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1. Introduction

In the concept of multi-material design, different classes
of materials are combined within one or more manufacturing
steps. This enables a highly efficient use of material and an
optimized structural design, [11]. Multi-material lightweight
parts do not only contribute to an efficient material use for a
load carrying structure, they also enable the integration of func-
tions, [9]. Due to economic boundary conditions, such as mate-
rial costs and cycle times, pure composite lightweight solutions
are often not implementable in large scale production systems.
Conventional pure steel solutions are economical but often lim-
ited in terms of weight reduction. Hence, multi-material solu-
tions are promising alternatives, as they maintain the integration
in large scale production, [17].

In this contribution, the virtual process chain for a generic
multi-material part is investigated exemplary. It consists of a
sheet metal cup and a reinforcing structure of a glass fiber rein-
forced thermoplastic. The geometry of the multi-material part
is chosen for demonstration purposes following the geometries
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investigated in [8, 4]. The combination of both manufacturing
steps – deep drawing and injections molding – shows great po-
tential, since both processes are already established in large
scale production industries such as the automotive industry.

Introducing lightweight parts as load carrying structures, nu-
merical tools are required to describe the mechanical behav-
ior of the composite during the design phase. An accurate ma-
terial description taking into account effects such as material
thinning or the fiber orientation due to the manufacturing pro-
cess is mandatory to estimate strength and durability. The most
frequently used method in computational engineering is the fi-
nite element method (FEM). The mechanical properties of the
desired structure are mainly influenced by the manufacturing
process. In order to take into account those influences for the
structural design, the virtual process chain has to be consid-
ered for the finite element analysis (FEA) of the virtual pro-
totype, [16]. With increasing complexity of the manufacturing
process and the corresponding process chains, information has
to be exchanged between different simulation steps. Thus, be-
tween each simulation step information in form of FEA results
must be transferred to the subsequent analysis. In the industrial
practice, this can take several days or weeks to analyze a com-
plete process chain due to computation time, mapping of re-
sults, manual model updating and communication. Therefore,
a holistic simulation environment in combination with physi-
cal meaningful reduced models is beneficial to overcome large
computation times.
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André Hürkampa,c,∗, Ralf Lorenzb,c, Bernd-Arno Behrensb,c, Klaus Drödera,c
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2. Reduced Order Modeling

Reduced order modeling (ROM) techniques approximate the
solution of a physical system without simplifying the model and
the underlying physics [7]. ROM is closely related to the field
of surrogate modeling. Furthermore, an online feasible compu-
tation model allows the combination of ROM and data-science
to get a direct feedback from e.g. process data.

In this work, we use a so-called a posteriori model reduc-
tion technique, where a parametric solution is computed during
an offline phase. From this database an online feasible surro-
gate is built. In order to analyze the data of the offline gen-
erated results, proper orthogonal decomposition (POD) [6] is
used here. POD is comparable to a principal component analy-
sis [13]. An extension of POD is the proper generalized decom-
position (PGD), [2]. PGD does not need any a priori knowledge
of the solution in form of numerous offline computations. For
example, it is used within a cyber physical system for predictive
maintenance of a resin transfer molding process, [18]. How-
ever, within the PGD framework the reduced solution is com-
puted simultaneously with the finite element problem. Such a
procedure requires a special type of solver (e.g. the large time
increment method [14]), that is not available in standard finite
element software. Therefore, PGD is not well applicable in the
field of computational manufacturing since different software
solutions are coupled to solve the specific tasks of the manufac-
turing steps. Hence, using POD is advantageously in terms of
implementation and independence of software packages and is
applied in this contribution.

For POD, the numerical results obtained from detailed pro-
cess simulations are used to build a reduced approximation. The
field variables can either be element or nodal results. One solu-
tion vector for a fixed parameter α yields the result at the spatial
coordinates x and is referred to as snapshot. The matrix of snap-
shots Υ(x, α) = [υi(x, α) . . . υm(x, α)] contains m solution vec-
tors υi(x, α) of detailed FEA. The size of Υ(α) is n × m, where
n denotes the number of element or nodal results contained.

Following the approach in [19, 12], the eigenvalue problem

(R − λi I) φ̄i = 0 with R =
1
m
ΥTΥ (1)

with λi denoting the eigenvalues and the corresponding eigen-
vectors φ̄i has to be solved. By normalizing φi = Υφ̄i/‖Υφ̄i‖,
the reduced representation

Uα(x, α) ≈
k∑

i=1

φi(x) · λi(α), (2)

is given. Thereby, the vectors φi(x) build a basis for the reduced
solution. They are referred to as spatial modes and depend only
on the spatial coordinates x. The scalar functions λi(α) depend
only on the parameter α. In general, there is no restriction on α.
Parameters of interest could be e.g. geometric dimensions, the
position of boundary conditions, the position and magnitude of
loads, material properties and process parameters. For k < m,
the series expansion (2) yields a reduced representation of the
FEA result.

Table 1. Material Properties of DX56
Density
ρ

Young’s
Modulus E

Poisson’s
ratio ν

Yield Stress
Rp0.2

7.8 g/cm3 211 GPa 0.29 172 MPa

3. Numerical Results

As an example, a multi-material structure is investigated nu-
merically. First, the deep drawing process for a sheet metal cup
is analyzed using LS-DYNA [15]. Subsequently, an injection
molding simulation for the plastic part is carried out in the soft-
ware Moldflow [3]. Based on the numerical results, a reduced
order process model is obtained.

3.1. Deep drawing process

Deep drawing is one of the most important sheet metal form-
ing processes and represents a key factor for the weight reduc-
tion, e.g. as an interface for combination to other manufacturing
processes [5].

3.1.1. Parametric study on deep drawing
The deep drawing simulation was set up in the software LS-

DYNA [15] using an explicit solver. The corresponding model
and the dimensions of the blank are shown in Fig. 1. The final
deep drawn cup is of dimension 180 mm × 100 mm × 40 mm.

Blank

Punch

Blank
holder

Die

295 mm
132 mm

232
m

m
42

m
m

Fig. 1. Simulation model of the deep drawing process

The displayed tool consists of blank holder, die and rectan-
gular punch modeled as shell elements. The sheet metal blank
is clamped between blank holder and die with a defined force
Fbh which has been varied within this study between 50 kN and
200 kN. During the test procedure, the punch is deep drawing
the blank with a constant speed of v = 20 mm s−1 through the
cavity up to a drawing depth of h = 40 mm. All tools are mod-
eled as rigid bodies. The frictional contact between blank and
tool has been modeled with a constant friction coefficient of
µ = 0.15. For the blank material, a conventional deep draw-
ing steel DX56 has been characterized by experimental tensile
tests. The flow behavior is described by the Ghosh flow curve
k f (ϕ) = 2115 ·(0.01366+ϕ)0.04191−1620 MPa, where ϕ denotes
the effective plastic strain, [20].

For the material model, MAT 24 available in LS-Dyna has
been applied. It describes an elasto-plastic material behavior
with an arbitrary stress versus strain curve and strain rate de-
pendency, [15]. The mechanical properties of the sheet metal
are summarized in Table 1.

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.



104 André Hürkamp  et al. / Procedia CIRP 85 (2019) 102–107

3.1.2. Results of the parametric study
For the reduced order process model the last stage of each

deep drawing simulation was evaluated. Therefore, the nodal
coordinates are plotted. Furthermore, for each element of the
blank the parameters effective plastic strain, von Mises stress
and the shell thickness have been exported. It can be observed
that with increasing blank holder force the material flows domi-
nantly out of the sheet thickness and less out of the sheet plane.
For this reason, individual elements stretch more extensively. In
the case of shell thickness, differences can be observed in differ-
ent areas of the cup. In order to get an overview of the distribu-
tion of the sheet thickness, the global maximum and minimum
values of each computed cup are summarized in Fig. 2.
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Fig. 2. Shell thickness d vs. blank holder force Fbh

Due to the reduction of radial and tangential stresses in the
flange, the maximum and the minimum shell thickness are de-
creasing with increasing forces. The minimum shell thickness
strongly decreases between Fbh = 90 kN and Fbh = 110 kN. In
this area, the cup wall begins to thin more strongly.

3.2. Injection Molding

For the analysis of the injection molding process, we use
a Polyamid 6 with 30 mass-% glass fibers. The fluid flow is
described by the Cross-WLF viscosity model, [21]. Therein the
melt viscosity

η =
η0

1 + η0 γ̇
τ∗

1−n (3)

is described by the shear rate γ̇, an critical stress level τ∗ and a
power law index n. The Newtonian limit

η0 = D1 exp
[
− A1(T − T ∗)

A2 + (T − T ∗)

]
(4)

with A2 = A3 + D3 p and the glass transition temperature
T ∗ = D2+D3 p is described by the material specific coefficients
A1, A3, D1, D2, D3 and the pressure p. The material data used in
this study are given in table 2. The geometrical model consists
of two volume bodies representing the mold cavity (black) and
the metallic insert part (gray). For both parts, tetrahedral ele-
ments are used, where the mold cavity is discretized with eight
elements over the wall thickness to ensure a fine grid for the
plastic flow analysis. The injection location (yellow) is placed
in the center.

Metallic
Insert

Injection
Location

Mold

Fig. 3. Moldflow model

In order to prevent a drastic increase in the number of snap-
shots needed in the offline phase, the reduction of the wall thick-
ness is not considered in the injection molding simulation. Con-
sequently, the sheet metal insert has been modeled with a con-
stant sheet thickness d =1.2 mm. With such modeling no di-
rect coupling between the deep drawing and injection molding
exists in the virtual process chain. However, the results of the
individual processes can be combined arbitrarily for further in-
vestigations. In order to prevent a fast cooling of the plastic melt
when in contact with the metallic insert, the initial temperature
is set constant to Tinsert = 200 ◦C. The contact time between
tool and insert is 2 s before the injection starts. The mold surface
temperature is constant Tmold = 100 ◦C and the melt tempera-
ture of the plastic is Tmelt = 280 ◦C. For the parametric study,
the injection time tin j has been varied between 0.5 s and 20 s.

The mechanical behavior of the final structure is mainly de-
termined by the fiber orientation a within the FRTP compo-
nent. In the numerical analysis it is computed by Folgar-Tucker
model [10] with a fiber interaction coefficient of ca = 0.0156. In
total 23 simulation results are obtained. For each simulation re-
sult, the tensor of fiber orientation a, exemplary depicted in Fig.
4, is exported and used for the following model order reduction.

0

1
aI

Fig. 4. First eigenvector aI of the orientation tensor a for tin j = 2 s.

3.3. Reduced order process model

The FEA results from the parametric studies are used for
the reduced process model. Form the deep drawing process 16
snapshots and from the injection molding process 23 snapshots
are available to build the matricesΥu for the nodal displacement
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Table 2. Cross-WLF coefficients from the Moldflow material database [3]
n τ∗ D1 D2 D3 A1 A3

0.42 78.3 kPa 4.78e+12 kPa s 323 K 0 K/kPa 37.2 51.6 K

of the sheet metal blank, Υd for the element thickness, and Υa

for the fiber orientation due to the injection molding. Solving
the corresponding eigenvalue problem (Eq. 1) yields following
POD representation for the displacement

Uu(x, Fbh) ≈
k∑

i=1

λu
i (Fbh) · φu

i (x) (5)

and for the element thickness

Ud(x, Fbh) ≈
k∑

i=1

λd
i (Fbh) · φd

i (x). (6)

The resulting spatial modes are displayed in Fig. 5. In the
contour plot the vector norm ‖φu

i (x)‖ is displayed. Hence, the
contour plots correspond to the magnitude of displacement. The
comparison of the first mode with the obtained final geometry
yields a strong correlation to the actual displacement. Below
the spatial mode, the scalar function λu

1(Fbh) is plotted. Here
we observe a monotonically decreasing function, which yields
a decrease of influence of the first spatial mode with increasing
blank holder force Fbh. However, the first mode is still the main
factor for the design of the reduced model. The absolute value
of λd

1 is in the range of 103, whereas the remaining functions
show a maximum peak-to-peak amplitude between −400 and
400. Taking a look into the diagram for λd

4, a significant peak
occurs at Fbh = 160 kN. This observation implies that the 4th
mode contains a feature specific to the result for Fbh = 160 kN.

The scalar functions λd
i (Fbh) for the sheet thickness depicted

in Fig. 6 are qualitatively similar to λu
i (Fbh), Here we also ob-

serve the significant peak in the 4th function. The spatial modes
φu

i (x) are mapped onto the initial blank and represent the sheet
metal thickness d. The thinning during the deep drawing pro-
cess occurs mainly at the wall of the cup. In case of large blank
holder forces, the thinning becomes critical and a localization
of plastic strain is observed in the numerical results.

Analogous to the results from the deep drawing simulation,
the reduced approximation of the fiber orientation a from the
injection molding simulation can be specified to

Ua(x, tin j) ≈
k∑

i=1

λa
i (tin j) · φi(x). (7)

The first four scalar functions are displayed in Fig. 7. Sim-
ilar to the reduction of the deep drawing, the absolute value of
the first function is significantly larger than for the other three
functions. This corresponds to the spatial mode for the fiber ori-
entation. In Fig. 7 the first 4 spatial modes φa

i (x) are displayed.
The contour plot represents the spatial modes for the largest
eigenvalue aI of the fiber orientation. Comparing the first mode
with the fiber orientation obtained from the example in Fig. 4, a
strong agreement is observed. This leads to the assumption that
mainly the first mode of the reduced model represents the fiber
orientation.

3.4. Error Analysis

In order to evaluate the number of modes k ≤ m needed for
a sufficient approximation, we determine the error

ηα = ‖Uαred − Uα‖/‖Uα‖. (8)

The error for the displacement after the deep drawing process is
plotted in Fig. 8 (a), the error for the sheet thickness is depicted
in Fig. 8 (b). In the diagrams, an error range is given, showing
the smallest and largest error observed. With increasing num-
ber of modes k in Eq. (5) and Eq. (6), the error is decreasing.
Choosing a relative error of 10−3 as a suitable convergence cri-
teria, a sufficient representation of the displacement is obtained
with 8 modes. For the sheet thickness, at least 10 modes should
be considered to ensure a small error.

Fig. 8 (c) shows the approximation error for the estimated
fiber orientation from the injection molding simulation. Also
with increasing number of modes, the relative error decreases.
However, for some examples using more than 20 modes shows
still an error around 0.01. The slow convergence for the fiber
orientation can be explained by the form of the scalar functions
(cf. Fig. 7). The non-smooth course of the functions implies
that either the number of snapshots is not large enough to find
an appropriate approximation or the influence of the injection
time is too small to be captured by POD.

In the error analysis of the reduced process model, all prede-
fined samples have been considered for calculating the reduced
basis. Hence, all solutions approximated by POD are part of
the data set. In order to evaluate the potential of interpolation,
certain snapshots are not considered in the matrix of snapshots.
Since the spatial modes are independent of α, only the func-
tions λ(α)i has to be evaluated for a certain value α. Here we
interpolate piecewise linear between the supporting points. In
accordance with Eq. (8), we compute the error for the interpo-
lated solution compared to the solution of a full FEA.

In Fig. 9 (a) the error for the deep drawing model is shown.
A convergence of the error is observed for each sample. An er-
ror less than 10−3 cannot be achieved by interpolation. However
using only three to seven modes yields an error less than 1%,
which is a sufficient approximation to be used in online compu-
tations. The error for the fiber orientation depicted in Fig. 9 (b)
is almost constant around 10%. In contrast to the deep draw-
ing model, no suitable approximation can be computed by in-
terpolating the scalar functions λ(α)i. As a result of this study,
the database for the injection molding investigated seems not
suitable for the presented model reduction approach. In further
studies, the influence of the sample space and the number of
snapshots has to be investigated in detail to increase the quality
of the model reduction.
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Fig. 5. POD modes for the displacement after the deep drawing process: spatial modes (top) and corresponding scalar functions (bottom)
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Fig. 6. POD modes for the sheet thickness at the end of the deep drawing process: spatial modes (top) and corresponding scalar functions (bottom)
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Fig. 7. POD modes for the fiber orientation: spatial modes representing the first eigenvalue of the orientation tensor (top) and corresponding scalar functions (bottom)
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Fig. 8. Error of the model reduction compared to the full model: a) error of displacement u, b) error of sheet thickness d, c) error of fiber orientation a

4. Concluding Remarks

In this paper, a reduced order process model based on POD
has been presented. As an example, the manufacturing process
of a multi-material lightweight part has been investigated nu-
merically. The process chain consists of the two steps deep
drawing and injection molding. Using the data from paramet-
ric FEA results obtained in an offline phase, a reduced solution
in form of a series expansion can be computed. Such a formula-

tion allows to compute the solution of a virtual manufacturing
process for different parameters in real time. In the present use
case, the reduced order process model of the deep drawing leads
to smaller approximation errors than the model of the injection
molding. With the presented reduced order process model at
hand final geometry, sheet thickness and fiber orientation can
be given as an parametric input for the structural analysis of the
multi-material lightweight part.
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Fig. 9. Relative error for interpolated data: a) error of the interpolated deep
drawing model and b) error of the interpolated injection molding model

In this investigation no direct coupling was realized between
the two process steps. For an accurate description, this coupling
has to be considered for the design of the reduced order model.
Such a coupling will increase the parameter space so that sam-
pling methods have to be applied in order to avoid a full fac-
torial computational design of experiments during the offline
phase. For a holistic computational production planning, infor-
mation obtained on different levels (e.g. manufacturing and pro-
totyping) has to be transferred into surrogate models for an inte-
grated computational product and production planning (icPPP).
In addition, online feasible surrogates in combination with real
time process data can be used during the production phase for
an inline quality control.
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