nature10981
http://dx.doi.org/10.1038/nphys1032
http://dx.doi.org/10.1088/1367-2630/13/11/115011
http://dx.doi.org/10.1088/1367-2630/13/11/115011
http://dx.doi.org/10.1103/RevModPhys.89.011004
http://dx.doi.org/ 10.1126/science.abd9547
http://dx.doi.org/ 10.1103/PhysRevLett.109.145301
http://dx.doi.org/ 10.1038/nature18274


Bibliography
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Daley, A. Kantian, H. P. Büchler, and P. Zoller, Nature 441, 853 (2006).

[484] P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini,
R. Islam, and M. Greiner, Science 347, 1229 (2015).

[485] J. H. Van Vleck, Phys. Rev. 33, 467 (1929).

[486] I. Shavitt and L. T. Redmon, The Journal of Chemical Physics 73, 5711
(1980).

[487] Y. Wang, S. Shevate, T. M. Wintermantel, M. Morgado, G. Lochead, and
S. Whitlock, npj Quantum Inf 6, 54 (2020).

[488] A. Bermudez, M. A. Martin-Delgado, and D. Porras, New J. Phys. 12,
123016 (2010).

[489] N. Trautmann and P. Hauke, Phys. Rev. A 97, 023606 (2018).

[490] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller,
Nature Phys 4, 878 (2008).

[491] A. Giraldo, B. Krauskopf, N. G. R. Broderick, J. A. Levenson, and A. M.
Yacomotti, New J. Phys. 22, 043009 (2020).
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This document is incomplete. The external file associated with the glossary ‘main’
(which should be called PhDThesis_Timm_AcceptedClean.gls) hasn’t been cre-
ated.

Check the contents of the file PhDThesis_Timm_AcceptedClean.glo. If it’s
empty, that means you haven’t indexed any of your entries in this glossary (using
commands like \gls or \glsadd) so this list can’t be generated. If the file isn’t
empty, the document build process hasn’t been completed.

If you don’t want this glossary, add nomain to your package option list when
you load glossaries-extra.sty. For example:

\usepackage[nomain]{glossaries-extra}

Try one of the following:

� Add automake to your package option list when you load glossaries-extra.sty.
For example:

\usepackage[automake]{glossaries-extra}

� Run the external (Lua) application:

makeglossaries-lite.lua "PhDThesis_Timm_AcceptedClean"

� Run the external (Perl) application:

makeglossaries "PhDThesis_Timm_AcceptedClean"

Then rerun LATEX on this document.
This message will be removed once the problem has been fixed.
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