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Abstract

The virtual element method (VEM) for curved edges with applications to contact mechanics is outlined within this work.
VEM allows the use of non-matching meshes at interfaces with the advantage that these can be mapped to a simple node-
to-node contact formulation. To account for exact approximation of complex geometries at interfaces, we developed a VEM
technology for contact that considers curved edges. A number of numerical examples illustrate the robustness and accuracy
of this discretization technique. The results are very promising and underline the advantages of the new VEM formulation for
contact between two elastic bodies in the presence of curved interfaces.
c⃝ 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Many techniques were developed over the years to formulate constraints at contact interfaces between bodies in
computational contact mechanics. In finite element (FEM) approach the method of Lagrange multipliers, the penalty
method or other techniques like the augmented Lagrangian formulation or barrier techniques were implemented to
design robust and efficient contact algorithms. An overview is provided in the textbooks of [1,2].

A great number of numerically motivated approaches to discretize the contact area can be found in the literature.
Classical studies of [3–5] on contact discretizations are based on nodal enforcement of the constraints. To improve
the robustness of solution schemes the interpolation was enhanced in [6–9] to reach C1-continuity. This leads to a
ontinuous and smooth field of the normal vector. Isogeometric formulations enhance the contact surface quality,
s discussed in the works [10–13]. Nevertheless such contact formulations still need high implementation efforts.
ortar methods provide a continuous discretization of the contact interface as outlined in [14–21]. Hereby, the
ortar domain represents both non-matching sides exactly. However, the additional discretization of non-matching

urface patches adds to the complexity of the implementation.
A relatively new method – the virtual element method (VEM) – will be presented in this contribution that

eads to an exceptional efficient and stable formulation for non-matching contact interfaces. The method was firstly
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developed by F. Brezzi, L. Beirao da Veiga and coworkers, see [22,23]. The advantage of the virtual element method
is that different numbers of nodes can be used to define an element. This characteristic fits extremely well into a
general contact formulation with non-matching meshes, since it allows to add additional nodes on the fly and thus
to formulate a node-to-node contact approach. VEM has been developed over the last seven years and applied to
various problems in solid and fluid mechanics, an overview can be found in [24]. Limiting ourselves to the solid
mechanics literature, recent works on virtual elements have been devoted to linear elasticity in [25–28], contact
problems in [29,30], elasto-plasticity in [31–33], anisotropic materials in [34,35], curvilinear virtual elements for
2D solid mechanics applications in [36], hyperelastic materials at finite deformations in [37,38], fracture mechanics
in [39–43], topology optimization in [44], vibration problems in [45–47], asymptotic homogenization in [48] and
general element shapes in [49].

In this work, we extend the VEM technology for contact described in [29] towards curved edges/faces. The
additional important feature (i.e. that the virtual elements are allowed to exhibit curved edges) leads to an exact
approximation of the geometry, as well documented in [36,50,51]. It turns out that in the presence of curved
geometries these new virtual elements are the natural choice also for problems in contact mechanics. This is due
to promising results which underline the advantages of the curved VEM approach over the standard one. In this
contribution the augmented Lagrangian formulation is used to describe the contact constrains. Such methodology
is flexible and provides good algorithmic convergence properties as outlined in [6,52].

Two discretization strategies will be pursued in this contribution to compare the new VEM formulations with
the standard FEM: (i) Node-On-Segment, suitable for both FEM and VEM and (ii) Node-on-Node, where the
advantage of VEM can be utilized for non-matching meshes at the contact interface. Moreover, the above VEM
study cases will be analyzed for two stabilization types: sub-triangulation (Stab. A) introduced in [38]; and algebraic
stabilization (Stab. B) developed in [22,27]. Another important aspect of this work is the development of locally
refined meshes for VEM, which produces accurate and more stable results than fully refined Voronoi or triangular
meshes. Furthermore this refinement strategy reduces the number of total degrees of freedom, thus decreasing the
computation time.

The paper is organized as follows. In Section 2 the governing equations for contact problem between two elastic
bodies are outlined. Section 3 summaries the curvilinear virtual element formulations. It includes details on the two
important stabilization schemes of VEM. Afterward, we describe the contact discretization strategies in Section 4.
To verify the proposed virtual element formulations with curved edges, a number of examples in Section 5 are
demonstrated and discussed. Section 6 briefly summarizes the work and gives some concluding remarks.

2. Governing equations

The contacting continua are chosen as linear elastic bodies occupying bounded domains Ωα (α = 1, 2) ⊂ R.
The boundary-value-problem (BVP) is characterized at material points x ∈ Ωα and time t by the displacement field
uα(x, t) in a small strain setting. The gradient of the displacement field defines the symmetric strain tensor of the
geometrically linear theory

εα = ∇s uα = sym[∇uα] :=
1
2

[∇uα + ∇uα T ] . (1)

For the construction of a BVP boundary condition, balance and constitutive equations have to be formulated. The
boundaries Γi of the two elastic bodies in Fig. 1 are decomposed into Dirichlet ΓDα , Neumann Γ α

N and contact ΓC
parts. The Dirichlet and Neumann boundary conditions are defined as

uα = ūα onΓ α
D and tα = t̄α onΓ α

N with tα = σ α nα (2)

n terms of the prescribed displacement ūα and surface traction t̄ , the symmetric Cauchy stress tensor σ α , the surface
ormal vector nα and traction tα related to body Ωα .

The contact boundary ΓC is considered as a priori unknown area where the two elastic bodies come in contact,
s visualized in Fig. 1.

Both bodies have to satisfy the equation of equilibrium on Ω1 and Ω2, respectively, as

div σ α + f̄ α = 0 (3)

where dynamic effects are neglected and f̄ is the given body force.
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Fig. 1. Two continuum bodies Ω1 and Ω2 in contact. Additional to the Neumann and Dirichlet boundaries there also is a contact partition
ΓC of the boundary.

The stresses in Ω1 and Ω2 are obtained from the strain energy function Ψ (u) following the Coleman–Noll
rocedure as

σ α =
∂Ψα(ε)
∂ε

, (4)

here the stress tensor σ α is the thermodynamic dual to εα . For a homogeneous isotropic elastic material, the strain
nergy function for the body Ωα is given by

Ψα
=
λ

2
tr2[ε] + µ tr[ε2], (5)

ith the two Lamé constants λ and µ defined in terms of elastic Young’s modulus and Poisson’s ratio as

λ :=
Eν

(1 + ν)(1 − 2ν)
and µ :=

E
2(1 + ν)

. (6)

An equivalent setting to the strong formulation in (3) is using the potential energy Uα(u). Its variation yields the
equilibrium conditions. Such a choice is often utilized as a basis for the derivation of a discretization scheme and
will here also be applied for the virtual element method. For the contact problem between two elastic bodies in (5)
the potential energy function is given by

U (u) =

2∑
α=1

[∫
Ωα

[Ψα(uα) − f̄ α · uα] dΩα
−

∫
ΓαN

t̄α · uα dΓ α

]
+ Uc . (7)

ere the part Uc is the contribution due to contact constraints.
The contact conditions can be defined by looking at the gap between the two surfaces of bodies Ωα . This gap

is given by

gn = (u2
− u1) · n1

+ g0 (8)

as the normal distance between the bodies. In this relation n1 is the surface normal related to one of the bodies and
g0 is the initial gap between the bodies. Since no adhesion forces are allowed at the contact interface the normal
stress σn has to be negative. On the other hand, no penetration is allowed. Both conditions can be cast in the so
called Karush–Kuhn–Tucker (KKT) conditions, see e.g. [1],

gn ≥ 0, σn ≤ 0 and gn σn = 0 . (9)

where σn = t1
· n1

= −t2
· n2 is the normal contact stress exerted due to action/reaction at the contact interface.

The first of the KKT inequalities is related to the non-penetration; the second KKT inequality states that the contact
stress is always negative; and the third condition takes care of the fact that the gap and normal stress cannot be
non-zero at the same time.

Classically the above KKT relations lead to a variational inequality. This inequality is usually solved by an active
set method that assumes for a given part of the boundary an existing contact, defined as contact interface. At this
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interface the gap between both bodies is zero which introduces a constraint in the formulation. This can be included
in the variational formulation (7) by a special form of Uc. Common formulations are provided by the method
of Lagrange multipliers, the penalty method, combined techniques like the augmented Lagrangian formulation or
barrier techniques, for details see [1].

Since the augmented Lagrangian formulation is most flexible and provides good algorithmic convergence
properties, see e.g. [6] and [52], it is used here. The energy Uc contributing to (7) is then given by

Uc =

{∫
ΓC

(λn +
ϵn
2 gn)gn dΓ for λn ≤ 0 (contact)

−
∫
ΓC

1
2ϵn
λ2

n dΓ for λn > 0 (separation)
(10)

ith the Lagrangian multiplier λn and the penalty parameter ϵn . Here we assume frictionless contact. Thus there
s no contribution in tangential direction within the contact interface. Hence neither stick nor frictional sliding is
onsidered. The formulation (10) yields a C1-continuous saddle point functional, for details see [6].

It is easy to see that this augmented Lagrangian formulation is a combination of the Lagrangian multiplier
ethods which would lead to

U L M
c =

{∫
ΓC
λn gn dΓ for gn ≤ 0

0 for gn > 0
(11)

nd the penalty formulation which would contribute to (7) by

U P
c =

{
1
2

∫
ΓC
ϵn g2

n dΓ for gn ≤ 0
0 for gn > 0

(12)

with the contact penalty parameter ϵn for the normal direction.

3. Formulation of the virtual element method

The virtual element method (VEM) offers an element formulation for a mesh of polygons with a variable number
of nodes, as outlined in [22,23,27,41]. This is possible by choosing the ansatz space directly in the physical domain
and allowing for functions that are non-polynomial.

In the present section we describe the Virtual Element Method for (two dimensional) small deformation solid
mechanics problems, with the additional important feature that the mesh elements are allowed to exhibit curved
edges. The involved spaces and construction were introduced in [50] and further developed in [36,51]. We here
limit the description to the lowest order case (that is the “linear” element) and refer to the above papers for the
higher order case.

3.1. The local VEM space

In standard first-order finite elements, the local “linear” displacement space makes use of 6 degrees of freedom,
given by the three (vector-valued) evaluations at the vertices of the triangle. The present more general construction
keeps the same simple degrees of freedom, that is the evaluation at all vertices of the polygon, but is able to cope
with a general polygon with NV (straight or curved) edges.

We first focus on the case in which all edges are straight, and define the local VEM discrete space Vh(E) on a
generic polygon E . Given the displacement values at each vertex, the virtual element function is first defined on
the boundary, by a simple linear interpolation of the given vertex values on each edge. Thus the VEM space results
to be a (globally continuous) piecewise polynomial of degree one on the boundary ∂E of the element. Afterward,
in order to define the vector field on the whole element E , a typical choice is to assume that the virtual element
space is (component-wise) harmonic inside E . That is, the functions u of the VEM space Vh(E) are required to
satisfy ∆u = 0. It is well known that this leads to a uniquely well-defined function, given the boundary data, and
such function will be continuous. In short:

Vh(E) =
{

u ∈ [C0(E)]2
: u is a first order polynomial on each edge,

∆u = 0 inside the element
}
.

Note that first order vector-valued polynomials are contained in Vh(E), and that in the case of triangles the original
FEM space is recovered.
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.1.1. The curved edge case
In the presence of curved edges, the definition of the virtual element space needs to be modified, still keeping the

ame degrees of freedom as before (that is the evaluation of the displacements at the polygon vertices). We here
ollow the approach introduced in [50], while other possibilities [36,53] may be the topic of future work. Specifically,
he first and main task is, for a given curved edge e ∈ ∂E with assigned displacement values u(ν), u(ν ′) at its extrema
, ν ′ (that correspond to element vertices), to reconstruct a displacement u on the whole curved edge. We therefore
ssume to have, as it happens for instance when the problem geometry is described in CAD, a (piecewise regular)
arametrization of the curved boundary. By a simple restriction, this immediately yields a parametrization of each
urved edge of any mesh element. Such parametrization will be an (invertible) mapping γ : [a, b] → e, where
a, b] denotes the parameter domain (an interval of the real line) and e the curvilinear mesh edge. The curvilinear
pace Se is simply defined by the push forward of vector valued linear polynomials on e through the map γ , that
s

Se =
{
v : e → R2

| v = p ◦ γ−1 with p ∈ (P1[a, b])2}
here P1[a, b] denotes the space of first order polynomials on [a, b]. It can be checked that, if one applies the

bove definition to a straight edge and makes use of a standard linear parametrization, it returns the original “linear”
nterpolation. An example for the case of a circular edge is shown below.

When describing virtual functions u on a curved element E , the rest of the construction is the same as per the
traight case. The vector field u is first defined on the boundary by using either the original “linear” interpolation

(on straight edges) or the construction shown above (on curved edges). This allows to define the displacement u
on the boundary ∂E , given the vertex displacement values. Then, u is extended inside the element by the same
identical procedure as before (that is requiring ∆u = 0). In short:

Vh(E) =
{

u ∈ [C0(E)]2
: u is a first order polynomial on each straight edge,

u ∈ Se on each curved edge e,

∆u = 0 inside the element
}
.

lthough the above space is not guaranteed to contain all “linear” polynomials, its approximation properties are as
ood as those of linear polynomials, as shown in [50].

We end the section with a short example, considering an edge e that is a circular segment with endpoints X1

and X2. Then, the circular segment can be parametrized by a map γ : [a, b] → R2, 0 ≤ a < b < 2π , that to each
∈ [a, b] associates the point of coordinates{

x = r cos θ + xc ,

y = r sin θ + yc .

ere above the real numbers xc, yc, r are fixed once and for all (given the edge geometry), representing the
oordinates (xc, yc) of the center of the circle and the radius r . Clearly γ (a) = X1 and γ (b) = X2. Since all
omputations (such as integrations along the edge) are computed in the parameter domain, the basis functions on
he edge are described directly in terms of θ (in particular, note that one never needs to compute the inverse mapping
−1). As usual, let φ1 and φ2 represent the scalar basis functions associated, respectively, to the nodes X1 and X2.
hen, since these are first order polynomials in the parameter θ (see the definition of Se), one simply obtains

φ1(θ ) = 1 − (θ − a)/(b − a) , φ2(θ ) = (θ − a)/(b − a) .

.2. The VEM projection

Once the virtual space for curvilinear elements is defined, the rest of the construction is the same as for “standard”
EM with straight edges [22]. We describe it here briefly for completeness.
The first step is to introduce a representation of the local virtual space that can be computed, and we do so by

ntroducing a projection Π on first order polynomials. Once one has this projection, the virtual function can be
ritten as

u = Π u + (u − Π u ) . (13)
h h h h
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The range of Π is first order polynomials

Π uh = Ha =

[
1 0 x 0 y 0
0 1 0 x 0 y

] ⎡⎢⎢⎣
a1
a2
· · ·

a6

⎤⎥⎥⎦ (14)

for every 2D element with the set of six unknown parameters a. The goal is now to compute the set of parameters
as a map of the displacement values and thus the nodal degrees of freedom of a virtual element.
The computation of this polynomial function is based on the requirement that the gradient of the remainder

uh − Π uh) is orthogonal to the gradient of any first order polynomial up. This yields∫
E

[
∇up · ∇(uh − Π uh)

]
d E = 0 . (15)

Since ∇up = const . and ∇(Π uh) = const . (15) reduces to the condition that the gradients computed from the
rojected and real displacements must be equal∫

E
∇(Π uh)d E =

∫
E

∇uh d E . (16)

hile the left-hand-side is easily computable, the integral on the right-hand-side cannot be computed because uh is
ot known within the element E . Therefore the integral on the right-hand side is transformed to a boundary integral

∇Π uh |e =
1

|E |

∫
∂E

uh ⊗ N ds (17)

where N is the outward normal to the element surface. For the two-dimensional case this results in[
a3 a5
a4 a6

]
=

1
|E |

NV∑
k=1

∫
ek

[
ux (s)Nx (s) ux (s)Ny(s)
u y(s)Nx (s) u y(s)Ny(s)

]
ds , (18)

here the left hand side is related to the gradient of Π uh and the right hand side represents the edge by edge
ntegration of uh ⊗ N . The symbol s represents a curvilinear coordinate along the edge, while Nx and Ny denote
he components of the normal unit vector N (which will depend on s unless the edge is straight). Here ux (s) and
y(s) are the components of uh defined at the boundary of the virtual element.

From this equation the parameters a3 to a6, representing the strain modes, can be found by simple comparison,
ee for instance [27,54]. For completeness of the polynomial in (14) the two parameters a1 and a2 have to be
etermined. They follow from the condition that the average vertex displacement value, when computed using the
rojection Π uh , has to be equal to the average vertex displacement value of the virtual function uh

1
NV

NV∑
i=1

Π uh(X i ) =
1

NV

NV∑
i=1

uh (X i ) . (19)

Now all kinematic quantities can be expressed in terms of the projection function. Hence, the symmetric strain
tensor is the constant

ε = ∇sΠ uh |e , (20)

that can be interpreted as a computable approximation to ∇s uh .

Remark 1. The above construction requires to compute integrals on curved edges, that can be easily handled by
mapping the curved edge to an interval of the real line (that is, using a parametrization of the edge) and applying
standard 1D gauss integration. Moreover, the above formulas require the calculation of the area |E | of curvilinear
polygons E . This can be computed by directly applying some integration rule valid for curvilinear elements (see
for instance [55,56]) or again reduced to a boundary integral by using an integration by parts.
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.3. Construction of the virtual element

Knowing the potential (12) and the kinematical quantities (20) a virtual element formulation can be derived as
escribed in [27,54]. With the split in (13) the energy can be also split into a part governed by the deformation
radient of the projection and a stabilization part

U (u) = ANE
k=1[Up(Π uh |Ek ) + Ustab(uh |Ek − Π uh |Ek

)] . (21)

here A is the assembly operator. The energy contribution of each virtual element resulting from the displacement
s found by inserting the VEM basis from into the potential (7)

Up(Π uh) =

∫
E

[Ψ (Π uh) − f̄ · Π uh] d E −

∫
∂E

t̄ · Π uh ds . (22)

For the lowest order case here considered, the displacement gradient (20) is constant in E . However the parameters
from (14) still depend on the displacement and thus the linear strain energy function in (5) leads to a linear equations
system for the unknowns Π uh that depend on the nodal degrees of freedom uh |e through Eqs. (18) and (19). Now
the residual vector Rp

e and the stiffness matrix Kp
e can be computed at element level using Up. This yields

Rp
e =

∂Up(Π uh)
∂uh |e

and Kp
e =

∂Rp
e (Π uh)
∂uh |e

(23)

that are thus explicitly computable through uh |e . Note however, that the contact area is not known a priori in contact
mechanics. Hence the resulting equation system is nonlinear due to the inequality (10).

3.4. Stabilization of the method

A stabilization is needed since the range of the projection operator Π uh can only cover the basic (first order
polynomial) modes but not all the additional modes that stem for elements with more than 3 vertices. Different
stabilization techniques can be employed; since the stabilization in presence of curved edges is identical to the
straight-edge case we will limit ourselves to a brief description of some standard options.

3.4.1. Stabilizations directly based on the degrees of freedom
The easiest approach which was described in [22,27] is to introduce a pointwise error measure between the

approximation function Π uh(X I ) and the real displacement values uh |I at node I:

du(X I ) = [uh |I − Π uh(X I )] (24)

where uh |I are the nodal values at the Ith vertex of the virtual element. When summed up over all element vertices
NV this leads to a stabilization term

Ustab =
γ

2

NV∑
I=1

[uh |I − Π uh(X I )]T [uh |I − Π uh(X I )] (25)

where the parameter is typically taken as

γ = γ0
h2

E tr (D)
tr (HT (X I )H(XI ))

(26)

hich includes the element diameter hE as well as a part of the constitutive tensor D. Here only the parameter γ0
that can be taken equal to 1) has to be chosen. This stabilization has the merit of being very simple and working
ell in many situations. Moreover it can be tuned to get a more robust behavior in the presence of volume locking,

or instance by making the constant γ only dependent on the deviatoric part of the constitutive tensor. This element
tabilization may lead to unphysical dents in the solution profile in the vicinity of nodes where vertices have a small
istance to each other (in relation to the parent element size), see for instance [29].

A more advanced option was proposed in [36,57]

Ustab =

NV∑
[uh |I − Π uh(X I )]T M [uh |I − Π uh(X I )] (27)
I=1
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where the i th term of the diagonal matrix M is the maximum among γ and the corresponding entry of the consistent
stiffness matrix Kp

e in (23). This option often allows for a better accuracy, especially in cases where one is handling
a complex local space (such as 3D problems and high order approximation degree) but does not cure the small-edge
phenomena above.

A stabilization that cures the small-edge phenomena (sometimes at the price of a slightly worse overall accuracy)
is the one proposed in [29]. This stabilization can still be described in the form (27), but with matrix in the form
M = hEQTQ. Here the matrix Q corresponds to the first order finite difference matrix along the element boundary
(for the details, see [29]). In such a way, the difference of displacement values at vertices that are very near (with
respect to the parent element size) is strongly penalized.

3.4.2. Energy stabilization
The following approach [58] was introduced for the virtual element method in [54]. In contrast to the other

stabilization methods this approach is based on the error in the resulting deformation energy rather than the error
in just the displacement values. The strain energy Up, see (21), is extended by a supplementary energy Û

U = Up + Û (uh ) − Û (Π uh)  
Ustab

(28)

so that for a convergent solution with very small elements Û will cancel out, guaranteeing a consistent formulation.
or coarser meshes the supplementary energy will work as a non-linear penalty term. The energy term related to

he projected field Π uh can be evaluated as in Section 3.3.
Since the contribution of uh cannot be directly computed, a triangulation of the polygonal element is needed

nd a separate linear ansatz is used for every triangle. Note that this triangulation only uses the nodes that define
he polygonal element, hence no extra degrees of freedom are introduced. Based on this ansatz the total energy
n E is computed as the sum over the Nint internal triangles. In the presence of curved elements, one can simply
rst generate a standard straight-edge polygon E ′ by vertex-interpolation of the original curvilinear polygon E , and
nally triangulate the element E ′. Since stabilization need not to be accurate, substituting E with E ′ (but only when
alculating the stabilization, not the consistent part) will not hinder the scheme performance.

Based on this ansatz the total energy in E is computed as the sum over the Nint internal triangles

Û (uh |e ) =

Nint∑
m=1

∫
Ωm

ψ̂(uh |m) dΩ . (29)

The strain energy ψ̂ can be freely selected. Here we use a Neo-Hookean material model with modified elastic
Young’s modulus Ê and Poisson’s ratio ν̂ in order to optimize the element behavior, see [54] for the details. For
the internal triangles linear ansatz functions are assumed, so that no numerical integration is necessary since all
kinematical quantities in the sub-triangles are constant.

The last part in this stabilization procedure is the determination of the material parameters Ê and ν̂. As described
by [59] and applied in [54] for virtual elements, the correction can be done to favor locking free and good bending
behavior; we refer to such publications for an explicit expression of these two parameters.

4. Contact discretization

In computational contact mechanics exist many techniques to discretize the contact interface. In this work FEM
and VEM will be compared. Two simple discretization strategies will be pursued: (i) Node-On-Segment, suitable
for both FEM and VEM and (ii) Node-on-Node, where the advantage of VEM can be utilized for non-matching
meshes at the contact interface:

– Node-to-Segment contact in which a node from body Ω2 contacts a segment from the other body Ω1. This is
a classical contact discretization for non-matching meshes, see e.g. [1]. This approach is sketched in Fig. 2.
In this case the integrals in (10) can be written as

Uc =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∫
ΓC

(λn +
ϵn
2 gn)gn dΓ =

nc∑
i=1

(λn i +
ϵn
2 gn i )gn i Ai ∀ λn i ≤ 0 (contact)

−
∫
ΓC

1
2ϵn
λ2

n dΓ =

nc∑
1

2ϵn
λ2

n i Ai ∀ λn i > 0 (separation)
(30)
i=1
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Fig. 2. Node to segment discretization.

Fig. 3. Definition of the gap for node i .

where Ai is the area of the segment k–(k + 1) that is in contact with node i , see Fig. 2, and nc denotes the
total number of points being in contact. The gap gn i is then computed according to Fig. 3 as a difference
between point of body Ω2, x2

i , and its projection on body Ω2, x1
î
. This leads to

gn i =

[
x2

i − x1
î

]
· n1 (31)

The projection is defined as x î = x1(ξ̄ ), where ξ̄ has to be found first. Depending on a case, the projection
can usually be computed, by using a closest point projection onto the surface of body Ω1 for node i which
follows from:[

x2
i − x1(ξ̄ )

]
· x1

,ξ (ξ̄ ) = 0 , where x1
,ξ =

∂x1

∂ξ
. (32)

In general this is a nonlinear equation to be solved locally by Newton–Raphson method. For a line segment we
have, x(ξ ) = xk + ξ (xk+1 − xk), and in case of a circular segment: x(ξ ) = xC + rC{cos(φ0 + ξ∆φ), sin(φ0 +

ξ∆φ)}, where φ0 is angle of starting point and ∆φ angle between starting and end point, xC and rC are
centroid and radius of a circle.

– As another possibility for the contact discretization, node insertion can be applied to obtain a node-to-node or
segment-to-segment contact. This is only possible in the case of virtual elements since these elements allow
arbitrary numbers of nodes. This idea was presented first in [29] for geometrically linear problems using
linear virtual elements and extended to nonlinear problem in [30] and is now adopted for contact problems
with curved edges. In this case a projection scheme is employed that introduces nodes at the contact interface
opposite to existing nodes and thus allows a node-to-node discretization of the contact interface, see e.g. [29]
and Fig. 4. In this case the closest point procedure is used to define nodes on the opposite surfaces of the
bodies. In Fig. 4 a new node k̂ related to node k is introduced on the surface of Ω2 as well as a new
node î related to node i is introduced on the surface of Ω1. The calculation of the projection is identical to
node-on-segment, but instead here the projected node has to physically be inserted into the virtual element.
This leads to a change in the element connectivity and number of degrees of freedom of the system. The
discretization of node-to-node performed in similar manner to node-on-segment. The gap function (32) is
used. Now the integral in (10) has to be evaluated for each node-to-node pair that is in contact. There are

again two possibilities
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Fig. 4. Contact discretization using node insertion.

• The first one is a simple evaluation related to the contact points that yields equation (30), applied for
each nodal pair at the contact interface, see Fig. 4 where nc is now the total number of nodal pairs.

• The second evaluation of (10) needs a definition of the gap function and the Lagrangian parameters in
one segment, e.g. the segment between nodes k and i with the pairs k–k̂ and i–î and the length ls . In
this segment we can interpolate the Lagrangian parameter as

λn s(ξ ) = [(1 − ξ ) λk + ξ λi ] (33)

and the gap function within this segment by

gn s(ξ ) = [(1 − ξ ) gn k + ξ gn i ] (34)

with ξ being the local coordinate that defines the segment (0 ≤ ξ ≤ 1).

Uc =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∫
ΓC

(λn +
ϵn
2 gn)gn dΓ =

ns∑
s=1

∫ 1
0 (λn s +

ϵn
2 gn s)gn s lsdξ ∀ λn i ≤ 0 (contact)

−
∫
ΓC

1
2ϵn
λ2

n dΓ =

ns∑
s=1

∫ 1
0

1
2ϵn
λ2

n s lsdξ ∀ λn i > 0 (separation)

(35)

The integrals over the segments can be evaluated exactly for the interpolation in (33) and (34). This
leads to∫ 1

0
(λn s +

ϵn

2
gn s)gn s lsdξ =

ls

6

[
εn(g2

nk + gnk gni + g2
ni ) + (2λk + λi )gnk + (λk + 2λi )gni

]
(36)

and ∫ 1

0

1
2ϵn

λ2
n s lsdξ =

ls

6ϵn
(λ2

k + λkλi + λ2
i ) (37)

oth discretization schemes are employed in this contribution, although only the first option of node-to-node contact
as used in the shown examples. Differences in the results are shown in the following examples.

. Numerical examples

We now demonstrate the performance of the proposed virtual element formulation for curved edges with
pplications to contact mechanics by means of three representative numerical examples. For comparison purposes,
esults of the standard finite element method are also demonstrated. The results are very promising and underline the
dvantages of the new VEM formulation for contact between two elastic bodies in the presence of curved interfaces.

In general the following mesh discretizations will be analyzed:

– FEM-STR: standard first order FE mesh with 4 noded quadrilateral elements.
– VEM-STR: regular VEM mesh with 4 noded quadrilateral elements.
– VEM-STRr: locally refined VEM-STR element.

– VEM-VRN: Voronoi cell mesh with arbitrary number of element nodes.
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Fig. 5. Hertzian contact problem. (a) Geometry and boundary conditions; (b) structured 4 node quadrilateral discretization (STR); (c) Refined
structured mesh (STR-ref) and (d) Voronoi cell mesh (VRN); (e) Refined Voronoi cell mesh (VRN-ref).

– VEM-VRNr: locally refined VEM-VRN element.

These listed cases will be analyzed for both described stabilization types: sub-triangulation (Stab. A) introduced
in [38], see Section 3.4.2; and algebraic stabilization (Stab. B) developed in [22,27], see (25). Additionally the
following contact types of Section 4 will be discussed:

– SN ln-ln: standard node to segment contact (Line-to-Line), where both edges are assumed linear,
– SN ln-crv standard node to segment contact (Line-to-Curve), where one edge (e.g. disk in the first example)

is assumed curved,
– NN ln-crv node on node contact (Line-to-Curve), where disk edge is assumed curved. Due to node insertion,

this type can only be performed on VEM,

where the nodes are projected from Ω1 to Ω2 and opposite.
The locally-refined structured meshes are refined until elements within the predefined contact area refined

nre f ∈ (1, 2, 3, 4) times. Whereas the locally-refined Voronoi mesh is based on the refinement until elements in
the contact area of mesh have an area below |Ω̄e|/n2

re f , where |Ω̄e| is average element size of non-refined Voronoi
esh.

.1. Hertzian contact problem

The first example is the elastic contact between a disk Ω1 and a nearly rigid block Ω2, representing the so-
alled Hertzian contact problem. It is a well-known benchmark test in contact mechanics due to the existence of an
nalytical solution (AS) to verify the contact discretization. In line with [60], the analytical solution of the contact
ressure pn over the contact area is given by

pn =
4R t̄
πb2

√
b2 − x2 with b = 2

√
2R2 t̄
πE∗

and
1

E∗
=

1 − ν2
1

E1
+

1 − ν2
2

E2
(38)

ence, this solution can be compared with the results obtained by the virtual element method VEM.
The geometrical setup and the loading conditions of the contact problem are depicted in Fig. 5(a). The block

ength is chosen to be L = 20 and height is H = 10, whereas the disk radius is set to R = 10. On the lower half of
the disk we apply a uniform line load of magnitude t̄ = 25 hence the total load is 500 as shown in Fig. 5(a). The
elastic material parameters are chosen as E1 = 7000, E2 = 70000 and ν1 = ν2 = 0.3. Using the above described
set of parameters, the maximum contact pressure yields pn,max = 333.61 and the contact width is b = 0.954 which

ill be compared with numerical solution.
Fig. 6 demonstrates the stress distribution σyy for different mesh discretization. As a reference model, we used

the refined finite element mesh in Fig. 6(b). Here similar results were observed for all VEM and FEM elements. In
order to investigate the virtual element performance, a comparison with the analytical solution is performed. To this

end, in Fig. 7 a complete convergence study where various meshes and three contact schemes, namely: Line-to-Line
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Fig. 6. Hertzian contact problem — Stress distribution σyy for node on curved segment contact case (SN: ln-crv): (a) Standard FEM-STR;
(b) fine FEM-STR (overkill solution); (c) Standard VEM-STR; (d) local refined VEM-STRr; (e) coarse VRN mesh and (f) local refined
VRNr mesh.

Fig. 7. Hertzian contact problem – convergence study – the error between example and analytical solution (AS).

nd Line-to-Curve contact techniques for node to segment and node to node for VEM with both stabilization. The
onvergence study shows the error between analytical curve and numerical curves. As expected a linear convergence
ehavior is achieved in the simulations. Moreover, we observe that all types of contact schemes yield similar results
Fig. 7) which converge to the analytical solution with increasing the mesh refinements. Furthermore, both analyzed
tabilization techniques, lead to a good agreement with the analytical solutions for finer meshes as shown in Fig. 8,
here for finest refinement the graphs coincide, except FEM solution for the same number of mesh divisions

ndiv = 6, which reruns slightly overestimated stresses, however Stabilization A returns lower errors. Note that
he local refinement of the mesh around the contact area produce similar results to the fully refined meshes, yet
ith less degrees of freedoms, as illustrated in Fig. 9 and can also be observed at the convergence plot (Fig. 7).
he significant deviation of the FEM solution from the maximal AS contact pressure can be resolved by further
esh refinement, as demonstrated in Fig. 9b for n = 9.
div
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Fig. 8. Hertzian contact problem — Stress distribution in normal direction over the contact zone for various VEM compared with FEM
and analytical solution for Stabilization A. The stresses obtained from actual stress on surface as σn = (σ n) · n are shown in (a) and the
tresses obtained by normalization of contact element residuals as σn = (Rc/Ac) · n are shown in (b).

Fig. 9. Hertzian contact problem — Stress distribution in normal direction over the contact zone defined as σn = (σ n) · n for Node-to-
urve-Contact of VEM-STR in (a); refined VEM-STRr in (c, d); refined VEM-VRNr (e, f). Graphs (a, c, e) belong to Stabilization A and
raphs (d, f) for Stabilization B. Whereas, the FEM solution is given in (b).

.2. Beams in contact

In the second example we study the contact among two beams. The two beams are clamped on one side and
n contact on the other side. The setup and loading are shown in Fig. 10(a). The beam sizes are: H1 = H2 = 1,
L1 = L2 = 20 and R = 2. A uniform line load is applied on top of the free end of the upper beam Ω1 with
magnitude t̄ = 50, as illustrated in Fig. 10(a). The elastic material parameters are selected as E1 = E2 = 70000
nd ν1 = ν2 = 0.3. Four different VEM mesh types are investigated to illustrate the performance of the virtual

element method under bending and contact deformations, as demonstrated in Fig. 10(b–e) and are compared with
FEM on a structured quadrilateral mesh as shown in Fig. 10(d).

Fig. 12 depicts the distribution of the von Mises stress σV M for the four different elements in Fig. 10. All elements
give similar results and are in agreement with the overkilling solution.

Another goal here is to illustrate the performance of the stabilization techniques of the virtual element method in
a contact problem for thin bending state. To this end, Fig. 11 shows a convergence study for the displacement at the
top left corner point of Ω1 versus mesh refinements. We observe that all schemes converge to the benchmark solution
obtained with the overkilling mesh. The stabilization based on the sub-triangulation (A) yields more accurate results
for this thin beam bending problem as documented in [29,38]. In this example, no major difference between contact

techniques was observed.
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s

Fig. 10. Beams in contact. (a) Geometry and boundary conditions; (b) Voronoi mesh (VRN); (c) locally refined Voronoi mesh (VRNr); (d)
structured (STR) mesh; and (e) locally refined structured mesh (STRr).

Fig. 11. Beams in contact — convergences study. Comparison between different meshes, contact schemes and stabilizations. Overkill FEM
tructured solution was used as a reference displacement uy,ref.

Fig. 12. Beams in contact — von Mises stress σV M distribution. (a) Uniform FEM-STR; (b) uniform VEM-VRN and (c) local refined
VEM-STRr; (d) local refined VEM-VRNr.

Possibly, the performance of stabilization (B) with respect to thin bending problems (such as the present one)
could be improved by devising a stability parameter γ (see (25)) that takes also into account the aspect ratio of the
element; such investigation is outside the focus of the present work.
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.3. Circular joint contact

In the last example, the elastic contact between two circular objects are analyzed. The aim of this test is to
llustrate the benefits of using curved virtual elements in comparison with the standard VEM approach with straight
dges. Hence both bodies are curved at the contact zone to check the performance of the proposed formulations.
ig. 13(a) depicts the geometry, boundary conditions and loading of the joint contact. Hereby the lower block Ω2

s fixed at the outer straight boundaries in the normal direction. A distributed load, as a vertical force of total value
Fy = 2500, is applied at the top of the circular body Ω1, as illustrated in Fig. 13(a) with magnitude of t̄ ≈ −400
ince the load width depends on the actual mesh. The block Ω2 length is chosen to be L = 40, height is H = 20
nd the radius of block curvature is ROU T = 10.05 and radius of the disk is RI N = 10. The circles touch at the
ottom point. We employ four different virtual element meshes and compare their results with the FEM solution.
he contact pressure on the two bodies is plotted with blue and green colors in Fig. 14.

Fig. 15 demonstrates the von Mises stress distribution σV M for different mesh discretizations. We observe similar
results for all VEM meshes and curved contact discretizations, in good agreement with the reference solution
obtained with an overkilling mesh. To illustrate the advantage of using a curved-to-curved virtual element contact
formulation, as opposed to a line-to-line approach, Fig. 16 compares different discretization techniques for all contact
schemes. Here, one clearly observes the oscillation of the contact normal stress for all elements when making
use of the line-to-line contact scheme, see Fig. 16(a, b). The meshes in line-to-line contact will interpenetrate
each other already in initial configuration, producing additional stresses, while they should be stress-free-state. On
the contrary, the curve-to-curve contact VEM scheme yields significantly smoother contact pressure patterns, as

Fig. 13. Circular joint contact. (a) Geometry and boundary conditions; (b) FEM/VEM-STR uniform discretization; (c) local refined VEM-STRr
(d) VEM-VRN with Voronoi cell mesh; and (e) local refined VEM-VRNr mesh.

Fig. 14. Circular joint contact — color plot for contact pressure distribution: (a) Uniform FEM-Q1 mesh; (b) fine VEM-VRN; (c) uniform
VEM-STR mesh; (d) refined VEM-STRr mesh; (e) VEM-VRN mesh and (f) refined VEM-VRNr mesh.
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Fig. 15. Circular joint contact — Stress distribution σV M . (a) Standard FEM-STR; (b) fine VEM-VRN; (c) regular VEM-STR; (d) locally
refined VEM-STRr; (e) coarse VEM-VRN mesh and (f) locally refined VEM-VRNr mesh.

Fig. 16. Circular joint contact — contact normal stress over the contact zone: Line-to-Line-Contact in (a, b), Curve-to-Curve contact in
(c, d) and Node-to-Node with Curve-to-Curve contact in (e, f) for stabilization A and different mesh discretizations. Stresses obtained by
normalization of contact element residuals as σn = (Rc/Ac) · n are shown in (a, c, e) and stresses obtained from actual stress on surface as
σn = (σ n) · n are shown in (b, d, f).
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hown in Fig. 16(c–f). Furthermore, note that in this test the (A) and (B) stabilizations produce very similar results.
oth Node-to-Node and Node-to-Curved Segment contact formulations produce similar results. However the former
roduces better stress distribution, where stresses are obtained from actual element stresses (Fig. 16)(b, d, f), while
atter produces better stress distribution when stresses are obtained from normalization of residual (Fig. 16)(a, c,
), where it is observable that the oscillations are present due to unknown contributing areas.

As a final remark, we note that one may apply typical smoothing techniques in order to improve both schemes
ccuracy.

. Conclusion

A virtual element scheme for curved edges with applications to contact mechanics was outlined within this
ork. In VEM, arbitrary shaped elements with a number of nodes in an element can be changed easily during

he simulation process. Here we used a non-matching mesh at interfaces, hence avoid the need for node-to-
ode contact. In this work, the recently developed VEM technology for contact mechanics was further extended
owards curved edges to account for exact approximation of complex geometries at interfaces. It was noted that a
urvilinear implementation does not imply any significant complication with respect to standard VEM methodology.
urthermore, it can be implemented into existing codes quite easily. Numerical results were very promising and

ndicate the proposed curvilinear VEM as a viable and competitive technology for contact between curved surfaces.
hroughout the paper edges with constant curvature (i.e. circle) were considered, however the method can be
eneralized to any parametrizable curve.
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