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Abstract The application of reliability analysis and reliability sensitivity analysis methods to com-

plicated structures faces two main challenges: small failure probability (typical less than 10�5) and

time-demanding mechanical models. This paper proposes an improved active learning surrogate

model method, which combines the advantages of the classical Active Kriging – Monte Carlo Sim-

ulation (AK-MCS) procedure and the Adaptive Linked Importance Sampling (ALIS) procedure.

The proposed procedure can, on the one hand, adaptively produce a series of intermediate sampling

density approaching the quasi-optimal Importance Sampling (IS) density, on the other hand, adap-

tively generate a set of intermediate surrogate models approaching the true failure surface of the

rare failure event. Then, the small failure probability and the corresponding reliability sensitivity

indices are efficiently estimated by their IS estimators based on the quasi-optimal IS density and

the surrogate models. Compared with the classical AK-MCS and Active Kriging – Importance

Sampling (AK-IS) procedure, the proposed method neither need to build very large sample pool

even when the failure probability is extremely small, nor need to estimate the Most Probable Points

(MPPs), thus it is computationally more efficient and more applicable especially for problems with

multiple MPPs. The effectiveness and engineering applicability of the proposed method are demon-

strated by one numerical test example and two engineering applications.
� 2020 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Reliability and reliability sensitivity analysis has proved to be
an essential part in the design process of structures due to the
existence of multi-source uncertainty, such as material perfor-
mance dispersion and manufacture error.1–4 Although non-

probabilistic models and imprecise probability models have
both been applied for dealing with this type of problems,5–8

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cja.2019.12.032&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pengfeiwei@nwpu.edu.cn
https://doi.org/10.1016/j.cja.2019.12.032
http://www.sciencedirect.com/science/journal/10009361
https://doi.org/10.1016/j.cja.2019.12.032
http://creativecommons.org/licenses/by-nc-nd/4.0/


Reliability and reliability sensitivity analysis 1219
the classical probability model is still the most attractive one
due to its wide applicability,9 thus the reliability and reliability
sensitivity analysis problems subjected to probability model

are concerned in this work. Typically, applying reliability anal-
ysis methods to a structure involves two main challenges.10

First, the structure is well designed and the failure surface is

far away from the distribution center of the input variables,
meaning that the failure probability is very small. This kind
of problem is ubiquitous in, e.g., aerospace engineering. Sec-

ond, the mechanical models are commonly computationally
expensive, making the available method impractical when the
computational efficiency is concerned.

For assessing the small failure probability, the Monte Carlo

Simulation (MCS)11 is commonly inefficient. To reduce the
computational costs and make the estimation accurate, a lot
of improved numerical simulation methods have been devel-

oped, such as Importance Sampling (IS),12,13 Subset Simula-
tion (SS),14,15 Line Sampling (LS),16,17 Directional Sampling
(DS)18,19 and Adaptive Linked Importance Sampling

(ALIS).20 IS is widely used for its efficiency, but it generally
does not work in high dimensions.21 As shown by Katafygiotis
and Zuev, the samples generated by the fixed Importance Sam-

pling Density (ISD) cannot cover the important region of the
high-dimensional failure domain.22 To address this issue,
Katafygiotis and Zuev20 proposed the ALIS. This method
introduces a family of intermediate distributions which con-

verge to the most optimal sampling density, by which the sam-
ples in failure domain could be efficiently obtained. From this
respect, SS could be regarded as a special case of ALIS, whose

conditional distributions obtained from intermediate nested
failure events correspond to the intermediate ISD of ALIS.
Overall, these advanced numerical simulation methods men-

tioned above are more efficient than the crude MCS, but in
most engineering applications, the computational costs are still
unaccepted.

For time-demanding models, a first alternative for reliabil-
ity analysis is the First Order Reliability Method (FORM)23 or
the Second Order Reliability Method (SORM).24 The Most
Probable Point (MPP) is required in these methods, based on

which the first or higher order Taylor series expansion is imple-
mented, and then the failure probability is assessed via estimat-
ing the statistic moments. When multiple MPPs exist or the

derivatives of the limit state functions cannot be computed,
these two methods commonly fail to estimate the failure prob-
ability without special treatment.25 Compared with the above

two methods, the surrogate model methods have attracted
more attentions. These methods approximate the limit state
functions with explicit or semi-explicit functional expressions
(called surrogate models) based on strategic Design of Exper-

iments (DoE), and then estimate the structural reliability based
on the surrogate models. The commonly used surrogate mod-
els include response surface,26–29 neural network,30 support

vector machine,31,32 polynomial chaos expansion,33 moving
least square regression34 and Kriging surrogate model.35,36

Among these surrogate models, the Kriging surrogate model

has attracted the most attention in the community of structural
reliability due to its robustness and wide applicability. It pre-
sents several characteristics different from other metamodels.36

First, Kriging is in fact an interpolation surrogate model,
which means that the prediction of a training point is exactly
the true response value of this point. Second, the error of the
prediction at any new non-training point can be easily assessed
by the conditional variance, which in turn, provides a flexible
way for active training. The above characters of the Kriging
surrogate model have motivated the development of the active

learning method, which approximates the true failure surface
adaptively by adding new training point that can improve
the accuracy of failure probability estimation the most. The

commonly used active learning functions include U-
function,36 H-function,37 Expected Feasibility Function
(EFF),35 Least Improvement Function (LIF),38 etc.

To deal with the time-demanding models with small failure
probability, combining the numerical simulation methods and
surrogate models has been a common practice. Echard et al.
combined the active learning Kriging model and MCS to

develop the AK-MCS method.36 Based on the similar idea,
the AK-IS method which combines Kriging with IS,10 and
the AK-MCMC which combines Kriging with SS,39 have both

been developed. However, as mentioned above, the application
of AK-IS will be limited by the fixed ISD, and in some situa-
tions, the limit state function is too complicated to find the

MPP and even there may be more than one MPP. To avoid
these disadvantages, this work focuses on the combination of
the active learning Kriging model and ALIS to introduce a

more refined method referred to as AK-ALIS. This procedure
combines the advantages of both ALIS and AK-IS procedures,
which, on the one hand, adaptively produces a set intermediate
sampling densities converging to the quasi-optimal IS density,

and on the other hand, generates a set of surrogate models for
intermediate failure events converging to the true failure sur-
face. Thus, the proposed AK-ALIS procedure is actively learn-

ing in both the sampling density and failure surface, and it is
shown to be more flexible and effective.

Another important task in the context of reliability is to

estimate the Parametric Reliability Sensitivity (PRS)
indices,40–43 which are commonly defined as the partial deriva-
tives of the failure probability w.r.t. the distribution parame-

ters of model input variables, and reflects the effects of each
parameter on the structure reliability. Based on the proposed
AK-ALIS procedure, we also calculate the reliability sensitiv-
ity indices, and it is shown that no extra computational cost

is introduced for estimating these indices.
The organization of this work is as follows. Section 2

reviews the basic concepts of reliability analysis and PRS,

and Section 3 presents the review of some efficient reliability
analysis methods. The introduction of the proposed reliability
and reliability analysis estimation method is presented in Sec-

tion 4. Section 5 provides one numerical example and two
engineering examples. Finally, Section 6 presents the
conclusions.

2. Problem state

The n-dimensional random input variables are characterized as
x ¼ x1x2:::xn½ � 2 Rn with joint Probability Density Function

(PDF) f0 x; hð Þ (written as f0 xð Þ for simplicity), where h indi-
cates the vector of the distribution parameters. The n random
input variables are assumed to be independent with each other,

i.e. f0 x; hð Þ ¼ Qn
i¼1f

i
0 xi; hið Þ, where fi0 xi; hið Þ (simplified as fi0 xið Þ)

is the marginal PDF of xi. The limit state function of the struc-

ture under consideration is denoted as g xð Þ. The failure
domain F is the set of the points, at which the value of g xð Þ
is negative. Thus, the probability of failure is expressed as:



Fig. 1 Illustration of bridge distribution.
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Pf ¼ Pr Fð Þ ¼
Z
F

f0 xð Þdx ¼
Z
Rn

IF xð Þf0 xð Þdx ¼ Ef0 IF xð Þ½ � ð1Þ

where IF is the indicator function which equals 1 if x 2 F, and

equals 0 otherwise, and Ef0 �½ � indicates the expectation opera-

tor with respect to the density function f0 xð Þ.
With the standard Monte Carlo simulation method,11 Pf

can be estimated as an average of IF over a large number of
samples of x:

P̂f;MCS ¼ 1

N

XN

k¼1
IF xk

0

� � ð2Þ

where the sample xk
0 is generated from the density function

f0 xð Þ, N is the number of the samples.
For one distribution parameter hi;j of variable xi, the PRS

index is defined as the partial derivative of Pf with respect to
hi;j. However, this type of PRS index depends also on the unit

of the input variable. To avoid this disadvantage, Wu and
Mohanty42 introduced the normalized PRS index of hi;j:

Thi;j ¼
@Pf

Pf

=
@hi;j
ri

¼ ri

Pf

Z
Rn

IF xð Þ
f0 xð Þ �

@f0 xð Þ
@hi;j

f0 xð Þdx

¼ ri

Pf

Ef0

IF xð Þ
f0 xð Þ �

@f0 xð Þ
@hi;j

� �
ð3Þ

The aim of this paper is to develop efficient active learning

algorithm for estimating Pf and Thi;j .

3. Reliability analysis

3.1. Importance sampling (IS)

Importance sampling is an efficient method in reliability
assessment to reduce the Coefficient of Variation (CoV) of
the MCS estimates. The basic idea behinds IS method is to

replace the sampling density f0 xð Þ with a well-designed density
fz xð Þ, denoted as IS density, so as to generate more samples in
the failure region. Thus the major challenge of the application

of IS method is to specify the optimal sampling density fz xð Þ
which can minimize the covs of estimates. The simplest way
to generate an IS density is to move the sampling center to

the MPP specified by FORM method. Then the probability
of failure can be estimated as follows:

Pf ¼
Z
Rn

IF xð Þf0 xð Þdx¼
Z
Rn

IF xð Þ f0 xð Þ
fz xð Þ fz xð Þdx¼Efz IF xð Þ f0 xð Þ

fz xð Þ
� �

ð4Þ
The IS estimator of the failure probability is then formu-

lated as:

P̂f;IS ¼ 1

N

XN

k¼1
IF xk

z

� � f0 xk
z

� �
fz xk

z

� � ð5Þ

where the sample xk
z is generated from the density function

fz xð Þ.
This method is widely used for its efficiency, but it is gener-

ally not applicable in high dimensions given the fact that the

importance sampling density is fixed. Katafygiotis and Zuev
have given a geometric interpretation of this phenomenon.22

As shown by Katafygiotis and Zuev, the failure domain is

much complex in high dimensions such that the samples gener-
ated by a fixed importance sampling density cannot cover the
importance region of the failure domain. To avoid this
disadvantage, Katafygiotis and Zuev introduced Adaptive
Linked Importance Sampling (ALIS).20

3.2. Adaptive linked importance sampling (ALIS)

Unlike the IS that utilizes the fixed importance sampling den-
sity to directly generate the samples for the reliability analysis,

the ALIS adaptively produce a set of intermediate importance
sampling densities so as to approach the optimal IS density,
thus the necessity of MPP and the limitation in high dimension

can be avoided. This method is briefly reviewed as follows.
The probability density function f0 xð Þ and fz xð Þ in Eq. (4)

can be expressed as follows:

f0 xð Þ ¼ p0 xð Þ
C0

; fz xð Þ ¼ pz xð Þ
Cz

ð6Þ

where p0 xð Þ and pz xð Þ are the non-normalized density func-
tions that are known pointwise, C0 and Cz are the correspond-

ing normalizing constants equal to
R
Rn p0 xð Þdx and

R
Rn pz xð Þdx

respectively. Now, the estimation of failure probability in Eq.
(4) can be reformulated as follows:

Efz IF xð Þ f0 xð Þ
fz xð Þ

� �
¼ Efz IF xð Þ p0 xð Þ

pz xð Þ �
Cz

C0

� �
ð7Þ

Since p0 xð Þ and pz xð Þ are known pointwise, the estimation
of failure probability can be transformed as the problem of

estimating the ratio r ¼ Cz=C0 with the samples generated
from fz xð Þ,20 which can be derived as follows:

r ¼ Cz

C0

¼
Z
Rn

Cz

C0

fz xð Þdx ¼
Z
Rn

pz xð Þ
fz xð Þ �

f0 xð Þ
p0 xð Þ fz xð Þdx

¼
Z
Rn

pz xð Þ
p0 xð Þ f0 xð Þdx ¼ Ef0

pz xð Þ
p0 xð Þ

� �
ð8Þ

One potential problem is that if the supports of f0 xð Þ and
fz xð Þ are not nested, there is no way to estimate r by sampling

from f0 xð Þ.20 Indeed, this can be easily worked up based on
bridge sampling, 44–46 and the estimate for Cz=C0 can be
replaced by a ratio of estimation for Cbridge=C0 and

Cbridge=Cz, where Cbridge is the normalizing constant for the

bridge distribution pbridge xð Þ.

Cz

C0

¼
Cbridge

C0

Cbridge

Cz

¼
Ef0

pbridge xð Þ
p0 xð Þ

h i
Efz

pbridge xð Þ
pz xð Þ

h i �
1
N

PN
k¼1

pbridge xk
0ð Þ

p0 xk
0ð Þ

1
N

PN
k¼1

pbridge xkzð Þ
pz xkzð Þ

ð9Þ

where the sample xk
0 and xk

z are generated from the density

function f0 xð Þ and fz xð Þ separately. Fig. 1 illustrates the bridge
density, and one can refer to Ref.20 for more details. In this

paper, the bridge distribution is defined as follows:
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pbridge xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 xð Þpz xð Þ

p
ð10Þ

The estimation of Eq. (8) is sufficiently accurate if f0 xð Þ and
fz xð Þ are close enough, i.e. the central region of bridge distribu-
tion overlaps that of f0 xð Þ and fz xð Þ. However, if f0 xð Þ and

fz xð Þ are far away from each other, the probability of drawing
a same sample from both f0 xð Þ and fz xð Þ is very low. The above
estimation will be improper and the variance of the estimate

will be very large.20

To improve the accuracy, a sequence of intermediate non-
normalized density functions pj xð Þ; j ¼ 0; 1; :::; z, are intro-

duced. p0 xð Þ and pz xð Þ are the first and last sampling functions

respectively. Similarly, let fj xð Þ ¼ pj xð Þ=Cj denote the interme-

diate PDF, where Cj ¼
R
Rn pj xð Þdx represents the correspond-

ing normalizing constant. Then, the ratio r ¼ Cz=C0 can be
estimated as follows:

Cz

C0

¼ C1

C0

� C2

C1

:::
Cz

Cz�1

ð11Þ

Bridge distribution fjbridge xð Þ is constructed between fj xð Þ
and fj - 1 xð Þ to make sure the rj ¼ Cj=Cj�1 could be accurately

estimated. Also, the samples required to estimate the ratio
rj ¼ Cj=Cj�1 can be generated directly by the Metropolis-

Hastings (MH) algorithm or the Modified Metropolis (MM)
algorithm, and the sampling process will be iteratively updated

until sufficient samples are contained in the failure domain. In
this paper, the sampling will stop when half samples generated
from a specific intermediate function lies in the failure domain.
Fig. 2 illustrates the implementation procedure of the ALIS.

3.3. Active learning and Kriging-based importance sampling

(AK-IS)

AK-IS is based on the active learning Kriging model and IS.10

Samples are generated centered on one MPP, which is
obtained from FORM approximation. Then active learning

Kriging model is constructed to simulate the samples popula-
tion. The application of Kriging model avoids the calculation
of performance function at each point, and the accuracy of

Kriging model prediction is constantly improved with the
active learning functions. The usually used learning function
is U-function, which is defined so that the probability that
the classification of Kriging mean is accurately determined

can be obtained by U U xð Þð Þ, where U �ð Þ is the cumulative den-
sity function of a standard normal distribution. Obviously, the
Fig. 2 Illustration of the implementation procedure of the ALIS.
larger the value of U xð Þ, the lower the probability of making a
wrong classification of Kriging mean. The best sample added
to DoE will be selected as the one with the minimum value

of U xð Þ to make an expected improvement on the Kriging
model. Unlike other Kriging-based reliability methods that
select the best new sample using an optimization method with

the extra computational effort, the value of U xð Þ depending on
the Kriging mean and variance can be regarded as a byproduct
of the analysis process. With the new sample added to DoE,

the Kriging model will be updated with an improvement of
accuracy. This repeat will stop until the minimum value of
U xð Þ is no longer smaller than one constant, which is generally
selected as 2, i.e. the probability of making a wrong classifica-

tion of Kriging mean is 0.023.47

Just as mentioned in Section 3.1, despite the efficiency of
AK-IS, it is generally not applicable in high dimensions given

the fact that the importance sampling density is fixed. In high
dimensions, the failure domain is so complex that the samples
generated by a fixed importance sampling density cannot cover

the importance region of failure domain. To overcome this dis-
advantage, this paper introduces a new method called AK-
ALIS by combining the active learning Kriging model with

ALIS, which is detailed in the next section.

4. The AK-ALIS procedure

The basic idea of AK-ALIS is, instead of using a fixed impor-
tance sampling density as done in AK-IS, to introduce a
sequence of intermediate distributions to converge to the
quasi-optimal IS density. Also, the Kriging model will be

updated iteratively as the new sample population is generated.
The flowchart of the AK-ALIS procedure is shown in Fig. 3,
and the specific procedure is described as follows:

Step 1. Selection of the intermediate distributions. A
sequence of intermediate distributions f j xð Þ; j ¼ 0; 1; :::; z
is selected, and one can refer to Appendix for details.
Step 2. Generation of sample population and selection of
initial DoE. Let i ¼ 0, and a sample population P is gener-
ated from f i xð Þ, i.e. the initial probability density function

f 0 xð Þ. The number of samples is denoted as N. Then, the
initial DoE consists of N 0 samples randomly selected from
the sample population P. All the N 0 samples in DoE are

evaluated with the limit state function.
Step 3. Train Kriging model. In this stage, the Kriging
model is constructed using the Kriging toolbox DACE. 48

Step 4. Estimation of U value. The Kriging prediction is
estimated at each of the N input samples. And the Kriging

mean and variance are denoted as lg xjð Þ and r2
g xjð Þ respec-

tively, where j ¼ 1; 2; :::;N Then we can get the U value for
each point by the formula as follows:
U xjð Þ ¼ lg xjð Þ�� ��
r2
g xjð Þ ð12Þ
Step 5. Stopping criterion of the active learning. The func-

tion U U xjð Þð Þ represents the probability that the classifica-

tion of Kriging mean at point xj is accurately determined.

The point with the minimum U value, i.e. min U, has the
maximum probability of leading to a wrong classification
of Kriging mean. In this paper, the stop criterion is defined
as the min U is not less than 2, which means the probability



Fig. 3 Flowchart of the AK-ALIS procedure.
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of classifying the Kriging mean accurately is at least 97.7%
for all the samples.

Step 6. Add a new best sample to DoE. If the stop criterion
in Step 4 is not satisfied. The Kriging model should be
updated by enriching the DoE. Given the fact that the Krig-

ing is an exact interpolation method, it is easy to find that
the new best sample added to DoE is the one with the high-
est probability of making a wrong classification of Kriging

mean, i.e. the min U. Add this point to DoE, let
N 0 ¼ N 0 þ 1, and then return to Step 3.
Step 7. Identify the number of samples lying in the failure
domain. If the stop criterion in Step 5 is satisfied, the active

learning stops and the Kriging model is considered as accu-
rate in a high confidence level. Then, the number N f of sam-
ples in failure domain can be estimated using Kriging model.

Step 8. Generate a new samples population. If N f is smaller
than N=2, the samples in failure domain are not enough to
accurately assess the ratio rj ¼ Cj=Cj�1. Then, let i ¼ iþ 1,

and a new samples population following intermediate
distribution f i xð Þ will be generated with MH or MM

algorithm, and the procedure goes back to Step 4.
Step 9. Estimation of the failure probability. If N f is larger
than N=2, the failure probability and reliability sensitivity

analysis indices will be estimated. And, the AK-ALIS pro-
cedure stops.

With the Kriging surrogate model and the final samples
population of size N. The PRS index can be estimated by
the quasi-optimal IS density fz xð Þ. As the input variables

are independent, fz xð Þ could be rewrote as

fz xð Þ ¼ Qn
j¼1fz xj

� �
for simplicity, where fz xj

� �
denotes the

marginal IS density of xj. Then, the PRS index can be

derived as:

Thi;j ¼
ri

Pf

Efz

IF xð Þ
fz xð Þ �

@f0 xð Þ
@hi;j

� �
ffi ri

P̂f

� 1
N

XN

j¼1

IF xjð Þ
fz xjð Þ �

@f0 xjð Þ
@hi;j

� �
ð13Þ

where E �½ � denote the expectation operator, and the partial

derivative @f0 xð Þ=@hi;j ¼ @f0 xið Þ=@hi;j
� 	Qn

k¼1;k–if0 xkð Þ can be

easily derived analytically. The cov of the estimator in Eq.

(13) is computed by:
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cov T̂hi;j

� � ¼ P̂f

ri

�
1

N�1
1
N

PN
j¼1

IF xjð Þ
fz xjð Þ

@f0 xjð Þ
@hi;j


 �2

� ri
Pf
T̂hi;j

� 2

" #( )1
2

T̂hi;j

ð14Þ
Fig. 4 A ten-bar structure.
5. Test examples

5.1. A numerical example

The limit state function is given as follows:

f ¼ 1� x1 � 1ð Þ2
30

� x2 � 1ð Þ3
36

ð15Þ

where x1 and x2 follow standard normal distribution
independently.

Crude MCS, AK-ALIS + H and AK-ALIS + U are
implemented to estimate the failure probability and the PRS
indices. The estimation results of crude MCS procedure is

defined as the reference value with 5� 107 samples. This num-

ber of samples is selected to make the coefficients of variation
of the estimation results close to 5%. Both AK-ALIS + H and
AK-ALIS + U are performed with 2000 samples, among
which 20 samples are selected as the initial DoE.

As shown in Table 1, the reliability analysis results esti-
mated by the AK-ALIS + U and AK-ALIS + H match well
with that assessed by the crude MCS. The probabilities of fail-

ure obtained from these three methods are accurate enough,
since the covs are all less than 5%.The total number of limit
state function calls in AK-ALIS + U and AK-ALIS + H

are 36 and 38 respectively, while that in crude MCS procedure

is 5� 107. However, in terms of computational time, the MCS
preforms well with 18.6 s consumed, while AK-ALIS + U and
AK-ALIS + H require 77.2 s and 91.1 s respectively. It is not

hard to understand that despite the large number of limit state
function calls, the simple numerical example could be easily
handled by a computer with strong computing capability.
Conversely, no matter how simple the example is, the AK-

ALIS should perform its intrinsic procedure, which is more
complex than a simple numerical example.

As shown in Table 1, the PRS indices are well estimated by

all the three methods, and the sensitivity analysis results match
well. From Table 1, the importance ranking of the standard
deviation of these two input variables is reported as

Tr;2 < Tr;1, indicating that for the equivalent reduction of the

standard deviation of these two variables, the second variable

can lead to more reduction on the failure probability. The
importance ranking of the mean of these two variables is
Tl;2 > Tl;1. The value of Tl;1 is negative, implying that the fail-

ure probability will increase, if the mean value of x1 decreases.
Table 1 Reliability and sensitivity analysis results of the numerical

Methods Nc T (s) Pf

MCS 5 � 107 18.6 1.67 � 10�5(0.035*)

AK-ALIS + U 36 77.2 1.67 � 10�5(0.023)

AK-ALIS +H 38 91.1 1.70 � 10�5(0.025)

* The superscripts denote the covs of the corresponding results, and N
5.2. A ten-bar structure

A ten-bar structure, as shown in Fig. 4, is adapted from49 with
six random input variables. All the ten bars have the same sec-
tional area and length, denoted as A and L, respectively. Three

point loads Pi i ¼ 1; 2; 3ð Þ apply on the ten-bar structure, as
shown in Fig. 4. And E represents the elastic modulus of the
ten bars. All the six random input variables obey normal dis-
tribution with the distribution parameters shown in Table 2.

Let D denote the vertical displacement of node 3, and the limit
state function is expressed as g ¼ 0:0044� D.

MCS, AK-ALIS + U and AK-ALIS + H are imple-

mented to assess the failure probability and PRS in this appli-

cation. Due to the low failure probability, 5� 107 samples are
simulated in the crude MCS procedure to make sure the esti-
mated results are accurate enough. Besides, 100 samples are

used as the initial DoE in both AK-ALIS + U and AK-
ALIS + H, and 2000 samples are generated from the original
PDF. Also, due to the complexity of limit state function, the

AK-IS is not suitable with the difficulty to find the most prob-
able point.

As shown in Table 3, the estimated failure probabilities
from AK-ALIS + U and AK-ALIS + H are very close to that

from MCS with 175 and 159 limit state function calls respec-
tively, which are much less than MCS. Also, due to the extre-

mely complex limit state function, 5� 107 calls required in
MCS consumes 406.7 s to assess the failure probability and

PRS indices, while AK-ALIS + U and AK-ALIS + H require
303.1 s and 332.5 s respectively. From this application, we
could find that when the limit state function is extremely com-

plicate and the failure probability is very low, the proposed
AK-ALIS method is more efficient than MCS due to the less
limit state function calls and a smaller samples size.

As shown from Table 4, all the three methods applied in
this application accurately estimate the PRS indices of these
six inputs except P3, as its PRS indices are much less. From

the second row of Table 4, the importance ranking of the mean
example.

Tl;1 Tr;1 Tl;2 Tr;2

�1.29(0.062) 4.32(0.072) 3.76(0.037) 15.06(0.038)

�1.34(0.056) 5.18(0.058) 3.61(0.026) 14.31(0.027)

�1.37(0.055) 4.99(0.060) 3.63(0.026) 14.41(0.027)

c is the number of limit state function calls.



Table 2 The distribution parameters of the basic random variables for Example 3.

Parameters L (m) Ai (m
2) E (GPa) P1 (kN) P2 (kN) P3 (kN)

Mean 1 0.001 100 80 10 10

cov 0.05 0.15 0.05 0.05 0.05 0.05

Table 3 Reliability results of the ten-bar structure.

Methods Nc T (s) Pf cov

MCS 5 � 107 406.7 1.33 � 10�5 0.032

AK-ALIS + U 175 303.1 1.43 � 10�5 0.023

AK-ALIS + H 159 332.5 1.42 � 10�5 0.022

Table 4 Sensitivity analysis results of the ten-bar structure.

Methods Indices L (m) A (m2) E (GPa) P1 (kN) P2 (kN) P3 (kN)

MCS Tl;i 1.99(0.034*) �2.53(0.033) �2.50(0.033) 1.63(0.036) 0.531(0.065) �0.149(0.220)

Tr;i 3.71(0.044) 6.19(0.040) 6.02(0.039) 2.46(0.052) 0.197(0.268) �0.075(0.625)

AK-ALIS + U Tl;i 1.90(0.028) �2.55(0.025) �2.62(0.025) 1.62(0.030) 0.538(0.063) �0.185(0.156)

Tr;i 3.71(0.044) 6.66(0.034) 6.96(0.034) 2.76(0.049) 0.289(0.182) �0.155(0.264)

AK-ALIS + H Tl;i 1.95(0.028) �2.59(0.026) �2.47(0.026) 1.64(0.030) 0.539(0.063) �0.171 (0.171)

Tr;i 3.84(0.042) 7.03(0.034) 6.278(0.034) 2.76(0.047) 0.331(0.181) �0.144(0.278)

* The superscripts denote the covs of the corresponding results.

Fig. 5 Dynamic simulation model of landing gear.
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of the six input variables is reported as
lA � lE > lL > lP1

> lP2
> lP3

. The PRS indices of lA, lE,

lp3
are negative, implying that reducing the values of these

three parameters, the failure probability will increase. It is easy
to find that lA and lE have a more negative effects on failure
probability than lp3

, while lL has the most positive effects. The

same ranking can be generated from the fourth row of Table 3.

As for the standard variance, the importance ranking is
rA > rE > rL > rP1

> rP2
> rP3

, which is similar to that of

the mean. It is obvious that rA and rE have a significant impact

on the failure probability.

5.3. An aircraft landing gear

An aircraft landing gear modeled by Adams is shown in Fig. 5.

Considering the design mistakes, the friction coefficients
lA; lB; lC; lD; lE at points A, B, C, D, E are parameterized
respectively. Also the coordinate of the connection point F

between pull rod and fuselage need to be parameterized, i.e.
LX;LY;LZ, because the installation error will affect the direc-
tion of the motion of actuator cylinder. The friction between

airplane wheel and ground is denoted as f, and the maximum
value of thrust of hydraulic cylinder piston is denoted as Fmax.
All the ten random variables follow normal distribution, and

the distribution parameters are shown in Table 5.
Let function Fmax represent the maximum load of the land-

ing gear. When the load of the landing gear exceeds the max-
imum value of thrust of hydraulic cylinder piston Fmax, the

landing gear fails. Thus, the limit state function is given as:

g ¼ FLmax lA; lB; lC; lD; lE;LX;LY;LZ; fð Þ � Fmax ð16Þ
Considering that one run of this dynamic simulation model
consumes 45 s to get the response value, the crude MCS,

assuming 1� 106 samples are simulated, requires 4:5� 107 s

(more than one year) to perform the reliability analysis, which
is obviously unaffordable. Besides, due to the absence of ana-
lytical response function, it is hard to find the MPP to imple-

ment AK-IS. Therefore, AK-MCS +U, AK-ALIS + U and
AK-ALIS + H are applied to solve this problem.

For each method, the DoE consists of 80 samples initially

to construct the Kriging model. The size of sample population
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is 1� 106 in AK-MCS, while that is 2000 for both AK-ALIS
+ U and AK-ALIS + H. As shown in Table 6, the estimation
results of failure probability obtained by these three proce-

dures are close, with 190, 119 and 182 undercarriage model
calls respectively. In term of the computational time, 22531 s
required in AK-MCS is much more than that in AK-ALIS.

It is easy to understand by the fact that the size of sample pop-
ulation in AK-MCS is much larger than that in AK-ALIS,
thus AK-MCS has to consume more time to find the best
new point added to the DoE than AK-ALIS.

It is shown in Table 7, if the values of the PRS results are
small, the corresponding covs will be large, i.e. the results of
PRS are not accurate. Thus, the AK-ALIS should be further

investigated to enhance the accuracy of the PRS estimation
results with small values. Although some PRS estimations
are not precise, the importance ranking of the mean of the

ten input variables is still obtained as lX7
> lX8

> lX6
>

lX9
� lX1

� lX2
� lX3

� lX4
� lX5

� lX10
. It is shown that

lX7
has the most negative effect on the failure probability,

while lX8
has the most positive effect. The importance ranking
Table 5 Distribution parametric of the ten input variables of

the aircraft undercarriage mechanism.

Varaibles Mean Standard deviation Distribution

X1 lAð Þ 0.1 0.001 Normal

X2 lBð Þ 0.1 0.001 Normal

X3 lCð Þ 0.1 0.001 Normal

X4 lDð Þ 0.1 0.001 Normal

X5 lEð Þ 0.1 0.001 Normal

X6 LXð Þ �1.1673 0.01 Normal

X7 LYð Þ 1.1004 0.01 Normal

X8 LZð Þ 3.4965 0.01 Normal

X9 fð Þ �5360 50 Normal

X10 Fmaxð Þ 5.83 � 104 500 Normal

Table 6 Reliability results of landing gear.

Methods Nc T

AK-MCS+U 190 22

AK-ALIS + U 119 50

AK-ALIS + H 182 90

Table 7 Sensitivity analysis results of landing gear.

Variables AK-MCS AK-ALIS

Tl;i Tr;i Tl;i

X1 lAð Þ 0.020(0.559*) �0.020(0.779) 0.041(0.836

X2 lBð Þ 0.004(2.701) 0.028(0.607) 0.005(2.732

X3 lCð Þ �0.008(1.412) �0.010(1.494) �0.018(1.5

X4 lDð Þ 0.012(0.932) �0.003(5.274) 0.035(1.028

X5 lEð Þ �0.010(1.093) �0.004(3.765) �0.023(1.4

X6 LXð Þ 1.196 (0.015) 1.383(0.024) 1.252 (0.03

X7 LYð Þ �1.991(0.012) 3.507(0.015) �2.036(0.0

X8 LZð Þ 1.469(0.013) 1.848(0.020) 1.409(0.027

X9 fð Þ 0.072(0.160) 0.016(1.023) 0.046(0.681

X10 Fmaxð Þ �0.007(1.643) �0.006(2.548) �0.024(1.0

* The superscripts imply the covs of the corresponding results.
of standard variance is rX7
> rX8

> rX6
> rX3

> rX4
> rX1

�
rX2

� rX5
� rX10

� rX9
, indicating that, by reducing a small

value of the SDs of the ten input variables, rX7
leads to the

most reduction on failure probability, while rX10
makes the

failure probability increase.

6. Conclusions

This paper develops an efficient and easily implementable
method (AK-ALIS) for assessing the reliability and parametric
reliability sensitivity. This method combines the active Kriging

model and ALIS, and can be regarded as a generalization of
the recently developed AK-MCMC method.50 The active
learning functions makes the construction of Kriging model
efficient with the least number of training samples, and the

Kriging model avoids the run of the initial time-demanding
computational model of complex structures. Also, the con-
struction of Kriging model is much easy benefited from the

standard Kriging toolboxes. Unlike AK-IS that bases on a
most probable failure point to construct an fixed Important
Sampling Density (ISD) function, the AK-ALIS produces a

set intermediate sampling densities converging to the quasi-
optimal IS density. The main advantage of AK-ALIS over
AK-IS is that the AK-ALIS is more suitable for the high-

dimensional situation where AK-IS cannot be implemented
due to the difficulty to select a fixed ISD to generate the sam-
ples covering the important region of failure domain. Thus,
theoretically, the proposed method have unique advantage

especially when multiple MPP exists or the behavior of the
limit state function is too complex to correctly find the MPP.

The AK-ALIS is proposed to deal with the reliability anal-

ysis of complex structures with small failure probability and
time-demanding computational models. The small failure
probability means a large number of limit state function calls

required in the crude MCS, and leads to an unaffordable com-
putational cost when the computational model is time-
(s) Pf cov

,531 0.0078 0.011

64 0.0071 0.020

96 0.0073 0.028

+ U AK-ALIS + H

Tr;i Tl;i Tr;i

) �0.035(0.159) 0.044(0.986) �0.043(0.561)

) 0.053(0.411) 0.056(0.760) 0.041(0.484)

39) �0.052(0.812) �0.012(2.899) �0.070(0.316)

) �0.052(0.921) 0.017(2.518) �0.045(0.654)

81) �0.037(0.947) �0.082(0.521) �0.043(0.858)

3) 1.656(0.053) 1.221 (0.043) 1.548(0.069)

22) 3.815(0.032) �2.104(0.031) 4.111(0.040)

) 1.854(0.048) 1.440(0.035) 1.935(0.058)

) 0.135(0.345) 0.118(0.315) 0.076(0.599)

35) �0.027(1.103) �0.015(2.129) �0.019(1.207)
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demanding. However, as pointed out in Section 5.1, when
applied in the simple numerical example, the crude MCS is
more applicable than the proposed method. Although we have

assumed that the input variables are characterized by precise
probability models, the proposed method can also be extended
for situations with multi-source uncertainty (e.g., randomness,

incompleteness and imprecision), e.g., based on our newly
developed non-intrusive imprecise stochastic simulation
method.6,39
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Appendix A. Proposed intermediate sampling distributions

In Ref. 20, two families of intermediate sampling distribution
are proposed for ALIS, which could be further applied in
AK-ALIS.

First, a limit state function is defined as follows:

U xð Þ ¼ �g xð Þ ðA1Þ
The failure domain is defined as the area where U xð Þ is neg-

ative. Then, the following two sequences of non-normalized

intermediate sampling distributions are defined:

p1 xð Þ ¼ f0 xð Þmin e�aU xð Þ; 1
� � ðA2Þ

p2 xð Þ ¼ f0 xð Þ
1þ eaU xð Þ ðA3Þ

where a belongs in the ray a 2 0;þ1½ �.
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16. Schuëller GI, Pradlwarter HJ, Koutsourelakis PS. A critical

appraisal of reliability estimation procedures for high dimensions.

Prob Eng Mech 2004;19(4):463–74.

17. Pradlwarter HJ, Pellissetti MF, Schenk CA, et al. Realistic and

efficient reliability estimation for aerospace structures. Comput

Method Appl Mech 2005;194(12):1597–617.

18. Ditlevsen O, Olesen R, Mohr G. Solution of a class of load

combination problems by directional simulation. Struct Saf 1986;4

(2):95–109.

19. Ditlevsen O, Melchers RE, Gluver H. General multi-dimensional

probability integration by directional simulation. Comput Struct

1990;36(2):355–68.

20. Katafygiotis LS, Zuev KM. Estimation of small failure probabil-

ities in high dimensions by adaptive linked importance sampling.

ECCOMAS Thematic Conference on Computational Methods in

Structural Dynamics And Earthquake Engineering. 2007 June;

Rethymno, Greece; 2007.

21. Au SK, Beck JL. Important sampling in high dimensions. Struct

Saf 2003;25(2):139–63.

22. Katafygiotis LS, Zuev KM. Geometric insight into the challenges

of solving high-dimensional reliability problems. Prob Eng Mech

2008;23(2):208–18.

23. Haofer A, Lind N. An exact and invariant first-order reliability

format. J Eng Mech ASCE 1974;100:111–21.

24. Lee I, Noh Y, Yoo D. A novel second-order reliability method

(SORM) using noncentral or generalized chi-squared distribu-

tions. J Mech Design 2012;134(10):100912.

25. Enevoldsen I, Faber MH, Sørensen JD. Adaptive response surface

techniques in reliability estimation. In: Schueller, Shinozuka, Yao,

editors. 6th International Conference on Structural Safety and

Reliability. The Netherlands: Balkema Publishers, AA/Taylor &

Francis; 1994. p. 1257–64.

26. Bezerra MA, Santelli RE, Oliveira EP, et al. Response surface

methodology (RSM) as a tool for optimization in analytical

chemistry. Talanta 2008;76(5):965–77.

27. Wong FS. Slope reliability and response surface method. J

Geotechnol Eng Div 1985;111(1):32–53.

28. Rajashekhar MR, Ellingwood BR. A new look at the response

surface approach for reliability analysis. Struct Saf 1993;12

(3):205–20.

29. Kaymaz I, McMahon CA. A response surface method based on

weighted regression for structural reliability analysis. Prob Eng

Mech 2005;20(1):11–7.

30. Hurtado JE, Alvarez DA. Neural-network-based reliability anal-

ysis: a comparative study. Comput Method Appl Mech 2001;191

(1):113–32.

31. Dai H, Zhang H, Wang W, et al. Structural reliability assessment

by local approximation of limit state functions using adaptive

http://refhub.elsevier.com/S1000-9361(20)30110-2/h0005
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0005
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0005
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0010
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0010
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0010
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0015
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0015
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0015
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0020
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0020
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0020
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0025
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0025
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0025
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0025
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0030
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0030
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0030
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0035
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0035
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0035
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0040
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0040
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0040
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0045
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0045
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0050
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0050
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0050
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0050
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0055
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0055
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0060
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0060
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0065
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0065
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0070
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0070
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0075
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0075
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0075
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0080
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0080
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0080
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0085
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0085
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0085
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0090
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0090
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0090
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0095
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0095
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0095
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0105
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0105
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0110
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0110
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0110
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0115
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0115
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0120
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0120
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0120
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0125
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0125
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0125
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0125
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0125
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0130
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0130
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0130
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0135
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0135
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0140
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0140
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0140
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0145
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0145
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0145
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0150
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0150
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0150
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0155
http://refhub.elsevier.com/S1000-9361(20)30110-2/h0155


Reliability and reliability sensitivity analysis 1227
Markov chain simulation and support vector regression. Comput

Aided Civ Inf 2012;27(9):676–86.

32. Hurtado JE, Alvarez DA. An optimization method for learning

statistical classifiers in structural reliability. Prob Eng Mech

2010;25(1):26–34.

33. Hu C, Youn BD. Adaptive-sparse polynomial chaos expansion for

reliability analysis and design of complex engineering systems.

Struct Multidiscip Optim 2011;43(3):419–42.

34. Goswami S, Ghosh S, Chakraborty S. Reliability analysis of

structures by iterative improved response surface method. Struct

Saf 2016;60:56–66.

35. Bichon BJ, Eldred MS, Swiler LP, et al. Efficient global reliability

analysis for nonlinear implicit performance functions. AIAA J

2008;46(10):2459–68.

36. Echard B, Gayton N, Lemaire M. AK-MCS: an active learning

reliability method combining Kriging and Monte Carlo simula-

tion. Struct Saf 2011;33(2):145–54.

37. Lv Z, Lu Z, Wang P. A new learning function for Kriging and its

applications to solve reliability problems in engineering. Comput

Math Appl 2015;70(5):1182–97.

38. Sun Z, Wang J, Li R, et al. LIF: a new Kriging based learning

function and its application to structural reliability analysis. Reliab

Eng Syst Saf 2017;157:152–65.

39. Wei P, Song J, Bi S, et al. Non-intrusive stochastic analysis

with parameterized imprecise probability models: II. Reliability

and rare events analysis. Mech Syst Signal Process 2019;126:

227–47.

40. Wei P, Song J, Lu Z, et al. Time-dependent reliability sensitivity

analysis of motion mechanisms. Reliab Eng Syst Saf 2016;149:

107–20.
41. Borgonovo E, Plischke E. Sensitivity analysis: a review of recent

advances. Eur J Oper Res 2016;248(3):869–87.

42. Wu YT, Mohanty S. Variable screening and ranking using

sampling-based sensitivity measures. Reliab Eng Syst Saf 2006;91

(6):634–47.

43. Song S, Lu Z, Qiao H. Subset simulation for structural reliability

sensitivity analysis. Reliab Eng Syst Saf 2009;94(2):658–65.

44. Beaurepaire P, Jensen HA, Schuëller GI, et al. Reliability-based
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