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Abstract—Live SAR imaging from small UAVs is an emerging
field. On-board processing of the radar data requires high-
performance and energy-efficient platforms. One candidate for
this are Transport Triggered Architecture (TTA) processors. We
implement Backprojection and Backprojection Autofocus on a
TTA processor specially adapted for this task using OpenCL.
The resulting implementation is compared to other platforms in
terms of energy efficiency. We find that the TTA is on-par with
embedded GPUs and surpasses other OpenCL-based platforms.
It is outperformed only by a dedicated FPGA implementation.

Index Terms—SAR, TTA, energy-efficiency, backprojection

I. INTRODUCTION

Imagery collected using Synthetic Aperture Radar (SAR)
can be used in a wide variety of fields, ranging from agriculture
over civil protection to military applications. Currently, most
SAR data is collected using aircraft or satellites as carrier plat-
forms and processed after collection by large computer clusters
[1]. Lately, there has been interest in using small unmanned
aerial vehicles (UAVs, “drones”) as carrier platforms [2]–[4].
When the collected data could be processed in real-time on
board the drone, a live feed of the SAR image could be sent
to ground, similar to optical video feeds from current UAVs.
This could open new applications in the aforementioned fields.

The raw radar collected by the drone has a high data rate and
can hardly be transferred to a ground station in real-time. This
makes on-board processing essential. The resulting images
can be compressed lossy to fit the limited downlink channel
capacity. A key challenge for this is the high computational
complexity of SAR data processing and the limited weight,
space, and power allowance of the UAV.

In this work, we explore the use of customized processors
specialized for SAR processing (application-specific instruc-
tion set processors, ASIPs) to tackle this problem. One archi-
tecture that is specially optimized to reach high performance
while maintaining low power consumption is the Transport
Triggered Architecture (TTA) [5], [6]. In this processor design,
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only data transports are explicitly coded, operations happen as
a side-effect thereof.

The OpenASIP project [7] provides a framework to gen-
erate, simulate, and implement ASIPs based on the TTA
paradigm. The resulting processors can be programmed in
OpenCL using the open-source implementation PoCL [8]. The
main contribution of the work is the description of a TTA
processor optimized for SAR processing and its throughout
comparison to other platforms.

To handle the non-linear flight path of a wind-exposed
drone, Backprojection [9] is used as the image formation
algorithm, augmented by Backprojection Autofocus [10] for
residual error correction.

II. RELATED WORK

The Backprojection algorithm for image formation has been
implemented on a variety of platforms. To the best of the
author’s knowledge, the use of TTA processors has not yet
been explored for synthetic aperture radar algorithms.

Broich [11] reports on a custom DSP architecture optimized
for Range-Doppler processing, which draws some ideas from
TTAs. The proposed architecture shows a 14 × reduction in
cycles, compared to a Texas Instruments C66x. Aside from
that, there are some reports of TTAs being used for software-
defined radio (SDR) implementation of mobile communication
standards [12]–[14]. The TTA described in [13], which is op-
timized for decoding of polar codes, is reported to outperform
state-of-the-art ASIP implementations fivefold in throughput
while consuming an order of magnitude less energy. Compared
to an x86 processor, the throughput is increased by 37 % and
the energy consumption is two orders of magnitude lower. In
[12] the authors describe a multi-TTA architecture for LTE
baseband processing. They find that their TTA implementa-
tion achieves a 1.85 to 10.73 better mW/MHz rating than
comparable architectures. The “LordCore”, a TTA processor
for the decoding of Turbo-Codes [14] is said to outperform
GPU-based implementations by three orders of magnitude
in the performance/power ratio. Compared to fixed-function
implementations of the algorithm, the TTA implementation
requires more power, but “[the] results show that the energy
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Fig. 1. Structure of a TTA processor with two ALUs, two register files,
and five transport buses. The colored arrows indicate data transports that are
executed simultaneously. Reproduced from [14].

penalty paid by programmability can be made very small”
[14].

The mentioned reports indicate that similar advantages in
the performance/power ratio may also be achieved in the field
of SAR processing.

III. TRANSPORT TRIGGERED ARCHITECTURE

In the Transport Triggered Architecture (TTA) operations
are executed as a side effect of data transport [15]. As a
consequence, a TTA program consists of a list of data transport
instructions, or “moves”. This is in contrast to conventional
processors, where the operation on the data is encoded in the
instructions, and data transport happens as a side effect. The
TTA methodology has some properties that are advantageous,
especially for embedded low-power applications: Since the
structure and internal architecture of the processor is directly
exposed to the compiler, much of the complexity can be
moved to the compile-time, reducing the hardware needed
for decoding and processing of instructions. Additionally,
results can often be moved directly from the output of one
functional unit (FU) to the input of the next one, bypassing
the register file. This greatly reduces the number of register
file ports, which is a major concern for conventional Very
Long Instruction Word (VLIW) architectures. Both properties
of the TTA concept yield a reduced hardware complexity and
therefore reduced power consumption.

Fig. 1 shows an example TTA processor. The horizontal
lines indicate transport buses through which data is transferred
between the FUs. Each connection between an FU’s input
or output port and the bus system is called a socket. It
shall be noted that not all possible connections between a
socket and the transport buses must be realized. Omitting
connections reduces the required hardware resources together
with the instruction word length, but removes flexibility from
the resulting architecture. Each bus can operate independently
from the others so that multiple transports (and therefore
operations) can happen at the same time.

The number and type of FUs, the number and size of
register files, and the interconnection network provide multiple

independent customization points to adapt the TTA processor
to the application. In this work, the processor template and
customization tools from the OpenASIP project [7] were used.
More information about the associated workflow can be found
in [6].

IV. OPENCL IMPLEMENTATION OF SAR ALGORITHMS

To implement the selected SAR algorithms—
Backprojection and Backprojection Autofocus—on the
TTA, the open source OpenCL implementation PoCL [8]
was employed. It supports, among others platforms, TTAs
designed with the OpenASIP toolkit. More information on
PoCL can be found in [8].

The OpenCL programming model consists of buffers, which
contain the data being processed, and kernels, which are small
programs that describe the operations to apply to the data in
the buffers. Kernels can be launched on a grid with up to three
dimensions. The OpenCL runtime automatically parallelizes
the kernel instances when possible, using multiple cores of
the compute device.

The OpenCL host program is implemented in Python using
PyOpenCL [16]. It runs on the host processor of the target
platform and orchestrates the kernels launched on the compute
device. The kernels itself are implemented in OpenCL C.

To avoid the call overhead, each kernel invocation can
process a small patch of pixels in a loop. This increases
the performance, but limits the image dimensions to multiple
of the patch size. We used a size of 16×1. All values are
represented using a fixed point number representation.

A. Backprojection

The Backprojection algorithm [9] is implemented as a single
kernel, which projects all echo lines onto the image grid. In
case that the image does not completely fit into the available
memory, the kernel must be launched multiple times to process
different parts of the image. In the Backprojection algorithm
all pixels are computationally independent, so this can be
done without problems. Similar splitting is applied for the
echo data input: If the input exceeds the available memory,
the kernel is launched multiple times until all collected echo
lines are projected and accumulated. The CORDIC algorithm
[17] is used for complex rotations and vector length and angle
calculations.

B. Backprojection Autofocus

The Backprojection Autofocus algorithm [10] works by
finding the optimal phase correction for every echo data
line w.r.t. some sharpness metric. The phases are optimized
one after the other, in a coordinate descent approach. In the
original work by Duersch and Long [10] Brent’s algorithm is
used to find the minimum of the (negated) sharpness metric.
This approach allows only one candidate correction to be
evaluated simultaneously. For parallel architectures, like GPUs
or FPGAs this can be a bottleneck. The PAFO (“Parallel
Autofocus Optimization”) variant [18], [19] overcomes this
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Fig. 2. Scalar (top) and vector (bottom) datapath of the proposed TTA architecture. It consists of nine FUs , two load-store units , four register files
(two scalar, one boolean, and one vector) , one long immediate unit , and a global control unit .

limitation by using a specialized numeric optimization algo-
rithm that allows multiple samples to be evaluated in parallel.
Even for architectures with limited parallelism, like TTAs,
this approach is beneficial, since the overhead of evaluating
multiple candidate phases instead of one is small. For this
reason, the PAFO algorithm is used here.

The Backprojection Autofocus algorithm starts by calculat-
ing the contribution of a single echo line to the final image.
For this, the same Backprojection kernel as for the initial
image formation is used. Afterwards two additional kernels are
used to calculate the sharpness metric for multiple candidate
pulses, and apply the final phase correction for echo data line,
respectively. If the image does not fit into the device memory,
the kernels have to be launched multiple times. In case of the
sharpness metric calculation, the results from all image slices
are summed on the host CPU to find the final value.

The actual numeric optimization algorithm, i.e. the selection
of the candidate phases and the interpolation of the final phase
correction is executed always on the host CPU using floating
point calculations.

V. TTA ARCHITECTURE AND OPTIMIZATIONS

The implemented TTA processor is a single-core, 4×32
SIMD architecture. A visual overview is given in Fig. 2. It
features (mostly) separate datapaths with a total of 9 FU for
scalar and vector operations as well as two scalar and one
vector register file. The processor has access to two address
spaces, “global” and “local”. The 512 KiB global address
space is accessible via an AXI bus by the host processor
and is used for OpenCL buffers and to communicate with
the host. The 1 KiB local memory is only accessible by the
TTA and contains the stack and OpenCL local and private
memory regions, if any. The instruction length of the processor

is 122 bit. The processor is controlled using a debug interface
over the AXI bus.

A. Special instructions

To avoid the penalty in hardware resources and power con-
sumption introduced by floating-point capable hardware, only
fixed-point operations are supported. Furthermore, some key
calculations in the SAR algorithms were identified, and custom
special instructions were added to support these operations.
Every group of instructions is implemented in a similar named
FU (cf. Fig. 2).

1) Multiply-and-shift: In every fixed-point multiplication,
the result must be shifted to adjust the position of the binary
point. A special instruction MULSHIFT was added, which
performs the multiplication and shift in a single instruction.
This additionally waives the need for 64 bit registers for storing
the intermediate results of a 32 bit multiplication.

2) CORDIC: As mentioned in Section IV-A, the CORDIC
algorithm is used for several vector operations. To
support this, two operations, CORDIC_CIRC_ROT and
CORDIC_CIRC_VECT, were added, which perform a single
CORDIC iteration in circular rotation and vectoring mode, re-
spectively. A third operation, CORDIC_QUAD_MAP, performs
the initial quadrant mapping operation.

3) Complex multiplication: To aid with complex multipli-
cation, an instruction CMUL_SHIFT was added that performs
a complex multiplication of two integers (treated as real and
imaginary part) and performs the necessary shift to correct for
the fixed point format.

B. SIMD

Every kernel instance operates on a patch of 16 pixels in
a loop inside the kernel. Identical operations are applied for
every pixel, so the loop can be effectively vectorized with



Fig. 3. Datasets used for evaluation. Left: A simulation with three point reflectors. Right: Highway crossing, collected at X-band (9.99 GHz).

SIMD (Single Instruction Multiple Data). A SIMD width of 4
was chosen—resulting in 128 bit wide vectors—so the kernel
loop is reduced to four iterations. The vector data path of
the processor includes SIMD versions of all basic and custom
operations and the Load-Store units are extended to support
128 bit operations.

VI. EVALUATION

To assess the performance of our proposed implementation,
we synthesized it for an ASIC technology and evaluated its
performance based on an FPGA-based prototype. Energy re-
sults are compared to other OpenCL-based implementations as
well as other implementations of the Backprojection algorithm.
For evaluation, we used two datasets (cf. Fig. 3 and Table I):
One synthetic, featuring three point reflectors, and a real,
showing a highway crossing [20]. The latter was collected
at X-band and is reminiscent of a realistic situation for the
aforementioned UAV scenario.

Data processing consists of two steps: Backprojection im-
age formation and Autofocus processing. The latter can be
broken down into the generation of the single pulse image
(“SPI”) using Backprojection, the sampling step to generate
the metric values from candidate corrections (“Sample”), and
the resulting phase correction (“Apply”).

For each step, platform, and dataset we measured the time
spent executing the OpenCL kernels by using OpenCL pro-
filing information. For an evaluation of the energy efficiency,
we measured the power requirements of each platform during
the execution of the OpenCL program.

We used two PAFO iterations, each with 8 samples, through-
out the evaluation. The output image size was 512 px × 512 px,
except for the TTA-FPGA prototype, where 128 px × 128 px
was used to reduce the runtime. The synthetic and highway
dataset consists of 256 and 1000 echo lines, respectively. All
measurements were repeated ten times and then averaged.

A. ASIC Synthesis

For evaluation purposes, the system was implemented on a
PYNQ-Z1 evaluation board. To run the OpenCL host program
and control the TTA processor, Linux was run on the chip’s
ARM cores.

Afterward, an ASIC frontend synthesis was performed
for the commercial 22 nm Fully-depleted Silicon-on-Insulator

technology from GlobalFoundries (“22FDX”) using Cadence
tools for a clock frequency of 700 MHz. A multi-corner
analysis with 0.72 V to 0.88 V operating voltage and −40 °C
to 125 °C ambient temperature was performed. The resulting
chip area is 971 µm2 with a utilization of 37.6 %. The critical
path is formed by the vector register file and the vectorized
ALU. In that path, 803 ns (56.2 %) are spend in the register
file alone.

The kernel runtime for the TTA/ASIC was calculated from
FPGA prototype measurements by scaling with the clock
frequency. The power requirements were estimated after the
frontend synthesis process. 54 % of the estimated 201 mW are
used for the SRAM memory.

B. Reference platforms

To provide baseline results, we compared the implementa-
tion to reference platforms whose power and space require-
ments make them also suitable for use on board UAVs.

1) NVIDIA Jetson AGX Xavier: The Jetson AGX Xavier
consists of a 512-core CUDA-capable embedded GPU (Nvidia
Volta) as well as eight ARMv8.2 cores (Nvidia Carmel). It
is fabricated in a 12 nm process [21]. From prior work, [19]
we report on a CUDA implementation of the Backprojec-
tion and PAFO algorithm. This implementation is labeled
“Xavier/CUDA” later on. As no detailed timing information
for the different steps of the PAFO algorithm was available,
only Backprojection is considered in the evaluation. Contrary
to the other implementations, 32 bit floating point numbers are
used here.

Additionally, we also tried using OpenCL code similar
to the one for the TTA processor on this platform. As the
platform has no native OpenCL support, we used PoCL’s cuda
backend to execute the OpenCL code on the GPU (labeled

TABLE I
SYSTEM PARAMETERS FOR DATASETS USED IN THE EVALUATION.

Simulated Highway

System MATLAB AER-II (?) [20]
Center freq. 10 GHz 9.99 GHz
Bandwidth 40 MHz 150.1 MHz

Pulse repetition freq. 256 Hz 190.5 Hz
Echo Lines 256 1000
Scene size 200 m × 200 m 551 m × 1026 m

Flight height 1 km 2.3 km
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Fig. 4. Runtime distribution for the TTA/FPGA prototype.

“Xavier/PoCL”). Furthermore, we used the CPU for kernel
executing, using PoCL’s pthread backend (“Xavier/CPU”).
Power consumption on the Xavier platform was measured
using the onboard power sensors and included all power rails
except SYS5V (peripheral hardware).

2) HardKernel Odroid N2+: The Odroid N2+ features a
Mali-G52 GPU (Bifrost) with proprietary OpenCL drivers
which could be used directly without PoCL. It is also fabri-
cated in a 12 nm process. The OpenCL code used was identical
to the one for the Xavier platform. Power consumption was
measured using a laboratory power supply.

3) FPGA Implementation: As a final comparison we used
a dedicated FPGA implementation for Backprojection pro-
cessing [22]. It runs on a Xilinx ZCU102 evaluation board,
featuring a Zynq UltraScale+ XCZU9EG-2FFVB1156 MPSoC
fabricated in TSMC’s 16FinFET+ process. The system is
operating at 240 MHz and processes 32 pixels per clock cycle.
Only Backprojection is supported. Power consumption was
measured using the onboard sensors, including only the FPGA-
related power rails.

C. Results

In a first step, we extracted the runtime for the different
OpenCL operations on the TTA/FPGA prototype using PoCL’s
tracing functionality. The results in Fig. 4 show that 59 % of
the time is spent executing the kernels while 33 % of the time
is used for memory operations. To improve this, a double-
buffering scheme similar to the one employed in the FPGA
implementation could be used [22].

The most important metric in our study is the energy spent
for a single operation (energy per operation, in nJ). It is derived
from the operation count, the total processing time, and the
power consumption of the platform. The measured average
power values are listed in Table II.

For Backprojection, the total operation count was calculated
from the number of pixels in the output image multiplied by
the number of echo lines. For the SPI and Apply steps of
the PAFO algorithm only the number of pixels is used; the
operations in the Sample step are defined by the number of
pixels and the total number of samples (2×8 = 16 in our case).
For example, using the simulated dataset with 256 echo lines
and a 512 px × 512 px image grid requires 256 · 512 · 512 =
67 108 864 operations for Backprojection, 512 ·512 = 262 144

1 10 100
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Odroid N2+

Xavier/CPU

Xavier/CUDA

FPGA

Energy/Operation [nJ]

Simulated Highway

Fig. 5. Energy per operation for Backprojection for different platforms and
datasets. The TTA reaches a comparable level of performance with regard to
other programmable platforms.
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Fig. 6. Energy per operation for three steps of the Autofocus algorithm for
different platforms, all using the same OpenCL code and the simulated dataset.
The TTA reaches the best energy efficiency. For the Xavier/CUDA and FPGA
platform no data was available.

operations for the SPI and Apply step, and 512 · 512 · 8 · 2 =
4 194 304 operations for the Sample step.

Results are depicted in Figs. 5 and 6. The energy effi-
ciency for Backprojection is consistent over the two datasets.
Compared to the CPU-only implementation and the low-end
Odroid, the TTA is superior in energy efficiency. Still, for
Backprojection, it is outperformed by the Xavier/CUDA and
the FPGA. The former is fabricated using a newer technology
node (12 nm vs 22 nm) and—as a commercial product—is

TABLE II
MEASURED POWER CONSUMPTION AND TECHNOLOGY NODES FOR THE

DIFFERENT PLATFORMS.

Platform Power / W Technology Node

TTA (est.) 0.201 GF 22FDX
Odroid N2+ 3.349 12 nm

Xavier AGX (CPU) 9.923 12 nm
Xavier AGX (GPU) 14.054 12 nm

FPGA (ZCU102) 11.686 TSMC 16FinFET+



optimized better, which puts this into perspective. The FPGA
is different insofar, that it is a non-software-programmable
platform where the algorithm has to be implemented in a
hardware description language and therefore requires higher
development effort and provides no runtime flexibility. This
pays off in terms of energy efficiency, where the FPGA
surpasses the TTA nearly by an order of magnitude.

In the Autofocus algorithm, the Sample and Apply steps
execute fewer instructions for each operation compared to
Backprojection and SPI. Therefore, higher energy efficiency
is expected for these steps. This is seen in the CPU platforms
(TTA and Xavier/CPU), but not for the GPUs (Odroid and
Xavier/PoCL); giving rise to the idea that these parts of the
algorithm are not well suited for the architecture of a GPU
or at least need special optimizations. For the Autofocus
algorithm, the TTA reaches the best energy efficiency of all
platforms investigated. While the results for Xavier/CPU and
the Odroid are consistent with the observations for Backpro-
jection, the low performance of Xavier/PoCL is unexpected.
This might indicate some missing GPU-specific optimizations
in the OpenCL code compared to the CUDA implementation.

VII. CONCLUSION

In this work, we explored the possible use of a Transport
Triggered Architecture (TTA) processor in the field of Syn-
thetic Aperture Radar processing, with a particular focus on
energy efficiency. The results are multifaceted:

With 15.8 nJ/op for Backprojection, the TTA achieved
a comparable level of performance to other software-
programmable platforms, being outperformed only by the Jet-
son AGX Xavier using CUDA. The winner in terms of energy
efficiency is the dedicated FPGA platform. With 1.59 nJ/op, it
exceeds the TTA by almost an order of magnitude. However,
taking into account the different technology nodes and the
much higher implementation effort and reduced runtime flexi-
bility for an FPGA implementation, this is put into perspective.

In general, the TTA is found to be a very energy-efficient
platform. This is in line with prior reports for different
applications (cf. Section II).

Based on these results, further optimizations of the TTA
platform can be considered. Multiple TTA cores could be
implemented on a single chip to increase the throughput of
the system. The OpenCL runtime would automatically scale
the implementation to a multicore system. Alternatively, wider
SIMD vectors could be explored for a similar effect. In
terms of energy efficiency, several TTA-specific optimizations
could be used, including an Instruction Register File (IRF) or
instruction compression [23].

ACKNOWLEDGMENTS

Niklas Rother thanks T. Fiedler for his help with the
ASIC synthesis. Tampere University authors thank Academy
of Finland (decisions #331344 and #353199).

REFERENCES

[1] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and
K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE
Geoscience and remote sensing magazine, vol. 1, no. 1, pp. 6–43, 2013.

[2] Z. Xu and D. Zhu, “High-resolution miniature UAV SAR imaging based
on GPU architecture,” in Journal of Physics: Conference Series, vol.
1074, no. 1. IOP Publishing, 2018, p. 012122.

[3] A. Bekar, M. Antoniou, and C. J. Baker, “Low-cost, high-resolution,
drone-borne sar imaging,” IEEE Transactions on Geoscience and Re-
mote Sensing, 2021.

[4] ——, “High-resolution drone-borne sar using off-the-shelf high-
frequency radars,” in 2021 IEEE Radar Conference (RadarConf21).
IEEE, 2021, pp. 1–6.
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