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Summary
The focus of this work is the description of a framework for quantum-classical hy-
brid systems. The main emphasis lies on continuous variable systems described by
canonical commutation relations and, more precisely, the quasifree case. Here, we
are going to solve two main tasks: The first is to rigorously define spaces of states
and observables, which are naturally connected within the general structure. Sec-
ondly, we want to describe quasifree channels for which both the Schrödinger picture
and the Heisenberg picture are well defined.

We start with a general introduction to operator algebras and algebraic quantum
theory. Thereby, we highlight some of the mathematical details that are often taken
for granted while working with purely quantum systems. Consequently, we discuss
several possibilities and their advantages respectively disadvantages in describing
classical systems analogously to the quantum formalism. The key takeaway is that
there is no candidate for a classical state space or observable algebra that can be
put easily alongside a quantum system to form a hybrid and simultaneously fulfills
all of our requirements for such a partially quantum and partially classical system.
Although these straightforward hybrid systems are not sufficient enough to represent
a general approach, we use one of the candidates to prove an intermediate result,
which showcases the advantages of a consequent hybrid ansatz: We provide a hybrid
generalization of classical diffusion generators where the exchange of information
between the classical and the quantum side is controlled by the induced noise on the
quantum system.

Then, we present solutions for our initial tasks. We start with a CCR-algebra
where some variables may commute with all others and hence generate a classi-
cal subsystem. After clarifying the necessary representations, our hybrid states are
given by continuous characteristic functions, and the according state space is equal
to the state space of a non-unital C*-algebra. While this C*-algebra is not a suit-
able candidate for an observable algebra itself, we describe several possible subsets
in its bidual which can serve this purpose. They can be more easily characterized
and will also allow for a straightforward definition of a proper Heisenberg picture.
The subsets are given by operator-valued functions on the classical phase space with
varying degrees of regularity, such as universal measurability or strong*-continuity.
We describe quasifree channels and their properties, including a state-channel cor-
respondence, a factorization theorem, and some basic physical operations. All this
works solely on the assumption of a quasifree system, but we also show that the more
famous subclass of Gaussian systems fits well within this formulation and behaves
as expected.
Keywords: quantum-classical hybrids, quasifree systems, CCR-algebra





Zusammenfassung
Der Schwerpunkt dieser Arbeit ist die Beschreibung eines mathematischen Rah-
mens für quanten-klassische Hybridsysteme. Der Fokus liegt dabei auf Systemen
mit kontinuierlichen Variablen, welche durch die kanonischen Vertauschungsrela-
tionen beschrieben werden, wobei wir uns im Speziellen auf den quasifreien Fall
konzentrieren werden. Hierbei haben wir zwei große Aufgaben zu lösen: Die erste
besteht darin sowohl den Zustandsraum, als auch die Observablenalgebra rigoros zu
definieren und ihre natürliche Verbindung innerhalb des Formalismus zu präzisieren.
Als zweites wollen wir auf dieser Struktur quasifreie Kanäle beschreiben, für die
sowohl das Schrödinger-Bild, als auch das das Heisenberg-Bild definiert sind.

Wir beginnen mit einer allgemeinen Einführung in Operatoralgebren und alge-
braische Quantentheorie. Besonderen Wert legen wir dabei auf einige der mathe-
matischen Details, die bei der Arbeit mit reinen Quantensystemen oft als selbst-
verständlich angesehen werden. Ausgehend davon diskutieren wir verschiedene Mög-
lichkeiten und deren Vor- bzw. Nachteile bei der Beschreibung von klassischen Syste-
men, analog zum üblichen Formalismus der Quantenmechanik. Eines der wichtigsten
Ergebnisse dabei ist, dass es keinen Kandidaten für einen klassischen Zustandsraum
bzw. eine klassische Observablenalgebra gibt, der direkt mit einem Quantensys-
tem zu einem Hybrid zusammengefügt werden kann und gleichzeitig alle unsere An-
forderungen an ein solch teilweises Quanten- und teilweises klassisches System erfüllt.
Obwohl diese einfachen Hybride nicht für einen allgemeinen Ansatz ausreichen, ver-
wenden wir einen dieser Kandidaten, um ein Zwischenergebnis für den konsequenten
Hybridansatz zu beweisen: Wir zeigen eine Verallgemeinerung der klassischen Dif-
fusionsgeneratoren für Hybride, bei welcher der Informationsaustausch zwischen der
klassischen und der Quantenseite durch das induzierte Rauschen des Quantensys-
tems limitiert ist.

Dann widmen wir uns den Lösungen für die oben formulierten Aufgaben: Wir
beginnen mit der CCR-Algebra, in der einige Variablen untereinander kommu-
tieren und damit ein klassisches Teilsystem beschreiben. Nachdem wir Darstel-
lungstheorie dieser Algebra betrachtet haben, können wir hybride Zustände als
kontinuierliche charakteristische Funktionen beschreiben. Der entsprechende Zu-
standsraum ist gleich dem Zustandsraum einer nicht-unitalen C*-Algebra. Diese
C*-Algebra ist für sich zwar keine geeignete Observablenalgebra, aber wir unter-
suchen mehrere mögliche Untermengen in ihrem Bidual, welche hierfür benutzt
werden können. Diese Untermengen besitzen sowohl eine praktische Charakte-
risierung, als auch eine direkte Möglichkeit zur Definition eines Heisenberg-Bildes.
Konkret sind diese Untermengen als operatorwertige Funktionen auf dem klassischen
Phasenraum gegeben, wobei sie sich durch unterschiedliche Vorraussetzungen an
die Eigenschaften der Funktionen unterscheiden, wie z.B. universelle Messbarkeit
oder starke-*-Stetigkeit. Weiter beschreiben wir quasifreie Kanäle und ihre Eigen-
schaften, einschließlich einer Zustands-Kanal-Korrespondenz, ein Faktorisierungs-
theorem und einige grundlegende physikalische Operationen. All dies funktioniert
unter der Annahme eines quasifreien Systems, aber wir zeigen, dass auch die be-
kannte Untermenge der Gaußschen Systeme sich in diesen Formalismus eingliedert
und wie erwartet verhält.
Schlagwörter: Quanten-klassische Hybride, Quasifreie Systeme, CCR-Algebra
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Chapter 1

Introduction

1.1 Motivation
Let us start by formulating the guiding question of this part:

Why study quantum-classical hybrids?

In fact, there are plenty of possible answers on several levels of detail, the most
general being relatively straightforward: We, that is the author and most likely
the reader, live our daily life in a classical world. Hence, anything that connects
this with the quantum regime of photons, electrons, and atoms is likely a hybrid at
some point. Here, the prime example is a partial or non-destructive measurement
of a quantum system, which naturally ends up with a non-trivial hybrid system.
The mathematical description of this operation is commonly known as a quantum
instrument, see Fig. 1.1. This example is good to keep in mind because it nicely
illustrates the archetype of a classical system that we want to join our quantum part
to form our quantum-classical hybrid system.

Quantum
Quantum

Classical
HybridT

Figure 1.1: The instrument: A quantum system is measured and outputs
a hybrid system consisting of a quantum part joined by a classical system
that carries the measurement result.

Besides this rather general motivation, let us get more specific. In quantum
theory, many of the most powerful theorems state something like:

There is no quantum state ... every observable ... all quantum operations ...

Even without writing these statements out, they all demand that we know what
all states, observables, and possible operations precisely mean. Consequently, a work
on quantum-classical hybrids should give a comprehensive answer to the following
questions:

1



2 CHAPTER 1. INTRODUCTION

• What are the possible configurations of a quantum-classical hybrid, i.e., what
is the state space?

• What are the possible measurements of a hybrid system, i.e., what is the
observable algebra?

• How to characterize the admissible operations on a quantum-classical hybrid?

Here, the last item hardly depends on the first two, which for themselves are highly
intertwined. Unlike purely quantum and classical systems, the precise structure of
states and observables for hybrids needs to be better established.

Like many other works regarding hybrids, the early focus of this work was much
more on a direct application of hybrids before shifting to these general questions
above. In doing so, we had to go deeper into the functional analysis of such systems
than we had anticipated. In return, we can state a precise description of the afore-
mentioned spaces and operations with a practical calculus for the large subclass of
quasifree quantum-classical hybrids.

Another point of motivation to study hybrids more deeply is their upcoming
relevance. As real-world quantum computation is getting more advanced, the pos-
sibilities for implementing quantum information protocols increase just as well. A
good example of these natural hybrid protocols is quantum teleportation [1], see
Fig. 1.2. A detailed description of it can be found in nearly every textbook about
quantum information, e.g., [2].

|Ψ⟩

|β00⟩
|Ψ⟩

H M1

M2

X Z

Figure 1.2: Quantum teleportation: A quantum state |Ψ⟩ gets teleported using a shared
entangled quantum state |β00⟩ and classical communication (double lines).

Indeed, this protocol highlights two hybrid aspects: Firstly, the measurements
M1 and M2 transform our fully quantum system, consisting of three qubits (one as
|Ψ⟩ and two as |β00⟩), into one qubit and classical information, i.e. a proper hybrid
system as described above. Secondly, the operations or gates X and Y depend on
the classical outcome of M1 and M2, i.e., they are truly hybrid operations.

Typically, the teleportation protocol only utilizes bits and qubits, i.e., the basic
units of quantum, respectively, classical information. Hence, the necessary mathe-
matics can be reduced to the direct sum of finite-dimensional matrices, which thor-
oughly describe the states, observables, and operations. For more complex hybrid
scenarios, we need two generalizations: Infinite-dimensional quantum systems and
continuous sets for our classical side. This is where things quickly become more
challenging.
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1.2 Structure
Chap. 2 is a review of algebraic quantum theory, including the necessary math-

ematical definitions and facts from functional analysis and operator algebras. Al-
though we leave out most proofs, we give a sufficient and self-contained introduction
to all the necessary tools and provide a detailed list of references in the last section.

Chap. 3 is a general introduction to quantum-classical hybrids and also contains
a short review of commutative C*- and W*-algebras. In Sect. 3.1, we start with a
discussion of hybrids that have a finite-dimensional quantum system and a discrete
classical part. In preparation for the discussion of continuous classical systems, we
review the basic definitions and results regarding commutative C*- and W*-algebras
in Sect. 3.2. With this, we discuss possible approaches to building hybrid systems
in Sect. 3.3. At times, these hybrid frameworks can provide a sufficient structure for
some aspects, but each fails at a different point to constitute a basis for the purpose
of this work. Then, in Sect. 3.4, we group and classify the previous approaches to
the topic of quantum-classical hybrids and put them into context.

Chap. 4 is about generalizing diffusions to the hybrid setting and our first result
about hybrids, showing the capabilities of this approach. For this, we start with a
short introduction to Feller semigroups in Sect. 4.1. Just like quantum dynamical
semigroups, described by the famous Lindblad theorem, Feller semigroups have a
distinct generator form. So in Sect. 4.2, taking one of the hybrid algebras from
the chapter before, we generalize this classical theorem to the hybrid case. Here, a
positivity condition naturally bounds the information flow from the quantum to the
classical systems.

Chap. 5 is the central chapter and contains a calculus and a description of the
according algebras for quasifree hybrid systems. These results are published in [3].
We start in Sect. 5.1 with a review of continuous-variable quantum systems and their
calculus, on which we will build our hybrid generalization. In Sect. 5.2, we introduce
the hybrid framework, including representations of the hybrid CCR-algebra and the
according state space. By hybrid CCR-algebra, we mean a CCR-algebra but with
a degenerate symplectic form, i.e., with some variables that may commute with all
others and hence generate a classical subsystem. Here, the good or standard states
are those with a continuous characteristic function and are equal to the state space of
a non-unital C*-algebra C∗(Ξ, σ). This algebra is isomorphic to the tensor product
of the continuous functions vanishing at infinity on the classical part of the phase
space, joined by the compact operators on the quantum part. Also we study the
famous subclass of quasifree systems, the Gaussian ones, in Sect. 5.2.4. After we
have discussed our states, we study the possible observable algebras in Sect. 5.3. Of
course, we could state C∗(Ξ, σ)∗∗ as the observable algebra, but even without the
quantum part, the bidual of the classical algebra is way too unpractical. Hence, we
propose several subsets of it as candidates for hybrid observables algebras. With
states and observables, we introduce quasifree channels and some of their properties
in Sect. 5.4. This includes the characterization of the subclass of noiseless channels
and a noise factorization theorem, which allows us to write every hybrid quasifree
channel as enlarging the system followed by a noiseless operation. We end this work
with two more practical sections. In Sect. 5.5, we describe basic physical operations
like disturbance, observables, and instruments in terms of this hybrid framework.
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Chapter 2

Review: Algebraic Quantum
Theory

... what this chapter is and isn’t

The following chapter is a short guide on how to get from the Hilbert space for-
mulation of quantum mechanics to its algebraic form. Thereby, we mention the
necessary facts but do not cover every detail, as there are many textbooks about
different topics. We give a detailed list of references for the statements in this chap-
ter in Sect. 2.5, such that the interested reader can find more details and proofs
there. Nevertheless, we try to be as self-contained as possible in the sense that the
following section has several summaries, hopefully improving the flow of reading.
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2.1 Quantum Mechanics on Hilbert Space
The Hilbert space formulation of quantummechanics is its most idealized description.
While still providing the necessary framework for different research areas, we need
a more general approach. Working on a new framework by starting with the special
case of a special case is not advisable. To get there, we start with a brief review of this
formulation to get a common ground and point towards the upcoming generalization.

Let H be a complex Hilbert space, that is, H is a vector space over the complex
numbers C, equipped with a scalar product ⟨·, ·⟩ : H×H → C, which is linear in the
second argument and anti-linear in the first. It is complete with respect to the norm
induced by the scalar product: ∥Ψ∥ =

√
⟨Ψ,Ψ⟩. One usually assumes the Hilbert

space H separable, i.e. H has a countable basis.
The states, which characterize the possible configurations of a system, are given

by unit vectors |Ψ⟩ ∈ H. In quantum theory, there are two different ways of com-
bining them. One is by superposition, and the second is a mixture. Mathematically,
a superposition of states is their linear combination on the Hilbert space level. For
example, the vectors |Ψi⟩ ∈ H can be superposed to the state

|Φ⟩ =
n∑
i

ci|Ψi⟩, ci ∈ C. (2.1)

The naive translation of this concept to classical configurations, like the condition of
a cat, underlines the differences between quantum and classical theories. In contrast
to superposition, the notion of mixing is present in both classical and quantum
systems: For this, we take our first step out of the Hilbert space and use the one-
dimensional projectors |Ψi⟩⟨Ψi| as pure states instead of the Hilbert space vectors
Ψi ∈ H. We can mix them by forming non-trivial convex combinations

ρ =
n∑
i

ci|Ψi⟩⟨Ψi|, (2.2)

with ci ≥ 0 and
∑

i ci = 1. These ρ are called mixed states. The operational
interpretation of these states is readily understood if we read the coefficients {ci} as
a classical probability distribution. Then, the state ρ in Eq. (2.2) means that our
system is with probability ci in the state |Ψi⟩⟨Ψi|. In general, this decomposition is
not unique and should be read in the sense of ensembles.

The measurements or observables in quantum mechanics are often modeled
by hermitian or self-adjoint operators A∗ = A. Similar to the eigenvalue decompo-
sition of hermitian matrices in the finite-dimensional case, self-adjoint or hermitian
operators have a spectral decomposition

A =
∫

R
xA(dx), (2.3)

where A(dx) is a projection-valued measure (PVM) on the possible measurement
outcomes. Note that this is a very brief and simple description of the measurements
in quantum theory. For example, the measure A(dx) does not need to be projection-
valued, leading to the more general positive operator-valued measure (POVM), see
Sect. 2.3. For the moment, we leave it there and discuss another important aspect,
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namely, what type of information we get out of a measurement. It is essential to
highlight that, in comparison to most classical theories, quantum mechanics is prob-
abilistic and not deterministic. So, in general, the figure of merit is not a statement
about a single shot but a series of measurements characterized by a probability
distribution and statistical quantities like the expectation value:

⟨x⟩Ψ = ⟨Ψ|A|Ψ⟩ or ⟨x⟩ρ = tr[ρA]. (2.4)

The dynamics, that is, the time evolution between the preparation of the state
and the measurement, is typically described by the famous Schrödinger equation

−iℏ∂tΨ(x, t) = HΨ(x, t). (2.5)

Here H is the Hamiltonian, which is also a self-adjoint operator and, according to
Eq. (2.5), determines the infinitesimal evolution of the stateΨ. For time-independent
Hamiltonians, this leads to the time-evolution operator:

Ut = e−
i
ℏHt with Ψ(t) = UtΨ(0). (2.6)

The operator Ut is unitary, so U∗
t = U−t is the inverse and describes the reverse

dynamics. It is also possible to handle mixed states, where the infinitesimal behavior
is also generated by the Hamiltonian

∂tρ = i[H, ρ]. (2.7)

The analog to the Schrödinger equation, Eq. (2.7) is sometimes called Liouville- or
von Neumann equation. The long-term evolution for a mixed state is then described
by

ρ(t) = Utρ(0)U∗
t . (2.8)

With regards to the dynamics of the system, there is one point left to discuss,
namely the choice of picture we are working in. For example, the evolution of an
expectation value can be described in two equivalent ways:

⟨A⟩Ψt = ⟨UtΨ|A|UtΨ⟩ = ⟨Ψ|U∗
t AUt|Ψ⟩ = ⟨A(t)⟩Ψ. (2.9)

In the left part of Eq. (2.9), we evolve the state, while on the right-hand side,
the measurement operator A is the dynamical element. The first case, in which
the dynamics are acting on the states, is called the Schrödinger picture, and
the second, i.e., when we evolve the observables, the Heisenberg picture. Here,
both pictures yield the same results, and based on the situation, one picture can be
more beneficial than the other. Having this choice and switching between them is a
valuable feature of quantum mechanics.

The three fundamental building blocks of preparation, dynamics, and measure-
ment that can be used to break up any experiment in quantum theory and the two
different pictures for the evolution are illustrated in Fig. 2.1.
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Ψ Ut A

Figure 2.1: A general experiment in quantum theory with a state Ψ, the dynamics
described by Ut and an observable A. The Schrödinger picture is marked in blue
and the Heisenberg picture in orange.

Algebraic quantum theory Let us summarize the generalizations in the descrip-
tion of quantum theory we will need.

At first, our focus point will switch from the Hilbert space H to the operator
algebra A = B(H), the bounded linear operators over H, which is our observable
algebra in quantum theory (see Sect. 2.2).

A subset of this algebra are the trace-class operators T (H) ⊂ B(H), which define
quantum states by density operators ρ. As we will see, this does not exploit all
possibilities for states in quantum theory. Indeed, it is one of the main advantages
of algebraic quantum theory to handle the full state space of an observable algebra.
It consists not only of density operators but positive linear functionals ω : B(H) → C.
In general, states are best understood as expectation value functionals, including the
previous definitions by the identifications

ωΨ : B(H) → C, ωΨ(A) = ⟨Ψ|A|Ψ⟩ (2.10)
ωρ : B(H) → C, ωρ(A) = tr[ρA]. (2.11)

Alongside this shift of focus from the states to the observables, the Heisenberg
picture is more prominent in algebraic quantum theory than in the Hilbert space
formulation. Nevertheless, both pictures are present and viable (see Sect. 2.3).

Another generalization we will need is the transition from closed system dynam-
ics to open systems. This means that instead of reversible dynamics, we have to deal
with irreversible operations. Mathematically, we have to move from unitary imple-
mented groups to completely positive maps and the representations of semigroups
(see Sect. 2.4).
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2.2 Operator Algebras
In this section, we will recall some basic facts from the theory of operator algebras.
Their development is closely connected to those of quantum theory. Witnesses for
this are that W*-algebras are also known as von Neumann algebras because von
Neumann was one of the founding fathers of both fields and the nomenclature for
positive functionals as states.

2.2.1 C*-algebras

We start with the common approach showing that the space B(H) has the structure
of what is called a C*-algebra [4, 5] and some basic facts from functional analysis
[6, 7]. For this, let us start with the formal definition of the elements in B(H):

Definition 1 (bounded linear operators). Let H1,H2 be Hilbert spaces and A :
H1 → H2 a map or operator. We denote the set of all bounded linear operators
by B(H1,H2) and in the case H1 = H2 = H by B(H).

Thereby bounded refers to the operator norm:

Definition 2 (operator norm). For A ∈ B(H) we define the operator norm ∥A∥ by

∥A∥ = sup
Ψ

∥AΨ∥
∥Ψ∥

= sup
∥Ψ∥=1

∥AΨ∥. (2.12)

In the following, we will drop the word bounded and assume every operator to be
bounded else, we will especially state an operator to be an unbounded operator.
Indeed, two of the most prominent operators in quantum theory, namely the position
Q and momentum P , are prime examples of unbounded operators, and we will have
a closer look at them in Chap. 5.

Note that a linear map between two normed vector spaces is bounded if and
only if it is continuous (with respect to the norm topology). For A,B ∈ B(H) we
define their sum by (A + B)Ψ = AΨ + BΨ and scalar multiplication by (λA)Ψ =
λ(AΨ) , λ ∈ C. This turns B(H) into a vector space.

The vector space B(H) is complete with respect to the operator norm, so it
becomes a complete normed vector space, which is also called a Banach space.
From the definition of the operator norm, we have that any A ∈ B(H) and Ψ ∈ H
satisfy

∥AΨ∥ ≤ ∥A∥∥Ψ∥. (2.13)

Then for two operators A,B ∈ B(H) we get

∥AB∥ = sup
∥Ψ∥=1

∥ABΨ∥ ≤ ∥A∥∥B∥ sup
∥Ψ∥=1

∥Ψ∥ ≤ ∥A∥∥B∥. (2.14)

Hence, if A,B are bounded, so is their product AB ∈ B(H), which we read as
applying them successively. This makes B(H) an algebra. An algebra, which is
also a Banach space, is called a Banach algebra. Finally, we will see that B(H) is
a Banach *-algebra and especially a C*-algebra. For this, we need an involution
or ∗-operation, which satisfies the following properties for A,B ∈ B(H) and λ ∈ C:
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1. (A∗)∗ = A 2. (AB)∗ = B∗A∗

3. (λA+B)∗ = λA∗ +B∗ 4. ∥A∗A∥ = ∥A∥2.

The items 1-3. are the conditions for a ∗-algebra and 4. is called C*-property, which
turns a ∗-algebra into a C*-algebra. The ∗-operation on B(H) is defined by the
adjoint in the following way:

Definition 3 (adjoint operator). For A ∈ B(H1,H2) and Φ ∈ H1,Ψ ∈ H2 we define
its adjoint operator A∗ ∈ B(H2,H1) by

⟨Φ, A∗Ψ⟩H1 = ⟨AΦ,Ψ⟩H2 . (2.15)

One can easily check that the adjoint satisfies the above requirements of a
*-involution, which makes B(H) a C*-algebra.

Note that an abstract C*-algebra is not required to have a multiplicative unit
like 1 in B(H). If it does, we call it a unital C*-algebra or C*-algebra with a unit.
Nonetheless, one can show that every C*-algebra contains an approximate unit [8,
Sect. I.7]:

Definition 4 (approximate unit). Let A be a C*-algebra and {uλ |λ ∈ Λ} a net of
positive elements with ∥uλ∥ ≤ 1 for all λ. If λ < µ implies uλ ≤ uµ and

lim
λ∈Λ

∥A(1− uλ)∥ = 0 (2.16)

for all A ∈ A, then this net is called an approximate unit.

If A is separable, i.e., it contains a countable dense subset, the approximate unit
is bounded and can be represented by a sequence ui instead of a net uλ. Another
approach is adjoining a unit or the unitization of A. If A is a non-unital Banach
algebra, we expand it to Ã = A ⊕ C, which does have a unit 1Ã in the second
summand [9, Sect. C.5]. The norm (as a Banach algebra) is given by

∥A+ λ1Ã∥ = ∥A∥+ |λ|. (2.17)

This can be extended to also work for C*-algebras, see [9, Prop. C.30].

2.2.1.1 Operators

In this part, we characterize the objects of a C*-algebra. Certain facts are distinct to
the quantum case, i.e., B(H), but wherever possible, we state most facts on the level
of a general unital C*-algebra A. We start by generalizing the concept of eigenvalues
from linear algebra to arbitrary elements in a C*-algebra:

Definition 5 (spectrum). For A ∈ A we define its spectrum σ(A) by

σ(A) = {λ ∈ C | (A− λ1) is not invertible}. (2.18)

The complement of the spectrum is called the resolvent.

Next, we classify certain types of elements in A and have a look at some of their
properties:
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Definition 6. We call an element A ∈ A: normal if AA∗ = A∗A, self-adjoint if
A = A∗, an isometry if A∗A = 1, unitary if A∗A = AA∗ = 1 and a projection
if A2 = A = A∗.

Obviously, every self-adjoint element is normal, and every unitary element is an
isometry. One can also show that the spectrum of a self-adjoint element is real, and
for unitary elements, the spectrum lies on the complex unit circle.

On a concrete Hilbert space, we can state some more properties: An operator
A ∈ B(H) is self-adjoint, if and only if ⟨Ψ, AΨ⟩ ∈ R for all Ψ ∈ H. An isometry, and
especially every unitary, does not change the norm of vectors in H

∥Ψ∥2 = ⟨Ψ,Ψ⟩ = ⟨A∗AΨ,Ψ⟩ = ⟨AΨ, AΨ⟩ = ∥AΨ∥2 (2.19)

and is always injective.
An important class of objects are the positive elements. On Hilbert spaces,

there is a straightforward definition for the positivity of an operator A ∈ B(H), which
is that ⟨Ψ, AΨ⟩ ≥ 0 for all Ψ ∈ H. For the general case, we have the following:

Definition 7 (positive elements). An element A ∈ A is positive, A ≥ 0, if one of
the equivalent conditions holds true:

• A is self-adjoint and σ(A) ∈ R+

• there exists B ∈ A such that A = B∗B.

For two positive operators A,B ≥ 0, we say A ≥ B if A − B ≥ 0. This defines a
partial order on the positive elements of A, which we denote by A+ and, with the
vector space structure, becomes a partially ordered vector space.

It is clear from the definition that every positive element A ∈ A+ is automatically
self-adjoint. Moreover, every positive operator A has a unique square root

√
A,

which satisfies (
√
A)2 = A. With this, we can define the absolute value for a self-

adjoint operator A ∈ A via |A| =
√
A2. Another important fact about the positive

elements of a C*-algebra is that they form a cone:

Lemma 8. Let A+ be the set of positive elements of A. Then A+ is a norm closed
convex cone.

Recall that a subset X is called convex, if ∀x, y ∈ X also λx + (1 − λ)y ∈ X,
0 ≤ λ ≤ 1 and a cone if for every x ∈ X also λx ∈ X with λ > 0. The extreme
points of a convex set are those on the boundary of X for which λx+ (1− λ)y = z
and 0 < λ < 1 it follows that x = y = z. Moreover we can split every self-adjoint A
into A± = (|A| ±A)/2, where A± ∈ A+ and A = A+ −A−.

Now, we can define the class of elements called trace class operators, which
will be used in the description of normal states in quantum theory.

Definition 9 (trace class). For A ∈ B(H) we define the trace of A by

tr[A] =
∞∑
i=1

⟨φi, Aφi⟩, (2.20)

where φi is an orthonormal basis for H and if tr[
√
A∗A] is finite, we call A a trace

class operator. We denote the set of trace class operators by T (H) ⊂ B(H).
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The trace is linear, i.e., for A,B ∈ T (H) we have tr[λA + B] = λ tr[A] + tr[B]
with λ ∈ C and like the positive operators, the trace class operators form a vector
space, which becomes a normed vector space with the following definition.

Definition 10 (trace norm). Let A ∈ T (H) be a trace class operator, then

∥A∥tr = tr[
√
A∗A] (2.21)

defines a norm on T (H), which is called the trace norm.

For the trace norm one can show that for A ∈ T (H), B ∈ B(H) we have ∥AB∥ ≤
∥A∥tr∥B∥, ∥A∥ ≤ ∥A∥tr and tr[A∗] = tr[A]. Another important feature of the trace
class operators is that their product with a bounded operator is again a trace class
operator:

Lemma 11. Let A ∈ T (H) be a trace class operator and B ∈ B(H), then AB and
BA are both trace class operators, i.e. T (H) is a two-sided ideal in B(H). For the
value of the trace, we have

tr[AB] = tr[BA]. (2.22)

So, the trace is independent of the choice of the basis because it is invariant
under the action of a unitary operator U , i.e., tr[UAU∗] = tr[A]. Next, we equip
T (H) with an inner product.

Definition 12 (Hilbert-Schmidt product). For A,B ∈ T (H) we define an inner
product by

⟨A,B⟩HS = tr[A∗B]. (2.23)

Clearly it is conjugate symmetric, i.e. ⟨A,B⟩HS = ⟨B,A⟩HS , and linear in the
second argument, ⟨A, λB + C⟩HS = λ(⟨A,B⟩HS + ⟨A,C⟩HS). Also, it is positive
⟨A,A⟩HS ≥ 0, and one can show that it is non-degenerate, therefore an inner prod-
uct.

Now we come to the class of compact operators, which does not share the
same place in the spotlight as B(H) or T (H) when it comes to quantum theory, but
plays an important part in the mathematical structure.

Definition 13 (compact operators). Let K ∈ B(H) be an operator and U the unit
ball of H. Then K is compact if the closure of K(U) is compact. We denote the set
of compact operators by K(H) ⊂ B(H).

Sometimes, it is useful to describe compact operators by finite-rank opera-
tors [9, B.131]. These are operators F ∈ B(H) with finite-dimensional span, i.e.
{FΨ |Ψ ∈ H} has finite dimension. Then K(H) is the norm-closure of all such
operators, and an operator K is compact, if and only if it can be approximated by
finite-rank operators Kn, i.e., ∥K −Kn∥ → 0. Also, if K is compact, so is K∗ and
vice versa. The set of compact operators forms a C*-algebra, which, like the set of
trace class operators, forms an ideal in B(H).
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2.2.1.2 States and Dualities

We already mentioned that trace class or density operators are the normal states in
quantum theory. For the general concept of a state on a C*-algebra, we need the
definition of the dual space.

Definition 14 (dual space). Let A be a (normed) vector space over the complex
numbers C. A functional ω is a (continuous) linear map from A into C. The space
of functionals over A is called the (topological) dual space A∗.

One can highlight the continuity assumption in the above definition and differ
between the topological dual space and the algebraic dual space, where the func-
tionals ω are not required to be continuous. The space A∗ is a vector space, where
addition is defined point-wise, (ω + µ)(x) = ω(x) + µ(x), and scalar multiplication
in the usual way.

Before we can state the precise connection between K(H), T (H) and B(H), we
need the notion of duality or dual pairs, as neither of the aforementioned spaces
naturally consists of functionals [10, 2.3.8].

Definition 15 (dual pair). Let A and B be two vector spaces. They form a (alge-
braic) dual pair or are in (algebraic) duality if there exists a bilinear form

⟨·, ·⟩ : A× B → C, (2.24)

which separates points if seen as a functional ⟨·, B⟩ : A → C, i.e.

∀A ∈ A \ {0} ∃B ∈ B such that ⟨A,B⟩ ≠ 0, (2.25)

and the same for interchanged roles of A and B. If A and B have a norm and the
functionals ⟨·, B⟩, ⟨A, ·⟩ are continuous, we drop the word algebraic.

Crucial in this definition is the fact that functionals separate points. Otherwise,
one can find trivial examples where the dual space has little or nothing to say about
the underlying space, and many of the following applications would not work. This
is sometimes highlighted by calling such a duality a separating duality [11, II. §6.1].
Now we can formulate the dualities mentioned above in a more precise way [10,
Thm. 3.4.13]:

Theorem 16 (dualities). The trace-class operators T (H) are the dual space of the
compact operators K(H) and the bounded linear operators B(H) are the dual space
of the trace-class operators, i.e.,

K(H)∗ = T (H) and T (H)∗ = B(H). (2.26)

The duality between the spaces is given by

⟨A,B⟩ = tr[AB]. (2.27)

Another way of stating Eq. (2.26) is to say that the compact operators K(H)
form the predual of the trace-class operators T (H), which are the predual of the
bounded operators B(H). We write this as

K(H) = T (H)∗ and T (H) = B(H)∗. (2.28)
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Note that for a C*-algebra, we can always define a dual space, but the predual does
not necessarily exist. Indeed, the existence of a predual is the defining difference
between C*-algebras and W*-algebras.

The dual space of a C*-algebra A∗ naturally carries a norm which is defined as

∥ω∥ = sup
A∈A,∥A∥≤1

|ω(A)|. (2.29)

With this, let us collect some basic definitions about the elements of A∗:

Definition 17. Let ω ∈ A∗ be a linear functional on a Banach *-algebra A.

• We call ω positive if it maps positive elements to positive elements, i.e.,
ω(A∗A) ≥ 0 for all A ∈ A. We denote the set of positive functionals on A by
A∗

+.

• If ω is positive and has norm one, we call ω a state on A. We denote the set
of all states or the state space of A by S(A).

• A functional ω is called faithful if ω(A∗A) ̸= 0 for all non-zero A ∈ A.

• We define the adjoint of ω by complex conjugation, i.e., ω(A)∗ = ω(A) and
call ω self-adjoint if ω(A)∗ = ω(A).

In the same way, we defined a partial order on the positive elements of a C*-
algebra, we can define a partial order on the positive elements of A∗ by ω ≥ µ if
ω − µ ≥ 0.

The structure of quantum state spaces is an important point for the theory and,
indeed will be likewise important for our hybrid framework. On this matter, let us
discuss some consequences of the above definition. One can show that ω ∈ A∗ is
positive, if

limω(uλ) = ∥ω∥ (2.30)

for some approximate unit {uλ}. IfA is unital, the condition simplifies to ω(1) = ∥ω∥
[12, Prop. 3.1.4]. Hence for unital C*-algebras, we can characterize the state space
by

S(A) = {ω ∈ A∗ | ∥ω∥ ≤ 1, ω(1) = 1}. (2.31)

If A is unital, this set is convex and weak*-compact (see Sect. 2.2.1.4). For non-
unital A, the normalization functional is not continuous in the weak* topology, so
the states are not a weak*-closed subset of the unit ball, hence not compact.

The extreme points of S(A) are called pure states, while the other states are
called mixed states. Accordingly a state ω is pure if and only if η ≤ ω implies
η = λω for 0 ≤ λ ≤ 1.

If the algebra A is non-unital, we cannot use Eq. (2.31) so we need to use the
quasi-state space [12, Sect. 3.2], which is the positive part of the unit ball in A∗,
i.e.

Q(A) = {ω ∈ A∗ |ω ≥ 0, ∥ω∥ ≤ 1}. (2.32)

This space is also convex and always weak*-compact. The main difference between
S(H) and Q(H) is the existence of the zero-functional in the quasi-state space.
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2.2.1.3 Representations and the GNS construction

Equipped with the definition of states for a general C*-algebra, we can now state
two important tools in the field of operator algebras, namely the Gelfand-Naimark
theorem, which identifies any C*-algebra as a subalgebra of B(H) and the famous
GNS-construction. For this, let us recall the basic definitions and facts of the rep-
resentation theory of C*-algebras.

Definition 18. Let A be a Banach *-algebra. A *-homomorphism π from A to
B(H), i.e.,

π(AB) = π(A)π(B) and π(A∗) = π(A)∗, (2.33)
is called a representation of A.

• The corresponding Hilbert space H is called representation space of π and
to highlight this connection we write Hπ or the pair as {π,H}.

• Two representations {π1,H1} and {π2,H2} are called unitarily equivalent if
there exists an isometry U , such that for A ∈ A we have Uπ1(A)U∗ = π2(A).

• A representations for which π(A) ̸= 0 for all non-zero elements is called faith-
ful.

• If for any non-zero Ψ ∈ Hω, there is an A ∈ A such that π(A)Ψ ̸= 0, then π
is called non-degenerate.

• The representation is called cyclic if there is a cyclic vector Ω ∈ Hω, such
that the closure of π(A)Ω is Hω.

After this rather long collection of definitions, let us begin with some of the corre-
sponding results. The first will allow us to restrict our work on cyclic representations
[8, Thm. 9.17]:

Proposition 19. Any non-degenerate representation of a Banach *-algebra is a
direct sum of cyclic representations.

The next fact comes with no surprise to anybody familiar with Schur’s lemma
from representation theory. For this, we need two more definitions: If {π,H} is a
representation and N ⊂ H a closed subspace, we call N an invariant subspace if
π(A)N ⊂ N for all A ∈ A. If the only invariant subspaces are H and {0}, we call a
representation irreducible. Then, we have the following theorem [8, Thm. 9.20]:

Proposition 20. Let {π,H} be a representation of a Banach *-algebra A, then the
following are equivalent:

a) {π,H} is irreducible.

b) Only scalar multiplication operators commute with π(A).

The proof of the next theorem constitutes what is famously known as the Gelfand-
Naimark-Segal orGNS construction. It can be found in any work of the referenced
literature, see Sect. 2.5, although most authors strengthen the requirements of the
theorem, i.e., assume A to be unital C*-algebra. This avoids some technicalities
during the proof, but the basic structure remains the same [8, Thm. 9.14].



16 CHAPTER 2. REVIEW: ALGEBRAIC QUANTUM THEORY

Theorem 21 (GNS construction). Let A be a Banach *-algebra with a bounded
approximate identity. Then, for every positive linear functional ω ∈ A∗

+, there exists
a cyclic representation {πω,Hω} of A, which is unique up to unitary equivalence.
Furthermore, if Ω ∈ Hω is the cyclic vector and A ∈ A, we have

ω(A) = ⟨πω(A)Ω,Ω⟩. (2.34)

To highlight the cyclic vector, one often extends the representation {πω,Hω} to
the triple {πω,Hω,Ω}. A version with less technicalities is given in [4, Thm. 2.5.3],
whose proof may be better suited for a first round.

A rough sketch of the construction goes as follows: A positive linear functional ω
defines a sesquilinear form by ω(AB), which can be completed into a Hilbert space
on which the algebra can be represented. Note that for a separable algebra A, the
GNS Hilbert space can be chosen likewise separable [7, Thm. 5.17]. In Sect. 2.2.2,
we will see that every C*-algebra admits a faithful representation, and together with
the above construction, one can prove the Gelfand-Naimark theorem, which states
that any C*-algebra is *-isomorphic to a *-subalgebra of B(H) for some Hilbert
space H [8, Thm. 9.18].

The last result in this section gives rise to a connection between the purity of
states and the associated representations in the GNS-construction [8, Thm. 9.22]:

Theorem 22. Let ω ∈ A∗
+ be a positive linear functional on a C*-algebra. Then

the following are equivalent:

a) ω is pure.

b) The cyclic representation {πω,Hω} induced by ω is irreducible.

2.2.1.4 Topologies

In several instances, like the compactness of the unit ball in the dual space, we
mentioned the dependence of the topology. The importance of a topology is due to
the fact that continuity, convergence, compactness, denseness, and others are defined
by using open sets, i.e., they depend on the particular choice of a topology. We will
give a very brief general introduction to the topic [10, Sect. 1.2].

Topology basics Let X be a set and τ a collection of subsets of X. If τ contains
X and the empty set ∅, is closed under an arbitrary union of elements and finite
intersections, we call the pair (X, τ) a topological space, the elements of τ open
sets and τ a topology. If X has the structure of a vector space and addition and
scalar multiplication are continuous, we call it a topological vector space. We
can compare two topologies τ1 and τ2 on X in the following way: we say τ1 is finer
than τ2 or τ2 is coarser than τ1, if τ2 ⊆ τ1, i.e. τ1 has more open sets.

The typical way to define or construct a topology is by defining its open sets.
One of the most commonly known and used is the norm topology: If X is a
normed space, we can define a metric by d(a, b) = ∥a− b∥ and get open sets by

Bε(a) = {b ∈ X | ∥a− b∥ < ε}. (2.35)



2.2. OPERATOR ALGEBRAS 17

Then a sequence An converges to A in this topology if ∥An − A∥ → 0. In many
applications, this topology is too restrictive.

For example, we will see in Sect. 2.4, that if we demand a semigroup of operators
to be norm convergent, it forces the generator of the semigroup to be bounded. This
would exclude many applications, for example, in quantum optics, where most gen-
erators are unbounded. Therefore, we are going to introduce some more topologies.

Instead of using a norm, one can do a similar construction with a family of
seminorms instead [7, IV.1.1f]. A function p is called seminorm if it fulfills the
same requirements as a norm with the difference that it is allowed to vanish on
non-zero elements, i.e., there may exist 0 ̸= x ∈ X, such that p(x) = 0. Hence, we
need a whole family of seminorms instead of just one norm. Given a vector space
X and a family of seminorms {pi}, they define a topology by the sets

Ui(y) = {x ∈ X | pi(x− y) < ε}. (2.36)

A topological vector space with the topology defined by a family of seminorms
is called locally convex space. All of the following examples for topologies on
B(H) are generated by families of seminorms. In general, those topologies can be
relatively wild, for example, they do not need to be Hausdorff. One can show that
the generated topology is Hausdorff if and only if for every non-zero x ∈ X there
exists a seminorm pi, such that pi(x) ̸= 0 [7, Def. 1.2f], which is always the case for
the local convex topologies in this work.

A useful source for seminorms that define topologies is the dual space or a dual
pair, leading to the weak topology [7, V.1]. Here we take the elements ω ∈ A∗ to
define a family of seminorms on A:

pω(a) = ω(a) = |⟨a, ω⟩|. (2.37)

This topology is also denoted as the σ(A,A∗)-topology and is the coarsest topology,
that makes all ω ∈ A∗ continuous [13, II.5]. Further, we can switch the argument
and parameter in the seminorm, i.e., use

pa(ω) = ω(a) = |⟨ω, a⟩| (2.38)

as seminorms on A∗, which defines the weak* topology.
As an example, we can choose X as T (H), so X∗ is B(H), and with the duality

described in Thm. 16, we get the weak* topology on B(H), which is also called
the σ-weak operator topology or ultraweak topology [12, 3.5.5]. Topologies that
are defined on B(H) are generally called operator topologies. Other important
operator topologies are the following [7, IX. Def. 1.2f]:

• The strong operator topoplogy is the topology on B(H) generated by the
family of seminorms

pΨ(A) = ∥AΨ∥ Ψ ∈ H. (2.39)
Accordingly a sequence An converges to A in this topology if ∥(An−A)Ψ∥ → 0
for all Ψ ∈ H.

• The strong* operator topoplogy is an extension of the above, making the
adjoint operator continuous. For this, we use the seminorms

pΨ(A) = ∥AΨ∥+ ∥A∗Ψ∥ Ψ ∈ H. (2.40)
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• On the other hand, theweak operator topology is defined by the seminorms

pΦ,Ψ(A) = |⟨Φ, AΨ⟩| Φ,Ψ ∈ H. (2.41)

Here An converges to A if and only if |⟨Φ, (An −A)Ψ⟩| → 0 for all Ψ,Φ ∈ H.

In the following, the prefixes weak and strong will refer to the operator topologies.
Equipped with the proper definitions of the different topologies, we can now

state some of the previously mentioned results. We begin with the compactness of
the state spaces in Sect. 2.2.1.2, which is a direct implication of the Banach-Alaoglu
theorem [10, Thm. 2.5.2]:

Theorem 23 (Banach-Alaoglu). If X is a normed vector space, then the closed unit
ball of X∗ is weak*-compact.

The quasi-state space Q(A), as a closed subspace of the weak*-compact unit ball
in A∗, is always weak*-compact. If the state space is also closed, we can use the
same argumentation to conclude that S(A) is likewise weak*-compact [12, 3.2.1].

The compactness combined with the convexity allows us to characterize the state
space as the closed convex hull of the pure states by the Krein-Milman theorem [10,
Thm. 2.5.4]:

Theorem 24 (Krein-Milman). Let X be a locally convex space and K ⊂ X a
compact, non-empty, and convex subset. Then K has extreme points, and the closure
of the convex hull of the extreme points equals K.

In short, this theorem guarantees us the existence of plenty extremal elements,
which play a major role in the structure of our state spaces, respectively, quasi-state
spaces.

2.2.1.5 The enveloping C*-algebra

Before we continue with even more structure by introducing von Neumann algebras,
we will review the concept of the enveloping C*-algebra. With this construction, we
can study Banach *-algebras by using the C*-algebraic toolkit. We will use this in
Sect. 5.2.3 to define the twisted group algebra over our hybrid phase space, whose
states correspond exactly with our definition of hybrid standard states.

The following results are taken from [14, Ch. 2.7], which also contains the ac-
cording proofs and more details.

Proposition 25. Let A be a Banach *-algebra with approximate identity. Let R
be the set of representations of A, Q(A) the quasi-state space, and P(A) the set of
pure states of A. For every A ∈ A, we have

∥A∥′ = sup
π∈R

∥π(A)∥ = sup
ω∈Q(A)

∥ω(A∗A)1/2∥ = sup
ω∈P(A)

∥ω(A∗A)1/2∥ ≤ ∥A∥. (2.42)

The map A 7→ ∥A∥′ is a seminorm on A such that

∥AB∥′ ≤ ∥A∥′∥B∥′, ∥A∗∥′ = ∥A∥′, ∥A∗A∥′ = ∥A∥′2 (2.43)

for any A,B ∈ A.
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Now ∥A∥′ defines a norm on A/I, where I is the closed self-adjoint two-sided
ideal of elements A ∈ A with ∥A∥′ = 0. With this, we can now define:

Definition 26. The completion of {A/I, ∥·∥′} is called the enveloping C*-algebra
of A and is denoted as C∗(A).

With the completeness and the properties inherited from A, the space C∗(A) is
a C*-algebra. If A is already a C*-algebra, then ∥A∥ = ∥A∥′ and A can directly be
identified as its enveloping C*-algebra.

Further one can show that for a Banach *-algebra A and its enveloping C*-
algebra C∗(A), with τ denoting the canonical map of A into C∗(A), there is exactly
one representation ρ of C∗(A), such that

π = ρ ◦ τ, (2.44)

where π is a representation of A. Also τ(C∗(A)) is the C*-algebra generated by π(A)
and the map π → τ is a bijection of the set of representations of A onto the set of
representations of C∗(A). The representation τ is non-degenerate, resp. irreducible
if and only if π is non-degenerate, resp. irreducible.

These properties carry over from the representations to the states: If ω ∈ A∗
+,

there is exactly one η ∈ C∗(A)∗+, such that

ω = η ◦ τ and ∥ω∥ = ∥η∥. (2.45)

Also, the map ω → η is a bijection of A∗
+ onto C∗(A)∗+ and, when restricted to a

bounded set, is bicontinuous in the corresponding weak* topologies.

2.2.2 Von Neumann algebras and the bidual

Next to C*-algebras, W*- or von Neumann algebras are central working spaces in
the field of operator algebras. In contrast to C*-algebras, it is more subtle to define
those. For a start, let us remark that W*-algebras and von Neumann algebras
are, strictly speaking, not synonymous. Usually, different terminologies indicate
which kind of definition is used by the author, i.e., an abstract one or one given a
concrete Hilbert space. We begin historically in reverse with the abstract definition
from Sakai [15]. Note that the equivalence of the two upcoming definitions (up to
representation) is non-trivial and an important achievement in the field itself.

Definition 27 (W*-algebra). A C*-algebra M is called a W*-algebra if it has a
predual, i.e., there exists a Banach space M∗ such that (M∗)∗ = M.

The next definition is from Murray and von Neumann himself [16]. They named
the following object ring of operators, and while the field evolved, its name changed
to the surname of one of the originators:

Definition 28 (von Neumann algebra). A von Neumann algebra on H is a
*-subalgebra M ⊂ B(H) containing the unit, such that

M = M′′. (2.46)
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Here M′ denotes the commutant, i.e., the set

M′ = {A ∈ B(H) | [A,B] = 0 ∀B ∈ M} (2.47)

and M′′ is the bicommutant which is obtained by applying the above definition
twice.

We can exchange the requirement in Eq. (2.46) with M being closed in several
operator topologies. This equivalence between the algebraic property using the com-
mutant and the topological ones is famously known as von Neumans bicommutant
theorem [12, Thm. 2.2.2]:

Theorem 29 (bicommutant theorem). Let M be a von Neumann algebra. Then
the following are equivalent:

a) M is closed in the weak operator topology.

b) M is closed in the strong operator topology.

c) M = M′′

Clearly, B(H) satisfies both definitions, and every von Neumann algebra is a
C*-algebra, so the results from the previous chapter can be carried over.

Now, we introduce the concept of a universal representation and the enveloping
von Neumann algebra. First note that any representation {π,H} of a C*-algebra A
generates a von Neumann algebra Mπ by taking a closure or utilizing Thm. 29 via

Mπ = π(A)′′. (2.48)

This algebra depends on the representation chosen and hence comes with some ambi-
guity. We can eliminate this by using a specific representation, which is universal in
the sense that any other representation of A factors through it. This representation
is called the universal representation [12, 3.7.6] and can be explicitly constructed:
For a C*-algebra A with state space S(A), we define it by taking the direct sum
over all cyclic GNS-representations ω and the respective Hilbert spaces, i.e.

π =
⊕
ω

πω and H =
⊕
ω

Hω. (2.49)

The universal representation is faithful, which proves the aforementioned statement
that every C*-algebra admits a faithful representation, leading to the Gelfand-
Naimark theorem. The von Neumann algebra Mπ defined by Eq. (2.48) using
the universal representation is called the universal enveloping von Neumann
algebra. Obviously, this algebra can be quite large, but it always exists and is
unique up to isomorphisms. Hence, it is often abbreviated as A′′, leaving out the
representation. Because the universal representation is faithful, we can identify A
as a C*-subalgebra of A′′.

The universal enveloping von Neumann algebra can also be described in another
way: For a normed space and hence any C*-algebra A, we call the dual of the dual
space A∗∗ the bidual. In general, this space can be much larger than A, but by

i(A)ω = ω(A), A ∈ A, ω ∈ A∗ (2.50)
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we get a isometric map from i : A → A∗∗, called evaluation map [10, 2.3.7], which
gives

A ⊂ A∗∗. (2.51)

One can show that A∗∗ is again a C*-algebra, and as a bidual, it naturally has the
predual A∗, making it a W*- or von Neumann algebra. We already encountered
an example for this with the compact operators, where K(H)∗∗ = B(H) and clearly
K(H) ⊂ B(H). With the universal enveloping von Neumann algebra and the bidual,
we have ways to define a von Neumann algebra based on a C*-algebra. While
different at first glance, these concepts are closely connected [12, Prop. 3.7.8]:

Proposition 30. The universal enveloping von Neumann algebra M of a C*-algebra
A is isomorphic, as a Banach space, to the bidual A∗∗.

Hence, we will often denote the universal enveloping von Neumann algebra A′′ of
a C*-algebra A as A∗∗. Before we come to the benefits of this construction, we give
a more precise version of the loosely stated fact that any representation of A factors
through the universal representation. For this, we need the definition of normal
maps between von Neumann algebras [12, 2.5.1]:

Definition 31. Let M and N be von Neumann algebras and T : M → N a positive,
linear map. It is called normal if for each bounded monotone increasing net {xi}
in Msa with limit x, the net {T (xi)} increases to T (x) in Nsa.

If we set N = C in the above definition, we also get a definition of a normal
functional ω, which will become important later on, but for now, we can state the
following [12, Thm. 3.7.7]:

Proposition 32. Let {π,H} be a non-degenerate representation of a C*-algebra A.
Then there exists a unique normal representation π′′ of A′′ onto π(A) that extends
π, i.e. π′′(A) = π(A) and π′′(A′′) = π(A)′′.

As we now know how to construct von Neumann algebras out of a C*-algebra, it
is certainly time to answer the question of what benefits we get by this, i.e., what
structures a von Neumann algebra offers, that a C*-algebra misses. One of the
benefits is that von Neumann algebras generally house many projections. Indeed,
they contain enough projections, such that they generate the algebra [12, 2.2.6]: Let
M be a von Neumann algebra and P(M) = {m ∈ M|m2 = m = m∗} be the set of
projections in M. Then M is the norm-closure of the linear span of P(M):

M = P(M)′′. (2.52)

The projections in a von Neumann algebra also form a complete lattice, and accord-
ing to Takesaki [8, p.290]:

It is not an overstatement to say that the study of the projection lattice of a von
Neumann algebra is at the core of the whole theory.

For the whole theory, we refer to Takesakis series [8] or the other references in
Sect. 2.5 and continue with the application to quantum theory.
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2.3 Quantum States and Measurements
Let us now take the tools mentioned above to work and update our description of
quantum mechanics from the first chapter in a more precise way.

2.3.1 State spaces

Based on the context, the name state space can have two different meanings. One
is the mathematical state space of a C*-algebra and, therefore the von Neumann
algebra B(H) as described in Sect. 2.2.1.2. There, we have defined

S1 = {ω ∈ B(H)∗ |ω ≥ 0, ∥ω∥ = 1}. (2.53)

Another reading is the space of density matrices ρ defined as

S2 = {ρ ∈ T (H) | ρ ≥ 0, tr[ρ] = 1}. (2.54)

Here, we have S2 ⊂ S1 in the sense of embedding a space into its bidual. Functionals
that arise from the predual, i.e., the space S2, rather than the full dual, are called
normal states. Normal states on B(H) are exactly those elements of S1, which are
normal maps according to Def. 31 or weak*-continuous [12, Thm. 3.6.4]:

Theorem 33. Let ω be a bounded functional on a von Neumann algebra M in
B(H). Then the following conditions are equivalent:

a) ω is normal

b) ω is weak*-continuous

c) There is a trace-class operator ρ ∈ T (H), such that ω = tr[ρA] for all A ∈ M.

In contrast, non-normal elements in S1, also called singular states, can be rel-
atively wild objects, definitely from a mathematical point of view. Nevertheless, in
physics, singular states are commonly used, often as idealizations or improper eigen-
states for the position and momentum operators [9, Sect. 4.2]. Although defining
normal quantum states as general quantum states while discarding the rest is quite
the standard. This is understandable, as the hassle that comes with the full dual
space is often disproportionately compared to the benefits.

Another detail, which is often taken for granted, is the fact that the set of normal
states in quantum mechanics contains such a large amount of pure states, which is
not a priori guaranteed.

The pure states of T (H) are the one-dimensional projectors, and a typical rep-
resentation for density operators ρ ∈ S2 is given by their canonical convex de-
composition

ρ =
∑
i

ciPi, (2.55)

where ci is a possibly infinite sequence of positive numbers that sum up to one [17,
Thm. 2.5]. For the connection to the pure states |Ψ⟩ ∈ H from the Hilbert space
formulation of quantum mechanics, one often writes PΨ = |Ψ⟩⟨Ψ|, and accordingly
those states are called vector states.
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In view of our upcoming generalization for quantum-classical hybrids, let us
rephrase this more abstractly: In quantum theory, the observable algebra is the
von Neumann algebra B(H) with the well-behaved normal states as elements of the
predual. We call this allocation of states and observables the W*- or von Neumann
view. Whereas arbitrary C*-algebras A are not required to have a predual, their
state space is naturally the full dual A∗, which we call the C*-view. An overview of
the utilized spaces and dualities in quantum theory is depicted in Fig. 2.2.

B(H)∗

⊂ B(H)

⊂T (H)
K(H)

Figure 2.2: Dualities between operator spaces in quantum theory: The von
Neumann-type duality with the states in the predual is marked in blue, while
the dualities according to the C*-view are drawn in red.

Note that it would be highly inadvisable to directly use K(H) as the observable
algebra for quantum theory. The existence of an identity operator is elemental in
the description of measurements. Clearly, 1 ̸∈ K(H), unless we take H to be finite-
dimensional, so in general the algebra of compact operators is too small.

2.3.2 Measures and measurements

Before we take a closer look at the mathematical description of quantum measure-
ments, let us recall some terms of measure theory:
A σ-algebra over a set X is a collection of subsets F , that

• contains the whole and the empty set: ∅, X ∈ F

• is stable under the complement, i.e. for every x ∈ F we have X \ x ∈ F

• is closed under countable unions, i.e., for every countable collection of sets
x1, x2, . . . ∈ X, we have

⋃
i xi ∈ F .

The combination of the space and the σ-algebra (X,F) is also called a measureable
space and the elements x ∈ F are sometimes called events, based on the use in
probability theory. An obvious choice for F is the power set P(X), although it is too
large for many applications. Most commonly used is the Borel σ-algebra, which
is the smallest σ-algebra that contains all open sets of X and is usually denoted as
B(X)1. The elements of B(X) are called Borel sets. With these definitions, we
can define the normalized positive measures over X, better known as probability
measures:

1Not to be confused with the bounded linear operators
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Definition 34 (probability measure). A probability measure on the space (X,F) is
a map µ : F → [0, 1], which satisfies the following:

i) It is normalized in the sense that µ(∅) = 0 or µ(X) = 1.

ii) The map µ is countably or σ-additive, that is

µ
(⋃

i

xi
)
=
∑
i

µ(xi) (2.56)

for any countable, disjoint sets xi ∈ F .

We denote the set of all probability measures over X as W(X).

We will see in Sect. 3.2 that the space W(X) arises as the state space of a commu-
tative C*-algebra. A measurable set (X,F) with a probability measure µ is called
a probability space.

The overall procedure of a quantum measurement is typically connected to the
word observable. Unfortunately, the precise object behind the word is different
across the literature. It is used for a self-adjoint operator, a POVM, or a measure-
ment in general. For this work, especially for the upcoming hybrid part, we choose
the most general meaning, which is indeed quite simple: An observable is an element
in the observable algebra. Now, let us collect some of the more precise definitions
for this matter.

The quantum analog of probability measures needs the notation of effects:

E(H) = {A ∈ B(H) | 0 ≤ A ≤ 1}. (2.57)

They model the basic building blocks of a quantum measurement and can be in-
terpreted as yes/no measurements. The set E(H) is convex with the projections as
extremal elements. Indeed, the states and effects are dual objects. That is, together,
they define the statistics. A worthwhile and more in-depth description of this can
be found in the section 2.1 Duality of states and effects in [17]. Here, we will just
reduce some of the key points of the theory [17, Sect. 3].

Definition 35 (positive operator-valued measure). Let (X,F) be a measurable
space. A positive operator-valued measure or POVM is a map M : F →
E(H), which satisfies the following:

i) M is normalized in the sense that M(∅) = 0 or M(X) = 1.

ii) For any countable collection of disjoint elements xi ∈ F , we have

M
(⋃

i

xi
)
=
∑
i

M(xi), (2.58)

which has to be read in weak operator topology.

Comparing this definition with the above, we see that a POVM is a probability
measure when evaluated on a state:

µ(dx) = tr[ρM(dx)]. (2.59)
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Hence, POVMs are readily understood as the non-commutative analog to probability
measures. Because of the normalization condition M(X) = 1, they are also known
as positive resolutions of the identity [18]. The special case of projection
valued measures orPVMs from the introduction are easily obtained by restricting
POVMs to the subset of projections instead of all effects E(H). Note that the above
is a more measure theoretic definition of POVMs. Often, it is suitable to reduce the
definition to the discrete case, where X = {x1, x2, . . .} are the possible measurement
outcomes and the associate POVM is the collection of positive operators

Mx ≥ 0 with
∑
x

Mx = 1. (2.60)

Accordingly, the operators Mx are also called POVM elements. Historically, the
projection-valued measures predate the positive operator-valued measures. It was
Davies [19] who successfully introduced this more general definition of a quantum
measurement. The charm of the reduction of observables to PVMs and self-adjoint
operators lies in their convenient connection by the spectral theorem. It states that
for every self-adjoint operator A, there exists a unique PVM A(dx), such that

A =
∫

R
xA(dx). (2.61)

Conversely, every PVM on the real line defines a self-adjoint operator by Eq. (2.61).
Now, calculating statistical quantities easily carries over from classical statistics.

The expectation value for a preparation in the state ρ and the POVM M is just

⟨M⟩ρ =
∫
X
x tr[ρM(dx)], (2.62)

which for the projection valued case can be written as tr[ρA] or ⟨Ψ|A|Ψ⟩ for pure
states. Closely related is the variance, which becomes

∆(M)ρ =
∫
X
(x− ⟨M⟩ρ)2 tr[ρM(dx)]. (2.63)

We are going to finish this part with some remarks: In general, Eq. (2.61) has
to be read with caution as A is not necessarily a bounded operator, which comes
with all the difficulties, like domain considerations, that unbounded operators always
include. As we already mentioned, the operators for position and momentum are the
two prime examples for this and motivate the phase space formulation of quantum
mechanics, see Chap. 5, where instead of the unbounded operators, we introduce
their exponentials, called Weyl operators, which are bounded and even unitary.
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2.4 Quantum Dynamics
The keyword quantum dynamics affects many different aspects, so let us start with
a short overview. For us, dynamics will denote everything between the preparation
and measurement of a given system, i.e., a possibly time-dependent map between
the states or observables. For example, the order of a concatenation of maps, where
time-dependence has to be understood as defining the order in which to apply them,
can be called dynamics. Nonetheless, it often means continuous time-evolution,
where the map has some continuous dependence upon a parameter t. The most
commonly known example for the time-continuous case is the unitary evolution
already introduced in Eq. (2.6). The mathematical concept behind admissible maps
from one quantum system to another is complete positivity, which we will have a
closer look at in the first part of this section.

Further, we can separate between closed system dynamics, which can be rep-
resented by the unitary evolution, or open system dynamics. Open systems enable
us to describe irreversible transformations, for example, the system under consider-
ation is allowed to be in exchange with its environment, or we describe measurement
processes, i.e., we extract information out of a quantum system.

2.4.1 Complete positivity

The mathematical structure behind quantum dynamics is described by completely
positive maps. Based on the previous sections, it seems reasonable to demand quan-
tum dynamics T to be just positive maps, that is, for A ≥ 0, one would demand
T (A) ≥ 0.

Indeed, this was the point of view before the concept of complete positivity was
moved from a mathematical property to the general framework of quantum theory.
While many aspects of the basic mathematical formulation of quantum theory were
clear early on, the change towards complete positivity happened relatively late in
the 1970s. A good witness of this process is found in the famous book Quantum
Theory of Open System [19, Sect. 9.2, p. 136] by Davies, who wrote:

We remark that the condition of complete positivity could have been imposed on
operations, instruments, and all subsequent results in this volume. We have

refrained from doing so because the slight but wearisome extra details necessitated
would have been completely unrewarded until this chapter.

Today, it is a common understanding that quantum dynamics are to be demanded
as completely positive maps [17, Sect. 4].

Definition 36 (completely positive map). Let A be a C*-algebra, Mn(A) the set
of n× n matrices with entries in A and T : A → A a linear map. Then T is called
n-positive, if Tn = T ⊗1n is a positive map on Mn(A) and completely positive,
if Tn is a positive map for every n ∈ N.

Obviously, every completely positive map is also positive, but the converse state-
ment is false. Here, the most prominent example is the partial transposition on the
finite-dimensional C*-algebra of n-dimensional square matrices A = Mn(C), which
is easily verified as a positive but not completely positive map. Given its more
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restrictive nature than just positivity, completely positive maps have powerful prop-
erties. Before we discuss those, let us look at the physical motivation for Def. 36:
The evolution of a quantum system should also yield an admissible quantum state
if we extend the state by an ancilla or environment that has no interaction with the
system itself. An illustration of this is depicted in Fig. 2.3.

ρsys T T (ρsys)

ρenv 1 ρenv

T ⊗ 1

Figure 2.3: Physical motivation for complete positivity: A state ρsys, that evolves
under the map T , is extended by an arbitrary state ρenv with no interaction in
between. If T is completely positive, the composite system is again a valid quantum
state.

We continue with a simple lemma, which makes the above definition more prac-
tical [8, Cor. 3.4]:

Lemma 37. Let A,B be C*-algebras and φ : A → B a linear map. Then φ is
n-positive if and only if

n∑
i,j

y∗i φ(x∗ixj)yj ≥ 0 ∀xa ∈ A, yb ∈ B, (2.64)

and completely positive if the above holds for all n.

In order to check the above positivity condition, the following lemma provides a
useful, necessary, and sufficient condition [8, Lem. 3.2]:

Lemma 38. Let A be a C*-algebra. An element of Mn(A) is positive, if and only
if it is a sum of matrices of the form [a∗i aj ] with a1, · · · , an ∈ A.

In light of the topic of this work, a result worth mentioning is the necessity of
non-commutativity to make a difference compared to positivity. On the classical
side of our hybrid system, which for the moment we just read as commutative, these
notions coincide [20, Thm. 1.2.4f]:

Theorem 39. Let A and B be C*-algebras and T : A → B a positive linear map.
If A or B is commutative, then T is completely positive.

In general, it can be hard to check whether a map is completely or just n-
positive. This changes if we assume a finite-dimensional quantum system, i.e., A =
B(H) = Md(C), where the dimension bounds the number n that we have to test
[20, Cor. 4.1.9]:

Lemma 40. Let T : Ma(C) → Mb(C) be a positive linear map and k = min(a, b).
Then T is completely positive if and only if T is k-positive.
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2.4.2 Dilations and the operator-sum representation

... from Stinespring to Kraus

One of the most powerful tools regarding completely positive maps is the Stine-
spring dilation theorem. While it is useful on its own, it also leads to the Kraus
decomposition, which helps identify and construct completely positive maps in many
applications. The original version by Stinespring is the following [21]:

Theorem 41 (Stinespring). Let A be a C*-algebra with unit, let H be a Hilbert
space, and let T be a linear map from A to operators on H. Then, a necessary and
sufficient condition that T has the form

T (A) = V ∗π(A)V for all A ∈ A, (2.65)

where V is a bounded linear transformation from H to a Hilbert space K and π is a
*-representation of A into operators on K, is that T be completely positive.

Here, the Hilbert space K is also called dilation space, the triple (π, V,K) a
Stinespring representation for T , and if A = B(H), we shorten this to the pair
(V,K). Note that the space K may be chosen larger, and the requirement that K
is spanned by the closure of π(A)VH defines a minimal Stinespring dilation,
which is unique up to unitary equivalence. If T is unital, i.e. T (1) = 1, then V is
an isometry.

If we set the algebras as A = B(H1) and T : B(H1) → B(H2), one can expand
the theorem: If T is normal, we can replace π with an amplification, a projection,
and an isometry [8, Thm. 5.5]. In that case one can rewrite T as [17, 4.18f]:

T (A) = Ṽ ∗(A⊗ 1)Ṽ . (2.66)

This gives rise to an interpretation of quantum operations, which is popular in
quantum information theory. Here, one often works in finite dimensions, and many
subtleties from the infinite case become much more manageable. It states that a
completely positive map on the states can be understood as an expansion to an
ancilla system or environment, followed by a unitary interaction and a reduction
[22, Cor. 5.6]:

T (ρ) = trK[U(ρ⊗ ρenv)U∗]. (2.67)

Here trK denotes the partial trace and ρenv ∈ T (Henv) is a state of the environment.
This is also called the ancilla form of the channel T .

Now we come to the Kraus decomposition. Here, we introduce a basis on
K, and with a short calculation, we get a practical characterization of arbitrary
completely positive maps [17, Prop. 4.21]:

Proposition 42 (Kraus decomposition). A linear map T : B(H1) → B(H2) is
completely positive if and only if there exist Ki ∈ B(H1,H2), such that

T (A) =
∑
i

K∗
i AKi. (2.68)
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This decomposition is also known as the operator-sum representation. The
operators Ki are usually called Kraus operators and if T is unital they satisfy∑

i

K∗
iKi = 1. (2.69)

Stineprings theorem also allows us to formulate a quantum analog to the classical
Radon-Nikodym from measure theory [22, Thm. 5.8]:

Theorem 43. Let Tx : B(H) → B(H) be a family of completely positive maps and
T =

∑
x Tx. Further let (V,K) be a Stinespring representation for T , then there

exists positive operators Fx ∈ B(K), with
∑

x Fx = 1 and

Tx(A) = V ∗(A⊗ Fx)V. (2.70)

If the Stinespring representation is minimal, then the Fx are unique.

2.4.3 Quantum channels and dynamics

In physics, the mathematical property of complete positivity is translated into the
concept of quantum channels, where we set the algebra as B(H) and add a nor-
malization:

Definition 44 (quantum channel). A normalized, completely positive map

T : B(H1) → B(H2) (2.71)

is called a quantum channel.

The first thing we need to discuss are the different pictures for quantum dy-
namics, i.e., Schrödinger and Heisenberg picture. Let us start with the Schrödinger
picture, where we evolve the states, or more precisely, the normal states ρ ∈ T (H) ⊂
B(H). Because T is completely positive, it has a Kraus decomposition, and as the
trace class operators form a two-sided ideal in B(H), we know that T leaves the
trace-class invariant. The normalization condition, which we translate as probability
preserving, means that T has to be trace-preserving.

If we now switch to the Heisenberg picture, we need the dual or adjoint map,
which is similar to the adjoint for operators on Hilbert spaces. For this we use the
duality between B(H) and T (H), described in Thm. 16, and define T ∗ by

tr[T (ρ)A] = tr[ρT ∗(A)]. (2.72)

Then T ∗ is likewise completely positive, and normalization translates into T ∗ being
unital. If we relax the condition and demand T just to be probability non-increasing,
we get a sub-normalized quantum channel or quantum operation.

Note that the above description has a slight asymmetry: If we interchange the
roles of T and T ∗, i.e., start with T in the Heisenberg picture as suggested by
Eq. (2.71) and ask for T ∗ in Schrödinger picture, we further need to assume that T
is a normal map. This ensures that Eq. (2.72) is still valid and T ∗(ρ) is a trace-class
operator. Alternatively, we could use the full dual instead of Eq. (2.72), which would
include non-normal states and also yield a Schrödinger picture [17, Sect. 4.1.2].
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The first example of a quantum channel we encountered is the unitary time
evolution in Eq. (2.8)

Tt(ρ) = UtρU
∗
t , (2.73)

which is trace-preserving as Ut are unitary operators and completely positive because
the channel is already in a Kraus decomposition with one Kraus operator.

A more profound example of a quantum channel is the quantum instrument
[17, Sect. 5.1.2].

Example 45 (quantum instruments). A channel that describes a quantum mea-
surement and yields not only the measurement result but also the post-measurement
state is called a quantum instrument. Note that this is more the motivation than
the precise definition of a quantum instrument (e.g. [17, Def. 5.4]), but it is eas-
ier applicable to the hybrid framework. The most basic example for constructing
a quantum instrument from a POVM is the following. Let Mx be a collection of
POVM elements with a discrete outcome set X. As each Mx is positive, we use
Def. 7 to decompose each POVM element into Mx = K∗

xKx and immediately get
the Kraus operators for our channel:

T (ρ) =
∑
x

Tx(ρ) =
∑
x

K∗
xρKx. (2.74)

The normalization of the POVM elements directly translates into the normalization
of T , and each Tx is a quantum operation. The interpretation is straightforward: The
overall channel T describes the unconditional case, where we ignore the outcome,
while each Tx describes the conditional evolution, that is, the (sub-normalized) state
after we looked at our measurement device and observed the outcome x ∈ X. For
a proper post-measurement state we need to renormalize Tx(ρ) by p−1

x , where px =
tr[ρMx] is the probability for the outcome x ∈ X. Also note that this construction
is non-unique, as, for example, we could easily add a unitary operator, which leaves
the probabilities invariant but changes the post-measurement state.

This construction also works the other way round, i.e., use the Kraus decompo-
sition of a quantum channel and define the associated POVM.

In this basic description, the measurement output, or let us say the classical
part of the system, has gotten a raw deal, as it is merely described by words rather
than being a proper part of the output system. Indeed, more complex descriptions
of instruments introduce a pointer system as a register for the measurement result,
and the quantum instrument can be seen as the first operation that turns a pure
quantum system into an effective hybrid [23, 4.6.8].

Before introducing the continuous-time dependency, let us draw attention to one
last fact about quantum channels, namely the state-channel correspondence, which
has been a handy tool in quantum information theory. It originated in Choi’s thesis
[24], which is often cited together with Jamiolkowski [25]. The most prominent
result is today known as the Choi-Jamiolkowski isomorphism [17, 4.4.3].

For this part, we will reduce technicalities by only looking at finite-dimensions,
i.e. B(H) ∼= Mn(C). Let

T : Md(C) → Md′(C) (2.75)
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be a positive linear map. Then, one can show that T is completely positive if and
only if the matrix

ΘT =

 T (|φ1⟩⟨φ1|) . . . T (|φ1⟩⟨φd|)
... . . . ...

T (|φd⟩⟨φ1|) . . . T (|φd⟩⟨φd|)

 (2.76)

is positive, where |φi⟩ is an orthonormal basis for the d-dimensional Hilbert space
Hd

∼= Cd and the matrix ΘT is also called Choi-matrix [17, 4.46]. For the formu-
lation of the isomorphism, let

Φ = 1
d

d∑
i,j

|φi ⊗ φj⟩⟨φi ⊗ φj | (2.77)

be the projector on the maximally entangled state on Hd ⊗Hd. Then

J : T 7→ ΩT = (T ⊗ 1)(Φ) (2.78)

is the Choi-Jamiolkowski isomorphism, that allows us to study maps T by the
means of states. Its inverse is given by

J : Ω 7→ TΩ : T (A) = d tr2[(1 ⊗AT )Φ], (2.79)

where tr2 means the partial trace over the second tensor factor and shows that
channels are isomorphic to a subset of the state space [17, 4.48].

Time-continuous processes

... from Stone to Lindblad

Now we have a closer look at the time-dependency, which we already used for the
family of unitary operators {Ut}. Such a family is called a strongly continuous
one-parameter unitary group, i.e. U0 = 1, UsUt = Us+t for all t, s ∈ R and
Ut is strongly continuous. We already mentioned that we could generate those by
exponentiating the Hamiltonian via Ut = exp(itH). Indeed, the converse statement
is also true and known as Stone’s theorem [7, X. Thm. 5.6]:

Theorem 46 (Stone). Let Ut be a one-parameter unitary group on a Hilbert space
H. Then Ut is generated by a self-adjoint operator H.

These generators are not necessarily bounded, so in general, they are only defined
on a domain D ⊂ H. For the transition to open systems, we can use the ancilla
form of dilations described in Eq. (2.67), where we explicitly model the dynamics,
including the environment, stay in the unitary description, and reduce to the desired
systems afterwards. Usually, this direct approach is not practical, as the environment
may be very large and hard to impossible to model. Instead, we introduce dynamics
directly on the reduced system at the cost of introducing irreversibility.

Let us briefly recap this derivation, which is commonly done in the quantum
physics literature [26]: We take a system S that interacts with its environment E .
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For example, S may be a trapped atom that interacts with a light-field E . One
assumes that the dynamics for S and E are determined by a Hamiltonian of the
form H = HS +HE +Hint, where the first two terms describe the dynamics of the
system and the environment and Hint their interaction. The dynamics for the state
ρsys are then obtained by taking the partial trace over the environment, which yields
the following infinitesimal behavior:

ρ̇sys = L(ρsys) = i[H, ρsys] +
∑
α

LαL
∗
αρsys + ρsysLαL

∗
α − LαρsysL

∗
α. (2.80)

Clearly, this procedure involves some approximations. Else we would have to deal
with the same problems when explicitly maintaining the environment system: The
first is that our system and the environment are weakly coupled, which is called the
Born-approximation and allows us to neglect some higher-order terms. The second is
that the environment is large compared to the system, so the environment undergoes
only negligible changes, and the system does not depend on its interaction in the
past. This is called Markov-approximation, as it ensures the markovianity of the
process.

Note that this open system approach is more than an auxiliary construction but
a powerful tool indeed. As we will see next, every bounded generator of a completely
positive semigroup is of the form of Eq. (2.80). For finite-dimensional systems, this
was shown by Gorini, Kossakowski, and Sudarshan [27] and for the infinite case,
but with a bounded generator by Lindblad [28]. Therefore, it is sometimes called
Gorini-Kossakowski-Sudarshan-Lindblad or GKSL-equation.

Now, we turn our focus to the according mathematics. Let A be a Banach space
and Tt a family of bounded linear maps on A. Similar to unitary groups, we call
Tt a one-parameter semigroup, if T0 = 1 and TsTt = Ts+t for all t, s ∈ R+. As
we already mentioned, an important property of semigroups is their continuity. For
norm continuous semigroups, one can show the following [29, Sect.3]:

Lemma 47. Let A be a Banach space and Tt a norm continuous semigroup on A,
that is limt→0 ∥Tt − 1∥ = 0. Then there is a bounded generator L of Tt, such that

Tt = exp (tL) and dTt
dt

∣∣∣
t=0

= L. (2.81)

Conversely, every bounded generator generates a norm continuous semigroup.

If Tt is only strongly continuous, i.e., limt→0 ∥TtA−A∥ = 0, the generator is not
bounded but closed and densely defined. In the quantum case, i.e., A = B(H), we
call a strongly continuous, completely positive one-parameter semigroup a quantum
dynamical semigroup. A norm-preserving semigroup is called conservative, while
a sub-normalized semigroup is called contractive. For the subclass of norm continu-
ous quantum dynamical semigroups, we can state the complete characterization of
generators by the Lindblad theorem [28]:

Theorem 48 (Lindblad). Let Tt : B(H) → B(H) be a norm continuous completely
positive semigroup. Then Tt has a bounded generator L in Lindblad form:

L(A) = K∗A+AK +
∑
α

L∗
αALα and L(1) = 0. (2.82)
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Conversely every operator satisfying Eq. (2.82) generates a norm continuous com-
pletely positive semigroup.

Note that in contrast to Eq. (2.80), the above is formulated in the Heisenberg
picture, and the terms linear in the argument are summarized in the operators K.

Let us introduce some further nomenclature in the spirit of [30]:
The linear part of Eq. (2.82) generated byK andK∗ is called the no-event gen-

erator and generates reversible dynamics by T 0
t (ρ) = ctρc

∗
t with ct = exp(tK). It

is supplemented by a completely positive perturbation P(ρ) =
∑

α LαρL
∗
α described

by the jump operators Lα. For the semigroup, we then define the following:

Definition 49. A semigroup is called a no-event semigroup if it maps pure states
to pure states.

The connection between the no-event definition for the generator and semigroup
will be made more clear in the following two statements:

Theorem 50. Let L be a Lindblad generator based on the contraction semigroup ct =
exp(tK), with jump operators Lα. Let φ ∈ H. Then the following are equivalent:

(1) etL(|φ⟩⟨φ|) is pure for all t.

(2) For all t ≥ 0 and α ∈ C, ctφ is an eigenvector of Lα.

Proof. The minimal solution2 is given by iteration via the series [31, Thm. 4.1]:

Ttρ = T 0
t ρ+

∫ t

0
Tt−sPT 0

s ρ ds

= T 0
t ρ+

∫ t

0

(
T 0
t−sPT 0

s ρ+
∫ t−s

0
Tt−s−rPT 0

r PT 0
s ρ dr

)
ds, (2.83)

which alternatively can be expressed by the resolvent equation [30]. With this, we
can write down the expression in (1) as

etL(|φ⟩⟨φ|) =|ctφ⟩⟨ctφ|+
∑
α

∫ t

0
ds ct−sLαcs|φ⟩⟨φ|c∗sL∗

αc
∗
t−s

+
∑
α

∫ t

0
ds
∫ t−s

0
dr e(t−s−r)LLαcrLαcs|φ⟩⟨φ|c∗sL∗

αc
∗
rL

∗
α (2.84)

and corresponding terms for each iteration. Now take |ψ⟩⟨ψ| ⊥ etL(|φ⟩⟨φ|). Then
we get for the expectation value of this equation with respect to ψ

0 = ∥⟨ψ, ctφ⟩∥2 +
∑
α

∫ t

0
ds∥⟨ψ, ct−sLαcsφ⟩∥2 + . . . . (2.85)

Since all summands in this equation are positive, they have to be zero. Therefore
the ctφ ⊥ ψ. Since the integral needs to be zero and the integrand is positive, the
integrand is zero almost everywhere. We also know that the integrand is continuous.

2Here minimal means the smallest possible solution in the completely positive order, i.e., for all
other completely positive maps T̃t, we still have T̃t − Tt ≥ 0.
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If it were non-zero for any 0 ≤ r ≤ t, there would be an interval of measure µ > 0
where the integrand is also non-zero, and the integral would have a positive value.
Hence, we get ct−sLαcsφ ⊥ ψ for all ψ ⊥ ctφ, i.e. ct−sLαcsφ ∈ span(ctφ), therefore
we can write

ct−sLαcsφ = ctλα(s, t)φ, for all α, 0 ≤ s ≤ t (2.86)

and some λα(t, s) ∈ C. Since this is also true for t = s, we get the eigenvalue
equation

Lαcsφ = csλα(s)φ, for all α, 0 ≤ s. (2.87)

However, if the above eigenvalue equation is satisfied, the terms of all higher
iterations which involve expressions |ψ⟩⟨ψ| with ψ = cs0Lα1cs1 · · ·Lαncsnφ will be
proportional to |ctφ⟩⟨ctφ| with t =

∑n
i=0 si. Hence, the entire iteration series is pure,

which proves the stated equivalence.

Based on this observation, we can state a more rigorous version of the charac-
terization of the no-event generators:

Corollary 51. A semigroup with a Lindblad generator takes all pure states to pure
states if and only if the Lα are multiples of the identity, i.e., one can choose Lα = 0
for all α.

Proof. If the Lindblad semigroup takes all pure states to pure states, then by the
above lemma, every φ = ctψ is an eigenvector of Lα, so Lαctφ = λα(t)ctφ. But also,
any other vector has to be an eigenvector of Lα, since ψ = c0ψ, so Lαφ = λα(0)φ
which implies that the eigenvalues are all the same, i.e., Lα = λα1. As the semigroup
is gauge-invariant under adding a scalar-multiple of the identity [30, 2.4], we can
choose Lα = 0.

Note that there is an important difference between the above lemma and its
corollary: the lemma only handles one fixed but arbitrary state. In contrast, the
corollary makes a statement if the semigroup maps all pure states to pure states. It
is easy to construct examples where the semigroup takes some pure states to pure
states but not all, hence not being a no-event semigroup:

Example 52 (coherent states). Let a and a∗ be the annihilation and creation
operator of the quantum harmonic oscillator and n = a∗a the number operator
with the eigenstates |n⟩. Assume the semigroup with no-event generator K =
−iωa∗a − 1

2ηa
∗a = γa∗a and jump operator L = √

ηa. The no-event semigroup
ct = exp tK maps coherent states eφ =

∑
n

φn
√
n!
|n⟩ to coherent states

exp tK eφ =
∑
n

etγnφn√
n!

|n⟩ =
∑
n

(etγφ)n√
n!

|n⟩ = eφ̃(t). (2.88)

Because coherent states are all eigenvectors of the annihilation operator a, we have
that cteφ is an eigenvector of L. Then Lem. 50 tells us that the semigroup generated
by Lρ = Kρ+ρK∗+LρL∗ maps the pure coherent state eφ to a multiple of the pure
state eφ̃(t). This can be verified by looking at the terms, which occur in Eq. (2.83)

Ttρ ∝ T 0
t ρ+ T 0

t−sPTsρ+ · · · . (2.89)
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From Eq. (2.88), we already know that T 0
t (|eφ⟩⟨eφ|) = |eetγφ⟩⟨eetγφ| and all other

terms are proportional to this, for example

T 0
t−sPTs(|eφ⟩⟨eφ|) = T 0

t−sP(|eesγφ⟩⟨eesγφ|) = (esγφ)T 0
t−s(|ee

sγφ⟩⟨eesγφ|)

= (esγφ) |ee(t−s)γesγφ⟩⟨ee(t−s)γesγφ|

= (esγφ) |eetγφ⟩⟨eetγφ|. (2.90)

Of course this semigroup is not a no-event semigroup, as states such as |n⟩⟨n| are
getting mixed by Tt.

In physics, open quantum systems are often employed in quantum optics, where
the operators K and L usually consist of canonical operators like position and mo-
mentum or annihilation and creation operators. As those are unbounded, so is the
generator L. Hence, the according semigroups cannot be norm but at most strongly
continuous. Here, the Lindblad theorem is no longer valid in its full generality.
However, the only counterexamples to the converse part, i.e., completely positive
strongly continuous semigroups, which do not have a generator of Lindblad form,
are more mathematically motivated than physically. The first counterexample was
already published in 1996 [32] and was corrected and extended in the last years
[33, 30]. Nevertheless, in physics, this fact is often ignored, which may be best
summarized by the following quote from [34, Sect. 3.2, p.48]:

Conversely every semigroup a physicist was ever interested in, seems to have a
Lindblad-type generator.

Before we finally turn our attention to hybrid systems, let us have a look at
another expression of complete positivity, which will do most of the work in Sect. 4.
It is known as conditionally complete positivity:

Definition 53 (conditionally complete positivity). Let A be a C*-subalgebra of
a C*-algebra B and L : A → B a self-adjoint bounded linear map. We call L
conditionally completely positive if for all n ∈ N and for all ai ∈ A and bi ∈ B with∑n

i=1 aibi = 0 we have:
n∑

i,j=1
b∗iL(a∗i aj)bj ≥ 0. (2.91)

There are several equivalent definitions of conditionally complete positivity that
can be found in [35, Lem. 14.5], and we choose the one above as most suitable for
our application. With this, we can describe the fact that if a completely positive
semigroup T reaches the minimum, i.e., the border to negative elements, it can not
decrease further in the next time-step, which is described by the following theorem
[35, Thm. 14.7]:

Theorem 54. Let L be a self-adjoint bounded linear map on a C*-algebra A. Then
L is conditionally completely positive if and only if etL is completely positive for all
t ≥ 0.
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2.5 References and Literature
This section is devoted to the list of references we used in this chapter. Additionally,
we add some personal comments as a guide for interested readers who want more
information on one of the many areas we touched in this chapter. We do not claim the
list to be complete but only reflect the author’s subjective perception. Additionally,
we give some freely available alternatives, that is, works published on the arXiv or
the respective author’s website.

2.2 Operator algebras Let us start with a short overview of some of the standard
references in this field: For pure mathematics, common references are the series
Theory of Operator Algebras by Takesaki [8, 36, 37], Fundamentals of the Theory of
Operator Algebras by Kadison and Ringrose [38, 39], the book Operator algebras:
theory of C*-algebras and von Neumann algebras by Blackadder [40], the book C*-
Algebras and W*-algebras by Sakai [15] and the works C*-algebras [14] and Von
Neumann algebras [41] by Dixmier. A common reference in mathematical physics
are the two volumes of Operator algebras and Quantum Statical Mechanics by
Bratteli and Robinson [5, 42]. We finish the list with two works by Pedersen C*-
algebras and their Automorphism Groups [12], and Analysis NOW [10], which,
according to the author, can be read as Analysis based on Norms, Operators and
Weak topologies. The use of the latter two as primary references for this work is
based on Pedersen’s influence on the field of multipliers and universally measurable
elements, which will play a key role in our hybrid framework in Chap. 5.
Besides these books, which need to be bought or borrowed, we want to add
some freely available alternatives: The Lecture Notes on C*-algebras, Hilbert C*-
modules, and Quantum Mechanics by Landsman [43] and a preprint of the book
Quantum Spin Systems on Infinite Lattices by Naijkens [4] are available on the
arXiv. Both have a different main topic but include a good introduction to the
general theory. Finally, the main matter as well as the extensive appendix of
Foundations of quantum theory: From Classical Concepts to Operator Algebras
by Landsman [9] are extremely useful, especially given the subtitle and the topic
of this work. This work is not on the arXiv but is marked as open access and is
available on the publisher’s website.
A more thorough introduction to the wide field of topology can be found in books
explicitly about that topic, for example, Topology by Waldmann [44] or Topological
vector spaces by Schaefer and Wolf [13]. Because topology plays an essential
role in operator theory, every of the above-defined standard references contains a
section about the operator topologies and also books about functional analysis, like
Functional Analysis by Rudin [6] or A course in functional analysis by Conway [7],
from which the reader can choose his favorite. One has to keep in mind that the
notation and nomenclature can vary, especially in this field.

2.3 Quantum states and measurements For the standard references, we have to
mention the books States, Effects, and Operations: Fundamental Notions of Quan-
tum Theory by Kraus [45], and Quantum theory of open systems by Davies [19],
which are at the same time witnesses to the history of the field. If one wants to go
even further back in time, one of the very first books in the field Mathematische
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Grundlagen der Quantenmechanik by von Neumann himself [46] may not be a
good recommendation for a textbook nowadays, but is interesting to read from
a historical standpoint. A modern summary of the quantum mechanics frame-
work can be found in the book The mathematical language of Quantum Theory
by Heinosaari and Ziman [17], which is our primary reference for this matter.
Other alternatives are Probabilistic and statistical aspects of quantum theory by
Holevo [18], which at some points uses different nomenclature and the work The
quantum theory of measurement by Busch, Lahti, Mittelstaedt, and Ylinen [47],
which is very detailed and rigorously formulated.
Again, we want to highlight some freely available alternatives: A worked-out
version of the lecture notes, on which our primary reference [17] is based, is avail-
able on the arXiv under the title Guide to Mathematical Concepts of Quantum
Theory [48]. Another title with a good balance between mathematical rigor, read-
ability, and physical interpretation is a series of notes under the title Lectures in
Quantum Noise Theory by Attal [49].

2.4 Quantum dynamics Consistently, we use The mathematical language of Quan-
tum Theory by Heinosaari and Ziman [17] as the main reference for this part. The
mathematical details about the concept of completely positive maps are often part
of standard works like Theory of Operator Algebras by Takesaki [8]. Other ref-
erences more specific to this topic are the books Completely bounded maps and
operators algebras by Paulsen [50], and Positive linear maps of operator algebras
by Stømer [20]. The concept of conditional complete positivity can be found in
Dilations of Irreversible Evolutions in Algebraic Quantum Theory by Evans and
Lewis [35], which also offers many details about completely positive maps and
semigroups.
The concept of quantum channels and the fundamental concepts of quantum the-
ory, in general, are closely connected to the field of quantum information theory.
The most common reference and one of the first textbooks about this topic is
Quantum Computation and Quantum Information by Nielsen and Chuang [2].
Note that while the field evolved, the terminology changed slightly so this refer-
ence might require some adaptation. More modern alternatives are Lectures on
Quantum Information edited by Bruß and Leuchs [22] or Quantum Information
Theory by Wilde [23]. A detailed introduction to the mathematics behind one-
parameter semigroups is One-parameter semigroups for linear evolution systems
by Engel and Nagel [29] and especially for the quantum application Quantum
dynamical semigroups and applications by Alicki, and Lendi [51]. More informa-
tion about the application of open system techniques in quantum optics can be
found in various books, for example, An open systems approach to quantum op-
tics by Carmichael [26] or Quantum Measurement and Control by Wiseman and
Milburn [52].
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Chapter 3

Hybrid Algebras

In this chapter, we will discuss what possibilities we have for the classical systems
that should go alongside our quantum system to form a hybrid. More precisely, we
have to discuss the possible classical frameworks that describe the three building
blocks of an experiment, i.e., preparations, dynamics, and measurement under the
constraint, that they harmonize with our quantum system.

The first class of quantum-classical hybrids that we will study in this work has
the structure of a tensor product. Before we go into more details, let us start with
some preliminary remarks: For reasons we will discuss later, this ad hoc approach
of a tensor product structure will pass over several details important to the phase
space formulation for quasifree and Gaussian systems. The ansatz we will use will
be more sophisticated and tailored towards this specific scenario. Nevertheless, they
are good for building intuition and motivating the upcoming formulation for the
phase space setting.

39
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3.1 Hybrids with Discrete Classical Systems

We begin the discussion of quantum-classical hybrid systems with the simplest case:
finite and discrete systems. Note that these systems are much more than a toy
model. Finite-dimensional quantum systems, especially the two-dimensional case,
also known as the qubit and its classical analog, the bit, constitute the fundamental
quantities in information, respectively quantum information theory. Accordingly, it
is also in this field where quantum-classical systems occur naturally and are routinely
treated as what they are, namely hybrids.

Let us start with the basic framework. The restriction to finite dimensions on
the quantum side simplifies matters quite a lot. Our Hilbert space becomes H = Cn,
and for the observable algebra, we have B(H) =Mn(C), which in large parts reduces
the required mathematics from functional analysis to linear algebra. For example,
all of our states are normal states, i.e., the description by density matrices ρ, with
ρ ≥ 0 and tr[ρ] = 1 is sufficient.

For the classical side, our first classical phase space, or better outcome set, is

X = {x1, x2, · · · , xs}, (3.1)

where xi labels the possible configurations of our classical systems. A probability
distribution on the set X is a function p : X → [0, 1] that is normalized∑

x

p(x) = 1. (3.2)

We call such a function classical state, and the collection of all such discrete
probability distributions the classical state space.

With this, we can define our first prototype of a quantum-classical hybrid state.
For example, in the teleportation protocol, the classical system carries the possible
measurement outcomes of a quantum system, here a qubit, which means

X = {↑, ↓} ∼= {0, 1} ∼= {x1, x2} (3.3)

and a classical state is the probability distribution according to the quantum mea-
surement.

Let us translate this idea into some more general formulas. Let ρx ∈ T (H) be a
family of density operators and p(x) a probability distribution on X. We define a
hybrid state ρ̂ as

ρ̂ =
⊕
x

p(x)ρx =

 p(x1) ρ1 0 0
0 p(x2) ρ2 0
0 0 . . .

. (3.4)

Here, each individual block p(x)ρx is sub-normalized, but overall, it is a density
operator in a block-diagonal form on the larger Hilbert space Ĥ =

⊕
xH, as nor-

malization and positivity are carried through.
The according hybrid observable algebra can be readily described by the block-

diagonal, hermitian matrices A ∈ A =
⊕

x B(H). Indeed, it is common for this type



3.1. HYBRIDS WITH DISCRETE CLASSICAL SYSTEMS 41

of hybrid to see it embedded into a larger fully quantum setting B(Ĥ). From this,
we can characterize A by using so called Lüders or central projections:

Px = |x⟩⟨x| ⊗ 1. (3.5)

Here, |x⟩⟨x| is the identity on the block belonging to the label x and vanishing on all
others, i.e.,Px projects to the subsystems belonging to the classical value x. With
those, we can define hybrid observables A, starting from the larger quantum
systems B(Ĥ), as elements of the commutant

A = {Px | x ∈ X}′ =
⊕
x

B(H). (3.6)

Also, we can reduce every observable A ∈ B(Ĥ) to an observable on the hybrid
subsystem by PA =

∑
x PxAPx = Â. In both cases, we get the hybrid observables

as block-diagonal hermitian matrices

Â =

 A1 0 0
0 A2 0
0 0 . . .

, (3.7)

where every block Ax ∈ B(H) is a quantum observable. Here, we could add an
additional factor λx ∈ R in each block from the classical observable algebra, which
are the s×s-diagonal matrices. Indeed, every finite-dimensional unital commutative
C*-algebra is unitarily equivalent to this [9, Thm. A.21], and it is a common reading
to translate classical with diagonal for these finite and discrete cases. The average
or expectation value is readily defined by the trace on the larger system B(Ĥ):

⟨A⟩ρ = tr
[
ρ̂Â
]
=
∑
x

p(x) tr[ρxAx]. (3.8)

Note that finite hybrids are indeed well known. For example, the above character-
ization can be found in [53, Sect. 3.5] and [54, Sect. 6.2.1]. For a discussion of the
general idea that classical systems originate from quantum systems as a limiting case
with vanishing interference, i.e., off-diagonal terms, see, for example, [22, Sect. 5.5]

Summing up, states and observables for hybrids in the discrete case are concep-
tually direct accessible, and the structure, given by the direct sum, typically behaves
quite well. The hybrid states, observables, and their combination to expectation val-
ues described in Eq. (3.4), Eq. (3.7), and Eq. (3.8) give a good impression on how
a hybrid framework works. Because continuous-variable quantum systems naturally
need an equally continuous classical part, our next step is the transition from a finite
to a continuous classical phase space X.

Remarks on discrete dynamics

Before we start with this generalization, let us finish this section with an observation
of the finite case dynamics. For this, let T be a completely positive map on the larger
observable algebra B(Ĥ), that leaves the hybrid algebra invariant, i.e.,

T : B(Ĥout) → B(Ĥin), with T (A) ⊂ B. (3.9)
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Here we denote the Lüders projecitons on the respective spaces by {Px}x∈X in
B(Ĥout), respectively {Qy}y∈Y for B(Ĥin) and the hybrid algebras by A = {Px}′x∈X ,
respectively B = {Qy}′y∈Y . Of course, not every completely positive map will obey
the block-diagonal structure of the hybrid algebra, so the natural question arises:
Which maps do and how to characterize them? For this, we introduce the notion of
adapted maps:

Definition 55 (adapted Kraus representation). Let T : B(Ĥout) → B(Ĥin) be a
completely positive map. We call the Kraus decomposition T (A) =

∑
αK

∗
αAKα

x-adapted, if
∀α PxKαQy ̸= 0 for at most one x. (3.10)

We call it adapted, if

∀α PxKαQy ̸= 0 for at most one pair (x, y). (3.11)

This definition establishes a connection between the Kraus operators of T and
the transition of information in our hybrid structure. Using the quantum Radon
Nikodym theorem (Thm. 43), this notion allows us to characterize the completely
positive maps, which leaves the hybrid structure invariant:

Theorem 56. Let T : B(Ĥout) → B(Ĥin) be a completely positive map. The map
T leaves the hybrid algebra invariant T (A) ⊂ B if and only if for every x ∈ X there
is an x-adapted Kraus representation.

Proof. Let Kα be the Kraus operators for an x-adapted Kraus representation and
choose an observable Ax on the x’th-block, i.e., [Ax, Px] = 0. Then

T (Ax) =
∑
α

K∗
αAxKα

=
∑
α,y,y′

Qy′K
∗
αPxAxPxKαQy

=
∑
α

Qy(α)K
∗
αPxAxPxKαQy(α)

∈
⊕
y

B(QyĤin). (3.12)

Here y(α) is the one y ∈ Y for which PxKαQy ̸= 0. If no such y(α) exists, we
already have T (Ax) = 0 ∈

⊕
y B(QyĤin).

For the converse choose an arbitrary but fixed x ∈ X and [T (Ax), Qy] = 0 ∀y ∈ Y .
Because T is completely positive, there exists a minimal Stinespring dilation

T (A) = V ∗(A⊗ 1K)V, A ∈ B(Ĥout). (3.13)

For the restriction of T onto block-diagonal elements Ax = PxAPx, the map T (Ax) =
V ∗(Ax ⊗ 1)V is not necessarily a minimal Stinespring dilation, but we can find a
subspace Kx ⊂ K such that Kx = SxK, and the dilation space is then given by
lin{(Ax ⊗ 1)V φ} = (Px ⊗ Sx)(Ĥ ⊗ K). Since [T (Ax), Qy] = 0 ∀y ∈ Y , we have
T (Ax)Qy = QyT (Ax)Qy which is again completely positive and∑

y

QyT (Ax)Qy = T (Ax). (3.14)
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Hence we can use the quantum Radon-Nykodym theorem (Thm. 43), i.e., there
exists an Fy ≥ 0 with

∑
y Fy = 1 in B(Kx), such that

T (Ax)Qy = V ∗(Ax ⊗ Fy)V. (3.15)

Note that 1 ⊗ FyV = V Qy because A∗
x ⊗ 1V ψ generates Hx ⊗Kx and we have

⟨A∗
x ⊗ 1V ψ, 1 ⊗ FyV φ− V Qyφ⟩ = ⟨ψ, T (Ax)Qy − T (Ax)Qyφ⟩ = 0. (3.16)

With the above, we get

1 ⊗ FyV = V Q2
y

= 1 ⊗ FyV Qy

= 1 ⊗ F 2
y V. (3.17)

Since the Radon-Nykodym Theorem gives a unique decomposition, we have F 2
y = Fy.

We can therefore dissect Kx into orthogonal subspaces and get

K =
(⊕

y

FyK
)
⊗ (1− Sx)K. (3.18)

Now we choose a basis {eα} ⊂ K adapted to this dissection, i.e., we use eα ∈ FyK
such that Ky

α = (1 ⊗ ⟨eα|)V and get

PxKαQy′ = (Px ⊗ ⟨eα|)V Qy′

= Px ⊗
(
⟨eα|Fy′

)
V

= 0 if y ̸= y′, (3.19)

and for eα ∈ (1− Sx)K this is automatically zero.

Corollary 57. Let T be as above. Given a restriction T |A : A → B, there is exactly
one T̂ (= PT P), which has an adapted Kraus representation.

Proof. The existence of an adapted Kraus representation means that

∀α ∃! (x, y) such that PxKαQy ̸= 0. (3.20)

So we get that

Txy : B(Hx) → B(Hy), Txy(Ax) =
∑
α

(QyK
∗
αPx)Ax(PxKαQy) (3.21)

is completely positive and uniquely defined by the restriction. Like this, T can be
written as ∑

x,y

Txy = PinT Pout, (3.22)

where Pin is defined by the projections {Qy} on the hybrid algebra B and Pout by
{Px} on A.
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3.2 Review: Classical Systems
In the finite case, our classical system is more a pointer system rather than a system
with its own structure, so let us take one step back and specify what precisely
classical in our context means, as this choice will naturally determine our subsequent
work. The common definition of classical as not quantum is too coarse since this
would imply a theory of everything. The same problem arises with the identification
of quantum by non-commutative, which determines classical as commutative.

To narrow down our classical part of the hybrid, we have to decide what our
hybrid should describe. One possible way of constructing a hybrid is utilizing hybrid
mechanics. Here, the typical approach is to unify the commutator on the quantum
side with the Poisson bracket from classical mechanics. There are previous works
on this attempt, which we will further discuss in Sect. 3.4. After this, the reader
hopefully agrees that this approach has some issues and that the next scenario is
more promising.

Our approach, which coincides with the previous construction for finite systems,
is to see hybrids from an information-theoretic point of view. Again, the typical
operation is the quantum instrument, where a pure quantum system gets (partially)
measured and becomes an effective hybrid. This scenario is based on the exchange
of information rather than quantities like energy, and we need to implement classical
probability theory on our classical part of the hybrid.

Accordingly, our first goal is the definition of classical correspondents to the
probabilistic quantities used in quantum theory, like the expectation value of a state
ρ and observables A:

⟨A⟩ = tr
[
ρA
]
. (3.23)

Now, classical observables are random variables f , and the states are probability
measures µ, so the duality that yields the expectation values is typically given by
an integral of the form

⟨f⟩ =
∫
X
f dµ. (3.24)

Following this idea, we have two possible candidates for our algebraic formulation
of classical probability theory, which we can classify according to the discussion in
Sect. 2.3.1 for the quantum case:

C*-view This view is characterized by the fact that the observables form a C*-
algebra A, and our state space is part of the dual A∗.
The specific choice is to take the observables as a sub-algebra of the contin-
uous functions over the set X, i.e., C(X), and the states become probability
measures by the Riesz representation theorem.

W*-view Here our observable algebra is a W*-algebra M, which accordingly has
predual M∗, that houses the normal states.
The realization is the algebra of essentially bounded functions on X, denoted
as L∞(X,µ), with the integrable functions L1(X,µ) as its predual, where
probability densities characterize the states.

Both settings are mathematically well studied, and our above choices for the classical
part are indeed the commutative algebras for the respective setting. Also, they un-
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derline the general philosophy behind C*- and W*-algebras, where the first are seen
as non-commutative topological spaces and the latter as non-commutative measure
spaces [40, Chap. III].

In order to discuss which approach is more suitable, we are going to recall some
facts about these commutative algebras, as especially quantum physicists are often
more familiar with the non-commutative versions. Commutative algebras are im-
portant in the general theory of operator algebras, so they are, to some extent, part
of all standard works we described in Sect. 2.5. Because of the similar application
of these algebras, our primary reference for the upcoming two sections will be the
appendix of [9], which contains most of the necessary tools.

Lastly, we need to discuss the space X, which is the outcome space or classical
phase space. This space is now considered to be continuous, and for our appli-
cation, we basically want X = Rs. As we will see, this locally compact case comes
with some problems, and an alternative choice is the compact case, where we choose
a compact subset or a compactification of Rs. Both are mathematically harmless
cases compared to arbitrary sets, yet their difference in compactness comes with
some significant consequences for our hybrid algebra.

3.2.1 Commutative C*-algebras

We start with the definition and properties of an essential class of abelian C*-
algebras, that is, different subsets of the continuous functions.

Let X be a locally compact Hausdorff space and C(X) the set of complex-valued
continuous functions on X. A subspace of C(X) is the space of bounded contin-
uous functions, denoted by

Cb(X) =
{
f ∈ C(X)

∣∣∣ sup
x∈X

|f(x)| <∞
}
. (3.25)

Because continuity, as well as boundedness, are preserved in sums and products, we
can turn Cb(X) into an algebra with point-wise addition (f + g)(x) = f(x) + g(x),
multiplication (fg)(x) = f(x)g(x) and scalar multiplication (λf)(x) = λf(x). The
space Cb(X) is complete with respect to the supremum norm

∥f∥∞ = sup
x∈X

|f(x)| (3.26)

and as the multiplication is commutative, it is a commutative Banach algebra. We
can introduce a *-operation on Cb(X) by complex conjugation f(x)∗ = f(x), which
turns Cb(X) into a commutative C*-algebra. Note that the constant 1-function is
clearly bounded and is the multiplicative unit of this algebra, i.e., Cb(X) is unital.

Another subspace is C0(X), describing the continuous functions vanishing
at infinity. Its precise definition is

C0(X) =
{
f ∈ C(X) | ∀ϵ ≥ 0 {x ∈ X s.t. |f(x)| ≥ ϵ} is compact

}
(3.27)

and one can show that C0(X) is a closed subspace of Cb(X), so it is likewise a
Banach space and a commutative C*-algebra. A significant difference is that the
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unit of Cb(X) is not included in C0(X), i.e., C0(X) is in general not unital. The
exception is when X is compact, but in this case we already have

C(X) = C0(X) = Cb(X). (3.28)

The importance of the algebra C0 is easily seen by the next fact [9, Thm. C.8f]:

Theorem 58. Every commutative C*-algebra A is isomorphic to C0(X) for some
locally compact Hausdorff space X, which is unique up to homeomorphism.

For a deeper look at the space X and the isomorphism in the above theorem,
we need some more definitions. For an arbitrary abelian C*-algebra A, we define its
Gelfand spectrum Σ(A) as the set of non-zero linear maps

ω : A → C, ω(AB) = ω(A)ω(B). (3.29)

The elements of Σ(A), i.e., non-zero algebra homomorphisms, are called characters
and are part of A∗. On the Gelfand spectrum we can define theGelfand transform
Â, which maps every A ∈ A to a function

Â : Σ(A) → C, Â(ω) = ω(A). (3.30)

This describes the stated isomorphism A → C0(Σ(A)) of the above theorem. The
Gelfand topology is defined as the weakest topology on Σ(A), such that all Â are
continuous and coincides with the weak* topology. In this topology, the space Σ(A)
is locally compact and compact if A is unital. In this case, the Gelfand spectrum
coincides with the pure states of A [9, C.14], and the evaluation map establishes a
homeomorphism such that [9, Prop. C.19]

X ∼= Σ(C(X)), (3.31)

which also justifies the commonly used identification of points x ∈ X with the pure
states.

Our next step is to bring in the probability measures, respectively, the dual space
of C0(X). A straightforward way to construct functionals on C0(X) is by integration:

ω(f) = ⟨ω, f⟩ =
∫
X
f(x) dµ f ∈ C0(X). (3.32)

Indeed, this description of functionals is sufficient, which is known as the Riesz
representation theorem.

For its statement, we need some extra definitions from measure theory, see [9,
Sect. B.4f], in addition to the ones from Sect. 2.3.2:

Let (X,F , µ) be a measure space. Then µ is called complete if µ(x2) = 0 and
x1 ⊂ x2 for x1 ∈ P(X) implies x1 ∈ F . Further, let O(X) denote the set of open
subsets of X and K(X) the set of compact subsets of X. Now, the outer measure
µ∗ is defined as µ∗(x) = inf{µ(u) | u ⊇ x, u ∈ O(X)} and the inner measure µ∗
as µ∗(x) = sup{µ(k) | k ⊆ x, k ∈ K(X)}. A measure is called regular if

µ(x) = µ∗(x) = µ∗(x), ∀x ∈ F . (3.33)
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Note that the Lebesgue measure on Rs [55, Prop.1.4.1], every finite Borel measure
on Rs [55, Prop.1.5.6] and generally every finite Borel measure on a second countable
locally compact Hausdorff space are regular [55, 7.2.3], i.e., for our use cases this
property is not really an extra requirement.

Equipped with these definitions, we can finally state the following [9, Cor. B.21]:

Theorem 59. Let X be locally compact. Then, there is a bijective correspondence
between the positive linear functionals on C0(X) and the complete regular finite mea-
sures on X. In particular, the states on C0(X) correspond to regular probability
measures on X.

This result is indeed very practical, and our first option for a classical state space
is exactly the set of probability measures over X, i.e., W(X). With the state space,
we have a description of a subset of the dual, yet we still owe the reader a complete
characterization of C0(X)∗.

Therefore, we have to drop the positivity and normalization condition, which
leads to complex measures. As the name suggests, those are σ-additive maps from
the σ-algebra F to the complex numbers, see also [55, Sect. 4.1]. We denote the set
of all complex measures over X as M(X).

Next we introduce the variation of a set F ∈ F and a measure µ ∈ M(X) as

|µ|(F ) = sup
{∑

n

|µ(Fn)|
}
, (3.34)

where the supremum is taken over all measurable partitions F =
⋃

n Fn. The varia-
tion is a finite measure on (X,F) and also the smallest positive measure, such that
|µ|(F ) ≤ ν(F ) for all F ∈ F and positive measures ν [55, Prop.4.1.7f]. For F = X
we call |µ|(X) = ∥µ∥ the total variation of the measure µ, which defines a norm on
the space M(X). One can show, that M(X) is complete with respect to the total
variation [55, Prop. 4.1.8] and describes the full dual space of C0(X) [9, Thm. B.24]:

Theorem 60. Let X be a locally compact Hausdorff space. Then, the dual space
C0(X)∗ is isometrically isomorphic to the space M(X) of all complete regular com-
plex measures µ on X, with the norm given by total variation.

So by the above theorem, Eq. (3.32) defines a duality between the spaces C0(X)
and its dual space C0(X)∗ = M(X).

3.2.2 Commutative W*-algebras

The analogous concept to C(X) in the case of W*- or von Neumann algebras are
the Lp(X,F , µ) function spaces. Let (X,F , µ) be a σ-finite measure space and
1 < p <∞. A measure space is called σ-finite if for any countable union X =

⋃
nXn

we have µ(Xn) <∞1. To define Lp(X,F , µ) we first need the spaces

Lp(X,F , µ) =
{
f measurable

∣∣∣ ∥f∥p = (∫
X
|f |pdµ

) 1
p

<∞
}
. (3.35)

1This requirement excludes pathological cases that hardly occur in practice [9, p.523]. For
example, without this property, we would only get an isometry for q = 1 and p = ∞ in Thm. 61
[55, Prop. 3.5.5].
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Note that the above-defined spaces are not normed spaces, and especially for p = 2,
it is not the often used Hilbert space in quantum mechanics. The reason for ∥ · ∥p
not being a norm on Lp is the fact that ∥f∥p = 0 is not equivalent to f = 0. Take
f ∈ Lp and define f̃ by changing f on a subset of X with measure zero. Then
∥f̃ − f∥p = 0, because f = f̃ µ-almost everywhere, but as a function they do not
coincide. This is solved by introducing Lp(X,B, µ), which is defined as the quotient
space

Lp(X,B, µ) = Lp(X,B, µ)/∼. (3.36)

Here, two functions f, g ∈ Lp(X,B, µ) are considered equivalent, i.e., f ∼ g, if f
and g only differ on a set of measure zero. On the space Lp(X,B, µ), ∥ · ∥p defines a
proper norm at the cost of changing the elements from functions to representatives
of equivalence classes. So, in contrast to the previous section, f ∈ Lp or f ∈ C0(X)
describe different objects f . For the special case p = ∞, i.e., the spaces L∞ and
L∞, one uses the essential supremum

∥f∥∞ = inf
{
t ∈ [0,∞] |µ({x ∈ X, |f(x)| > t}) = 0

}
(3.37)

instead of ∥·∥p. In applications where the measure is evident from the context, most
often the Lebesgue measure dx, one typically abbreviates Lp(X,B, µ) by Lp(X),
neglecting the fact that the Lp spaces depend on the measure chosen.

The Lp spaces, including p = ∞, are complete, i.e., they are Banach spaces and
also become vector spaces with the point-wise operations [9, B.29]. Further, we
can equip L∞(X,F , µ) with a *-operation by the complex conjugation, making it a
C*-algebra. Now the characterization of the dual, respectively the predual, of an Lp

space is done by the following theorem [10, Thm. 5.5f]:

Theorem 61. Let (X,F , µ) be a measure space and 1 < p <∞. For 1/p+1/q = 1
and g ∈ Lq(X,F , µ), the map ωg(f) : Lp(X,F , µ) → C

ωg(f) = ⟨f, g⟩ =
∫
X
f g dµ (3.38)

defines an isometric isomorphism of Lq(X,F , µ) onto Lp(X,F , µ)∗. If (X,F , µ) is
σ-finite, the same holds true for q = 1 and p = ∞.

In conclusion, the C*-algebra L∞(X,F , µ) has the predual L1(X,F , µ) and is
therefor indeed a W*-algebra. Furthermore, like C0(X) is the commutative C*-
algebra, the same is true for L∞ and commutative von Neumann algebras [9, C.140]:

Theorem 62. Let M ⊂ B(H) be an abelian von Neumann algebra, then

M ∼= L∞(X,µ), (3.39)

for some locally compact space X and probability measure µ on X.

Let us now focus on the states for this algebra, and some measure theoretic basic
results. Up to now, we have only described the normal states of L∞(X,µ), which are
elements of the predual L1(X,µ), described by the (L1, L∞) duality in Eq. (3.38).
For the characterization of the full dual space L∞(X,µ)∗ and upcoming calculations,
we again need some more definitions and theorems.
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We call a measure µ absolutely continuous with respect to another measure
ν, denoted as µ ≪ ν if every µ-null set is also a ν-null set. This property allows us
to express one measure in terms of another, which is known as the Radon-Nikodym
Theorem [55, Thm. 4.2.2]:

Theorem 63 (Radon-Nikodym). Let (X,F) be a measurable space and let µ and ν
be σ-finite positive measures on (X,F). If µ is absolutely continuous with respect to
ν, then there is an F-measurable function g : X → [0,∞) such that

µ(F ) =
∫
F
g dν (3.40)

holds for each F ∈ F . The function g is unique up to ν-almost everywhere equality.

The function g in the above theorem is also called theRadon-Nikodym deriva-
tive and is accordingly sometimes denoted as dν

dµ . More details about the required
properties and possible extensions can be found in [55, Sect. 4.2]. The full state
space of L∞ is now characterized by the following theorem [9, Thm. B.31]:

Theorem 64. Let (X,F , µ) be a measure space. Then there is a bijective correspon-
dence between the states of L∞(X,µ) and the finitely additive probability measures
ν on (X,F) that are absolutely continuous with respect to µ.

Finitely additive measures are measures with the requirement of σ- or countable
additivity reduced to only a finite collection of sets.

In conclusion, the whole state space of L∞(X,µ) consists of all finitely additive
probability measures on (X,F) that are absolutely continuous with respect to µ.
The subset of normal states are those who are not only finitely but σ-additive,
i.e., standard probability measures and can be described by L1-density using the
Radon-Nykodym Theorem.

Representations on Hilbert spaces

Every C*-algebra and hence every W*-algebra can be represented as a *-subalgebra
of B(H). For commutative C*-algebras, we know that they are all isomorphic to
C0(X), where X is the Gelfand spectrum. To represent this algebra one can simply
pick a state ω ∈ C0(X)∗, respectively a measure µ, and do the GNS-construction,
which yield [9, p.696]:

Hω = L2(X,µ) (3.41)
πω(f) = mf (3.42)

Ωω = 1X . (3.43)

Here mf is the multiplication operator, i.e., for Ψ ∈ L2(X,µ) we have mfΨ = fΨ.
For von Neumann algebras, where we identified L∞(X,µ) as the prototype of

this class, we can likewise realize them on the well-known Hilbert space L2(X,µ) as
multiplication operators [9, B.108].
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3.2.3 Tensor products

The focus of this work are quantum-classical hybrids. Therefore, we have to pay
attention to bringing the quantum and the classical side together. A typical reflex
of a physicist is most probable to take the tensor product. Unfortunately, there is
no such thing as the tensor product for C*-algebras. In fact, there are many, and
this part is considered [8, p.181]

... as one of the tricky parts of the theory.

Fortunately, our application is one of the special cases where things get much more
straightforward. Therefore, we will not go into much detail about the general case,
but we will not simply omit that the tensor product on the level of C*-algebras
might cause ambiguities.

Tensor Product of Hilbert Spaces We start with a familiar example: The
construction of those is something nearly every physicist has seen at least once in
various levels of detail during his quantum mechanics lecture. As the basic idea is
the same for C*-algebras, we will recall a brief sketch of this procedure:

Let H1 and H2 be Hilbert spaces. We define the algebraic tensor product as
Halg = H1 ⊗alg H2. It is spanned by finite linear combinations of the form∑

i

Ψ1
i ⊗vec Ψ2

i Ψ1
i ∈ H1, Ψ2

i ∈ H2, (3.44)

where the symbol ⊗vec denotes the tensor product of vector spaces. The algebraic
tensor product is basically the basis for any of the upcoming constructions of ten-
sor products. For the Hilbert space construction, we define for Ψ,Φ ∈ Halg the
sesquilinear form

⟨Ψ,Φ⟩ =
n∑
i

m∑
j

⟨Ψ1
i ,Φ1

j ⟩⟨Ψ2
i ,Φ2

j ⟩, (3.45)

which is positive-definite, hence Halg becomes an inner product space. As H1 and
H2 are Hilbert spaces, we want H = H1⊗H2 to be a Hilbert space too. To this end,
we take the above scalar product and do the completion of Halg, which then yields
the desired Hilbert space. The completion of the algebraic tensor product is then
what is commonly known as the Hilbert space tensor product, which is unique
up to unitary equivalence and is denoted by H = H1 ⊗H2.

In this construction, the completion step might create ambiguities when applying
this scheme to more general spaces. For Hilbert spaces, the completeness with
respect to the norm induced by the scalar product makes the structure more rigid
and demands a specific connection between a norm and the space. For Banach
spaces, we could choose different norms in the completion, which yield different
Banach spaces as tensor products.
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Tensor Products of Banach Spaces and C*-Algebras We start with the case
of Banach spaces [8, IV.Sect. 2]. So let B1 and B2 be Banach spaces and B1 ⊗alg B2
the algebraic tensor product. In this case, the norm which is used in the completion
of the algebraic tensor product is called a cross-norm ∥ · ∥β and satisfies

∥B1 ⊗alg B2∥β = ∥B1∥∥B2∥, B1 ∈ B1, B2 ∈ B2. (3.46)

Unlike for Hilbert spaces, we can choose different norms ∥ · ∥β, so one denotes the
norm used in the construction of the tensor product as B1 ⊗β B2. The greatest
cross-norm on Banach spaces is called projective cross-norm

∥b∥γ = inf
{∑

i

∥b1i ∥∥b2i ∥
∣∣∣ b =∑

i

b1i ⊗alg b
2
i

}
, (3.47)

leading to the projective tensor product ⊗γ . It is the greatest possible cross-
norm because it arises as the lower bound to the triangle inequality. Another one is
called injective cross-norm

∥b∥λ = sup
{∣∣∣∣∣∑

i

f(b1i )g(b2i )
∣∣∣∣∣ ∣∣∣ f ∈ B∗

1, ∥f∥ ≤ 1, g ∈ B∗
2, ∥g∥ ≤ 1,

}
, (3.48)

which yield the injective tensor product ⊗λ.
For C*-algebras [8, IV.Sect. 4] we have to take additional care for the involution

to make sure that the resulting tensor product is again a C*-algebra. Let A1 and A2
be C*-algebras. The multiplication and the *-operation carry over to the algebraic
tensor product that forms a *-algebra. For a C*-algebra one now needs a C*-norm
∥ · ∥β in the completion, i.e.,it has to satisfy

∥ab∥β ≤ ∥a∥β∥b∥β (3.49)
∥a∗a∥β = ∥a∥2β, a, b ∈ A1 ⊗alg A2. (3.50)

Examples of C*-norms are the projective C*-cross-norm

∥a∥max = sup{∥π(a)∥ |π is a representation ofA1 ⊗alg A2}, (3.51)

leading to the projective C*-tensor product denoted A1 ⊗max A2. Another
example is the injective C*-cross-norm

∥a∥min = sup{∥(π1 ⊗ π2)(a)∥ |πi is a representation ofAi}, (3.52)

resulting in the injective C*-tensor product A1 ⊗min A2. As indicated by the
subscript, another name for the projective C*-tensor product is maximal tensor
product, while the injective C*-tensor product is often called minimal tensor
product.

This notation is based on the fact that they give upper, respective lower bounds
to all possible C*-norms, which also provides proof that any C*-norm is indeed a
cross-norm [8, Thm. 4.19f].

From the representations in the above definitions, the existence of units or the
calculations required for the above statements all require some more rigor in the
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mathematical elaboration. Nevertheless, we hope that the reader who has never
met anything but the tensor product for Hilbert spaces becomes a little sympathetic
to the technicalities involved when dealing with tensor product of C*-algebras and
understands why we did not simply rush over these subtleties.

Although the classical side of our hybrid will make a deeper look into this topic
redundant:

Definition 65. A C*-algebra A is called nuclear, if for any C*-algebra B, the
projective and the injective C*-norm coincide, i.e.,

∥ · ∥min = ∥ · ∥max. (3.53)

In other words, if one side of the tensor product is nuclear, the tensor product is
uniquely defined. This is exactly the case for our tensor hybrids because commuta-
tive C*-algebras are nuclear [39, Thm. 11.3.13], so we can write these hybrids with
the tensor product ⊗ without any risk of confusion.

Let us finish with some more practical observations. For this, let X be a locally
compact Hausdorff space and A a C*-algebra. We denote by C0(X,A) the set of A-
valued continuous functions f : X → A that vanish at infinity, i.e., x 7→ ∥f(x)∥A ∈
C0(X). This space can be equipped with the supremum norm

∥f∥ = sup
{
∥f(x)∥A |x ∈ X

}
(3.54)

and together with point-wise operations, becomes a C*-algebra. Indeed this is iso-
morphic to the tensor product of C0(X) and A [9, Prop. C.100]:

Proposition 66. Let X be locally compact and A a C*-algebra. Then

C0(X)⊗A ∼= C0(X,A). (3.55)

The continuous extension of the map from C0(X)⊗A to C0(X,A) is defined by

f ⊗A 7→
(
fA : x 7→ f(x)A

)
. (3.56)

Alongside the uniqueness, the characterization of states for tensor products with
abelian tensor factors is much easier than the general theory. The following theorem
tells us that pure states on a tensor hybrid are product states that are pure on the
classical as well as on the quantum side [8, Thm. 4.14].

Theorem 67. Let A1, A2 be C*-algebras. Then the following statements are equiv-
alent:

• Either A1 or A2 is abelian.

• Every pure state ω of A1⊗A2 is of the form ω = ω1⊗ω2 for some pure states
ω1 of A1 and ω2 of A2.
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Tensor Products of W*- and von Neumann Algebras Like the basic defi-
nition of the space itself, the tensor product for W*-algebras is a little more cum-
bersome. In return, there is basically only one tensor product for W*- and von
Neumann algebras (unless one dives really deep into the theory, e.g. [56]).

We give a (very) brief description of the construction [8, Sect. IV.5].
Let M1 and M2 be W*-algebras and let M0 = M1 ⊗min M2 be their injective

tensor product. The main idea is to define the W*-tensor product as a suitable
W*-subalgebra of the universal enveloping von Neumann algebra M∗∗

0 of M0. Now
let

M∗ = M∗
1 ⊗M∗

2 (3.57)

be the closure with respect to the dual cross-norm2, which is a closed subspace
of M∗

0. Because Mi are W*-algebras, they come with preduals (Mi)∗ which are
subsets of their biduals M∗

i , so we can define

M∗ = (M1)∗ ⊗ (M2)∗, (3.58)

which is an invariant subspace of M∗
0. Then there exists a central projection p in

the universal enveloping von Neumann algebra M∗∗
0 such that M∗ = M∗

0p [8, III.
Thm. 2.7]. One can show thatM0 is isometrically embedded in

(
(M1)∗⊗alg(M2)∗

)∗,
which is isomorphic to M∗∗

0 p. Then M∗∗
0 p is a W*-algebra, called the W*-tensor

product of M1 and M2, denoted by

M1⊗M2. (3.59)

Its predual is the space M∗ and we have (M1⊗M2)∗ = (M1)∗ ⊗alg (M2)∗. For
the tensor product of von Neumann algebras, choose two faithful representations
{πi,Hi} of Mi. Then the product representation π1 ⊗ π2 of M0 can be uniquely
extended to a faithful normal representation π of M1⊗M2, whose range is called
the von Neumann tensor product [8, IV. Thm. 5.2].

2Every cross-norm also defines an adjoint or dual cross-norm on the algebraic tensor product of
the respective dual spaces [8, Prop. 2.2] and the adjoint cross-norm of the injective and projective
C*-cross-norm coincide [8, Prop. 4.10].
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3.3 Building Hybrids

3.3.1 Discussion of the different approaches

... what you get and give up

We now discuss the different possibilities to construct a continuous variable hybrid,
i.e., choose the classical algebra with a state space that we put alongside the quantum
pair (

T (H),B(H)
)
. (3.60)

Besides the essential requirement that our algebra represents a non-trivial classical
system, we want our hybrid structure to be able to describe non-trivial quantum-
classical interactions like an instrument. This excludes systems like the combination
of a continuous variable quantum system with a classical bit. We collect a more
detailed list of criteria that our classical system and, thereby, our hybrid should
satisfy.

In quantum mechanics and quantum information theory, the tensor product of
observable algebras or states is usually considered the basic construction for com-
bining two systems. In the case at hand, this would be a classical part, described
by some algebra of functions on X, and a quantum part with the observable alge-
bra B(H). It turns out that it is not so obvious how such a tensor product should
be defined for hybrids or whether it is even a good way to describe this kind of
composition. Nevertheless, for now, let us start with this ansatz.

Requirements

In quantum theory, the physical system determines the typical choice of a Hilbert
space and, thereby, the states and observables. For example, if one wants to describe
a qubit, this typically translates into the choice H = C2 as the Hilbert space or
H = L2(Rs, dx) for a quantum continuous variable system with n-degrees of freedom.
In general, the Hilbert space determines the set of possible configurations.

In this spirit, the classical analog for the Hilbert space is the set X, the classical
phase space, which at the beginning is just an infinite set of possible configurations.
Additionally, we want that the set X and the framework on top, take the behavior
at different scales into account: On a small scale, i.e., if two configurations are phys-
ically similar, as well as on a large scale, that is, during limit processes and studying
the behavior when the system escapes to infinity. Mathematically, this requires the
introduction of topology and a discussion about the compactness, respectively, the
possible compactifications.

In summary, the formalism should be able to distinguish the different configura-
tions and their behavior, which we entitle under the requirement that the classical
algebra with the space X should allow for an operational interpretation.

Closely related is the requirement of a proper state space. For example, we want
our classical side to have enough pure states, which is essential in many different
aspects. At first, a key feature of the classical system is that no uncertainty principle
forbids states with arbitrary sharp expectation values, i.e., point measures. Of
course, these are the prime examples of classical pure states. Furthermore, pure
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states are often the solution to physical problems like finding a ground state. Also,
in general, it is a solid strategy to solve problems first on pure states and extend
the solution afterwards [10, 2.5.5]. By Thm. 67, we know that for a tensor hybrid,
the pure states are pure on each of the subsystems. Again, our classical system
must have enough of them. Also, a hybrid framework is certainly well-advised to
provide a practical description of the states, although this is less a requirement than
a desired feature.

Besides the states, a classical observable algebra definitely has to have
enough elements to describe measurements. Remember that one of the main reasons
why the quantum observable algebra is B(H), and not the C*-algebra of compact
operators K(H), is that for a measurement implementation, the identity plays a
crucial role, see Sect. 2.3.2. Furthermore, we want the existence of unitary elements
in our algebra, which also clearly requires the algebra to have an identity, i.e., our
classical observable algebra best be unital.

Besides states and observables, we also want to describe dynamics on our hy-
brid. In the classical case, a standard requirement for admissible maps is positivity,
and by Thm. 39, we know that for abelian algebras, this coincides with complete
positivity. Hence, it is straightforward to demand hybrid dynamics to be represented
by completely positive maps. Apart from the mathematical properties, our hybrid
should also allow for time-continuous processes. This means that a classical system,
which already comes with a suitable class of dynamics that can be generalized to
the hybrid setting, is favorable.

We compare the different possible algebras for our classical and, thereby, for our
hybrid system with this list of requirements.

Comparison

W*-view Let us start with the discussion with the von Neumann- or W*-approach,
where we choose for the classical side(

L1(X,µ), L∞(X,µ)
)
. (3.61)

This unified von Neumann approach certainly looks tempting: Both parts of our
hybrid, i.e., the quantum and the classical one, are von Neumann algebras. The
tensor product is clearly defined, and we have the respective normal states in the
predual. Nevertheless, it comes with some noteworthy drawbacks.

Starting with the formal definition, we not only need to specify our space X but
additionally need to choose a measure µ, which does have a significant impact on
the properties of our algebra. For example, with our favorite classical phase space
X = Rs and µ = dx as the Lebesgue measure, we lose all normal pure states:

For a von Neumann algebra M, the normal pure states correspond to the non-
zero minimal projections in M (see Lem. 103), and for a non-atomic measure like
dx, the algebra M has no non-zero minimal projections. To put this less abstractly,
the point measures do not have an L1-density. Of course, one could choose different
measures and get some of the pure states back, but in this case, we always have
to include the extra step of choosing a measure. Here, finding the right measure is
another non-trivial part, so a description without this detour is clearly favorable.
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Underlining that these problems are connected with the general choice of a von
Neumann algebra and not just X or µ, let us look at M as C*-algebra and see that
even if we drop the requirement for normal states, this does not help us on. By
the Gelfand isomorphism, we know that any commutative von Neumann algebra M
is isomorphic to C(X), wherein this case X is an extremely disconnected compact
Hausdorff space [38, Thm. 5.2.1]. These are defined by the fact that the closure of
every open set is open. Examples are discrete sets, but any continuum with this
property is abstract and beyond the scope of our application. In particular, when
we think about X as a register for measurement outcome of the quantum part.

Lastly, the measure-theoretic approach makes it hard to define dynamics, i.e.,
semigroups with generators like in the quantum case. The description of such time-
continuous processes is a well-known problem [57]. A solution is due to Feller, who
gave a special role to the smaller algebra of continuous functions and defined what
is nowadays known as Feller semigroups (see Chap. 4). We can summarize this as a
hint to go for another approach and follow Fellers’s choice of continuous functions
for our classical part.

In conclusion, the W*-view offers a unital observable algebra and the existence
of normal states, which is a clear upside. The downside is that we need to choose
a measure for the definition, and based on this choice, we lose some, if not all,
normal pure states. Additionally, the dependence on X and µ makes this choice
more difficult, and we already know that even without the quantum part around,
defining dynamics analogous to the quantum case has some particular challenges in
this setting.

C*-view First, before going into details regarding the specific choice of the algebra
or space X, note the following:

This approach forcibly leads to an asymmetry between the quantum and the
classical part in a hybrid scenario. While we would like to exclude non-normal
states on the quantum side and therefore only work with states in the predual, the
states of the classical part are necessarily found in its full dual. This creates some
extra challenges in the description of states and makes it harder if we want to define
a proper Heisenberg and Schrödinger picture for our hybrid operations. Despite this
fact, the choice of a C*-setting for a classical analog to the quantum mechanical
framework is quite common, see for example, [4, Example 2.4.2], [43, Sect. 4.1] or
[9, Chap. I.1, Chap. I.3]. This hurdle aside, we will see that the C*-approach checks
a lot of the other requirements.

Clearly, the choice of our space X and the algebra depend on each other. The
easiest way would be to start with a compact X, which directly implies

A = C0(X) = Cb(X) = C(X). (3.62)

This algebra is unital, and the state space of C(X) consists of all probability measures
W(X), which is a convex set and has the point measures as extremal points [10,
Prop. 2.5.7]. This exactly meets our requirements except for the fact that

X = Rs (3.63)
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is not a valid choice. With our application of continuous-variable systems in mind,
a framework that excludes this phase space from the get-go does simply not seem to
be a good candidate. Translation-invariance and the possibility to define Gaussian
functions should be included in our hybrid system, so we have to fix X as just locally
compact and not compact.

A commutative C*-algebra and in the spirit of Thm. 58 the commutative C*-
algebra, is of course C0(X). With our requirement to include the case X = Rs, this
algebra disqualifies itself as an observable algebra because it is non-unital and, there-
fore, too small to describe measurements or unitary elements. An ansatz to solve
this issue is to start with a locally compactX and choose a suitable compactification.

Here the first choice is the one-point compactification, where one adds the
point ∞ and which we denote by

Ẋ = X ∪∞. (3.64)

Now, the topology on Ẋ is given by the open sets of X and the subsets of Ẋ with
a compact complement in X. The canonical injection i : X ↪→ Ẋ is continuous and
embeds X as an open subset into Ẋ. Also every f ∈ C0(X) is uniquely extended to
a function ḟ ∈ C(Ẋ) with ḟ(∞) = 0. [9, Sect. C.6]. For the algebra, the one-point
compactification is equivalent to the unitization Ċ0(X) [9, Lem. C.38]:

Ċ0(X) ∼= C(Ẋ). (3.65)

This is equivalent to saying that we do not consider arbitrary bounded continuous
functions on X but only those converging to a constant at infinity. The value of this
constant is then, by definition, the value of the function at the point ∞. The one-
point compactification or unitization largely maintains the structure of our set X,
gives us an approximate unit, but fades out the behavior at the boundary. Despite
the problems described above, the fact that C0(X) also has a decent state space with
plenty of pure states (see Thm. 59), this version of a classical algebra may be seen
as a first working model.

Going forward, another candidate are the bounded continuous functions Cb(X).
Also, with this choice of X = Rs, this algebra is unital. The issue with this choice
is the state space. The Gelfand spectrum of Cb(X) is more complicated and we will
meet another compactification [9, Tab. B.1.2]:

Cb(X) ∼= C(βX). (3.66)

Here βX is the Stone-Čech compactification of the set X and every f ∈ Cb(X)
extends uniquely to a function f̃ ∈ C(βX).

Alternative to being the Gelfand spectrum of Cb(X), the Stone-Čech compact-
ification can be constructed using the set of all ultrafilters on X. Either way, as
the set determining our states, this compactification is way too large. Even in very
simple cases, it is hard to describe βX in a more practical way [7, Chap. V.6].

Besides the occurrence of the Stone-Čech compactification, there is another prob-
lem with Cb(X) as the classical part of hybrid algebra. Our general ansatz for
this part is that our hybrid is built by a tensor product with our quantum alge-
bra A = B(H). For C0(X) this is equivalent to looking at the A-valued functions
f ∈ C0(X,A) ∼= C0(X)⊗A by Prop. 66.
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If we now want to include observables that do not decay at infinity, the question
arises whether this sort of isomorphism also holds for the bounded A-valued norm
continuous functions Cb(X,A) with the C*-tensor product A ⊗ Cb(X). Here the
candidate for this isomorphism is also

ι : A⊗ Cb(X) → Cb(X,A), ι
(
A⊗ f

)
(x) = f(x)A. (3.67)

However, for our case, i.e., a locally compact space and especially X = Rs, the
embedding ι is not surjective [58]. Here we have

ι(A⊗ Cb(X)) = C(βX,A), (3.68)

but continuity of a bounded function F : X → A does not necessarily imply the
existence of a norm-continuous extension to βX. In fact, if such an extension exists,
the range

F (X) = {F (x) |x ∈ X} (3.69)
must have norm compact closure F (βX) ⊂ A. As shown by Williams [58], this is
precisely what could go wrong, i.e., we can turn this into a criterion describing the
range of ι:

For example, take F (x) =
∑

i Pifi(x), where Pi is a family of orthogonal pro-
jections in A = K(H). The fi are chosen to have disjoint supports in the elements
of some countable partition of X, are positive, take the value 1 somewhere, and∑

i fi = 1. Then for a fixed function f0 ∈ C0(R), such that f0(0) = 1 and f0(x) = 0
for |x| > 1/3, we can set fi(x) = f(x − i). So {Pi} ⊂ F (X) does not have norm
compact closure. Note that the sum defining F cannot be obtained as a supremum-
norm limit of finite partial sums, as would be required for F ∈ A ⊗ Cb(X), i.e., we
have an element F ∈ Cb(X,A) with F /∈ ι(A⊗ Cb(X)).

Consequently, it is preferable to consider the larger algebra Cb(X,A1), rather
than the tensor product, as a basic hybrid algebra. Note, however, that we can also
change the topology of A for which we demand continuity:

Consider the algebra A = B(H), taken with the weak* topology, and hence the
space Cw(X,B(H)) of norm bounded, weak*-continuous functions X → B(H). Since
the unit ball of B(H) is now compact, the above argument of Williams no longer
applies. Indeed if F ∈ Cw(X,B(H)), and ρ ∈ B(H)∗, the function x 7→ tr ρF (x) is
bounded and continuous, and hence extends to βX. The value Fρ(x̂) of this function
at a point x̂ ∈ βX is a bounded linear functional with respect to ρ, and there is an
operator F (x̂) representing this functional. In other words

Cw(X,B(H)) = Cw(βX,B(H)). (3.70)

It is not obvious that this is even an algebra because the operator product is not
continuous in the weak* topology.

In conclusion, without giving up our set X = Rs, there is no suitable option that
satisfies all of our demands for a tensor hybrid in this setting. Still, by using the one-
point compactification and the algebra C(Ẋ), we have an unital algebra, with the
probability measures W(Ẋ) as an accessible state space, plenty of pure states, and a
well-known class of possible dynamics. The drawbacks are the asymmetry between
normal and non-normal states for the quantum and the classical side and the fact
that by using a compactification, we give up some information at the boundary, so
we only get a part of our hybrid system.
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Summary

We can summarize our discussion as follows: We have two different candidates for
our classical side, see Fig. 3.1, namely the C*- and the W*-view, and none of the
two checks all the boxes for a complete tensor hybrid. Both choices have their
advantages and disadvantages, i.e., they work in different scenarios but not as a
general starting point. For now, if we had to choose, the C*-approach seems to be
the better working model for a tensor hybrid. This leaves us with two possibilities:
Either use a compact X, accept the stated drawbacks for a general framework, and
choose the pair (

C(X)∗, C(X)
)

as our classical algebra or look for another suitable hybrid algebra.

states observables
Classical

C(X)∗

L1(X,µ)

L∞(X,µ)

C(X)

⊂ ⊂

states observables
Quantum

T (H)

B(H)

Figure 3.1: Dualities of spaces of states and observables, where a line
indicates a dual pairing. The W*-approach (blue line) starts from the
states and allows the full dual space as observables. The C*-approach
(red line) makes the opposite choice. Traditional quantum mechanics has
only the W*-approach.

The rest of this chapter and Chap. 4 is devoted to the first approach, while in
Chap. 5 we take a second route: The algebra C0(X) has precisely the type of state
space we want, besides being too small to house our observables. This suggests
a solution similar to the quantum case, where the algebra of compact operators is
likewise too small but has a suitable state space with the trace class operators, whose
dual B(H) is then the observable algebra, see Fig. 3.2. Note that this approach is

Classical
states observables

C0(X)∗
C0(X)∗∗

C0(X)

Quantum
states observables

T (H)
B(H)

K(H)

Figure 3.2: Extended dualities suitable for a joint generalization of the
classical and the quantum case to hybrids. The states are here functionals
on an underlying non-unital algebra A, namely C0(X) resp., K(H) in the
classical resp. quantum case.

by no means free of complications: For example, the bidual K(H)∗∗ = B(H) as the
bounded linear operators on a Hilbert space has a pretty characterization of its own,
the space C0(X)∗∗ is by far less accessible. Finding more suitable subspaces is the
subject of Sect. 5.3.
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3.3.2 States on a tensor hybrid

Before we continue with the dynamics of a tensor hybrid, let us focus on the states.
Consider now a general hybrid system of the kind

A = A1 ⊗ C(X), (3.71)

where X is a metrizable compact space and A1 is an arbitrary unital C*-algebra,
which of course later should become B(H) for a standard quantum system. Our aim
is now to find a usable characterization of the states on such a system. Intuitively,
one would write something like

ω(A⊗ f) =
∫
µ(dx)ωx(A)f(x), (3.72)

where µ is a measure on X and (ωx)x∈X a family of states on A1. Indeed, this form
does not come automatically but requires some lifting, which we will describe in the
following section.

Starting with a state ω and A = 1, we get that µ is the measure associated with
the restriction of ω to the subalgebra C(X) by virtue of the Riesz representation
theorem (Thm. 59). Extending this for A ∈ A1 we get the form

ω(A⊗ f) =
∫
µA(dx)f(x). (3.73)

Further, we assume that 0 ≤ A ≤ 1, which implies that 0 ≤ µA ≤ µ and in particular,
µ-null sets are µA-null sets, so µA is absolutely continuous with respect to µ. Hence
by the Radon-Nikodym Theorem (Thm. 63), there is a measurable function wA ≥ 0
such that µA = wA µ. With the same argument applied to µ − µA, we also get
wA ≤ 1. At this point we can write the state ω as

ω(A⊗ f) =
∫
µ(dx)wA(x)f(x). (3.74)

This already looks quite similar to Eq. (3.72), except that we use an A-dependent
Radon-Nikodym derivative wA, which is only defined µ-almost everywhere. There-
fore, identities like

wA(x) + wB(x) = wA+B(x) (3.75)
only hold almost everywhere. As there are uncountably many such identities, the
exceptional sets cannot be condensed into one, and it is not obvious how to ensure
that for every individual x, we can choose ωx to be a linear functional on A1.

This is a well-known problem, even for abelian A1, which goes under the keyword
of disintegration of measures. The general solution in our context is given by the
Lifting Theorem [59], extending the work of von Neumann [60]. It asserts that there
is a positive linear operator

Λ : L∞(X,µ) → L∞(X), (3.76)

called lifting, assigning to each equivalence class f ∈ L∞(X,µ) of bounded measur-
able functions (with respect to almost everywhere equality) an individual function
in that class such that positivity and identity are preserved. With this, we can write

ωx(A) = (ΛwA)(x) (3.77)
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and get the characterization of ω in Eq. (3.72).
The existence of liftings is based on an Axiom of Choice argument, so it is very

non-constructive. However, there are cases, like the Gaussian one, where the states
ωx are explicitly given. The above consideration also highlights some of the problems
discussed in the previous section:

If we take A1 = B(H) and X a compactification of Rs, the measure µ may
live on the compactification points rather than properly on Rs. Of course, the
issues that arise this way hardly depend on the compactification chosen: The one-
point compactification behaves much more tamely compared to the Stone-Čech-
compactification, in which case the integral formula Eq. (3.72) is of little value.

The last issue that needs to be addressed is the case of singular states on B(H),
which is typical for infinite-dimensional Hilbert spaces. As we have said, almost all
of physics safely ignores this possibility, as did we. An arbitrary state ω ∈ A∗, of
course, may have singular parts ωx in Eq. (3.72). We would like to have a simple
criterion excluding this possibility for our hybrid framework.

Indeed, with our outlined second approach to hybrids and the construction in
Chap. 5 we will get a characterization of hybrid states, which solves both of the
above issues.

3.3.3 Reversible dynamics and a no-go theorem

The typical benchmark for any attempt to build a quantum-classical hybrid is that
both subsystems or marginals are correctly reproduced. At this level, the quantum
part, with all its unique characteristics, certainly sets the agenda. One of these
characteristics is the fundamental information-disturbance tradeoff [61]. The
most general formulation of this principle is quite simple:

There is no information gain without disturbance.

In particular, any non-trivial quantum measurement involves some kind of irre-
versible disturbance. The formulation and quantification of these tradeoffs are part
of the broad field of uncertainty relations [62]. For us, this principle can be rephrased
and constitutes one of our basic guidelines for building hybrid systems:

Reversible dynamics on a hybrid system cannot transfer information from the
quantum to the classical system.

The argument for this is straightforward: If such dynamics would exist, we could
simply read out, respectively copy the classical system, learn something about the
quantum side, and apply the inverse to hybrid, which instantly violates the above
principle. As this principle does not rely on any specific form or construction of
the hybrid, it should be valid in any realization and, therefore, constitutes a robust
benchmark.

Note that this heavily depends on the classical part being classical: Swapping the
classical part with another quantum system leads to the interpretation of the Stine-
spring dilation described in Eq. (2.67) and bypassing the information-disturbance
tradeoff by copying the system is forbidden by the no-cloning theorem [63]. As we
will see in Sect. 3.4, this can be seen as the core of many problems arising in different
hybrid constructions.
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3.4 Previous Works on Hybrids

The interaction and combination of quantum and classical systems is such a funda-
mental topic that it has been worked on several times. On some occasions, these
works are explicitly talking about hybrids, but there are also many results not ex-
plicitly mentioning the word, yet they have useful results in the area. This especially
applies to purely mathematical works but also happens in physics.

Also, the motivations to work on hybrids are quite diverse. Many works have
specific focuses and, in consequence, devote a different amount of work to the various
aspects of a general hybrid quantum-classical theory. In conclusion, this summary of
previous works is almost surely not exhaustive, so what we describe is a classification
of the most common approaches and key points to this topic.

At least it is safe to say that there is not the commonly accepted and tested
framework for treating quantum-classical hybrids. Of course, this is also based on
the simple fact that classical physics in general unites so many different areas and
fields that a fully general quantum-classical framework is too ambitious.

At last, it should be noted that when it comes to comparing different approaches
for hybrids, all reasonable work on the topic is bound to have some overlap when
the two marginals quantum theory and classical theory are out of the discussion.

The mechanics approach A widespread and tempting approach to hybrids orig-
inates from similiar structures when it comes to mechanics. Quantum systems, as
well as classical systems, know Hamiltonians to generate the dynamics. Then, the
basic idea is to combine quantum Hamiltonians and the commutator with classical
Hamiltonians and the Poisson brackets

{f, g} = ∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
(3.78)

into a hybrid or generalized version. One of the earliest works in this direction
is the paper Hamiltonian Systems and Transformation in Hilbert space from 1931
by Koopmann [64]. Accordingly, the authors of [65], and others classify quantum-
classical hybrids of this kind as Koopman type. A more in-depth discussion and
further literature about this can be found in the review paper Quantum-classical
hybrid dynamics – a summary by Elze [66] or in the respective section of work On
two recent proposals for witnessing nonclassical gravity by Hall, and Reginatto [65],
where the authors discuss several hybrid attempts in terms of their application to a
recent proposal concerning the quantum nature of gravity.

In general, this approach often encounters problems like negative probabilities,
which are then fixed by non-linear corrections. In short, taking this as a starting
point for a hybrid construction immediately entails another chain of conceptual
problems. The problems with this ansatz were noted several times [67, 68, 65].

For example, in [67], the authors take the correspondence principle as a bench-
mark for a hybrid formalism: A hybridization of a pair of two oscillators, i.e.,
quadratic Hamiltonians, coupled by a bilinear term, should reproduce the corre-
sponding equations of motion on each side. However, they come to the conclusion
that while there is no direct inconsistency in their hybrid formalism:
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...the result violates the correspondence principle, which we would expect to hold
exactly for a pair of oscillators with bilinear coupling. Therefore, such a theory

appears quite abnormal from the point of view of physics.
Problems like these are not surprising if one remembers the observations from

Sect. 3.3.3. Approaches to hybrid dynamics that involve Hamiltonian, i.e., reversible
dynamics and non-trivial interactions between the quantum and the classical system,
have to fail at some point, or else they would violate the information-disturbance
tradeoff.

We see the described problems as a manifestation of principle and not for the
respective hybrid formalism to be unfinished. Logically, we will not follow this
approach, and in Chap. 5 we will start with a blank classical system, which is just
the real vector space Rs as phase space without any further structure.

Classical limits A common view on the interplay between the quantum and the
classical world is that the classical arises out of the quantum in the classical or
thermodynamic limit, and most physics students will have seen some examples where
for n→ ∞, a quantum expression turns classical.

Following this concept, we should end up with a hybrid system if we do this limit
only partially on a subsystem of a quantum one, and there is no problem writing
down Hamiltonian interactions between the almost classical and the quantum part.

However, this procedure must uphold the aforementioned no-go theorem that
forbids hybrid dynamics, which circumvent the information-disturbance tradeoff of
quantum mechanics.

The classical variables in such a system will generally evolve into some combina-
tion involving their conjugates, or as Sherry and Sudarshan phrase this in the series
of works called Interaction between classical and quantum systems: A new approach
to quantum measurement [69], the classical variables lose their integrity.

While this technique is, in principle, a viable approach to the topic, it has some
significant challenges: The required physical discussion on how a good approximation
works depends highly on the chosen system. Also, without the requirement to end
up with a working hybrid that does not explicitly or implicitly violates some basic
physical principles, the thermodynamic limit constructions can be challenging on
their own. Also, for small systems, for example, with one degree of freedom, such
discussion may not be possible.

A more modern representative of this technique is, for example, the work Quan-
tum approach to coupling classical and quantum dynamics by Diosi et al. [70], which
contains more references regarding this technique, a discussion of typical problems,
and possible solutions to some of the problems discussed.

It should be noted that the classical limit is very closely related to the mean-field
limit, and the latter has indeed been proposed as a model for measurement processes
involving large quantum systems, see the work Quantum Theory of Measurement and
Macroscopic Observables by Hepp [71].

For us, the many-body aspect of the classical system will not come into play at
all or even enter the formalism. Conceptually, this is because we consider that limit
already being done, and we work with a much-reduced set of classical variables, a
finite set of reals, such as a measurement record in a continuing observation process.
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Embedding the classical system Besides limit constructions on a subsystem,
one can also embed a classical into a quantum system and subsequently combine this
with other quantum systems. For example, in the quantum information community,
many researchers think of the observables of a classical system as the diagonal ma-
trices embedded into a larger full matrix algebra, as we described in Sect. 3.1.

Similarly, for a classical particle described by position variables in Rs, one can get
a quantum extension by including the generators of the spatial shifts, i.e., conjugate
momenta, in a crossed-product construction [8]. This construction can be done at
the von Neumann algebra level so that the enlarged quantum system has the full
algebra of bounded operators over L2(Rs, dx) as observables. This is the approach to
hybrids chosen, for example, in the work A Note on a Formula of the Lévy-Khinchin
Type in Quantum Probability by Barchielli and Paganoni [72]. In this setting, the
distribution of the classical variables in a normal state always has an L1-density,
which excludes the pure states according to our discussion in Sect. 3.3.1. We will see
later that the pure states of a modified hybrid also correspond to extremal quantum
channels, so this approach excludes the optimal, e.g., minimal noise channels for
some tasks.

In our approach, pure states are included from the outset, and the von Neumann
algebraic crossed-product embedding is characterized as a special case for which
states are norm continuous under translations, see Sect. 5.3.3.

Hybrids for specific systems In many works, a theory of quantum-classical
hybrids is derived or used for a specific use case. Of course, there is nothing wrong
with this approach, but it surely requires a careful reflection on the limits and the
nature of the derived statements.

A positive example is the work [73] from Diosi, where he suggests a fairly gen-
eral form of hybrid master equations and derives a heuristic master equation. This
clear communication is especially important if one wants to deduce further general
statements about hybrid systems.

In a series of works about the interaction of quantum and classical systems [74,
75] Blanchard and Jadczyk developed a theory of Event-enhanced quantum theory. A
summary of their work can be found in [76]. One of their essential ingredients is the
replacement of continuous time evolution with piecewise deterministic processes.
With this, they can include events and get a minimal extension of the standard
quantum theory that can treat SQUID-tank and a cloud chamber model with GRW
spontaneous localization [77]. Overall, their focus lies more on the discussion and
interpretation of quantum phenomena using classical degrees of freedom rather than
a complete hybrid framework.

As the no-go theorem from the previous section strongly suggests the use of
dissipative time evolutions to express the measurement interaction, there are sev-
eral works towards this direction [73, 72, 76, 78]. For example, in [76], the author
Olkiewicz discusses a mathematical framework for the coupling between classical
and quantum systems. According to the author, his work is based on a phenomeno-
logical assumption, and he is using a typical von Neumann setting for his hybrid
that comes with all the challenges described in Sect. 3.3. Within this framework, he
also discusses two applications: a semiclassical description of gravity and a quantum
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system coupled to all one-dimensional projectors considered as a classical device.
A common characteristic of these works is their focus on the dynamics instead of

the underlying state spaces and observable algebras. Another example of this is the
work [78] by Oppenheim et al., which we will discuss in more detail in Sect. 4.2.1.
This work was also motivated by the application of hybrids to questions about the
quantum nature of gravity in the next paragraph.

Clearly, this work also falls under this category, yet we put much effort into
justifying all of the choices made from a broad point of view.

Hybrids for gravity A recent discussion of hybrids for quantum fields coupled
to gravity illustrates several of the options mentioned above. In [79], we find an
approach making the dissipative nature of the interaction implicit. In [80, 81], it is
argued that gravitationally induced entanglement would serve as proof of the non-
classical nature of gravity. This is contradicted by [65], where the authors emphasize
that this will depend on the notion of hybrids and that the non-linear variant, in
particular, would allow for entanglement via a classical intermediary.

Our motivation for hybrid structures is practical and comes from continuous
observation and other measurement processes. Whether the resulting structures
are also helpful for some fundamental theory is far beyond the scope of this work.
However, we hope that a sharper understanding of the mathematical structures will
also be helpful in such projects and underlines the necessity of a better-developed
and tested hybrid formalism.

Hidden hybrids Getting an overview of the existing literature in a research field
is always a tedious but necessary task. One can argue that for hybrids, this is more
on the upper end of the difficulty scale. As we have mentioned at the beginning
of the section, given the fixed marginals quantum and classical, many works look
similar and are bound to have some overlap. Additionally, there is a potential lack of
useful keywords: The moment an author does not explicitly use the word hybrid, the
remaining indicators, quantum, classical, interaction, states, Weyl operators, etc.,
are extremely widespread. For example, the upcoming hybrid Bochner theorem
(Thm. 89) can also be found in the books Photons in Fock space [82] by Honegger
and Rieckers. Here, the word hybrid is mentioned one time, in another context, on
over two thousand pages. Also, it highlights another challenge in finding previous
works on hybrids: One of the subtitles of [82] is From classical to quantized radiation
systems. Using this transition to highlight certain quantum phenomena is indeed
quite common and is often not connected to proper hybrids. Also, in Sect. 5.2, we
found out afterwards that the idea of using a twisted version of the group algebra for
a C*-description of continuous representations was already worked out by Grundling
in [83, 84].

All the different approaches to hybrids over several fields and from a long period
underline the relevance of the topic. At the same time, this shows that we are still
missing the quantum-classical hybrid framework, and there is much work to be done.
As a consequence, the focus of this work switched from a more applied focus to the
very foundations, hopefully finding use in further applications.
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Chapter 4

Hybrid Diffusions

In this part, we will take inspiration from the classical theory of diffusion generators
and generalize this to our hybrid setting. Well-known characterization theorems
describe these as the generators of Markov semigroups with a particular continuity
condition, which excludes jumps. Typical assumptions of this type are the continuity
of sample paths and the locality of the generator in the sense that in order to compute
LF (x), one only needs to know F in a neighborhood of x. This involves the topology
of X, and a key role is played by Feller’s condition demanding that the evolution
operators map C(X) into itself. Accordingly, we choose the previously described
C*-approach for our hybrid algebra.

The main result of this chapter will be Thm. 76, which is a generalization of
the classical characterization theorems, as well as the Lindblad characterization of
generators in the purely quantum case. The main ingredient will be the property of
conditional complete positivity, which we introduced in Sect. 2.4.3 and is a direct
generalization of the maximum principle. Also, we see the first advantages that
a comprehensive hybrid treatment gives: Thm. 76 comes with an uncertainty-like
positivity constraint for the generator that bounds the information flow from the
quantum to the classical part.

4.1 Review: Feller Semigroups

The power of Feller semigroups is that they allow us to describe the dynamics of
probabilistic Markov processes in terms of semigroup theory on Banach spaces, i.e.,
transition kernels become operators Tt on a function space. This goes well with the
description of quantum dynamical semigroups that we introduced in Sect. 2.4.3 as
both are special applications of the general theory of semigroups on Banach spaces.

The primary reference for this short review will be the standard work of Kallen-
berg’s Foundations of Modern Probability [57], especially Chap. 17 Feller Processes
and Semigroups.

Let us start with the basic idea: If µ is a probability kernel on a locally compact
metric space X and f : X → R+ measurable, then a transition operator T acts
like

(T f)(x) =
∫
µ(x, dy)f(y). (4.1)

67
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For the stochastic interpretation, we want that for 0 ≤ f ≤ 1, we also get 0 ≤ T f ≤
1, so T has to be a positive contraction operator. A short calculation shows that if
we add a time dependency, the Chapman-Kolmogorov equation for the probability
kernels µt of the underlying stochastic process is equivalent to the semigroup prop-
erty of Tt [57, Lem. 17.1]. Further we assume that Ttf(x0) converges point-wise to
f(x0) as t→ 0. Now a positive contraction semigroup T is called Feller semigroup
if it leaves C0(X) invariant, i.e.,

TtC0(X) ⊂ C0(X). (4.2)

Accordingly, Eq. (4.2) is also known as the Feller condition. Like quantum dynam-
ical semigroups, Feller semigroups have a generator L, which uniquely determines
Tt [57, Lem. 17.5]. These are generally unbounded, so they come with a domain
dom(L), which is dense in C0(X) [57, Thm. 17.4]. One can show that the point-
wise convergence together with the Feller property implies the strong-continuity of
Tt [57, Thm. 17.6]. Also the typical expression of Tt = etL is justified, because for
f ∈ dom(L) we have

d

dt
(Ttf) = TtLf = LTtf, t ≥ 0. (4.3)

When dealing with unbounded generators in general, it is common to use a core
instead of the full domain, which is often challenging to work with.

For this, recall that the graph of an operator L with domain dom(L), acting on
a Banach space A, is defined as the subset{

(f,Lf) | f ∈ dom(L)
}
. (4.4)

The operator L is closed if its graph is a closed subset, and we call L closable
if there exists an operator L, such that the closure of the graph is the graph of L,
which is then called the closure of L.

Now the core of a closable operator L is a linear subspace D ⊂ dom(L), such
that the restriction of L onto D has the closure L. One can show that the generator
of a Feller semigroup L is closed [57, Lem. 17.8] and any dense invariant subspace
D ⊂ dom(L) is a core for L [57, Prop. 17.9].

With this, we can now state the conditions under which an operator L generates
a Feller semigroup [57, Thm. 17.11]:

Theorem 68. Let L be a linear operator on C0(X) with domain D. Then L is
closable, and the closure is the generator of a Feller semigroup on C0(X) if and only
if the following conditions hold:

i) D is dense in C0(X).

ii) The range of λ0 − L is dense in C0 for some λ0 ≥ 0.

iii) If f ∨ 0 ≤ f(x) for some f ∈ D and x ∈ X, then Lf(x) ≤ 0.

The condition iii) is also known as the positive maximum principle, which
states that if a function reaches its positive maximum, it can not increase in the
next infinitesimal time-step.
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Up to now, we have assumed that Tt is only contractive, which can cause issues
if one wants to connect a Feller semigroup to a Markov process, where probability
has to be conserved, i.e., Tt has to be conservative. The solution for this, like in our
discussion of classical observable algebras, is utilizing a compactification: Adding
infinity to the locally compact set X allows any Feller semigroup to be extended to
a conservative one on the now compact space Ẋ [57, Lem. 17.13]. This allows to
connect any Feller semigroup with a unique semigroup of Markov transition kernels
µt like in Eq. (4.1) [57, Prop. 17.14]. For our scenario, which is diffusions on X = Rn,
we need some definitions.

Let C∞
K (Rn) ⊂ C0(Rn) be the dense subset of smooth functions with bounded

support. We call an operator L with C∞
K (Rn) ⊂ dom(L) a local operator if we have

Lf(x0) = 0 whenever f vanishes in some neighbourhood of x0. For diffusions, the
requirement of L to be a local operator can be substituted by asking the sample
paths to be almost surely continuous [57, Thm. 17.24]. Now if a local operator
L acts as a generator, the positive maximum principle can be reduced to a local
positive maximum principle, i.e., if f ∈ C∞

K (Rn) has a positive local maximum
at a point x0, then Lf(x0) ≤ 0.

With this, we can state the classical result [57, Thm. 17.24] that we want to
translate into the hybrid setting:

Theorem 69 (Feller diffusions and elliptic operators). Let L be the generator of
a Feller process X on Rs, and assume that C∞

K (Rn) ⊂ dom(L). If L is local on
C∞
K (Rn), then there exists some functions aij, bi, c ∈ C(Rn), where c ≥ 0 and the

matrix aij is symmetric, nonnegative definite, such that for any f ∈ C∞
K (Rn) and

x ∈ Rn
+

Lf(x) = 1
2
∑
i,j

aij(x)f ′′ij(x) +
∑
i

bi(x)f ′i(x)− c(x)f(x). (4.5)
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4.2 Hybrid Diffusion Generators
Before we begin to extend Thm. 69 to a hybrid setting, we must set our algebra.
According to the previous discussions, we will now take the classical system described
by continuous functions on the compactification X = Ṙs. Furthermore, we will
assume the quantum part to be described in a finite-dimensional Hilbert space H ∼=
Cd, so the hybrid algebra will be

A = B(H)⊗ C(Ṙs) ∼= C(Ṙs,B(H)). (4.6)

We need to carry over the classical discussion of Feller processes into our hybrid
framework. The first criterion for diffusions is, of course, Feller’s condition: It
is incorporated here by looking for a dynamical semigroup on C(Ṙs,B(H)) in the
first place. Differentiability would be too much imposed since we do not want to
impose any continuing smoothness in the course of the evolution. However, we
demand that the differentiable functions are, in fact, in the domain of the generator.
Finally, the second condition is the locality of the generator in the sense of differential
operators. That is, in order to compute LF at a point x, we only need to know F
in an arbitrarily small neighborhood of x. Note that it is easy to build examples of
processes with added jumps where this condition is not respected.

Summarizing the above requirements, we get the following definition:

Definition 70. Let s ∈ N and H a finite-dimensional Hilbert space. We denote
by Ck

K(Ṙs,B(H)) the set of k times continuously differentiable functions, whose sup-
port is compact and does not contain the compactification point ∞. Then a hy-
brid diffusion generator is the generator L of a completely positive semigroup on
C(Ṙs;B(H)) with L1 ≤ 0 and the following additional properties:

(1) domL ⊃ C3
K(Ṙs,B(H)) and

(2) the operator L is local in the sense, that when F ∈ C3
K(Ṙs,B(H)), and F vanishes

in some neighbourhood of x ∈ Rs, then (LF )(x) = 0.

A general hybrid semigroup, of course, allows jumps, even jumps, depending on
the quantum system. We exclude these in the spirit of diffusion theory, but they can
be added at a later stage. We allow our dynamical semigroups to be subnormalized,
i.e., map states to multiples of states with a factor ≤ 1. The theory of positive per-
turbations [85, 30] then allows filling the normalization gap with jump probabilities.
This was done in a diffusion context by [72]. The setting in this work is, on the
one hand, simpler than ours by requiring translation invariance in Rs. On the other
hand, it is more general by allowing infinite-dimensional Hilbert spaces and a jump
contribution. Together, this gives a quantum generalization of the Lévy-Khinchin
formula. In the intersection of the two approaches, i.e., for the jumpless part of
the formula in [72], the positivity condition agrees with ours, although it is written
somewhat differently, see Sect. 4.2.1 for a discussion.

The principal tool for the following chapter is the conditional complete positivity
condition, which we already introduced in Def. 53. In the classical case, the complete
in conditional positivity can be omitted and translates into the positive maximum
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principle from above. We will see in this section that, likewise, plain conditional
positivity goes a long way for the characterization of hybrid diffusion generators.
The first two steps, cutting L to a differential operator of second-order, and the
form of the second-order term, do not need the complete requirement. On the other
hand, it is clear that it must enter somewhere since the characterization of quantum
Lindblad generators is a special case.

We now translate these concepts into a hybrid one:

Definition 71. Let L be a hybrid generator on A. Let σ = δx0 ⊗ |φ⟩⟨φ| be a pure
state, i.e., σ (F (x0)) = ⟨φ|F (x0)|φ⟩, and let F ∈ dom(L) ⊂ A. Then the principle
of conditional positivity (CP) states that the conditions

(CP1) F ≥ 0 and

(CP2) σ(F ) = ⟨φ|F (x0)|φ⟩ = 0

imply σ(LF (x)) = ⟨φ|LF (x0)|φ⟩ ≥ 0. The principle of conditional complete
positivity (CCP) states that this is also true if the semigroup is extended by the
identity on another copy of H.

A brief look at the proof of Thm. 69 in [57, Thm. 17.24] shows that the classical
side merely takes one and a half pages. While we can work closely alongside this
result, the additional quantum system, even in finite dimensions, lengthens the work
quite a bit. For a better overview, we will separate the statement into several smaller
pieces. The first property to establish is that a diffusion generator must be a second-
order differential operator, possibly with operator coefficients:

Lemma 72. Every hybrid diffusion generator is a differential operator of at most
second order.

Proof. Let F ∈ C3(X,B(H)) be a hermitian valued function, and let x0 ∈ X. Denote
by F̃ the second order Taylor approximation at x0, and let g be a scalar quadratic
polynomial with g(x0) = 0 and g(x) > 0 for x ̸= x0. Pick ε > 0. Moreover, let h be
a smooth, positive scalar function, which is constant = 1 in a neighborhood of x0 to
be determined later. Then, consider the two functions

G±(x) = h(x)
(
εg(x)1 ±

(
F (x)− F̃ (x)

))
. (4.7)

Note that G±(x0) = 0 because g(x0) vanishes by construction, and we took the
Taylor approximation of F in x0. Beyond x0, the functions G±(x) behave as εg1 up
to second order, and hence are strictly positive definite in a neighborhood around x0.
We now choose h(x) to be zero outside such neighborhood, which gives G±(x) ≥ 0,
G± ∈ C3 and bounded. By the assumptions on hybrid generators, we have G± ∈
domL and (LG±)(x0) does not depend on the explicit choice of h. So G± fulfills the
requirements for conditional complete positivity together with any pure quantum
state |φ⟩⟨φ|. The positivity conclusion then also holds for an arbitrary pure state
and can be summarized in the operator inequality LG± ≥ 0, or

ε(Lhg1)(x0)±
(
(LhF )(x0)− (LhF̃ )(x0)

)
≥ 0. (4.8)
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Although h depends on ε through the cutoff condition, the terms containing h in
this expression do not depend on it by locality, hence we can let ε → 0. Because
Eq. (4.8) holds true for G+ and G− we can conclude that

(LhF )(x0)− (LhF̃ )(x0) = 0. (4.9)

Note that in the above argumentation, it is crucial that G± meets the requirements
for conditional complete positivity, i.e., G±(x) ≥ 0, therefore a linear g would not
suffice, and a quadratic g is the best we can choose, i.e. all higher orders are included.
Finally, the equality in Eq. (4.9) only depends on the second order Taylor expansion
F̃ of F , so any higher orders are not taken into account by L. In conclusion, L is a
differential operator of at most second order.

The locality condition enters in this proof to simplify the CCP condition (Def. 71)
in a characteristic way: In general, CCP requires a positive element F of the hybrid
algebra (CP1), which has zero expectation at a pure state σ = |φ⟩⟨φ| ⊗ δx0 (CP2).
With locality, it suffices that F is positive in a neighborhood of x0. Indeed, any such
F can be multiplied with a cutoff function h, such that h is equal to 1 in a neigh-
borhood of x0, and h(x) = 0, where F (x) ̸≥ 0. Then hF satisfies (CP1) and (CP2)
with σ, and, because L(hF ) = LF by locality, application of the CCP principle to
hF gives ⟨φ|(LF )(x0)|φ⟩ ≥ 0. This also holds for the ‘completed’ version of con-
ditional positivity and will be used without further comment below. Throughout,
the pure state in the CP condition will be fixed as |φ⟩⟨φ| ⊗ δx0 with φ ∈ H, and
P = (1−|φ⟩⟨φ|) as the projection onto the complement. For the CCP condition, we
will denote the vectors in H⊗H by capital greek letters.

From the previous lemma, we now know that LF (x0) depends only on the col-
lection of partial derivatives of F up to second order. The indices for vectors in Rs

will be denoted by α, β ∈ {1, . . . , s}, so we can write

(LF )(x0) = L2(F ′′(x0)) + L1,α(F ′(x0)) + L0(F (x0))

=
∑
αβ

L2,αβ
( ∂2F

∂xα∂xβ
(x0)

)
+
∑
α

L1,α
( ∂F
∂xα

(x0)
)
+ L0(F (x0)), (4.10)

where L2,αβ = L2,βα, L1,α, and L0 are linear operators on B(H) depending on
x0. Our aim is now to study the consequences of the CCP condition for the form of
these operators. We will proceed by decreasing order. The function F will be chosen
judiciously to bring out the properties of various orders. The point x0 will usually
omitted in the notation and taken as x0 = 0 when designing suitable functions F (x).

For the second-order terms, let us start with a small technical lemma:

Lemma 73. Let L : Mn(C) → Mn(C) be a linear map, such that there exists L(φ)
with

⟨φ|L(X)φ⟩ = L(φ)⟨φ|Xφ⟩ ∀X. (4.11)

Then L(φ) = L = constant.
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Proof. Instead of L we will use the dual operator L∗ which is given by the duality
between Heisenberg and Schrödinger picture via tr(L∗(ρ)X) = tr(ρL(X)), so

L∗(|φ⟩⟨φ|) = L(φ)|φ⟩⟨φ|. (4.12)

We take two orthogonal unit vectors |φ1⟩, |φ2⟩ in Cn and define |φ3⟩ = α|φ1⟩+β|φ2⟩
and |φ4⟩ = α|φ1⟩ − β|φ2⟩, with α ̸= 0, β ̸= 0 and |α|2 + |β|2 = 1. Now the rank-one
operators |φi⟩⟨φi|, i = 1, 2, 3 are linear independent and

|φ4⟩⟨φ4| = |φ1⟩⟨φ1|+ |φ2⟩⟨φ2| − |φ3⟩⟨φ3|. (4.13)

We evaluate L on |φ4⟩⟨φ4|

L(|φ4⟩⟨φ4|) =
3∑

i=1
ciL(φi)|φi⟩⟨φi| = L(φ4)

3∑
i=1

ci|φi⟩⟨φi|, (4.14)

and get
3∑

i=1
ci
(
L(φi)− L(φ4)

)
|φi⟩⟨φi| = 0. (4.15)

As for i = 1, 2, 3 the operators |φi⟩⟨φi| are linear independent we get L(φi)−L(φ4) =
0, hence L(φi) = L(φ4) = L. So we have that for any two orthogonal vectors with
a third at an angle, the statement is true, and by iteration, we then get the whole
of Mn(C).

After this, let us begin with the second-order terms:

Lemma 74. Let L be a hybrid diffusion generator, then the second order terms in
Eq. (4.10) are

L2,αβ(A) =
1
2Dαβ A, (4.16)

where Dαβ = Dβα ∈ C.

Proof. Consider first a function of the form

F (x) = P + xαxβA, (4.17)

where A = A∗ has support in PH, i.e., A = PAP , and α, β ∈ {1, . . . , s} are
any two indices. The choice of A guarantees that F (x) ≥ 0 for sufficiently small
x, so according to the remarks above, (CP1) is satisfied. Moreover, (CP2) holds
because σ(F ) = ⟨φ|F (0)|φ⟩ = ⟨φ|P |φ⟩ = 0. The CP principle then gives that the
φ-expectation of (4.10) is positive.

Obviously, F (0) = P , F ′(0) = 0, and in F ′′ only the (α, β)-derivative is non-zero
and equal to A. Hence

0 ≤ ⟨φ|(LF )(x0)|φ⟩ = 2⟨φ|L2,αβ(A)|φ⟩+ ⟨φ|L0(P )|φ⟩. (4.18)

Since A allows an arbitrary real scaling factor, this implies ⟨φ|L2,αβ(A)|φ⟩ = 0. The
operator L2,αβ is complex linear, so this will also hold for non-hermitian A. It follows
that ⟨φ|L2(F ′′)|φ⟩ is independent of PF ′′P .
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Next we address the dependence of L2 on matrix elements ⟨φ| ∂2F
∂xα∂xβ

|ψ⟩ of second
order derivatives between φ and a vector ψ ⊥ φ. To this end, we introduce the
function

F (x) = |Ψ(x)⟩⟨Ψ(x)| with Ψ(x) = ψ + xαxβφ. (4.19)

Then F (0)φ = 0, F ′(0) = 0, and in F ′′ only the α, β-derivative is non-zero and equal
to |φ⟩⟨ψ|+ |ψ⟩⟨φ|. Using the same argument as above, and complex linearity in ψ,
we conclude that ⟨φ|L2(|φ⟩⟨ψ|)|φ⟩ = 0 for ψ ⊥ φ and similarly for the adjoint |ψ⟩⟨φ|.
Summarizing these last two steps, we can say that ⟨φ|L2(F ′′)|φ⟩ depends only on
⟨φ|F ′′|φ⟩. Since the dependence is linear, we have

⟨φ|L2(F ′′)|φ⟩ =
∑
αβ

⟨φ|L2,αβ
( ∂2F

∂xα∂xβ

)
|φ⟩ = 1

2
∑
αβ

Dαβ(φ) ⟨φ|
∂2F

∂xα∂xβ
|φ⟩. (4.20)

Here, the argument ofD emphasizes that the argument was done entirely with a fixed
φ, so, in principle, the matrix D could well depend on φ. However, this possibility
can be negated by using Lem. 73. Because the partial derivatives commute, the
matrix Dαβ can be taken to be symmetric. As a result, the matrix Dαβ does not
depend on φ and we can write the (α, β) part of L2 as

L2,αβ
( ∂2F

∂xα∂xβ

)
= 1

2Dαβ

( ∂2F

∂xα∂xβ

)
. (4.21)

As we have seen, the second order is merely a standard diffusion on the classical
part of the hybrid algebra. Next, we look at the first-order terms, which are more
interesting. As it will turn out, it is here where our classical system will be able to
learn from the quantum part.

Lemma 75. Let L be a hybrid diffusion generator, then the first-order terms in
Eq. (4.8) are of the form

L1,α(A) = AJα + J∗
αA (4.22)

where Jα ∈ B(H) and tr Jα ∈ R.

Proof. Contrary to the second order, conditional positivity will no longer suffice.
Therefore, we have to go from H to H ⊗H and use the CCP-conditions for L ⊗ 1
on the bigger space. In order to do so, we change our evaluation state from φ to the
maximally entangled state

Φ =
∑
i

ci|ii⟩ (4.23)

on H⊗H. Accordingly, we have to change the vector ψ to

Ψ =
∑
ij

ψij |ij⟩ with
∑
i

ciψii = 0, (4.24)

where the last condition is as before Ψ ⊥ Φ. The first choice for F (x) is

F (x) = |Ψ+ λxαΩ⟩⟨Ψ+ λxαΩ|, (4.25)
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where the direction α is arbitrary but fixed and λ ∈ R. The CCP-condtions for F (x)
are easily checked, (CCP1) is true because F (x) is a projector, and (CCP2) follows
directly from the orthogonality condition of Ψ and Φ. So we get

⟨Φ|(L ⊗ 1) (|Ψ+ λxαΩ⟩⟨Ψ+ λxαΩ|) |Φ⟩ ≥ 0. (4.26)

We decompose the above equation into separate orders and get

⟨Φ|(L0 ⊗ 1) (|Ψ⟩⟨Ψ|) |Φ⟩
+ ⟨Φ|(L1,α ⊗ 1) (λ|Ψ⟩⟨Ω|+ λ|Ω⟩⟨Ψ|) |Φ⟩

+ 2⟨Φ|(L2,αα ⊗ 1)
(
λ2|Ω⟩⟨Ω|

)
|Φ⟩ ≥ 0. (4.27)

The first term containing L0 is positive, which follows if we choose |Ψ⟩⟨Ψ| as an
input. The third term with L2,αα yield Dαα, a scalar-valued function, so we demand
Ω ⊥ Φ in our ansatz for F (x) and this term is zero. As Eq. (4.27) has to be positive
for every choice of λ, the term with L1,α has to vanish, i.e.,

⟨Φ|(L1,α ⊗ 1) (λ|Ψ⟩⟨Ω|+ λ|Ω⟩⟨Ψ|) |Φ⟩ = 0. (4.28)

Notice that the above is complex linear, so we can use iΨ instead of Ψ, which does
not change the L0 and L2,αα term, but L1,α gets iλ|Ψ⟩⟨Ω|−iλ|Ω⟩⟨Ψ| as an argument.
The result is the same as Eq. (4.28) but with a minus sign. Together this yield

⟨Φ|(L1,α ⊗ 1)(λ|Ψ⟩⟨Ω|)|Φ⟩ = 0. (4.29)

Let us introduce a basis and write out the above:

⟨Φ|(L1,α ⊗ 1)(λ|Ψ⟩⟨Ω|)|Φ⟩ = λ
∑
...

cicjΩnkΨml⟨ii|(L1,α ⊗ 1) (|ml⟩⟨nk|) |jj⟩

= λ
∑
...

cicjΨmlΩnk⟨i|L1,α (|m⟩⟨n|) |j⟩⟨i|l⟩⟨k|j⟩

= λ
∑
ijmn

cicjΨmiΩnj⟨i|L1,α (|m⟩⟨n|) |j⟩

= λ
∑
mi

Ψmi

∑
nj

cicjΩnj⟨i|L1,α (|m⟩⟨n|) |j⟩

=: λ
∑
mi

ΨmiΦ♭
mi = 0 ∀Ψ ⊥ Φ, Ω ⊥ Φ. (4.30)

Here, Φ♭ is an abbreviation for the corresponding terms in the line above. By the
above equation, it is characterized by being orthogonal to all Ψ, which are orthogonal
to Φ. That is, Φ♭ = µ(Ω)Φ, for some scalar µ(Ω), possibly depending on Ω. This
means

ci
∑
nj

cjΩnj⟨i|L1,α (|m⟩⟨n|) |j⟩ = µ(Ω)ciδmi ∀m, i. (4.31)

Assuming that i ̸= m and with the same argument as above we get∑
nj

cjΩnj⟨i|L1,α (|m⟩⟨n|) |j⟩ = 0 ⇒ ⟨i|L1,α (|m⟩⟨n|) |j⟩ = δnjΛ′
im. (4.32)
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Going back to (4.30) and doing the same argument with interchanged roles of the
vectors Ω and Ψ while assuming n ̸= j then yields∑

mi

ciΨmi⟨i|L1,α (|m⟩⟨n|) |j⟩ = 0 ⇒ ⟨i|L1,α (|m⟩⟨n|) |j⟩ = δimΛnj . (4.33)

We are left with three cases, which give non-zero matrix elements, namely (i ̸=
m, n = j), (i = m, n ̸= j), and (i = m, n = j). By the convention Λ′

im = 0 for
i = m and Λnj = 0 for n = j we can separate these cases into the three terms of the
following form:

⟨i|L1,α (|m⟩⟨n|) |j⟩ = δimΛnj + δnjΛ′
im + δimδnjΛ′′

ni. (4.34)

Because L is hermiticity preserving, we know that L1,α also preserves hermiticity.
As a result, we have

⟨i|L1,α (|m⟩⟨n|) |j⟩ = ⟨j|L1,α (|n⟩⟨m|) |i⟩ = δjnΛmi + δmiΛ
′
jn + δimδnjΛ

′′
in (4.35)

and by comparison with (4.34) we get for the matrices

δimδnjΛ′′
ni = δimδnjΛ

′′
in ⇒ (Λ′′)∗ = Λ′′ (4.36)

δnjΛ′
im = δjnΛmi ⇒ Λ∗ = Λ′. (4.37)

Now we insert Eq. (4.34) into Eq. (4.30) and get

0 =
∑
ijmn

cicjΨmiΩnj⟨i|L1,α (|m⟩⟨n|) |j⟩

=
∑
ijmn

cicjΨmiΩnj
(
δimΛnj + δnjΛ′

im + δimδnjΛ′′
ni

)
=
∑
ijn

cicjΨiiΩnjΛnj +
∑
ijm

cicjΨmiΩjjΛ′
im +

∑
ij

cicjΨiiΩjjΛ′′
ji. (4.38)

The terms in (4.38) vanish because of the orthogonality of Ψ and Ω with Φ and the
equation reduces to ∑

ij

cjΩjjΛ′′
jiΨiici = 0. (4.39)

Now ai := Ψiici and bj := cjΩjj are arbitrary apart from the constraints∑
i

ai =
∑
j

bj = 0. (4.40)

That means ⟨a|Λ′′|b⟩ = 0 whenever ⟨a|e⟩ = ⟨b|e⟩ = 0, where e = (1, 1, . . . , 1) in the
choosen basis. Then Eq. (4.39) states that Λ′′ only has non vanishing entries along
the vector e, i.e. Λ′′ = |e⟩⟨λ1| + |λ2⟩⟨e|. As we already know that Λ′′ is hermitian,
we further have λ1 = λ2 = λ and ⟨λ|e⟩ ∈ R. We insert Eq. (4.37) and the above in
Eq. (4.34), which now reads

⟨i|L1,α (|m⟩⟨n|) |j⟩ = δimΛnj + δnjΛ∗
im + δnjδim

(
λi + λj

)
with

∑
k

λk ∈ R. (4.41)
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Finally we summarize Λ and λ into the matrix Jnj = Λnj + δnjλj , so we can write

⟨i|L1,α (|m⟩⟨n|) |j⟩ = ⟨i|(|m⟩⟨n|Jα)|j⟩+ ⟨i|(J∗
α|m⟩⟨n|)|j⟩, (4.42)

where we added the index α for the according direction. So we arrive at the stated
form of L1,α:

L1,α(A) = AJα + J∗
αA. (4.43)

Notice that Λ has a vanishing trace, so tr Jα is determined by the sum over the
components of λ in Eq. (4.28), hence tr Jα ∈ R.

Note that tr Jα being real readily removes an ambiguity in Eq. (4.22): in that
expression, we could add any purely imaginary multiple of the identity to the matrix
Jα without changing the generator.

We continue with the zeroth or constant order. Here, the specific form is well
known, as this is the standard Lindblad generator. However, we will not use that
for the moment since a new evaluation of the positivity conditions for the whole
generator is needed anyhow. Therefore, we will take L0 as the most general lin-
ear map from B(H) to itself. We parameterize this with respect to a linear basis
{Ei}d

2
i=1 ⊂ B(H). Then

L0(F ) =
d2∑

i,j=1
MijE

∗
i FEj , (4.44)

with a d2 × d2 coefficient matrix M . This form is valid for any basis, if it is valid
for one, by simple basis transformation. For the special basis of matrix units, i.e.,
i = (a, b) and Ei = |a⟩⟨b|, the sufficiency of this form is evident because the matrix
elements of F are transformed to those of L0F by a general matrix.

The expansion in such a basis turns out to be useful also for the linear term, for
which we can set

Jα =
∑
i

JαiEi, and J∗
α =

∑
i

JiαE
∗
i :=

∑
i

J∗
iαEi, (4.45)

where Jiα = Jαi := J∗
iα. If we choose the basis so that in addition trEi = 0 for

i ̸= 1, we get from Lem. 4.22 that Jα1 = (1/d) tr Jα ∈ R.
In the following theorem, the main result of this section, we join the dimensions

i = 1, . . . , d2 and α = 1, . . . , s together so we can form a square block matrix of
dimension d2 + s out of all the coefficients.
Theorem 76. Let L be a hybrid diffusion generator and Ei an operator basis for
B(H) with E1 = 1, and trEi = 0 for i ̸= 1. Then L is of the form

LF = 1
2
∑
αβ

Dαβ
∂2F

∂xα∂xβ
+
∑
αi

Jαi
∂F

∂xα
Ei +

∑
βj

J∗
jβE

∗
j
∂F

∂xβ
+
∑
ij

MijE
∗
i FEj . (4.46)

The coefficients Dαβ, Jαi and Mij are continuous, and Dαβ and Jα1 are real for
all x. With these conditions the coefficients are uniquely determined by L, and the
square matrix D of dimension (−1 + d2 + s), defined by

D =
(
M J∗

J D

)
i,j>1

≥ 0 (4.47)

is positive semi-definite.
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Note that this contains the characterization [57] of diffusion generators with
d = 1 and the Lindblad-Gorini-Kossakovski-Sudarshan form for s = 0. This form
is perhaps better recognized when one separates the terms containing M into those
with i = 1 and those with i > 1, and diagonalizing (Mij)i,j>1. This shows that
we must use the full CCP condition since there are semigroups of positive but not
completely positive operators.

Proof. The stated form of L, is a consequence of Lem. 74, Lem. 75 and the form
chosen in Eq. 4.44. By inserting particular choices of F , we can show that the
coefficients are uniquely defined. Moreover, we keep track of the x-dependence,
which we had ignored for a while by working at a specific x0. We use the basis of
matrix units, but the results follow for an arbitrary basis by transformation.

For the zeroth order we insert constant functions F (x) = |i⟩⟨j|, and get

⟨k|(LF )(x)|l⟩ =
∑
abcd

⟨k|(Mabcd(x)|b⟩⟨a|(|i⟩⟨j|)|c⟩⟨d|)|l⟩

=
∑
abcd

δkbδaiδjcδdlMabcd(x) =Mikjl(x). (4.48)

Here i, j, a, b are arbitrary, therefore, we can extract every single matrix element
ofM . Moreover, because (LF ) ∈ C(Ṙs,B(H)), we conclude that the matrix elements
are all continuous functions.

To retrieve the first-order coefficients, we choose F (x) = xα|i⟩⟨j| in some neigh-
borhood, where α is an arbitrary but fixed direction in Rs, and F is modified outside
the neighborhood so that it becomes bounded and remains suitably differentiable.
Then

⟨k|LF (x)|l⟩ − xαMikjl(x) =
∑
ab

⟨k|i⟩⟨j|Jα,ab|a⟩⟨b|l⟩+
∑
cd

⟨k|J∗
α,cd|d⟩⟨c|i⟩⟨j|l⟩

=
∑
ab

δkiδjaδblJα,ab +
∑
cd

δkdδciδjlJ
∗
α,cd

= δkiJα,jl(x) + δjlJ
∗
α,ik(x). (4.49)

The left-hand side is continuous and determined by L because we have already
shown this for M . For j ̸= l, the equation gives Jα,jl(x), so we retrieve the off-
diagonal elements of Jα and conclude that they are continuous functions. Setting
k = i and j = l, we determine

J∗
α,kk(x) + Jα,ll(x) = ⟨k|LF (x)|l⟩ − xαMkkll(x) ∈ C(Rs). (4.50)

Summing this over both k and l gives 2ℜe tr Jα(x) = 2 tr Jα(x) ∈ C(Rs). Here we
could omit the real part, because ℑm tr Jα = 0 by the assumption tr Jα = Jα1 ∈ R
(see Lem. 75). Thus, we can also extract the individual diagonal elements Jα,ll(x)
by summing (4.50) over k.

For the second order, we choose F (x) = xαxβ1, suitably modified in the large.
Then with the same technique we get Dαβ(x) +Dβα(x) ∈ C(Ṙs). Since we assumed
D symmetric, this uniquely fixes Dαβ(x) and shows it is continuous.

For positivity condition Eq. (4.47), we again need the technique of conditional
complete positivity. We begin by using only conditional positivity, but it is clear
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from the outset that this will not be enough since for s = 0, we must just come back
to the Lindblad form. However, we can apply the resulting condition to L ⊗ 1. It
will be convenient from now on to use a basis Ei with the stated properties.

We choose φ ∈ H and B0, B1, . . . , Bs ∈ B(H) subject only to the condition
B0φ = 0. Now

F (x) =
∣∣∣B0 +

s∑
α=1

xαBα

∣∣∣2 (4.51)

fulfils (CCP1) and (CCP2), so we get ⟨φ|(LF )(x0)|φ⟩ ≥ 0. The first and second
derivatives are

∂F

∂xα
|x=0 = B∗

0Bα +B∗
αB0 and ∂2F

∂xα∂xβ
|x=0 = B∗

αBβ +B∗
βBα. (4.52)

We write out the generator and get∑
ij

Mij⟨B0Eiφ|B0Ejφ⟩ +
∑
αi

Jαi⟨Bαφ|B0Eiφ⟩

+
∑
βj

J∗
jβ⟨B0Ejφ|Bβφ⟩ +

∑
αβ

Dαβ⟨Bαφ|Bβφ⟩ ≥ 0, (4.53)

where we used that D is symmetric and the fact that B0 vanishes on φ. We define
the (d2 + s) square matrix G as Gij = ⟨B0Eiφ|B0Ejφ⟩, Giα = ⟨B0Eiφ|Bαφ⟩ and
Gαβ = ⟨Bαφ|Bβφ⟩. That is, G is the Gram matrix Gij = ⟨vi, vj⟩ of the list of vectors
vi, given by vi = |B0Eiφ⟩ for i = 1, . . . , d2 and vα+d2 = |Bαφ⟩ for α = 1, . . . , s. With
this definition we can rewrite Eq. (4.53) as

tr
[(

M J∗

J D

)
GT
]
=: tr[D̃GT] ≥ 0. (4.54)

We would like to conclude from this the positivity of D̃. For this, we need to
generate sufficiently many matrices GT, resp. G, in the way described. How many
do we need? The cone generated by the G-matrices has to be the full positive cone.
This is generated by the rank-one elements |λ⟩⟨λ|. Conversely, if a neighborhood of
such an element would be missing from the cone, it would be too small, and thus,
the condition (4.54) would allow some non-positive solutions. In other words, the
rank-one Gram matrices are the key.

Now the Gram matrix Gij = ⟨vi, vj⟩ of a set of vectors is rank-one if and only if
the vi span a 1-dimensional space, i.e., if and only if they are all proportional. One
way to achieve this is to set Bα = bα|φ⟩⟨φ| and B0 = |φ⟩⟨ψ| with bα ∈ C and ψ ⊥ φ.
Then, the Gram matrix G has rank one, as every vector is proportional to φ. In this
case we can write G = |v⟩⟨v|, where

v = (⟨ψ|E1|φ⟩, . . . , ⟨ψ|Ed2 |φ⟩, b1, . . . , bs). (4.55)

Using the bα we can get s linear independent vectors, but ⟨ψ|Ei|φ⟩ will never yield
more than d. That is, by using this method, we cannot conclude the positivity of D̃.

This is not surprising, as we already said at the beginning: the Lindblad form is a
special case, so we were bound to need the complete version of conditional positivity.
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Therefore, we apply the ideas just developed to the generator L ⊗ 1 on the Hilbert
space H2 = H⊗H. This gives us vectors from H2 to choose from for building Gram
matrices. Instead of φ, we use the entangled state Φ =

∑
i |ii⟩, B0, Bα ∈ B(H⊗H)

and Ei 7→ Ei⊗1H. Accordingly we choose Φ ⊥ Ψ so B0 = |Φ⟩⟨Ψ| and Bα = bα|Φ⟩⟨Φ|.
Now the argument goes exactly as before, but instead of Eq. (4.55), we get the vectors

(⟨Ψ|E1 ⊗ 1|Φ⟩, . . . , ⟨Ψ|Ed2 ⊗ 1|Φ⟩, b1, . . . , bs) =: (c1, . . . , cd2 , b1, . . . , bs) = λ. (4.56)

Note that the first component of all these vectors is 0 because E1 = 1, and Ψ ⊥ Φ.
However, one easily checks that the vectors Ei ⊗ 1Φ span H ⊗ H, as Ei runs over
any operator basis. Therefore, the components c2, . . . , cd2 can be chosen arbitrarily.
We can hence not conclude the positivity of D̃, but the positivity of this matrix with
the first row and column omitted, which is called D in the theorem.

The theorem leaves the first row and column of D̃ unconstrained. This can be
understood as follows: The contribution of the terms with i = 1 or j = 1 to the
generator is

L̃(F ) =
∑
α

Jα1
∂F

∂xα
+K∗F + FK, (4.57)

where K =
∑

j M1jEj − 1
2M111. The first part here generates a classical drift, the

second a no-event part, i.e., a semigroup of the form F 7→ exp(tK∗)F exp(tK). Since
the sum of allowed generators is again a generator by the Trotter formula, such terms
are always allowed, and the complete positivity condition cannot constrain them in
magnitude.

We have only evaluated the requirements of complete positivity. However, the
definition of hybrid diffusions also demands that the generated semigroup be sub-
normalized, i.e., exp(tL)(1) ≤ 1, or in generator terms L1 ≤ 0. This translates
directly to

d2∑
ij=1

Mij E
∗
i Ej = K +K∗ +

d2∑
ij=2

Mij E
∗
i Ej ≤ 0. (4.58)

Since the second term here is positive, K+K∗ ≤ 0, i.e., K must generate a contrac-
tion semigroup. This is just the normalization condition for Lindblad generators. In
this case, the drift and diffusion parts are not constrained, reflecting the possibility
of increasing the diffusion by adding an arbitrary positive matrix to D.

Besides the ambiguities for D̃, the positivity condition for D enables another
interesting discussion. While the diagonal blocks D and M determine the dynam-
ics on the purely quantum, respective classical side, the off-diagonal matrix block
J specifies their interaction. This allows for an interpretation, which we will en-
counter similarly for the quasifree dynamics in the following chapter and is likewise
an expression of the general information-disturbance tradeoff in quantum theory.
Increasing the interaction and thereby the possible flow of information from our
quantum to our classical system must necessarily include the addition of noise into
our system, i.e., we can not increase J to an arbitrary amount without increasing
the diffusion, such that D stays positive.
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4.2.1 Comparison with other works

Quantum Lévy-Khinchin type generators

Here, we verify that the positivity conditions derived in [72, Theorem 3] agree with
Thm. 76. The cited theorem characterizes generators with a Lévy-Khinchin repre-
sentation, which, according to [72, Theorem 1] is equivalent to the operator being
the infinitesimal generator of a semi-uniformly continuous semigroup of probability
operators (SCSPO). Here, the semi-uniform continuity refers to the quantum part
(item f. of [72, Definition 1]), which is automatic in our case since we have assumed
H to be finite-dimensional. Of course, the restriction to the classical subalgebra
cannot be uniformly continuous because it is a (necessarily unbounded) diffusion
operator. On the other hand, an additional condition is imposed, namely covariance
with respect to translations (item b.). This will have the effect that the matrix D
from our theorem does not depend on x. The generator is written out for prod-
uct arguments a ⊗ f with a ∈ B(H), which in our notation would correspond to a
function of the form F (x) = af(x). We copy the generator [72, Eq. (3.5)] in (4.59)
with minor adaptations of notation in addition to leaving out the terms describing
jumps, which are K2 and L2. So we have

L(a⊗ f) = f(x)L0(a) + f(x)L1(a) +
s∑

α=1
bα

∂f

∂xα
a+K1(a⊗ f) (4.59)

K1(a⊗ f) = 1
2

s∑
αβ

Dαβ
∂2f(x)
∂xα ∂xβ

a+
s∑
α

r∑
k=1

∂f(x)
∂xα

Nαk(L∗
ka+ aLk), (4.60)

with L̃ = L0 + L1, which are characterized as follows:

• L0 is the generator of a norm-continuous quantum dynamical semi-group on
B(H).

• L1(a) = (1/2)
∑r

k=1
(
[L∗

k, a]Lk + L∗
k[a, Lk]

)
with Lk ∈ B(H).

• bα ∈ R, α = 1, . . . , s.

• D and N are real matrices of the appropriate dimension with D = NNT.

To make contact with Thm. 76, let us first diagonalize M or, equivalently, write
Lk =

∑
iRkiEi for some coefficient matrix R. Also, remember that the positivity

condition in our theorem is only stated for D instead of D̃, i.e., we left out the matrix
elements corresponding to the basis element E1 = 1. These terms remain uncon-
strained, which fits with the fact that these yield generators for no-event semigroups
and classical drifts. For the comparison, we can ignore these types of contributions.
With this we express the terms under consideration of L1(a) as L̂1(a) which are:

L̂1(a) =
r∑

k=1
L∗
kaLk =

d2∑
i,j=2

r∑
k=1

RkiRkjE
∗
i aEj . (4.61)

Furthermore, we leave out the no-event contribution of L0 and note that any jump
contribution of L0 may be written in the same way as in Eq. (4.61) and can therefore
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be added by the coefficients R. Next, we diagonalize the first-order terms in K1,
which read

s∑
α=1

d2∑
i=2

r∑
k=1

∂f

∂xα
Nαk

(
RkiE

∗
i a+RkiaEi

)
. (4.62)

Let us now write Eq. (4.59) as L̃(a⊗ f), where we leave out the classical drifts, i.e.∑
α bα

∂f
∂xα

a, and the no-event parts:

L̃(a⊗ f) = 1
2

s∑
α,β=1

Dαβ
∂2f(x)
∂xα ∂xβ

a+
s∑

α=1

d2∑
i=2

r∑
k=1

∂f

∂xα
Nαk

(
RkiE

∗
i a+RkiaEi

)

+
d2∑

i,j=2

r∑
k=1

RkiRkjE
∗
i aEj . (4.63)

The connection with Thm. 76 is now obvious by defining

Jαi =
r∑

k=1
NαkRki and Mij =

r∑
k=1

RikRkj . (4.64)

Remember that N was supposed to be real, hence NT = N∗, so we can write
D = NN∗. Now, the positivity condition is easily verified:

0 ≤ D =
(
M J∗

J D

)
=
(
R∗R R∗N∗

NR NN∗

)
=
(
R∗

N

)
·
(
R N∗

)
. (4.65)

Besides this, there is a recent publication [86] in which [72] and the upcoming section
(also in [3]) is developed further, see Sect. 5.5.4.

Generalized Pawula theorem

Closely connected to our and the above work is the recent article The two classes
of hybrid classical-quantum dynamics by Oppenheim, Sparaciari, Šoda, and Weller-
Davies [78], which is still extended [87, 88] and applied in the field of quantum
gravity [89, 90].

Given that the hybrid dynamics are memoryless, the authors describe that there
are only two possible options for the according evolution: One with finite-sized jumps
in the classical phase space and one continuous. They describe its most general form
of a hybrid master equation for the latter. They perform a shirt-time expansion and
find that either the Kramer-Moyal expansion must have infinite many moments or
has to be of the following form:

∂ρ(z, t)
∂t

=
n=2∑
n=1

(−1)n
(

∂n

∂zi1 · · · ∂zin

)(
D00

n,i1...,inρ(z, t)
)

(4.66)

+ ∂

∂zi

(
D0α

1,iρ(z, t)L†
α

)
+ ∂

∂zi

(
Dα0

1,iLαρ(z, t)
)

(4.67)

− i[H(z), ρ(z, t)] +Dαβ
0 (z)Lαρ(z)L†

β − 1
2D

αβ
0

{
L†
βLα, ρ(z)

}
+
. (4.68)
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Although the techniques used are different, they very well coincide with our findings
in Thm. 76. The similarities extend to the positivity condition of the coefficients
described in our Eq. (4.47), the construction described in the above paragraphs, and
[78, Eq. (36)].

The interpretation of the individual terms also matches: Besides the usual quan-
tum dynamics and a classical zeroth order term in Eq. (4.66), the quantum-classical
coupling in Eq. (4.67) with D0α

1,i is described as encoding the strength of the CQ
back-reaction and the classical diffusion in Eq. (4.68) with D00

2,ij as representing the
necessity of diffusion in the classical phase space due to the information-disturbance
tradeoff.

It should be noted that the similarities also extend to the shortcomings of the
results: As in our work, the results in [78] are based on finite-dimensional Hilbert
spaces even though the authors expect they can be extended to any bounded trace-
class operation. Furthermore, their focus lies specifically on the dynamics, so they
discuss CQ states rather briefly and do not specify the according algebras.
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Chapter 5

Hybrids on Phase Space

In this chapter, we will study hybrids that allow for a more complex quantum side
to include the two most prominent observables of quantum mechanics: position and
momentum. As before, we begin with the purely quantum case, as this calculus for
continuous-variable quantum systems will be the basis for our hybrid generalization.
Adding the classical system is notational-wise straightforward. The purely quantum
and our hybrid formulation indeed look very similar from the outside. Our main
task will be the description of the framework behind it.

We will keep the purely quantum review relatively short because of the upcoming
hybrid versions of the following statements. These will naturally include the quan-
tum versions by ignoring the classical part. Hence, we will not give a self-contained
introduction to the topic, so for proofs, details, and an in-depth discussion of the
quantum case, we refer the reader to the reference subsection at the end of this part
(see Sect. 5.1.5).

5.1 Review: Quantum Mechanics on Phase Space

5.1.1 The CCR algebra

In mechanics, whether quantum or classical, two of the essential observables are,
of course, position Q and momentum P . For a quantum mechanical system with
n-degrees of freedom, they are typically represented on the well-known Hilbert space
H = L2(Rn, dx) as multiplication operators and derivatives, that is, for each degree
of freedom i ∈ {1, 2, 3, . . . , n} we have

QiΨ(x) = xiΨ(x), PiΨ(x) = −iℏ ∂xiΨ(x), Ψ ∈ H. (5.1)

It is part of nearly every quantum mechanics lecture to show that these operators
satisfy the famous canonical commutation relation or CCR:

[Xi, Pj ] = iℏδij1. (5.2)

Named after the originator, the representation of the CCR in Eq. (5.1) is known as
the Schrödinger representation. Note that from now on and throughout this work,
we will use the convention ℏ = 1, as there will be enough signs and factors to keep
track of.

85
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Now we introduce the quantum mechanical phase space: A quantum system with
n canonical degrees of freedom has a position variable q ∈ Rn, and its momentum
counterpart p in the dual space, which is likewise Rn. This means we have a scalar
product q·p, and the phase space of the system is described by the set of vectors
ξ = (q, p) ∈ R2n. This space carries a natural symplectic form given by

σ((q, p), (q′, p′)) = q·p′ − p·q′ =
∑
i,j

ξiσijξ
′
j . (5.3)

The 2n-dimensional square matrix σ that belongs to this standard form is called
standard symplectic matrix and is given by

σ =
(

0 1n

−1n 0

)
. (5.4)

More general, a symplectic form over a vector space Ξ is a bilinear map,
typcially denoted as σ : Ξ× Ξ → R, that is further

i) antisymmetric, i.e., σ(ξ, η) = −σ(η, ξ), and

ii) non-degenerate, i.e., the only vector ξ such that σ(ξ, ξ′) = 0 for all ξ′ is ξ = 0.

The pair of vector space and symplectic form (Ξ, σ) is also called a symplectic
vector space. In finite dimensions, there always exists a basis, called Darboux
coordinates [91, Sect. 1.1], such that σ will take the form as in Eq. (5.4). Especially
for Ξ = R2n, the geometry in this space resembles the Euclidean one, yet there
are noteworthy differences, meaning that some Euclidean relations can be easily
transferred, while others fail.

For example, instead of the Euclidean scalar product, symplectic geometry uses
the symplectic form or symplectic scalar product σ(ξ, η), which consequently
determines properties like the symplectic complement. So for a linear subspace
V ⊂ Ξ we have

V ⊥ = {ξ ∈ Ξ |σ(ξ, η) = 0 ∀η ∈ V }, (5.5)

which again is a linear subspace of Ξ and relations like (V ⊥)⊥ = V still hold, but
properties like Ξ being the sum of V and V ⊥ or V ∩ V ⊥ = ∅ are no longer true in
general [92].

Let us now link the symplectic structure on our phase space with the quantum
operators from above. This will allow us to switch our primary workplace from
infinite-dimensional spaces and unbounded operators like in Eq. (5.1) to linear alge-
bra on R2n.

We remind the reader of the discussion in Sect. 3.4: While the symplectic for-
mulations of quantum and classical mechanics look very similar, and especially the
quantum version is often discussed as a quantization of the classical one, we will not
try to unify these two. Instead, we will use the quantum version and add a classical
system explicitly without any symplectic structure.

Definition 77. We call a pair (Ξ, σ) a quantum phase space if Ξ is a finite-
dimensional symplectic vector space with the symplectic form σ.
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While it is possible to work in a coordinate-free way, it is typically more con-
venient to think of a quantum phase space as Ξ ∼= R2n and σ in standard form.
We label the phase space coordinates (q, p) ∈ R2n as vectors ξ ∈ Ξ ∼= R2n and
summarize the position and momentum operators into an operator-valued vector
R = (Q1, . . . , Qn, P1, . . . , Pn), so that the CCR in Eq. (5.2) can be rewritten as

[Ri, Rj ] = iσij1. (5.6)

Accordingly, σ may also be referred to as the commutation form, and based on the
application in field theory, the vector R or, respectively, its components are often
called field operators.

A fundamental symmetry of the theory are the phase space translations,
which add a constant, i.e., a multiple of the identity to each Rj . We denote this
transformation by

αξ(Rj) = Rj + ξj1, (5.7)

where ξj are the components of ξ. Clearly, α preserves the commutation relations in
Eq. (5.6) and will always be a homomorphism, i.e., it preserves operator products.

There are many subtleties and technicalities in the task of finding all operators
satisfying Eq. (5.6), which are mainly related to domain questions of these un-
bounded operators [93]. The main regularity condition singling out the Schrödinger
representation in Eq. (5.1) is that the operators are essentially self-adjoint on their
common domain so that they generate unitary groups, which then should satisfy an
integrated version of Eq. (5.6). Indeed, it can be argued that this is historically more
adequate, as the upcoming integrated version in Eq. (5.9) is older [94, Sect. 4.1],
and due to Weyl, who proposed it to Max Born, even before the latter published
Eq. (5.6).

We will take this as a starting point and pass to the operators

W (ξ) = exp(iξ·R), (5.8)

which are accordingly called Weyl operators. Here, the expression ξ·R :=
∑

j ξjRj

means a mixed vector/operator scalar product and the canonical commutation re-
lations become

W (ξ)W (η) = e−
i
2σ(ξ,η)W (ξ + η) (5.9)

= e−iσ(ξ,η)W (η)W (ξ). (5.10)

We will refer to Eq. (5.9) as the Weyl relation, while Eq. (5.10) is called the
canonical commutation relation in Weyl form. As the Weyl operators induce the
phase space translations, they are also known as displacement operators, especially
in the field of quantum optics. Now, the aforementioned Schrödinger representation
of the CCR in Eq. (5.1) generates a representation of the CCR in Weyl form, which
we likewise call Schrödinger representation. These unitary operators act as follows:(

W (a, b)ψ
)
(r) = e

ia·b
2 +ia·rψ(r + b), for (a, b) ∈ Ξ, ψ ∈ H = L2(Rn, dr). (5.11)

But as the word representation suggests, one can define this more generally:
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Definition 78 (CCR-algebra). Let (Ξ, σ) be quantum phase space. We call the
C*-algebra generated by the elements W (ξ) that satisfy W (−ξ) =W (ξ) and

W (ξ)W (η) = e−
i
2σ(ξ,η)W (ξ + η) (5.12)

the CCR-algebra over (Ξ, σ) and denote it as CCR(Ξ, σ).

The algebra CCR(Ξ, σ) is unital, it always exists, and is unique up to isomor-
phisms [95, Thm. 2.1]. The difference between the abstract W (ξ) and their repre-
sentation as unitary operators on a Hilbert space is often highlighted by calling the
first Weyl elements or symbols and the second Weyl operators, see [95, Chap. 2].

Note that we do not consider the CAR-algebra [96, 35] in this work since the
commutation of classical variables form a much less happy combination with the
anticommutation of fermionic degrees of freedom.

Let us now come back to the question of how many possible representations of
the canonical commutation relations there are. Indeed, this question was one of the
very early discussions in the development of quantum mechanics and is answered by
the von Neumann Uniqueness Theorem [97]. Before we can state the theorem,
we need a closer look at the regularity condition that tames our possible algebra
representation.

Prior to the Stone Theorem (Thm. 46), we defined one-parameter unitary groups
as strongly continuous. Similarly, we call a Weyl operator W (ξ) regular, if

t 7→W (tξ) (5.13)

is strongly continuous, which guarantees the existence of a generator as in Eq. (5.8).
With this, we can formulate von Neumann’s famous theorem, which can be found
in various formulations: [92, Thm. 2.1], [98, Sect. 3.2, Cor. 1.], [95, Thm. 1.2].

Theorem 79 (von Neumann Uniqueness Theorem). Any two irreducible and regular
representations of the canonical commutator relations in Weyl form over a finite-
dimensional symplectic vector space are unitary equivalent.

As the Schrödinger representation is a regular and irreducible representation of
the CCR-algebra [95, Prop. 1.1], we already have a complete characterization of all
regular representations.

5.1.2 States

After discussing the observable algebra, let us turn to states and dynamics in this
formulation. One of the advantages of using Weyl operators instead of the un-
bounded operators P and Q is a new way to describe the possible configurations of
our system. In place of using normed trace-class operators ρ, the phase space for-
mulation of quantum mechanics offers another description in terms of characteristic
functions:

Definition 80. Let ρ ∈ T (H) be a quantum state and W (ξ) a Weyl operator. We
call the function

χ(ξ) = tr
[
ρW (ξ)

]
(5.14)

the characteristic function of the state ρ.
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The mapping ρ 7→ χ(ξ) is also known as non-commutative Fourier trans-
formation and its inverse is called Weyl transformation, which maps a complex-
valued integrable function f(ξ) to an operator

f 7→ f̂ = 1
(2π)n

∫
f(ξ)W (−ξ) dξ, (5.15)

where the above integral has to be read in the weak-sense and converges as a Bochner
integral with values in B(H) [18, Sect. 5.3]. The mathematical reason that we can
use characteristic functions instead of trace-class operators is mainly due to the fact
that the non-commutative Fourier transformation ρ 7→ χ(ξ) extends uniquely to an
isometric map from the class of Hilbert-Schmidt operators, of which the trace-class
operators are a dense subset, to the space L2(Ξ). This fact is also known as the
non-commutative Parceval relation, see [18, Thm. 5.3.3].

For the main result regarding the description of states in this framework, we need
the notion of σ-twisted positive definiteness, which coincides with the common
definition of a positive definite function, but twisted with a factor:

Definition 81. Let (Ξ, σ) be a symplectic vector space. A function f(ξ) is σ-twisted
positive definite if for any choice ξ1, . . . , ξm ∈ Ξ, the m×m-matrix

Mkl = χ(ξk − ξl) e
i
2σ(ξk, ξl) (5.16)

is positive semi-definite.

Recall that a quantum state, which we translate as a normal state on B(H), is
described by a positive trace-class operator with tr ρ = 1. Of course, for singular
states ω we can also define a characteristic function via

χ(ξ) = ω(W (ξ)). (5.17)

To distinguish between these two types of characteristic functions, belonging to
different types of states, and arbitrary functions χ(ξ), the next result is key. The
Quantum Bochner Theorem characterizes exactly those characteristic functions,
which belong to quantum states [18, Thm. 5.4.1]. It was apparently first formulated
by Araki [99], with further relevant work by [100, 101, 102, 103, 35].

Theorem 82 (Quantum Bochner Theorem). A function χ : Ξ → C is the charac-
teristic function of a quantum state if and only if it is

(1) continuous,

(2) normalized, i.e., χ(0) = 1, and

(3) σ-twisted positive definite.

Here, the if -direction is quite straightforward: As W (ξ) is a regular represen-
tation, the according characteristic function χ(ξ) is continuous for every quantum
state ρ. Because W (0) = 1, the normalization condition is a direct consequence of
tr ρ = 1, and the σ-twisted positive definiteness also follows from ρ ≥ 0. The more
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complicated direction is to prove the converse, i.e., that conditions (1)–(3) are suf-
ficient for χ(ξ) being the characteristic function of a quantum state. For the proof,
we refer to the above reference or the upcoming hybrid analog, see Thm. 89, which
works in a similar manner.

Next, we need to say how to get the statistical quantities like mean and higher
moments from this parametrization. For a state ρ, with characteristic function χ(ξ),
we get the mean value for Rj by taking the according derivative at ξ = 0:

mj = tr[ρRj ] =
1
i

∂

∂ξj
χ(ξ)

∣∣∣
ξ=0

. (5.18)

The vector of all 2n mean values of R can then be combined into a mean vector
m ∈ Ξ. For quantities depending on higher orders, like the covariance matrix γ,
we need to increase the order of derivatives:

γjk = 2ℜe tr
[
ρ(Rj −mj1)(Rk −mk1)

]
= − ∂2

∂ξk∂ξj
χ(ξ)

∣∣∣
ξ=0

−mjmk. (5.19)

Just as in classical statistics, the covariance matrix γ is real, symmetric, and positive
semi-definite [92].

Lastly, a highly useful and easy-to-handle subset of the state space consists of
the Gaussian states. This class of states plays a vital role in the description of
quantum optical experiments and, at the same time, is especially easy to use. Like
the classical Gaussian or normal distribution, they are completely specified by their
first and second moments. Analogically, we call a state Gaussian if its characteristic
functions is given by

χ(ξ) = exp
(
−1
2ξ·γξ + iξ·m

)
. (5.20)

This characteristic function is clearly continuous, normalized and the σ-twisted pos-
itive definiteness is equivalent to the condition [18, Thm. 5.5.1]

γ + iσ ≥ 0. (5.21)

Note that Eq. (5.21) is also denoted as Heisenberg’s uncertainty principle and is
satisfied by the covariance matrix γ of any quantum state [104].

5.1.3 Dynamics

The transformations that preserve the CCR in Eq. (5.6) are called symplectic
transformations. This set of real, linear transformations which leaves the sympa-
thetic form invariant, i.e., σ(Sξ, Sη) = σ(ξ, η), is called the symplectic group and
is typically denoted as

Sp(2n,R) = {S ∈ M2n(R) |SσST = σ}. (5.22)

The characterization is equivalent to the requirement that STσS = σ and in general
for S ∈ Sp(2n,R) we also have −S, ST , S−1 ∈ Sp(2n,R) [92].

The elements of the symplectic group S ∈ Sp(2n,R) acting on a phase space
are easily connected to unitary transformations on the Hilbert space, which is an
elegant application of the von Neumann Uniqueness Theorem:
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If W (ξ) is a regular irreducible Weyl operator, so is W (Sξ). By the von Neu-
manns Uniqueness Theorem W (Sξ) is unitarily equivalent to W (ξ), i.e., there exist
unitary operators US such that

W (Sξ) = USW (ξ)U∗
S ∀ξ ∈ Ξ, (5.23)

which are unique up to a phase because the Weyl operators are irreducible. This
representation is also called the metaplectic representation, see [92, Sect. 2.6]
and [105]. One can show that the generators of these unitary operators are the
Hamiltonians, which are quadratic expressions of the field operators. These can be
further classified and give rise to a comprehensive study of quantum optics in terms
of these operations, see [106]. So, with these unitary operations, we are already
getting a considerable set of possible dynamics. However, given the unitary nature,
we are still missing out on the large class of irreversible operations. For this, we will
introduce quasifree dynamics.

Quasifree and Gaussian channels

The notion of quasifree operations (and states) arose in field theory and statisti-
cal mechanics [107, 108, 101]. In statistical mechanics, free time evolution is the
non-interacting time evolution of a many-particle system. Indeed, in the absence of
interaction, the time evolution on the one-particle Hilbert space should be automat-
ically lifted to an evolution for the entire system.

We keep as the hallmark of quasifree evolutions that they can be characterized
completely by linear operators at the phase space level. In contrast to the typi-
cal applications to unitary dynamics, we moreover include irreversible (completely
positive) operations and later on, of course, hybrids (see [35, 109] for some early
extensions in the irreversible direction and Sect. 5.4 for the hybrid scenario). For
now, let us continue with the purely quantum case.

Let T be a quantum channel, with (Ξin, σin) and (Ξout, σout) denoting the ac-
cording quantum phase spaces.

Definition 83. We call a quantum channel T quasifree if its action on Weyl
operators is given by

T ∗(W (ξ)out) = f(ξ)W (Sξ)in ∀ξ ∈ Ξout, (5.24)

where S : Ξout → Ξin is a linear map and f : Ξout → C a function, which we call the
noise function of the channel T . If this function is a Gaussian, i.e.

f(ξ) = exp
(
− 1

2ξ·Nξ + id·ξ
)
, (5.25)

then T is called a Gaussian channel.

Here, we started with the requirement that T already is a quantum channel, and
Eq. (5.24) alone is clearly not sufficient for T being one. Let us now formulate the
converse, i.e., which S and f in Eq. (5.24) lead to a normalized completely positive
map.
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Normalization in the Heisenberg picture means T ∗(1) = 1, which demands
f(0) = 1 for the noise function. Then for a linear map T ∗, that acts according
to Eq. (5.24), complete positivity means that f is ∆σ-twisted positive definite in
the sense of Def. 81 [110, 107], where ∆σ is defined as

∆σ = σout − S⊤σinS. (5.26)

So together, quasifree channels are completely parametrized by pairs consisting of a
linear map S and a noise function f that simultaneously fulfill these properties.

Now let us discuss why f is called noise function and the connection between
general quantum channels and the reversible, respectively, unitary subclass:

If the transformation matrix S is symplectic, Eq. (5.26) becomes trivial, that is
∆σ = 0, which widens our choices for an admissable f to general positive definite
functions. Especially we can choose f = 1, and the action of our quasifree channel
can be implemented unitarily like in Eq. (5.23). In that case, its inverse is given by

S−1 = σSTσ−1. (5.27)

This is what motivates the nomenclature of f as noise function: Unitary channels
allow for the least amount of noise added, i.e., f = 1, while any S that differs
from the symplectic case necessarily comes with additional noise being added to
the system. This connection can be seen as just another point of view on the
information-disturbance tradeoff discussed in Sect. 3.3.3.

As with the states, the subclass of Gaussian dynamics is notable. One can
quickly check that Gaussian channels map Gaussian states to Gaussian states, which
is sometimes used as a defining feature of these channels. Note that the terms
quasifree and Gaussian are sometimes used interchangeably, see [22, Sect. 3.3.2].
The advantage of limiting to this particular case is straightforward: A lot of real-
world experiments can be well approximated as Gaussian while, at the same time,
the formalism gets even more straightforward. A Gaussian state described by the
characteristic function in Eq. (5.20) that undergoes a Gaussian channel with the
noise function in Eq. (5.25) changes its mean and covariance by the following simple
transformation rule:

m 7→ Sm+ d, γ 7→ STγS +N. (5.28)

Additionally, one can simplify the ∆σ-twisted positive definiteness of a Gaussian
channel into the short expression

N + i∆σ ≥ 0. (5.29)

Note that this condition does not include the shift parameter d, so like most of
the works on this topic, we will use centered states and channels where possible
and assume d = m = 0 from the beginning. Comparing Eq. (5.29) to Eq. (5.21)
underlines a general connection between states and channels in quantum theory:
A quantum channel with a trivial input system is just another way of preparing a
quantum state.
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We close this review with a discussion of time-continuous dynamics. First note
that concatenating two Gaussian channels described by (S1, N1) and (S2, N2) is
again a Gaussian channel with(

S1S2, N2 + ST
2 N1S2

)
. (5.30)

Going further by introducing the structure of a semigroup, this is likewise carried
through to the matrices St and Nt, describing one-parameter Gaussian semi-
groups [111, 112]. The conditions for St and Nt defining such a semigroup are that
they depend continuously on t ∈ R+, satisfy the semigroup rules

St + S′
t = St+t′ with Nt+t′ = Nt + ST

t Nt′St (5.31)

and fulfil the boundary conditions S0 = 1 and N0 = 0. These matrix semigroups
have the generators Ṡ and Ṅ , and we have for the individual matrices

N = tṄ + o(t) and S = 1 + tṠ + o(t), (5.32)

respectively St = exp(tṠ) and Nt =
∫ t
0 ds S

T
s ṄSs. In the next section, we will

connect these to the more commonly known description by a Lindblad generator on
the operator level.

5.1.4 Generators of Gaussian quantum semigroups

Before we start the discussion of quantum-classical hybrids, we provide a helpful
result regarding the dynamics of Gaussian quantum systems. As discussed earlier, a
Gaussian semigroup on phase space is characterized by its action on Weyl operators

T ∗
t (W (ξ)) = exp

(
− 1

2ξ·Ntξ
)
W (Stξ) (5.33)

and ignoring possible shifts, it is fully characterized by the matrices St and Nt.
While this description is elegant in several ways, the more commonly known and

used one is the description by a Lindblad or master equation:

L(A) = K∗A+AK +
∑
i

L∗
iALi

= i[Ĥ, A] +
∑
i

L∗
iALi −

1
2(L

∗
iLiA+AL∗

iLi).
(5.34)

Our aim is now to state the connection between the Lindblad generators for Gaussian
semigroups and the representation on phase space, i.e., a way to translate between
the equations Eq. (5.33) or Eq. (5.32) and the more commonly known Eq. (5.34).

The standing claim is that we can write Eq. (5.34) with Lindblad jump operators,
which are linear in the field operators R, and a contraction generator or Hamilton-
ian, which is at most quadratic. While one finds this as the definition or remarks
about the equivalence [111, 112], we were not able to find the connection between
the master equation and the dynamics formulated on phase space in a straightfor-
ward fashion. The best we could find is written down in [113], where this kind of
connection is made on the level of covariance matrices and is commented by:
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... From the equations of motion of the canonical coordinates or the Majorana
operators in the Heisenberg picture, one finds after a tedious but straightforward

computation that the covariance matrix satisfies a closed set of equations of motion
...

Knowing that the calculation on the generator level has most likely been done be-
fore, we think that its importance as the link between these two different ways of
describing the dynamics justifies a closer look. At first, we rephrase Eq. (5.34) more
practically.

Let α, β ∈ {1, 2, 3, . . . , d} denote the spatial degrees of freedom, and for the
number of jump operators Li we take i ∈ {1, 2, 3, . . . , n}. We introduce the coefficient
matrices H and L by the following definition:

Ĥ = (1/2)
∑
α,β

HαβRαRβ and Li =
∑
α

LiαRα. (5.35)

Note that we can take the matrix H to be symmetric (hence real) since the antisym-
metric part would only add commutators of R’s, hence a multiple of the identity to
the Hamiltonian, which is irrelevant in the generator. We insert Eq. (5.35) into the
generator in Eq. (5.34), which now reads

L(A) =
∑
α,β

i

2[HαβRαRβ, A] +
∑
α,β

∑
i

+L∗
iαRαALiβRβ

− 1
2(L

∗
iαRαLiβRβA+AL∗

iαRαLiβRβ)

=
∑
α,β

i

2Hαβ[RαRβ, A] +
1
2
∑
α,β

∑
i

L∗
iαLiβ

(
Rα[A,Rβ] + [Rα, A]Rβ

)
. (5.36)

Next, we define the manifestly positive semi-definite d-dimensional square matrix
M by

Mαβ =
∑
i

L∗
iαLiβ. (5.37)

The Gaussian Lindblad generator is now characterized by the two matricesM andH

L(A) = 1
2
∑
αβ

Mαβ

(
Rα[A,Rβ] + [Rα, A]Rβ

)
+ iHαβ[RαRβ, A]. (5.38)

We will now connect the generators Ṅ , Ṡ of the matrix semigroups Nt and St from
Eq. (5.32) to the matrices M and H from above.
Proposition 84 (Gaussian generators). There is bijective correspondence between
pairs of (M,H) and (Ṡ, Ṅ) of 2d× 2d-matrices such that

• M is complex valued with M ≥ 0, and H real with HT = H.

• Ṡ, Ṅ are real with Ṅ + i
2
(
ṠTσ + σṠ

)
≥ 0,

given by

Ṅ = σ(ℜeM)σT , Ṡ = (−ℑmM +H)σ,
H = −1

2
(
Ṡσ − σṠT

)
, M = σṄσT + i

2
(
Ṡσ + σṠT

)
.

(5.39)

In this case, both sets of matrices determine the same quasifree dynamical semigroup,
namely via Eq. (5.33) and the Lindblad generator in Eq. (5.38).
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Proof. To prove the claimed connection in Eq. (5.39), we compare the action of the
two different formulations of generators on Weyl operators. Let us start with the
generator on phase space:

L(W (ξ)) = d

dt
T ∗(W (ξ))

∣∣∣
t=0

=
(
−1
2ξ·Ṅξ

)
W (ξ) + d

dt
W (ξ + tṠξ)

∣∣∣
t=0

. (5.40)

We define the vector η = Ṡξ and calculate the derivative in the second term. Here,
we use the Weyl relation in two different ways:

d

dt
W (ξ + tη)

∣∣∣
t=0

= d

dt
exp

(
− it2 σ(ξ, η)

)
W (ξ)W (tη)

∣∣∣
t=0

=W (ξ)
(
− i

2σ(ξ, η) + iη·R
)

(5.41)

= d

dt
exp

( it
2 σ(ξ, η)

)
W (tη)W (ξ)

∣∣∣
t=0

=
( i
2σ(ξ, η) + iη·R

)
W (ξ). (5.42)

For later use we calculate the commutator between the Weyl operators and the field
operators R by taking Eq. (5.41) − Eq. (5.42):

W (ξ)
(
− i

2σ(ξ, η) + iη·R
)
−
( i
2σ(ξ, η) + iη·R

)
W (ξ) = 0

W (ξ)iη·R−W (ξ) i2σ(ξ, η)− iη·RW (ξ)− i

2σ(ξ, η)W (ξ) = 0

W (ξ)iη·R− iη·RW (ξ) = iσ(ξ, η)W (ξ)
[W (ξ), η·R] = σ(ξ, η)W (ξ).

(5.43)

We insert the derivative calculated in Eq. (5.42) into Eq. (5.40) and arrive at the
following term for the action of the semigroup on the phase space:

L(W (ξ)) =
(
−1
2ξ·Ṅξ +

i

2σ(ξ, Ṡξ)
)
W (ξ) + i(Ṡξ)·RW (ξ). (5.44)

In the second step, we calculate the action of the generator on the operator level
given by the Lindblad equation in Eq. (5.38). We start by using the derivation
property for commutators, that is [RαRβ, A] = [Rα, A]Rβ −Rα[A,Rβ], and get the
following form:

L(A) = 1
2
∑
αβ

(M + iH)αβ[Rα, A]Rβ + (M − iH)αβRα[A,Rβ]. (5.45)

Before we apply the generator to the Weyl operator A =W (ξ), we use the commu-
tator calculated in Eq. (5.43) and multiply it with the field operator Rα from the
left

Rα[W (ξ), Rβ] = σ(ξ, β)RαW (ξ). (5.46)

For the second commutator in Eq. (5.45), we multiply it from the right and use the
known commutator:

[Rα,W (ξ)]Rβ = −[W (ξ), Rα]Rβ = −σ(ξ, α)W (ξ)Rβ. (5.47)
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We sort the Weyl operators to the right,

[Rα,W (ξ)]Rβ = −σ(ξ, α) (RβW (ξ) + [W (ξ), Rβ])
= −σ(ξ, α) (RβW (ξ) + σ(ξ, β)W (ξ))
= −σ(ξ, α)RβW (ξ)− σ(ξ, α)σ(ξ, β)W (ξ),

(5.48)

and insert the two commutators in Eq. (5.45), applying the generator to a Weyl
operator:

L(W (ξ)) = 1
2
∑
αβ

(M + iH)αβ(−σ(ξ, α)RβW (ξ)− σ(ξ, α)σ(ξ, β)W (ξ))

+ (M − iH)αβ(σ(ξ, β)RαW (ξ)).
(5.49)

Before we can compare the action of the two generators, we need some further
calculations. We start by relabelling the indices in the first term and ordering the
whole expression by W (ξ) and RαW (ξ):

L(W (ξ)) = 1
2
∑
αβ

(
(M + iH)αβ(−σ(ξ, α)σ(ξ, β))

)
W (ξ)

+
(
(M + iH)βα(−σ(ξ, β)) + (M − iH)αβσ(ξ, β)

)
RαW (ξ).

(5.50)

We simplify the expression by using that M is positive, so Mαβ =Mβα and the
fact that H is symmetric, so we arrive at

L(W (ξ)) = 1
2
∑
αβ

(
− (M + iH)αβσ(ξ, α)σ(ξ, β)

)
W (ξ)

+
(
((M − iH −M − iH)βα)σ(ξ, β)

)
RαW (ξ).

(5.51)

Getting closer to the expression in Eq. (5.44), we write out the symplectic form
with the symplectic matrix σ, i.e., σ(ξ, η) =

∑
αβ ξασαβηβ = ξ·ση and σ(ξ, eα) =∑

γ ξγσγα. With this, reordering and the fact that −M +M = −2iℑmM , we get
the following intermediate result for the generator from the Lindblad equation:

L(W (ξ)) =
∑
αβγδ

(
ξγσγα

1
2(M + iH)αβσβδξδ

)
W (ξ)

+
(
ξγσγβ(−iℑmM − iH)βα)

)
RαW (ξ).

(5.52)

Similar to the equation above, we rewrite the generator on phase space, that is
Eq. (5.44), in components. Here we have to take care of two different types of Ṡ,
one occurring from a symplectic form and one from a scalar product, where we get
an ṠT . Now the analog to Eq. (5.52) is

L(W (ξ)) =
∑
αγδ

(
−1
2ξγṄγδξδ +

i

2ξγσγαṠαδξδ
)
W (ξ) + i(ξγṠT

γα)RαW (ξ). (5.53)

Finally, we can do the coefficient comparison, which yields∑
αγδ

i(ξγṠT
γα)RαW (ξ) =

∑
αγδ

(
ξγσγβ(−iℑmM − iH)βα)

)
RαW (ξ) (5.54)
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and∑
αγδ

(
−1
2ξγṄγδξδ +

i

2ξγσγαṠαδξδ
)
W (ξ) =

∑
αβγδ

(
ξγσγα

1
2(M + iH)αβσβδξδ

)
W (ξ).

(5.55)
From Eq. (5.54), we directly get the connection between Ṡ and M,H:

Ṡ = (−ℑmM +H)σ. (5.56)

Note that Eq. (5.55) is of the form ξT (. . .)ξ, so for the coefficient comparison, we
can only evaluate the symmetric part, i.e.,

sym(−Ṅ + iσṠ) = sym(σ(M + iH)σ). (5.57)

From this we can read of the relation between Ṅ and M,H:

1
2(−Ṅ + iσṠ) + 1

2(−Ṅ + iσṠ)T = 1
2(σ(M + iH)σ) + 1

2(σ(M + iH)σ)T (5.58)

−Ṅ − i

2(Ṡ
Tσ − σṠ) = 1

2σ(M +MT )σ + iσHσ (5.59)

Using that MT =M , so M +M = 2ℜeM and the fact that Ṡ, Ṅ ,H and σ are real
matrices, we can compare the real part

Ṅ = σℜeMσT (5.60)

and the imaginary part
H = −1

2(Ṡσ − σṠT ). (5.61)

At last we express M by Ṡ and Ṅ . From Eq. (5.60) we get ℜeM = −σṄσ and from
Eq. (5.56) we have ℑmM = Ṡσ +H. So we arrive at the stated form for M :

M = σṄσT + i(Ṡσ +H) = σṄσT + i

2(Ṡσ + σṠT ). (5.62)

This correspondence nicely illustrates the advantages as well as disadvantages of
the formalism. Being able to describe the dynamics purely on the level of matrices
heavily simplifies the mathematical toolbox but might lose some of the intuition
connected to Lindblad generators. In this spirit, the above proposition hopefully
helps any interested reader as a starting point for a transition to the quasifree world.

5.1.5 Notes and references

While the canonical commutation relation is closely tied to the development of
quantum mechanics, the C*-algebraic aspects and the quasifree formulation had
a surge of interest in the second half of the twentieth-century [114, 112, 107, 115,
108, 101, 102]. For a mathematical textbook introduction to the CCR-algebra and
quasifree systems, we recommend the work An Invitation to the Algebra of Canonical
Commutation Relations [95] by Petz. A textbook with more focus on physics is
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Symplectic geometry and quantum mechanics [105] by de Gosson or Chap. 5 in
Probabilistic and statistical aspects of quantum theory [18] by Holevo, which focuses
especially on the Gaussian subset of the quasifree world.

Around the turn of the millennium, this area had another spike in interest from
the quantum information community, for example [110, 104, 111, 113, 116, 117, 118],
some of which should have congregated in a textbook [92]. Nevertheless, there are
several reviews about Gaussian quantum information [119, 120], that also contain
more details, especially about the practical application.

Let us end this section with some comments about the notational choices made
in this work. The strength of this formulation is the transition from dealing with
unbounded operators to linear algebra on a finite-dimensional phase space. On the
one hand, problems become mathematically much easier to handle. On the other
hand, one may lose some of the physical intuition if not used to this formulation. At
the same time, there is no standard agreement on a general convention about the
factors and the placement of σ through the formalism, making using results from
different works harder than necessary. A reason for this may be that there is no
commonly accepted standard textbook on this topic that could have delivered such
a convention.

This being said, one common convention is to include σ in Eq. (5.8), i.e., one uses
ξ·σR in the exponent of a Weyl operator. In phase spaces with a proper symplectic
form, this form is often used to identify the space with its dual (see [121] or [105,
Sect. 1.1.1]). Unfortunately, this is the one convention we can not follow, as should
be clear after the next section.
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5.2 The Hybrid Phase and State Space

5.2.1 Adding the classical system

... the same, only different

Let us now introduce the classical side of our hybrid systems. The basic principle
is remarkably simple and appeared in several levels of detail thorough the literature
[114, 82, 95]. We eliminate the assumption that σ in the canonical commutation
relation should be symplectic, i.e., non-degenerate. With the suitable choice of
canonical coordinates, this process can be easily thought of as follows:

σquantum =
(

0 1n

−1n 0

)
⇒

 0 1n 0
−1n 0 0
0 0 0

 = σhybrid. (5.63)

Now, the degenerate part of σ houses our classical system. Here, we only added one
classical degree of freedom, i.e., s = 1, but while the dimension of the quantum part
is always 2n and thus even, the dimension of the degenerate or classical part of σ
can be extended to any integer s ∈ N. Also, we can include the limiting cases n = 0
or s = 0, which eliminates the quantum or classical part of our hybrid.

The hybrid phase space

We take a system of n quantum canonical degrees of freedom and s classical ones.
Here, the first advantage of this approach is that the presence of the classical subsys-
tem requires only little to no changes in the notation at all. Dropping the assumption
of non-degeneracy will allow non-zero null vectors for σ. In the standard basis, this
means that the 2n variables p and q are now augmented by 0 ≤ s < ∞ unpaired
classical variables x ∈ Rs. These classical phase space vectors can be considered
position variables without corresponding momenta or vice versa.

In this extended phase space Ξ = R2n+s we now have the phase space vectors as
sets of triples ξ = (q, p, x), where an extended symplectic form can be defined as

σ((q, p, x), (q′, p′, x′)) = p·q′ − q·p′ =
∑
ij

ξiσijξ
′
j . (5.64)

This extended version remains antisymmetric bilinear, but as we explicitly intro-
duced null vectors, it is no longer non-degenerate and hence not symplectic. If we
want to emphasize the generalization, we call the pair (Ξ, σ) a hybrid phase space.
As this will be the standard case from now on, we often drop the word hybrid and
instead denote the respective special cases explicitly as quantum or classical. Also,
we will consider arbitrary linear maps on these (hybrid) phase spaces so we can
adopt a basis-free view, where a phase space is just a real vector Ξ space with an-
tisymmetric bilinear form σ. In general, the classical part is always singled out as
the space of null vectors:

Ξ0 =
{
ξ ∈ Ξ | ∀η : σ(ξ, η) = 0

}
. (5.65)
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We can split Ξ = Ξ1 ⊕ Ξ0, where Ξ1 is a suitable subspace on which σ is non-
degenerate as in Eq. (5.4), thus a standard quantum system.

The direct sum symbol indicates a unique decomposition ξ = ξ1+ξ0 with ξi ∈ Ξi

for any vector ξ, and that the form σ also has a block structure, as in the coordinati-
zation of Eq. (5.63). However, other than an orthogonal complement, the quantum
part Ξ1 is not uniquely defined, i.e., there are σ-preserving linear maps changing the
decomposition. Some of our constructions depend on the decomposition Ξ = Ξ1⊕Ξ0,
but we usually do not show explicitly that this dependence is harmless, and the nec-
essary isomorphisms will be noiseless in the terminology of Sect. 5.4. Nevertheless,
we will specify how the σ-preserving linear maps can be characterized in the hybrid
scenario.

Automorphisms

As we have stated, the above definitions seem to depend on the precise splitting
of Ξ = Ξ1 ⊕ Ξ0. Nevertheless, it is often useful to think of Ξ and the bilinear
antisymmetric form σ as a structure given in a coordinate-free way, so the splitting
introduces an arbitrary choice. In this decomposition, Ξ0 is the null space of σ, which
is uniquely defined. However, since Euclidean orthogonality has no meaning in this
structure, the complement Ξ1 involves the choice of a linear projection π : Ξ → Ξ0.
So

π′ := π + πa(1 − π) (5.66)

with an arbitrary linear operator a should do just as well. The two definitions of
complement are connected by a shear transformation. This turns out to be the basic
kind of automorphism of (Ξ, σ), analogous to the symplectic transformations when
σ is non-degenerate:

Lemma 85. Given a hybrid phase space (Ξ, σ) as in Eq. (5.63). Let A be a linear
map on Ξ with block decomposition

A =

 A11 A12 A10
A21 A22 A20
A01 A02 A00

 . (5.67)

Then A preserves σ, in the sense that A⊤σA = σ, if and only if A10 = A20 = 0, and

AQ =
(
A11 A12
A21 A22

)
is symplectic on (Ξ1, σ1).

Proof. We write down the matrix product:

A⊤σA =

 A⊤
11A21 −A⊤

21A11 A⊤
11A22 −A⊤

21A12 A⊤
11A20 −A⊤

21A10
A⊤

12A21 −A⊤
22A11 A⊤

12A22 −A⊤
22A12 A⊤

12A20 −A⊤
22A10

A⊤
10A21 −A⊤

20A11 A⊤
10A22 −A⊤

20A12 A⊤
10A20 −A⊤

20A10

 != σ.

(5.68)
The upper left 2 × 2-submatrix, containing the blocks A11, A12, A21, A22, just tells
us that this part of A has to be symplectic, just as if the classical block is zero-
dimensional. Note that none of the blocks A0i for i = 1, 2, 0 is constrained, so these
will remain arbitrary.
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Of the remaining five equations, two are redundant because the overall expression
is antisymmetric. What remains are the equations A⊤

11A20 −A⊤
21A10 = 0, A⊤

12A20 −
A⊤

22A10 = 0 and A⊤
10A20 −A⊤

20A10 = 0.
We can rewrite the first two as a matrix equation, i.e.,(

A⊤
22 −A⊤

12
−A⊤

21 A⊤
11

)(
A10
A20

)
= 0. (5.69)

Because AQ is symplectic, it is invertible, and it turns out that the coefficient matrix
in Eq. (5.69) is exactly A−1

Q . Hence, by multiplying Eq. (5.69) with AQ, we find that
A10 = A20 = 0. The final equation from the lower right matrix element is then
automatically satisfied.

Note that in contrast to the symplectic case, we cannot conclude that A is
invertible, which in this context is equivalent to the invertibility of A00.

The case AQ = 1, A00 = 1 corresponds exactly to the shear transformations
mentioned above, with a = (A01, A02) : Ξ1 → Ξ0.

Another consequence of this lemma is the confirmation that in contrast to quan-
tum canonical variables, the classical variables can be uniformly stretched A00 = λ1
without changing anything. This is in sharp contrast to approaches (see Sect. 3.4),
in which the classical variables have their own symplectic form, which is used for
the generation of classical Hamiltonian dynamics.

The hybrid commutation relations

After the phase space, we need to introduce our hybrid field operators. Here we
extend the quantum set of operators (Q1, . . . , Qn, P1, . . . , Pn) by s classical operators
Xi. Again, we refer to the classical Xi as operators out of convenience, although
random variables might be more appropriate. These s classical components Ri with
i ∈ {2n+1, . . . , 2n+ s} commute with all others, and besides their addition, we can
keep the standard notation for the field operators

R = (R1, . . . , R2n+s) = (Q1, . . . , Qn, P1, . . . , Pn, X1, . . . , Xs) (5.70)

and the commutation relations remain

[Rj , Rk] = iσjk1. (5.71)

Alongside, we can keep the notation for the phase space translations from Eq. (5.7)
as αξ(Rj) = Rj + ξj1. Also, for the exponentiated versions of our operators and
relations, we need to change very little. The Weyl operators, even though with
classical arguments they may be more like functions, are kept as

W (ξ) = exp(iξ·R) (5.72)

and the Weyl relations and canonical commutation relations stay

W (ξ)W (η) = e−
i
2σ(ξ,η)W (ξ + η) (5.73)

= e−iσ(ξ,η)W (η)W (ξ). (5.74)

Finally the CCR-algebra, i.e., the universal C*-algebra of these generators and re-
lations, remains CCR(Ξ, σ).
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While the idea and the adaptation of the notation are pretty straightforward,
the challenges arise if we follow this through. More specifically, we need to check
what consequences this change brings to the triad of preparation, dynamics, and
measurement and their mathematical description.

Notation

Let us close this section with a discussion about the notational conventions that we
began at the end of Sect. 5.1.5, i.e., the absence of σ in Eq. (5.72). In our hybrid
version, this would set the classical contribution to zero, so any constructions using
this will not work. This means that in a coordinate-free spirit, the variable ξ in
Eq. (5.72) does not lie in the phase space Ξ but in its dual Ξ̂. We will keep the
notation simple by nevertheless identifying both spaces with R2n+s and using a
dot for the standard scalar product. This convention will suffice for almost all of
our purposes, that is unless we explicitly distinguish some components as position-
like and others as momentum-like. In those rare cases, mainly the instrument in
Sect. 5.5.7, we try to help readers keeping track by using corresponding letters:

For the phase space Ξ, and therefore also for the arguments of αξ we already
introduced in the ordering

(q, p, x) (5.75)

for the groups of n+ n+ s variables. For the dual space Ξ̂, i.e., in the arguments of
Weyl operators and characteristic functions, it is then suggestive to use the ordering

(p̂, q̂, k). (5.76)

Here, we take into account that position space and momentum space are dual vector
spaces, and k is the wave-number variable dual to classical shifts, as customary in
eik·x. In order to keep all appearances of the symplectic matrix explicit, we do not
change one of the signs for elements in Ξ̂.

5.2.2 Standard representations

Defining the CCR-algebra CCR(Ξ, σ) with an extended symplectic form is one thing,
describing its representations is another. For this, we will start with establishing a
hybrid analog of von Neumann’s result (see Thm. 79).

The first step is to fix the analog of the Schrödinger representation from the
quantum case: An explicit choice of Weyl operators satisfying the relation Eq. (5.73),
initially without the claim that all good representations look like that. From the
outset, it is clear that there will not be a unique standard representation in contrast
to the quantum case due to the classical part of our hybrid.

The Hilbert space for an irreducible representation of a commutative C*-algebra
is one-dimensional. So already, there is no such uniqueness for a purely classical
system, basically because there are uncountably many inequivalent irreducible rep-
resentations of the classical observable algebra (labeled by the points of Ξ0).

This non-uniqueness forces the choice of a measure µ on the classical subspace
Ξ0, but in the end, that is all. Choosing µ will also be enough for the hybrid case.
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Definition 86. Let Ξ = Ξ1 ⊕ Ξ0 be a hybrid phase space with antisymmetric form
σ = σ1 ⊕ 0. Then a standard representation is a representation of the Weyl
relations in the Hilbert space H = H1 ⊗ L2(Ξ0, µ), where µ is some regular Borel
measure on Ξ0, and H1 is the Hilbert space of the Schrödinger representation W1 :
Ξ1 → B(H1) for (Ξ1, σ1). The Weyl operators are given by

W (ξ1 ⊕ ξ0) =W1(ξ1)⊗W0(ξ0), (5.77)

where W0(ξ0) is the multiplication operator(
W0(ξ0)φ

)
(x) = eiξ0·xφ(x) (5.78)

for φ ∈ L2(Ξ0, µ) and x ∈ Ξ0. A state on the CCR-algebra is called standard if it
is given by a density operator on H in a standard representation.

We remark that the standard representation depends on µ only up to equiv-
alence: If two measures µ and µ′ have the same null sets, the according Hilbert
spaces L2(Ξ0, µ) and L2(Ξ0, µ

′) are connected by a unitary transformation that acts
by multiplication with

√
dµ/dµ′ and in particular, intertwines the multiplication

operators in Eq. (5.78) [8, Cor. III.1.5]. Therefore, we can always choose µ to be a
probability measure, typically the classical marginal of a state under consideration.
Another typical choice is the Lebesgue measure, which we will have a closer look at
in Sect. 5.3.3. Finally, we will strive to get rid of the µ-dependence in the definition
of observable algebras completely in Sect. 5.3.

The von Neumann algebra generated by a standard representation is

Mµ = B(H1)⊗L∞(Ξ0, µ), (5.79)

where ⊗ denotes the tensor product of von Neumann algebras, see Sect. 3.2.3. In-
deed, since the W1(ξ1) are irreducible on H1, they generate B(H1) as a von Neu-
mann algebra, and similarly the Weyl multiplication operators generate the maximal
abelian algebra of all multiplication operators Mf with f ∈ L∞(Ξ0, µ), which is iso-
morphic to L∞(Ξ0, µ) [8, Thm. III.1.2]. Putting this together using the commutation
theorem for tensor products [8, Thm. IV.5.9] gives Eq. (5.79). Note that this algebra
still depends on µ because in L∞(Ξ0, µ) functions, which only agree µ-almost every-
where, are identified by definition. By identifying A⊗f with the function x 7→ f(x)A
we can think of the elements of Mµ as measurable B(H1)-valued functions on Ξ0.

Standard states

By the above definition, standard states are normal states on Mµ, hence ele-
ments of the predual T 1(H1) ⊗ L1(Ξ0, µ), where T 1(H1) denotes the trace class
[8, Thm. IV.7.17]. They can hence be decomposed as

⟨ω,A⊗ f⟩ =
∫
µ(dx)c(x) f(x) tr(ρxA), (5.80)

where cµ is the probability measure determining the classical marginal, i.e., the
expectations of multiplication operators, and x 7→ ρx is a measurable family of
density operators. The factor c(x) is introduced to allow that tr ρx = 1 for all x.
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When we consider a particular state and its GNS-representation, we usually take µ
directly as the marginal of that state, i.e., set c(x) ≡ 1. The required measurability
conditions for the family of states ρx are described in [8, Sect. IV.7].

The definition of standard states brings in dependence on µ so that it is not
a priori clear that convex combinations of standard states are standard. However,
the integral decomposition in Eq. (5.80) makes clear that for a countable convex
combination ρ =

∑
j λjρj we can take µ =

∑
j λjcjµj , and set hj to be the Radon-

Nikodym derivative of λjcjµj with respect to µ. Note that 0 ≤ hj(x) ≤ 1, and∑
j hj = 1. Then ρ0 = 1 and ρx =

∑
j hjρx,j . In particular, a normal state in a

direct sum of standard representations can be rewritten as a state using just a single
summand, i.e., it is also standard in the sense of the above definition.

This argument also shows that the von Neumann algebra approach to hybrids can
be made to work on larger and larger sets of states: If needed, one can consider any
countable (and thereby any norm separable) family of states as absolutely continuous
with respect to a common reference measure.

However, the set Ξ0 has uncountably many points and hence points measures,
which all have norm distance 2, so the set of measures on Ξ0 is not norm separa-
ble. This means there is no single standard representation that can be used for all
practical purposes. One could represent a single observable F by a net of functions

Fµ ∈ B(H)⊗ L∞(Ξ0, µ), (5.81)

each defined up to µ-a.e. equality. Then indices are ordered by absolute continuity
µ≪ ν, i.e., ν has fewer null sets than µ, and in this case, Fν is more sharply defined
than Fµ. There is no natural limit to such nets because we cannot include all the
uncountably many point measures. However, the notion of universally measurable
sets and functions (see Sect. 5.3) does allow us to get rid of this.

Since standard states thus form a convex set, it makes sense to ask for the
extreme points, i.e., the pure states. These are readily characterized:

Lemma 87. A standard state ω on the CCR-algebra is extremal if and only if there
is a point x ∈ Ξ0 and a unit vector φ ∈ H1 such that in the decomposition Eq. (5.80)
µ = δx is a point measure and ρx = |φ⟩⟨φ|.

Proof. Suppose that ω is extremal. Then let f ∈ L∞(Ξ0) with ε < f < 1 − ε for
some ε > 0. The state ω is then decomposed into the sum of two positive functionals

ω(X) = ω(f) ω(fX)
ω(f) + ω(1− f) ω((1− f)X)

ω(1− f) . (5.82)

This is a convex combination of states, so by extremality, the two states have to
be proportional, i.e., ω(fX) = λω(X) for all X. This forces λ = ω(f), by putting
X = 1, and hence we conclude that f = ω(f)1 almost everywhere with respect to µ.
Hence, µ is a point measure at some point x. The choice of ρy for y ̸= x is irrelevant
because the whole complement of {x} has measure zero. The state ρx is now given
by a density operator, which has to be extremal as well, so ρx = |φ⟩⟨φ|.

Note that a state ω may have no extremal components, i.e., no extreme points
ω′ such that ω ≥ λω′ with λ > 0. Indeed, this will be the case whenever the measure
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µ has no atoms (points of non-zero measure). Therefore, it is not a priori clear in
which sense standard states can be decomposed into extreme points. This will be
clarified in Sect. 5.2.3, where it will be seen that the standard states are the state
space of a certain C*-algebra, so the convex combinations of extreme points are
dense in a suitable weak* topology.

The Hybrid Uniqueness Theorem

It is straightforward to check that in the standard representation, ξ 7→ W (ξ) is
continuous with respect to the strong operator topology. It turns out that this
characterizes standard representations. This is the main content of the following
Theorem, which is very close in its formulation and its proof to von Neumann’s
famous result [97].

Theorem 88 (Hybrid Uniqueness Theorem). Every representation of the Weyl rela-
tions on a Hilbert space, for which the ξ 7→W (ξ) is continuous in the strong operator
topology, is unitarily equivalent to a direct sum of standard representations.

In the literature, it is traditional [122] to use a weaker continuity condition,
which does not demand joint continuity of W in all 2n + s variables in ξ ∈ Ξ, but
only along one-dimensional subspaces. This is the minimum required to get self-
adjoint canonical operators and is usually called regularity [42, 82]. This weaker
version avoids some of the topological subtleties of infinite-dimensional Ξ, but for
the finite-dimensional case of this work, it is still sufficient, and there is no difference.

Proof. Consider a strongly continuous representation W on a Hilbert space H. For
the most part, we will only need to use the representation ξ1 7→ W (ξ1 ⊕ 0) of the
subgroup Ξ1. Following von Neumann, and even his notation up to a factor 2π, we
introduce a Gaussian function a : Ξ1 → C and the operator

A =
∫
dξ1 a(ξ1)W (ξ1 ⊕ 0). (5.83)

The integral exists as a strong integral because W is continuous. Because a is
integrable, A is a bounded operator. With von Neumann’s choice, it is even a
projection, and in the Schrödinger representation, it is just the one-dimensional
projection |Ω⟩⟨Ω| onto the harmonic oscillator ground state vector Ω ∈ H1. Since
algebraic relations between A and anything in CCR(Ξ1, σ1) are the same in any
representation, it is hardly a surprise that we have

AW (ξ1 ⊕ 0)A = ⟨Ω|W1(ξ1)|Ω⟩A =: χ(ξ1)A, (5.84)

whereW1 is the Schrödinger representation and χ(ξ1) = exp(−1/4 ξ21) is a Gaussian,
the characteristic function of the oscillator ground state. But, of course, one can
also show this (as von Neumann does) by explicit computation based on the Weyl
relations.

It is a key part of von Neumann’s argument that A cannot vanish for any continu-
ous representation of Ξ1. Indeed, in such a representation also W (η⊕0)AW (η⊕0)∗
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would vanish for all η, which is exactly of the form in Eq. (5.83), with a kernel
function

aη(ξ1) = exp(iη·σξ1)a(ξ1). (5.85)
As a function of η, the integral of the modified Eq. (5.83) is thus the Fourier trans-
form of an operator-valued L1-function, hence vanishes only if a does, which is false.

Consider now the subspace H0 := AH and the set M of vectors of the form
W (ξ1⊕0)ψ0 for ξ1 ∈ Ξ1 and ψ0 = Aψ0 ∈ H0. We claim that its linear span is dense.
For if Ψ ∈ H were orthogonal to M , we would have that ⟨AW (ξ1 ⊕ 0)Ψ, Aψ0⟩ = 0
for all ψ0, so A would vanish on the cyclic sub-representation space of Ξ1 generated
by Ψ, contradicting von Neumann’s result A ̸= 0.

We define a function U :M → H1 ⊗H0 by

UW (ξ1 ⊕ 0)ψ0 =W1(ξ1)Ω⊗ ψ0. (5.86)

Scalar products between different vectors on M are preserved, so, in particular, it
sends a linear combination representing the null vector again to a linear combination
with vanishing norm. That is, it extends to a linear operator on the algebraic linear
span of M . Clearly, this extension is isometric as well, so extends by continuity to
H. Hence, Eq. (5.86) defines an isometry U : H → H1 ⊗H0. It is also onto because
the vectors W1(ξ1)Ω span H1. To summarize: U is unitary. Now, since A commutes
with W (0⊕ η0) by virtue of the hybrid commutation relations, we can replace ψ0 in
Eq. (5.86) by W (0⊕η0)ψ0, and upgrade that equation to a full intertwining relation
on M :

UW (η1 ⊕ η0)W (ξ1 ⊕ 0)ψ0 = UW (η1 ⊕ 0)W (ξ1 ⊕ 0)
(
W (0⊕ η0)ψ0

)
=W1(η1)W1(ξ1)Ω⊗W (0⊕ η0)ψ0

=W1(η1)⊗W (0⊕ ξ0)UW (ξ1 ⊕ 0)ψ0. (5.87)

Hence W (η1 ⊕ η0) = U∗W1(η1)⊗W (0⊕ η0)U .
To complete the proof, it suffices to observe that the strongly continuous rep-

resentation ξ0 7→ W (0 ⊕ ξ0) of the group Ξ0 ∼= Rs on H0 can be decomposed into
a direct sum of cyclic ones, and the cyclic representations are of the form given in
Def. 86. To see that this decomposition works together correctly with von Neu-
mann’s construction for Ξ1 was the main reason to include an abridged version of
his argument.

5.2.3 The hybrid state space

Given that our basic definitions remain basically the same, a state on the CCR-
algebra is still completely determined by its expectations on Weyl operators, i.e., its
characteristic function

χ(ξ) = ω(W (ξ)), (5.88)
which has already been introduced for purely quantum systems in Sect. 5.1.2. Again,
the natural question arises: Which are valid characteristic functions in our now
extended hybrid scenario? This demands unifying the quantum version (Thm. 82)
with its well-known classical analog: In the purely classical case, this is known
as Bochner’s Theorem (sometimes: Bochner-Khintchine Theorem [18]). Its hybrid
version (also in [82], see Sect. 3.4) perfectly links these two.



5.2. THE HYBRID PHASE AND STATE SPACE 107

Theorem 89 (Hybrid Bochner Theorem). Let Ξ be a vector space with antisymmet-
ric form σ. Then a function χ : Ξ → C is the characteristic function of a standard
state on CCR(Ξ, σ) if and only if it is

(1) continuous,

(2) normalized, χ(0) = 1, and

(3) σ-twisted positive definite, which means that, for any choice ξ1, . . . , ξN , the
N ×N -matrix

Mkℓ = χ(−ξk + ξℓ) e−
i
2σ(ξk, ξℓ) (5.89)

is positive semi-definite.

Proof. Just conditions (2) and (3) are equivalent to ω being a state on the CCR-
algebra. The positive definiteness condition is precisely equivalent to ω(A∗A) ≥ 0,
where A =

∑
i ciW (ξi), and the Weyl relations are used. By the GNS-construction,

every positive linear functional comes from a Hilbert space representation, and by
definition of the CCR algebra as the universal C*-algebra of the Weyl relations, the
state thus extends to the whole algebra.

Continuity of χ for a standard ω is obvious because a standard representation
is strongly continuous. Conversely, suppose that χ is continuous, and let Ω ∈ Hω

denote the cyclic vector of the GNS-representation of ω. Then

ξ →⟨πω
(
W (η1)

)
Ω, πω

(
W (ξ)

)
πω
(
W (η2)

)
Ω⟩ = ⟨Ω, πω

(
W (−η1)W (ξ)W (η2)

)
Ω⟩

(5.90)

= exp
(
i

2
(
σ(ξ, η2) + σ(−η1, ξ + η2)

))
⟨Ω, πω

(
W (ξ − η1 + η2)

)
Ω⟩ (5.91)

= χ(ξ − η1 + η2) exp
(
i

2
(
σ(ξ, η2)− σ(η1, ξ)− σ(η1, η2)

))
(5.92)

is continuous. Since the Weyl operators are bounded, this extends to the norm
limits of linear combinations of πω

(
W (η2)

)
Ω, which is, by definition, all of Hω.

Hence, πω(W (·)) is weakly continuous, but for unitary operators, this is the same
as strong continuity. Hence, ω is normal in a strongly continuous representation.

By Thm. 88, this is a direct sum of standard representations, and by the argu-
ment preceding it, we conclude that ω itself is standard.

To see the power of the continuity condition, it may be helpful to point out some
rather wild states of the CCR-algebra. Indeed, this algebra is just the hybrid version
of the almost periodic functions, in the precise sense of Prop. 115. Pure states on
the almost periodic functions form the Bohr compactification of Ξ0 [123, Sect. 4.7],
among which the points of Ξ0 (i.e., their point evaluations) are just a tiny part
and not even an open subset. This expresses the observation that almost periodic
functions cannot distinguish a point from many others that are arbitrarily far away,
so the finite and the infinite are intertwined more intimately than observables would
ever distinguish. An algebra whose states are better behaved may be more adequate
for physics.

This suggests finding a C*-algebra whose states are just the good ones described
by Bochner’s Theorem and will be done in the next paragraph.
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The standard states as a C*-state space

The CCR-algebra is constructed so that its representations exactly correspond to
the representations of the Weyl relations. In this correspondence, the topology of
Ξ plays no role at all. The way to set up a similar correspondence for just the
continuous unitary representations is well known from the theory of locally compact
groups: One goes to the convolution algebra over the group. In fact, the term group
algebra of a group is usually reserved for the C*-envelope of the convolution algebra
L1(G), and not for the topology-free analog of the CCR algebra [14, Ch. 13]. Von
Neumann’s proof uses the same idea by introducing the operator A in Eq. (5.83) as
an integral. In this section, we follow this lead.

This will require a twisted version of the group algebra construction [124]. An
alternative construction would be via the group C*-algebra of a related non-abelian
group, a central extension [125, Ch.VII] of the additive group Ξ. The approach used
below is a bit more direct. It avoids introducing the central phase parameter, which
is integrated out anyhow in the end.

After we finished this work, we realized that the idea had already been followed
through by Grundling [83, 84], with much the same motivation of getting a C*-
description of continuous representations, and even extended to more general groups,
also beyond locally compact ones. To keep this work self-contained, we nevertheless
include our version.

For h ∈ L1(Ξ, dξ) and any given measurable representation W of the Weyl
relations we write the Bochner integral

W [h] =
∫
dξ h(ξ)W (ξ). (5.93)

The bracket notation indicates that h 7→W [h] is closely related to the representation
W . The multiplication rule and adjoints for such operators follow directly from the
Weyl relations, namely W [h]W [g] =W [h∗σg] and W [h]∗ =W [h∗] with(

h∗σg
)
(ξ) =

∫
dη h(ξ − η)g(η)e−

i
2 ξ·ση, (5.94)

h∗(ξ) = h(−ξ). (5.95)

These operations turn L1(Ξ) into a Banach *-algebra, which we call the σ-twisted
convolution algebra of Ξ. Any set of elements hε such that hε ≥ 0,

∫
dξ hε(ξ) = 1,

and hε(ξ) = 0 for ξ outside a ball of radius ε around the origin is an approximate
unit. As in the untwisted case, this follows from the strong continuity of translations
on L1(Ξ). Utilizing the aforementioned C*-envelope that we already introduced in
Sect. 2.2.1.5, we can now define the following:

Definition 90. The enveloping C*-algebra of the convolution algebra is called the
twisted group algebra of (Ξ, σ) and will be denoted by C∗(Ξ, σ).

By slight abuse of notation, we denote the element in C∗(Ξ, σ) associated with
h ∈ L1(Ξ) by the completion process again by h. This is justified by the observation
that the canonical embedding L1(Ξ, σ) ↪→ C∗(Ξ, σ) is injective.

The following proposition gives us a third way of looking at Weyl elementsW (ξ).
Once they appeared as the abstract generators of a CCR-algebra (Def. 78). Then,
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they were defined as explicit operators in any standard representation (Def. 86).
These two views are equivalent by virtue of Bochner’s Theorem, which identifies
standard states with linear functionals ω′ on CCR(Ξ, σ) (Thm. 89). The next propo-
sition allows us to further introduce, for each ξ, the linear functional

ω 7→ ω′(W (ξ)). (5.96)

This element of the bidual C∗(Ξ, σ)∗∗ is yet another version of the Weyl element,
which we will also denote by W (ξ). We cannot realize such an element in C∗(Ξ, σ)
since this algebra has no unit and hence contains no unitary elements. However, we
can get close in the same sense that the expression Eq. (5.93) can be close to W (ξ)
if h is concentrated near ξ. The idea of the following proof is to do this limit in the
GNS representation of ω.

Proposition 91. Let (Ξ, σ) be a hybrid phase space. Then every state ω on C∗(Ξ, σ)
is given by a unique standard state ω′ on CCR(Ξ, σ) and conversely, such that

ω
(
h
)
=
∫
dξ h(ξ)ω′(W (ξ)

)
. (5.97)

Proof. It is a general feature of the enveloping C*-algebra construction that the
states ω on C∗(Ξ, σ) are in bijective correspondence to the positive linear functionals
ω̃ on the convolution algebra with norm 1 (see Sect. 2.2.1.5 and [14, Prop. 2.7.5]).
Here, the norm is taken as a linear functional on the Banach space L1(Ξ). That is,
there is a function χ ∈ L∞(Ξ) with ∥χ∥∞ = 1 such that

ω̃(h) =
∫
dξ h(ξ)χ(ξ). (5.98)

The main task of the proof is to show that the functions χ arising in this way are
precisely the characteristic functions characterized by the Bochner Theorem, and
in particular continuous. The uniqueness of the correspondence is clear from this
equation since, on the one hand, it gives an explicit formula for ω (resp. ω̃) in terms
of ω′, and, on the other to states ω′, ω′′ satisfying it for the same ω̃ would have to
be equal as elements of L∞(ξ), hence equal almost everywhere, and hence equal by
continuity.

We begin by defining a version of the Weyl operators acting on L1(Ξ), namely

(W̃ (ξ)h)(η) := e−
i
2 ξ·σηh(η − ξ). (5.99)

It is constructed so that
h∗σg =

∫
dξ h(ξ) W̃ (ξ)g. (5.100)

Intuitively, we can think of W̃ (ξ) as the operator of convolution with δξ, the limit
of probability densities concentrated near the point ξ. While this is not an element
of the algebra, its operation is defined analogously to the approximate unit δ0. It
is easy to check that the operators W̃ (ξ) satisfy the Weyl relations in Eq. (5.73).
However, unitarity does not make sense since L1(Ξ) is not a Hilbert space. The
crucial observation is that ξ 7→ W̃ (ξ)g is continuous in the norm of L1(Ξ). Indeed,
it is a product of a translation and a multiplication operator, which are both strongly
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continuous on L1. Consider now a positive linear functional ω̃ on L1(Ξ). Its GNS
representation space H̃ is the unique Hilbert space generated by vectors v(h), h ∈
L1(ξ), with the scalar product ⟨v(h)|v(k)⟩ = ω̃(h∗ ∗σ k). On these the representation
W : L1(Ξ) → B(H̃) acts by left multiplication in the convolution algebra, i.e.,
according to the formula

W [h]v(g) = v
(
h ∗σ g

)
. (5.101)

According to Thm. 21 the GNS space has a cyclic vector Ω and a representation
W : L1(Ξ) → B(H̃) such that v(h) = W [h]Ω, and ⟨Ω,W [h]Ω⟩ = ω̃(h). Indeed, one
has Ω = limε→0 v(hε), where hε is a bounded approximate unit.

Our next aim is to show that W arises exactly as in Eq. (5.93) from the integra-
tion of a representationW of the Weyl relations (recall that the two functions will be
typographically distinguished by their argument brackets). The obvious candidates
for the Weyl operators W (·) are the operators W̃ (ξ) from Eq. (5.99), represented on
H̃ in GNS style. That is, in analogy to Eq. (5.101), we set

W (ξ)v(g) = v
(
W̃ (ξ)g

)
. (5.102)

Then, it is elementary to check that W (ξ) is unitary, and these operators satisfy the
Weyl relations. Moreover, the L1-norm continuity of ξ 7→ W̃ (ξ)g established earlier
implies that ξ 7→ W (ξ) is continuous in the strong operator topology. Finally,
Eq. (5.100) implies

W [h]v(g) = v
(
h ∗σ g

)
=
∫
dξ h(ξ)v

(
W̃ (ξ)g

)
=
∫
dξ h(ξ)W (ξ)v

(
g
)
, (5.103)

i.e., the GNS-representation W [h] is related to the continuous representation W by
Eq. (5.93). In particular,

ω̃(h) =
∫
dξ h(ξ)⟨Ω,W (ξ)Ω⟩, (5.104)

so Eq. (5.98) holds with χ(ξ) = ⟨Ω,W (ξ)Ω⟩, which is clearly a normalized twisted
positive definite function, and continuous because W (ξ) is strongly continuous.

Conversely, given a state on the CCR-algebra, we can define its characteristic
function χ(ξ) = ω′(W (ξ)). In general, that might fail to be even measurable, so
the formula Eq. (5.98) might make no sense. However, for standard states, χ is
continuous, and the integral is well defined.

We now determine the algebras C∗(Ξ, σ) concretely. It turns out that this is best
done by splitting into a purely classical and a purely quantum part.

Proposition 92. Let (Ξ, σ) be a hybrid phase space, split as Ξ = Ξ1 ⊕ Ξ0 with
σ = σ1 ⊕ 0. Then

C∗(Ξ, σ) = C∗(Ξ1, σ1)⊗ C∗(Ξ0, 0) ∼= K(H1)⊗ C0(Ξ0), (5.105)

where K(H1) denotes the compact operators on the representation space H1 of the
irreducible quantum system (Ξ1, σ1), and C0(Ξ0) denotes the continuous functions
on Ξ0 vanishing at infinity.
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Proof. We first observe that for the underlying L1-spaces, the direct sum naturally
coincides with the projective product, which is predual to the tensor product of von
Neumann algebras. That is:

L1(Ξ1 ⊕ Ξ0) = L1(Ξ1)⊗ L1(Ξ0). (5.106)

Indeed, the tensor products f ⊗ g on the right-hand side can be identified with the
product functions fg(ξ0 ⊕ ξ1) = f(ξ1)g(ξ0), and this embedding is clearly isometric
on step functions. Since the measurable structure of Ξ1 ⊕ Ξ0, which is Ξ1 × Ξ0
as a set, is defined as generated by rectangles, the product functions span a dense
subspace of L1(Ξ1 ⊕ Ξ0). One can verify that the isomorphism Eq. (5.106) is also
consistent with the definitions of adjoint operation and convolution product.

The completion in the construction of the enveloping C*-algebra also works out:
As one side of the tensor product is abelian, and the maximal and the minimal
tensor product coincide, the tensor product is uniquely determined, as is the algebra
in tensor product form (see Sect. 3.2.3).

In the second step, we need to show the claimed isomorphisms: Beginning with
the classical case, L1(Ξ0) is the convolution algebra of Ξ0 ∼= Rs. The Gelfand
isomorphism describes its irreducible representations for abelian Banach algebras:
In this case, they are given by the point evaluations of the Fourier transform. Hence,
the C*-norm of the enveloping algebra, ∥h∥ = supπ ∥π[h]∥, is equal to the supremum
norm of the Fourier transform of h. Now, by the Riemann-Lebesgue Lemma [6,
Sect. 7.5], the Fourier transforms of L1-functions are continuous and go to zero at
infinity. On the other hand, by the Stone-Weierstraß Theorem [6, Thm. 5.7], these
Fourier transforms separate points and are hence uniformly dense. Together we have

C∗(Ξ0) = C0(Ξ0). (5.107)

For quantum systems, note that every continuous representation of the Weyl
relations is isomorphic to the Schrödinger representation on H1 by the von Neumann
Uniqueness Theorem (see Thm. 79). Hence, we only need to show that in that
representation, the operators of the form W [h] with h ∈ L1(Ξ1) are compact, and
these operators form a dense subalgebra of K(H1). This follows immediately by the
correspondence theory [121, Cor. 5.1.(4)].

An alternative approach using better-known facts goes via first showing that
operators h 7→ W [h] are not only continuous from L1 to B(H1) but also isometries
for the 2-norms, i.e., ∥W [h]∥2 = ∥h∥2, for h ∈ L1(Ξ)∩L2(Ξ) ≡ A, and the Schatten
2-norm (Hilbert-Schmidt norm) on the operator side. Continuous extension via
these 2-norms is even unitary. Hence, W [A] consists of Hilbert-Schmidt operators,
which are compact, and by taking limits in 2-norm, we find that W [A] is operator
norm dense in the Hilbert-Schmidt class, hence in K(H1).

We note that as a consequence of this characterization, we find that there are
many extremal standard states, since the state space of C∗(Ξ, σ) is the weak*-closed
convex hull of its extreme points, by the Banach-Alaoglu and Krein-Milman Theo-
rems (see Sect. 2.2.1.4). Of course, these were already identified in Lem. 87.
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Restoring translation symmetry

Translations were part of our basic setup from the outset since the phase space Ξ is a
vector space. The notion of standard representations (Def. 86) breaks the translation
symmetry. However, it is restored in the twisted convolution construction. Indeed,
combining the hybrid version of the shift (Eq. (5.7)) and the hybrid Weyl operator
(Eq. (5.72)) we get

αη(W (ξ)) = eiη·ξW (ξ). (5.108)

Although Weyl operators are not themselves in C∗(Ξ, σ), we think of this algebra as
generated by integrated Weyl operators Eq. (5.93), and so we define

(αηh)(ξ) = eiη·ξh(ξ), (5.109)

which extends to the enveloping algebra C∗(Ξ, σ). In the tensor product structure
of Prop. 92, we can apply this separately to the quantum and classical parts so

αη1⊕η0 = αη1αη0 . (5.110)

On the classical part C0(Ξ0) the action becomes the shift (αη0f)(ξ0) = f(ξ0 + η0).
Similarly, we can compute the action on the quantum part, finding

αη(X) =W (ση)∗XW (ση). (5.111)

In this expression, we use σ as a matrix acting on the vector η ∈ Ξ, which is possible
because we choose a fixed basis in Ξ ∼= R2n+s. Since σ vanishes on the classical part,
the component η0 of the translation argument automatically drops out, and only
the quantum Weyl operators are used.

The tensor product K(H1) ⊗ C0(Ξ0) can be considered as the algebra of norm
continuous functions F : Ξ0 → K(H1) vanishing at infinity, by identifying K ⊗ f
with the function F (ξ) = f(ξ)K. In this function form, which will later extend to
certain subspaces of C∗(Ξ, σ)∗∗, the action of translations becomes, for η = η1 ⊕ η0,(

αη(F )
)
(ξ0) =W (ση)∗F (ξ0 + η0)W (ση). (5.112)

Continuity of state translations

We note that α∗
η is not strongly continuous on the Banach space of states, i.e., the

function ξ 7→ α∗
ηρ is not continuous in norm. Indeed, an arbitrarily small shift

applied to a point measure moves it as far away as possible in the natural norm on
states. Since translations are strongly continuous on L1(Rn, dx), this is different for
probability measures with absolutely continuous densities. We can use this to single
out one particular standard representation, namely, using the Lebesgue measure
for µ.

Proposition 93. Let ω ∈ C∗(Ξ, σ)∗ be a state with characteristic function χ, and
let µ be its marginal probability measure on Ξ0. Then the following are equivalent:

(1) ω is norm continuous under phase space translations, i.e.,

lim
η→0

∥ω − α∗
η(ω)∥ = 0. (5.113)
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(2) µ is absolutely continuous with respect to Lebesgue measure.

(3) ω is the restriction of a standard state ω̂ on a purely quantum system, in which
the classical variables in Ξ0 also have conjugate momenta.

In this case χ ∈ C0(Ξ). As a partial converse, if χ ∈ Lp(Ξ, dξ) for some p ∈ [1, 2]
then the above conditions hold.

Proof. (1)⇒(2): (2) only depends on the restriction of ω to the classical algebra. So,
this is a purely classical observation, which is valid for any locally compact group.
Let α∗

x, x ∈ Rn denote the action of translations on measures over Rn. Then (1) says
limx→0 ∥µ − α∗

x(µ)∥ = 0, where the norm is the dual norm of the supremum norm
on C0(Rn), i.e., the total variation norm on measures. For any ε > 0, there is thus
a neighborhood Uε ∋ 0 such that ∥µ − α∗

x(µ)∥ ≤ ε for x ∈ Uε. We pick a positive
measurable function h ∈ L1(Rn, dx) with integral 1 and support in Uε, and set

α∗
h(µ) =

∫
dx h(x)α∗

x(µ), (5.114)

which is to be read as a weak* integral. Using the triangle inequality, we get that ∥µ−
α∗
h(µ)∥ ≤ ε. On the other hand, α∗

h(µ) is absolutely continuous because Eq. (5.114)
is the convolution of the two measures µ and h dx. Explicitly, for an arbitrary
f ∈ C0(Rn), we get

(
α∗
hµ
)
(f) =

∫
dx h(x)

∫
µ(dy)f(y − x) =

∫
µ(dy)

∫
dx h(y − x)f(x), (5.115)

which is to say that α∗
hµ has density h̃(x) =

∫
µ(dy)h(y−x) with respect to Lebesgue

measure. We also recall that the variation norm of absolutely continuous measures
is just the L1 norm of their densities. Now since α∗

h(µ) converges in norm to µ as
ε → 0, the corresponding densities h̃ form a Cauchy net in L1(Rn, dx). Its limit h̃0
must be in L1 by completeness of L1. This is then a density for µ, so µ is itself
absolutely continuous.

(2)⇒(3): Consider the standard representation for µ in the Hilbert space H1 ⊗
L2(Ξ0, µ). We can consider this as a subspace of H1⊗L2(Ξ0, dx) with the Lebesgue
measure. By Def. 86, ω, as a state on the CCR algebra, can be represented as a nor-
mal state on this space. Apart from the canonical position operators in L2(Ξ0, dx),
which are already part of the hybrid setup, we can take the shift generators in this
tensor factor as further canonical momentum operators. The full set of canonical
operators is then clearly irreducible, so the extended system is purely quantum.

(3)⇒(1): The Weyl translations in a standard representation are strongly con-
tinuous, which implies that the action α∗

ξρ =W (σξ)ρW (σξ) is norm continuous for
every ρ ∈ T (H) so we can restrict the continuity condition for the extended system
to those translations η which make sense in the original hybrid.

The final remark in the proposition is clear in one direction from the Riemann-
Lebesgue Lemma and its quantum version [121]. In the converse direction, it follows
that the Fourier transform of χ is the density with respect to the Lebesgue measure,
which is then even continuous and goes to zero.
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Lp-spaces

If one is not interested in pure states, a good setting for hybrids is to restrict con-
sideration to the norm continuous states characterized by Prop. 93. This leads to
a purely von Neumann algebraic picture: Since all probability measures µ are then
absolutely continuous with respect to Lebesgue measure dx, we can represent all
states in H = H1 ⊗ L2(Ξ0, dx), which leads to the spaces
L1(Ξ, σ) := T 1(H1)⊗ L1(Ξ0, dx) and L∞(Ξ, σ) := B(H1)⊗L∞(Ξ0, dx). (5.116)

Here, the tensor product on the right uses the 1-norm completion, and T p denotes
the Schatten classes for 1 ≤ p <∞, so T 1 is the trace class. T ∞ would be ambiguous,
meaning either all bounded operators B(H) or just the compact operators K(H1),
so we prefer to specify explicitly. The tensor product on the right is then the von
Neumann algebra version, constructed as the completion of the product operators
in the weak (or similar) operator topology. This choice was adopted, for example,
in [72, 76, 126], see Sect. 3.4. Note that the von Neumann algebra L∞(Ξ, σ) is
not a subalgebra of U(Ξ, σ) but a quotient, because the (L1, L∞)-duality is defined
by selecting a subspace of states (cf. Fig. 5.2). In fact, it does not make sense to
evaluate an element F ∈ L∞(Ξ, σ) on a pure state because functions differing at one
point, e.g., the point x ∈ Ξ0 on which the pure state lives, are identified.

The combined Schatten/Lebesgue spaces Lp(Ξ, σ) can be obtained by a purely
von Neumann algebraic construction using the semifinite trace

t̂r(f ⊗A) =
∫
dx f(x) trA (5.117)

on L∞(Ξ, σ). Then Lp(Ξ, σ) comes out as the p-norm completion of the elements F ∈
L∞ so that ∥F∥pp := t̂r|F |p < ∞. These spaces are also connected by interpolation
[127]. The only case of interest to us, however, is p = 2 because of a fact which
is well known in both the classical and the quantum case, so its generalization to
hybrids is unsurprising: The Fourier-Weyl transform for hybrids

(FF )(ξ) = t̂r(FW (ξ)) (5.118)
is a unitary isomorphism from L2(Ξ, σ) onto L2(Ξ, 0). This definition differs from
that in [121] by a symplectic matrix in the argument, which would not make sense in
the classical case. So for elements F ∈ Lp(Ξ, σ)∩L2(Ξ, σ) andG ∈ Lq(Ξ, σ)∩L2(Ξ, σ)
with p−1 + q−1 = 1, 1 ≤ p ≤ ∞ we have

t̂rF ∗G =
∫
dx tr(F (x)∗G(x)) = (2π)−(n+s)

∫
dξ tr(FW (ξ)) tr(GW (ξ)), (5.119)

where s and n are the numbers of degrees of classical and quantum freedom, re-
spectively (see Sect. 5.2.1). This extends by continuity to all of L2(Ξ, σ), and the
map is clearly onto. Its inverse is an instance of Weyl quantization, in our case, a
partial one acting only on the quantum part of the system. A similar useful formula
concerns an integral over translates:

For F,G ∈ L1(Ξ, σ) ∩ L∞(Ξ, σ) we have∫
dξ t̂r

(
Fαξ(G)

)
= (2π)n t̂r(F )t̂r(G). (5.120)

The proof is immediate for the classical part, and the quantum part is essentially
the square integrability of the quantum Weyl operators [121, Lem. 3.1.].
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5.2.4 Gaussian hybrids

In our review of purely quantum continuous-variable systems in Sect. 5.1 we have
already briefly discussed Gaussian systems. The hallmark of those systems, whether
it be quantum or classical, is their simple description combined with a wide field of
possible applications. Also, whether it be states or channels, typically the Gaussian
subset is more commonly known and used than its quasifree superset. This clearly
suggests having a closer in the hybrid case.

x
m

σ2

f(x)

Figure 5.1: A one-dimensional Gaussian function.

The basic positivity condition

Our first step is to show that the common description of Gaussian states fits into our
framework, i.e., we need to specialize to the case where all characteristic functions
have a Gaussian form. Like in the purely quantum or classical setting, this allows
a complete reduction to the finite-dimensional analysis of covariance matrices and
means.

Definition & Lemma 94. Consider a continuous variable system with hybrid com-
mutation relations given by an antisymmetric matrix σ, as in Eq. 5.63. Then

(1) For every state ω with finite second moments and characteristic function χ,
we can define the mean vector m ∈ Ξ and the covariance matrix γ by

mj = ω(Rj) = 1
i

∂

∂ξk
χ(ξ)

∣∣∣
ξ=0

γjk = 2ℜe ω
(
(Rj −mj1)(Rk −mk1)

)
= − ∂2

∂ξk∂ξl
χ(ξ)

∣∣∣
ξ=0

−mjmk.

(5.121)
The covariance matrix γ is real, symmetric, and positive semi-definite.

(2) When (1) holds, γ + iσ, and hence its complex conjugate γ − iσ, are positive
semi-definite.

(3) When (2) holds,

χ(ξ) = exp
(
−1
4ξ·γξ + iξ·m

)
(5.122)

is the characteristic function of a state, called the Gaussian state with mean
m and covariance γ.
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Proof. (1) is a definition.
(2) Let ξ ∈ C2n+s = Ξ+ iΞ, and define the operator X =

∑
i ξi(Ri−mi1). Then∑

k,ℓ

ξk(γkℓ + iσkℓ) ξℓ = 2
∑
k,ℓ

ξk
(
ℜe ω

(
(Rk −mk1)(Rℓ −mℓ1)

)
+ iℑmω

(
(Rk −mk1)(Rℓ −mℓ1)

))
ξℓ

= 2
∑
k,ℓ

ξk ω
(
(Rk −mk1)(Rℓ −mℓ1)

)
ξℓ

= ω(X∗X) ≥ 0. (5.123)

(3) Here, we just need to verify Bochner’s Theorem (Thm. 89), which is trivial for
normalization and continuity. The proof of twisted positive definiteness is based on
the well-known fact that the entrywise product, also called the Hadamard product
or the Schur product, of positive semi-definite matrices is positive semi-definite.
By summation this also applies to the Hadamard exponential [128] of a matrix M
defined as (HexpM))kℓ = exp(Mkℓ).

We now write

χ(ξk − ξℓ)eiξk·σξℓ =
(
χ(ξk)χ(ξℓ)

) (
eξk·(γ + iσ)ξℓ/2

)
(5.124)

This is the Hadamard product of two matrices, where the first is obviously positive
definite, and the second is the Hadamard exponential of the Gram matrix

Gkℓ = ξk·(γ + iσ)ξℓ, (5.125)

which is positive semi-definite by assumption.

Minimality and purity

We have defined Gaussians in terms of their characteristic functions rather than by
the form of their probability density (Def. 94). This has the consequence that we
include singular Gaussians, for which γ has null directions. The extreme case of this
is a classical system with γ = 0, and hence

χ(ξ) = exp(iξ·m), (5.126)

i.e., the characteristic function of the point measure at m with density δ(ξ − m).
More generally, we include cases where the classical measure is supported on a plane,
whose direction is characterized by the kernel of γ and whose offset is given by m.

In the quantum case, this cannot happen: No normal state can have sharp
position distribution because the position probability density is a sum of L1-functions
|Ψ(x)|2. Therefore, it is an interesting question what the pertinent conditions are in
the hybrid case.

The next step in our characterization of quantum-classical hybrid states is the
classification into pure and mixed ones. On the quantum side, this is well known.
Here, the rank-one projectors or vectors give the pure states |Ψ⟩⟨Ψ|. For classical
systems, i.e., probability measures, the pure states are point measures. While cer-
tainly not every pure quantum state is a Gaussian one, all pure classical states are
captured by our definition of Gaussian states:
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They are of the form described in Eq. (5.122) for γ = 0. With these pure
classical states, it is easy to construct hybrid ones with the non-vanishing quantum
part. Take a Gaussian quantum state, with γQ as covariance and mQ as mean. Now
the pair (γQ ⊕ 0,m⊕ ξ0) describes hybrid Gaussian state for σ = σ1 ⊕ 0.

In the subset of Gaussian quantum states, we also have a characterization of pure
states. For n degrees of freedom, a Gaussian quantum state ωQ with covariance γ1
is pure if one of the equivalent statements holds true [92, 116]:

(a) det γ1 = 1, (b) rank(γ1 + iσ1) = n, (c) γ1 ∈ Sp(2n,R), (d) (σ−1
1 γ1)−1 = −12n.

Given that a hybrid must include the point measures on the classical part and
the degeneracy of σ, we can not simply transfer this statement. Instead, we need
to introduce minimal γ, which describes the covariance matrices of pure Gaussian
hybrid states.

The idea of minimality is similar to [116], where the focus lies on the description
of Gaussian quantum channels: There, the degenerate symplectic form comes into
play because, as described in Sect. 5.1.3, a Gaussian quantum channel is fully de-
scribed by the matrices N and S that fulfill N + i∆σ ≥ 0 with ∆σ = σout−S⊤σinS.
Dependent on the choice of S, the antisymmetric form ∆σ can be degenerate, al-
though this setting deals with the purely quantum case.

Definition & Lemma 95. Let (Ξ, σ) and γ,m with γ+ iσ ≥ 0. Then the following
are equivalent:

(1) γ is minimal in the sense that for any symmetric real matrix γ′, with γ′ ≤ γ
and γ′ + iσ ≥ 0, we have γ′ = γ.

(2) The Gaussian state with covariance γ and mean m is pure.

(3) There is only one state with finite second moments, covariance γ and mean
m.

(4) There is a coordinate system for Ξ in which we have

γ + iσ =

 1 i1 0
−i1 1 0
0 0 0

 . (5.127)

Proof. Note that (1) and (4) do not contain m. Moreover, by a translation, we can
change m, so if condition (2) or (3) holds for some m, it holds for all. Hence, we
may assume m = 0 throughout.

(3)⇒(2): This direction is trivial: When there is only one state with the data
(γ,m) and we know that there is always a Gaussian one, that unique state has to
be the Gaussian.

(2)⇒(1): Suppose that γ is not minimal. Then we can find γ′ ≤ γ, but γ′ ̸=
γ, such that γ′ is still the covariance of an admissible state, i.e., γ′ + iσ ≥ 0.
Then average over translations with a classical weight with covariance γ′ to get the
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Gaussian state back:

ωγ(W (ξ)) = ωγ′(W (ξ)) exp
(
−1
4ξ(γ − γ′)ξ

)
= ωγ′(W (ξ))

∫
µγ−γ′(dη) eiξ·ση

=
∫
µγ−γ′(dη)ωγ′(W (ση)W (ξ)W (ση)∗) (5.128)

ωγ =
∫
µ(dη)αη(ωγ̃). (5.129)

Here µγ−γ̃ describes a Gaussian measure with covariance γ− γ′. It is not pure since
this is written as an explicit mixture of distinct states.

(1)⇒(4): Consider some admissible covariance matrix γ, so γ + iσ ≥ 0, and
denote by N± the kernel of γ ± iσ in the complex Hilbert space Ξ + iΞ = C2n+s.
We will make γ smaller by subtracting rank-one operators. We claim that this is
possible as long as N⊥

+ ∩N⊥
− contains non-zero vectors. Indeed, if 0 ̸= φ ∈ N⊥

+ ∩N⊥
− ,

the same holds for the complex conjugate, so either the real part or the imaginary
part is non-zero, and we can assume φ to be real and normalized. Because φ ∈ N⊥

+
it lies in the span of those eigenvectors of the positive semi-definite matrix γ + iσ
with strictly positive eigenvalues. The smallest eigenvalue will be denoted by λ.
Then (γ + iσ) ≥ λ|φ⟩⟨φ|, and γ′ = γ − λ|φ⟩⟨φ| is still an admissible covariance
matrix, and φ ∈ N ′

±, so the dimension of N± has increased by 1. This implies that
after finitely many steps, we reach a situation where N⊥

+ ∩N⊥
− = {0}, and no more

subtractions are possible. Covariance matrices with this property are our candidates
for the minimal ones.

Since N⊥
+ ∩ N⊥

− = (N+ + N−)⊥ this condition is equivalent to the spaces N±
together spanning Ξ + iΞ. In particular, every real vector ξ can be written as
ξ = ξ+ + ξ− with ξ± ∈ N±. Since the complex conjugate vectors η± = ξ∓ ∈ N∓
form an equally valid decomposition, so does ξ′± = (ξ± + ξ∓)/2, so we can choose
ξ± to be complex conjugates of each other. In other words, for every ξ ∈ Ξ there is
a vector η ∈ Ξ such that ξ + iη ∈ N+, which means that

0 = (γ + iσ)(ξ + iη) = (γξ − ση) + i(σξ + γη). (5.130)

Of course, the two parentheses have to vanish separately. Now, if a vector is in the
range of γ, i.e., of the form γξ, it is also of the form ση, so in the range of σ, and
the second parenthesis similarly shows the reverse inclusion. Hence, the ranges of σ
and η are the same.

(4)⇒(3): For classical variables ⟨Q2
j ⟩ = 0 for j > 2n implies that the state is

concentrated at ξ0 = 0. For quantum: ω(A∗A) = 0 with A = (Q + iP ) it is the
unique oscillator ground state ωosc, so ω = ωosc ⊗ δ0.

Note that one characterization of purity, which works in the classical case, does
not when quantum systems are around: Classically, the characteristic function of a
point measure has constant modulus 1, and conversely. In the quantum case, the
uncertainty relation prevents that.
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Conditional states

The description of conditional states for hybrid systems is especially relevant because
we are free to read out and copy the classical part thoroughly compared to the
quantum systems. Also, it is a benchmark for our generalization of Gaussian systems
as it would be highly beneficial if a Gaussian hybrid state would have the Gaussian
versions on the respective subsystems. Indeed, for classical systems, i.e., multivariate
normal distributions, this fact is well known. So the question for this chapter is the
following: Given a Gaussian hybrid state ω with covariance γ, what do the measure
µ(dx) and ρx in Eq. (5.80) look like? The basic answer to this is: Gaussian. For
µ, this includes the possibility of point measures, which we consider as Gaussian as
well, as described at the beginning. Mixed combinations, i.e., measures living on a
hyperplane with a Gaussian density on that plane, are also possible.

It turns out that the conditioning works exactly as in classical probability. This
is summarized in the following lemma, slightly adapted for our purposes.

Lemma 96. Let γ be a positive semi-definite operator on a complex phase space
Ξ = Ξ1 ⊕ Ξ0, with the corresponding block matrix decomposition

γ =
(
γ11 γ10
γ01 γ00

)
. (5.131)

(1) Then there is an operator A : Ξ1 → Ξ0 such γ01 = γ00A, and we have the
decomposition〈

φ1 ⊕ φ0
∣∣ γ ∣∣ φ1 ⊕ φ0

〉
= ⟨φ1|γS |φ1⟩+ ⟨φ0 +Aφ1|γ00|φ0 +Aφ1⟩, (5.132)

where γS = γ11 −A∗γ00A ≥ 0 is called the Schur complement of γ00 in γ.

(2) When γ00 is singular, A is not uniquely defined, but the above decomposition
does not depend on the choice of A.

(3) When Ξ has a complex conjugation so that γ01 and γ00 are real, then A can
also be chosen to be real.

Proof. We start by choosing a basis for Ξ0, such that the non-singular part of γ00 is
given by the upper left part, i.e.

γ =

 γ11 γ̃10 0
γ̃01 γ00

+ 0
0 0 0

 . (5.133)

Note that because γ ≥ 0, the submatrices γ01 and γ10 also vanish next to the singular
part of γ00 and reduce to γ̃01, resp. γ̃10. The equation for the operator A now reads

γ01 =
(
γ̃01
0

)
=
(
γ00

+ 0
0 0

)(
A1
A2

)
. (5.134)

A solution to Eq. (5.134) is A1 = (γ00+)−1γ̃01 and A2 = 0. With this, Eq. (5.132) is
merely an algebraic transformation, so we proved (1). For (2), note that the solution
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to Eq. (5.134) is unique, only if AΞ0 ⊂ γ00Ξ0, so it is exactly the singular part of γ00,
which allows arbitrary A2. Finally, (3) follows by taking the real part of Eq. (5.134).
Because γ is a real matrix, the real part Ã of a complex solution A still satisfies
γ01 = γ00Ã.

Item (1) makes clear that we can define the Schur complement as

⟨φ1|γS |φ1⟩ = min
φ0

〈
φ1 ⊕ φ0

∣∣ γ ∣∣ φ1 ⊕ φ0
〉
. (5.135)

Of course, when γ00 is invertible, we have A = γ−1
00 γ01 and γS = γ11 − γ10γ

−1
00 γ01.

In the literature, the general definition is often given by replacing the inverse with
some pseudo-inverse (cf. [129, 130]). Our above approach via A clarifies why the
pseudo-inverse’s exact nature is irrelevant. A also turns out to be useful in the
computation of conditionals.

Proposition 97. Let γ and A be as in Lem. 96.

(1) When G is the Gaussian joint distribution of x1 and x0 with covariance γ
and mean m = m1 ⊕ m0, then the conditional distribution of x1 given x0 is
Gaussian with covariance γS and mean m1 +A⊤(x0 −m0).

(2) Let χ(ξ) = exp(−ξ·γξ/4 + i(m1 ⊕ m0)·ξ) be the characteristic function of a
hybrid system. Then in the decomposition in Eq. (5.80) the measure µ is
Gaussian with covariance γ00 and mean m0 and the states ωx0 are Gaussian
with characteristic function

χx0(ξ1) = exp
(
−ξ1·γSξ1/4 + i(m1 +A⊤(x0 −m0))·ξ1

)
. (5.136)

Proof. We prove the two parts together by only insisting on a vanishing commutator
form σ0 on Ξ0, but allowing the commutator form σ1 to be degenerate as well. Then
(2) is the version for non-degenerate σ1, and (1) is the version for σ1 = 0. In the
proof, this hardly makes a difference. Since covariance matrices are real symmetric,
we can take Ξ0 and Ξ1 to be real spaces. Complex matrices will arise only at
the end when we have to verify the positive conditions for the claimed conditional
characteristic function.

Consider the Gaussian measure G0 given by the Ξ0-marginal, i.e., the Gaussian
with covariance γ00 and mean m0, assume ωx0 to be hybrid Gaussian with some
covariance γ̃(x0) and mean m̃(x0), both depending on x0 in some way. We will see
that for the overall state being Gaussian, these dependencies must be rather special.
The characteristic function is now

χ(ξ1 ⊕ ξ0) =
∫
G0(dx0)eiξ0·x0e−ξ1·γ̃(x0)ξ1/4+iξ1·m̃(x0)

!= e−(ξ1⊕ξ0)·γ(ξ1⊕ξ0)/4+iξ1·m1+iξ0·m0 . (5.137)

The integral should be expressed in terms of the characteristic function of G. For
this, the exponent must be imaginary and affine in x0. Since γ̃(x0) must be positive
for all x0, it must actually be independent of x0. We set m̃(x0) = m̃1 + Bx0 for
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some B : Ξ0 → Ξ1. Extracting terms in the exponent, which do not depend on the
integration variable, we get

χ(ξ1 ⊕ ξ0) = e−ξ1·γ̃ξ1/4+iξ1·m̃1

∫
G0(dx0)eiξ0·x0+iξ1·Bx0

= e−ξ1·γ̃ξ1/4+iξ1·m̃1χ0(ξ0 +B⊤ξ1). (5.138)

Equating exponents in Eq. (5.137) and Eq. (5.138) order by order, we find

ξ1·γ11ξ1 = ξ1·γ̃ξ1 + ξ1Bγ00B
⊤ξ1, (5.139)

ξ0·γ00ξ0 = ξ0·γ00ξ0, (5.140)
ξ0·γ01ξ1 = ξ0·γ00B⊤ξ1, (5.141)
ξ1·m1 = ξ1·(m̃1 +Bm0), (5.142)
ξ0·m0 = ξ0·m0. (5.143)

Apart from tautologies in Eq. (5.140) and Eq. (5.143) which arise from taking G0 as
the marginal, we get γ01 = γ00B

⊤, which is solved by B = A⊤. Thus by Eq. (5.139)
γ̃ = γS is the Schur complement. Finally, from Eq. (5.142) we get m̃1 = m1−A⊤m0,
and hence the mean of the conditional state m̃(x0) = m1 +A⊤(x0 −m0).

This proves the claims of (2), which immediately specializes to (1) in the purely
classical case. The difference between these two is only the positivity condition on
the covariance of the conditional state. Thus, it remains to be shown that χx0 in
(2) indeed defines a quantum state, i.e., γS + iσ1 ≥ 0. To this end consider the
Schur complement of γ00 in the complex positive definite matrix γ+ i(σ1⊕σ0) with
σ0 = 0. Then the same real operator A satisfies the required equation for this case
as for the complement in γ. Therefore, the Schur complement in γ + iσ is equal to
γS + iσ1, which is therefore positive semi-definite.

One subtlety has to be addressed: We allow singular Gaussians, which are sup-
ported on a hyperplane, and hence γ00 with a non-trivial null space. In that case,
we saw that A is not uniquely determined. But the conditional states χx0 do de-
pend on this choice. Let us take the most extreme example of this, namely γ00 = 0.
Then we also have γ01 = 0 by positive semi-definiteness, i.e., any operator A sat-
isfies the required equation. In this case, however, the support of the Ξ0-marginal
is a point, which is then also the mean m0. For x0 in the support of this measure,
we have A⊤(x0 − m0) = 0, and also for any A, i.e., the mean is fixed indepen-
dently of the choice of A. For x0 not in the support, ωx0 is anyhow irrelevant
since it does not contribute to the representation integral in Eq. (5.80). More gen-
erally, for merely partially singular γ00, the support of a singular Gaussian mea-
sure consists of those x0 for which (x0 − m0) = γ00y for some y. But for these,
A⊤(x0 −m0) = A⊤γ00y = (γ00A)⊤y = γ10y depends only on the given data, not on
a choice of A.

In summary, we can state that our hybrid ansatz works well with the Gaussian
world. Gaussian states are described exactly as one would have expected, and also
looking at the marginals of a hybrid Gaussian recreates our standard quantum and
classical analogous.
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Squeezed and singular states

We finish this section with the description of the two-mode squeezed state [131],
which is a Gaussian entangled state, and illustrates the limit towards singular states.

Let us start with the rough idea behind squeezing: We have already mentioned
that quantum mechanics forbids sharply concentrated states in phase space, which
is probably most famously captured by the Heisenberg Uncertainty Principle. While
this uncertainty relation forbids the preparation of a sharply concentrated in both
position and momentum, it only bounds the product of its variances. Hence, we can
sharpen our distribution for one of the two observables at the cost of the other.

The limit of this process, loosely speaking, is then a sharply concentrated dis-
tribution in one observable, while the other is completely smeared out. Such states
are the typical archetypes for singular states. Doing this limit more carefully and
going to really sharp distributions is an interesting exercise in singular states [132].
It also highlights the importance of the continuity condition in Bochner’s Theorem
(Thm. 89), which excludes these states.

The topic is also closely connected to the famous classic EPR-paper [133] by
Einstein, Podolsky, and Rosen: Think of a standard quantum system with phase
space Ξ and non-degenerate σ. We then consider an opposite system over (Ξ,−σ),
which can be realized in the same Hilbert space, and the Weyl system W with
W (a, b) =W (−a, b). That is in the position representation Eq. (5.72) we can write

W (ξ) = ΘW (ξ)Θ (5.144)

with Θ the complex conjugation in that representation. Then the combined oper-
ators W̃ (ξ) = W (ξ) ⊗W (ξ) commute, and so the according characteristic function
χ2(ξ) = ω2(W̃ (ξ)) is not subject to uncertainty constraints. That is, it may corre-
spond to a probability distribution sharply concentrated at the origin. In the EPR
paper, the state is to have sharp distribution for the canonical operators Q1 − Q2
and P1 + P2. What they actually write down is an unnormalizable wave function,
but the intention is clearly to have pretty sharp distributions for these operators, of
course, at the expense of their canonical conjugates P1 − P2 and Q1 +Q2.

First of all, by weak*-compactness, the limit of states with sharper and sharper
distributions for Q1 −Q2 and P1 + P2 exists (at least along a subnet) as a state on
B(H⊗H). Since we have not specified any details of the sequence, there are many
states that might arise as a weak* cluster point of such a sequence, and since we are
implicitly invoking the axiom of choice, there is no way to give a finite specification
ensuring convergence on all observables.

However, for some simple operators, like the Weyl operators themselves, the brief
characterization is sufficient to determine the limit. Thus we get a characteristic
function, namely

⟨ωEPR,W (ξ)⊗W (η)⟩ =
{

1 ξ = η
0 otherwise. (5.145)

This is clearly discontinuous and so corresponds to no density operator. It is also
insufficient to specify the state on observables not expressed as linear combinations
of Weyl operators. However, some things can be read off easily. For example, the
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marginal for the first party (η = 0 in the above) will have the characteristic function,
which vanishes everywhere except for ξ = 0. This means that the probability for
finding a value in some finite interval [a, b] for the spectral resolution of any canonical
operator is zero. Although the joint probability for Q1 and Q2 may be in some sense
concentrated on x1 = x2, the values themselves are infinite with probability one and
can only be specified as infinite points in some (non-constructive) compactification
of position space. This is hardly what the authors intended, so it is much more
useful to stick with pretty sharp distributions.

This is also a practical issue for quantum optics, where squeezed states play an
important role. Here, the two-mode squeezed state is the typical prototype:

Consider a standard Gaussian product state of the doubled system that is

χ0(ξ1 ⊕ ξ2) = exp
(
−1
2
(
p21 + p22 + q21 + q22

))
. (5.146)

Now we apply the transformation (p1, p2) 7→ (cp1 + sp2, sp1 + cp2) with c = coshλ,
s = sinhλ (a hyperbolic rotation), and the inverse to the positions, so that the
symplectic form ξ·σξ′ = p·q′− q·p′ remains invariant. Then, taking into account the
inversion of one of the arguments in W , we get a state ωλ with

⟨ωλ,W (ξ)⊗W (η)⟩ = exp
(
−1
4
(
e2λ(ξ − η)2 + e−2λ(ξ + η)2

))
, (5.147)

where ξ2 = (p, q)2 = p2 + q2. When η = ξ, this converges pointwise to Eq. (5.145),
but since the limit is not continuous, Lévy’s convergence theorem [3] does not apply,
which would otherwise yield the existence of a continuous characteristic function,
i.e., an according normal state.

Taking just the case ξ = η, we see that Eq. (5.147) converges pointwise to 1
as λ → ∞. This property will be useful in the proof of Cor. 120. We therefore
generalize it to arbitrary hybrids:

Lemma 98. For any hybrid system (Ξ, σ) there is a family of states ωε for the
system (Ξ⊕ Ξ, σ ⊕ (−σ)) such that

lim
ε→0

⟨ωε,W (ξ)⊗W (ξ)⟩ ≥ exp
(
−ε2 ξ·Aξ

)
for all ξ ∈ Ξ, (5.148)

where A is the covariance matrix of a quantum state on (Ξ, σ), i.e., A+ iσ ≥ 0. In
particular, the left-hand side goes to 1 as ε→ 0.

Proof. When (Ξ, σ) is a direct sum of other spaces, we can reduce the proof to each
summand by taking tensor products. We need only two types of summands: single
degree of freedom quantum systems for which the two-mode squeezed state provides
just the required family of states with ε = e−2λ, λ → ∞, and one-dimensional
classical systems. For these, we can take any probability measure on the doubled
system, which is concentrated on the diagonal. This will satisfy the condition even
with ε = 0.
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5.3 Hybrid Observable Algebras
The settings

This section aims to complement the description of hybrid states by spaces of ob-
servables. Any standard representation in the sense of Def. 86 gives us a natural
observable algebra, the von Neumann algebra

B(H1)⊗ L∞(Ξ0, µ), (5.149)

in which observables are B(H1)-valued functions on Ξ0 and we have basically all the
problems of the W*-view described in Sect. 3.3.1.

This algebra depends on µ, and any choice of µ excludes some states. With the
Lebesgue measure for µ, we exclude all pure states, and while we can add countably
many point measures to µ, we would still miss uncountably many others.

When it comes to quasifree channels, a µ-dependent description brings in addi-
tional assumptions, so it becomes much more cumbersome to formulate results that
hold for all quasifree channels. In contrast, our description of states on C∗(Ξ, σ) is
already free of such constraints, and we will now develop a matching description of
observables and, later, of channels. So we have two complementary points of view:

The setting with fixed µ Here, we have a natural Hilbert space

Hµ = H1 ⊗ L2(Ξ0, µ), (5.150)

where H1 is the Hilbert space of the Schrödinger representation of the quantum part
Ξ1. It carries a standard representation (in the sense of Def. 86) of the Weyl operators
and the basic C*-algebra C∗(Ξ, σ) = K(H1)⊗ C0(Ξ0). The density operators on Hµ

precisely give those states whose distribution for Ξ0 is absolutely continuous with
respect to µ, i.e., states in

T 1(H1)⊗ L1(Ξ0, µ). (5.151)
Every state ω ∈ C∗(Ξ, σ)∗ is represented in such a structure, but unless we want to
go to non-separable Hilbert spaces, like the direct sum of all such Hµ, every standard
representation misses many states.

The µ-free setting This is the point of view based on the C*-algebra

A = C∗(Ξ, σ), (5.152)

allowing all states of A. The maximal space of observables, for which these states
provide probability distributions, is, by definition, the bidual A∗∗. To get the con-
nection with the µ-dependent view, consider the map

iµ : T 1(H1)⊗ L1(Ξ0, µ) → C∗(Ξ, σ)∗, (5.153)

which identifies the states in the µ dependent view with the states in the µ-free
setting. The adjoint of the embedding is then the restriction map, the representation

i∗µ : C∗(Ξ, σ)∗∗ → B(H1)⊗L∞(Ξ0, µ) ⊂ B
(
H1 ⊗ L2(Ξ0, µ)

)
. (5.154)

This representation destroys all information in A ∈ C∗(Ξ, σ)∗∗, which is irrelevant
for states absolutely continuous with respect to µ, i.e., identifies functions coinciding
µ-almost everywhere.
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The requirements

Neither of the two obvious choices for observable spaces in the µ-free setting is
feasible. The largest choice mentioned above is the second dual C∗(Ξ, σ)∗∗, which is
in many ways too large so that individual elements often have no explicit description.
The difficulty here arises mostly from the classical part: While the second dual of
the compact operators is just the space of all bounded operators, the second dual
C0(X)∗∗ is a rather complex object [134]. Elements of this space are not functions
on X, but on a related, much larger Stonean topological space X̂. Its points are the
extreme points of the normalized positive elements in the triple dual C∗(Ξ, σ)∗∗∗,
another highly non-constructive object. Hence, while the elements in C∗(Ξ, σ)∗∗
admit a function representation, it is impossible to explicitly describe even a single
point of the classical variables space on which they are supposed to be functions.

At the other end, small algebras, we have the algebra C∗(Ξ, σ) itself. This
is in many ways too small. Indeed, C∗(Ξ, σ) does not have an identity, which is
needed for the physical interpretation as an observable algebra. Also, it does not
allow quantum operators with a continuous spectrum, barring the Weyl operators
themselves. Therefore, we will have to choose some intermediate algebra M with

C∗(Ξ, σ) ⊂ M ⊂ C∗(Ξ, σ)∗∗. (5.155)

The criteria for this choice are simple:

• M should be constructed in a way that makes sense for every hybrid system.

• Applying a quasifree channel T an observable in Mout for the output system
should give an observable in Min.

Roughly speaking, M will describe a degree of regularity for observables, preserved
by all quasifree channels, leading to an automatic Heisenberg picture between the
corresponding observable algebras. This could be expressed as regularity properties
of operator-valued functions on the classical phase space. However, such an approach
introduces many case distinctions for proofs of the second of the above criteria: It
depends on how inputs and outputs are split into classical and quantum parts and
how a quasifree channel reshuffles these splits. It turns out to be much more efficient
to work with constructions that apply to classical, quantum, and hybrid systems
alike.

Here we follow the path of a functional analyst doing analysis, namely Gert
Pedersen, who is the author of the textbook Analysis now [10], which we conse-
quentely already used as one of the primary references in the introduction (Sect. 2).
The following section is based on his seminal early work and, despite its relative
abstractness, leads painlessly to just the Heisenberg picture characterizations we
wanted to see.
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5.3.1 Review: Semicontinuity in C*-algebras

The constructions in this section are inspired by the commutative case [134] but
have been generalized to arbitrary C*-algebras in [135, 136, 137] (see also [8, III,§6]
and [12] for textbook versions).

The commutation relations are not needed for this, so we will consider first a
general C*-algebraA, typically without a unit, and only in the next section specialize
to hybrids, i.e., A = C0(X,K(H)). The standard states are then elements of the dual,
and we are interested in well-behaved subalgebras of the bidual. A special role will
be played by the pure states of A.

We start with some more definitions and facts that were not already introduced
in Sect. 2.2. From Sect. 2.2.2 we know that A∗∗ can be identified with its enveloping
von Neumann algebra, which is the von Neumann algebra generated by A in its
universal representation. This is simply the direct sum of all GNS-representations
of A. The center Z = M ∩ M′ of a von Neumann algebra M is likewise a von
Neumann algebra, and here it is the natural arena for the representation theory
of A.

We call M a factor if the only elements in Z are scalar multiples of the identity.
Based on the factors, each von Neumann algebra can be decomposed and classified
into three different types, called type I, II, and III. The self-adjoint elements of the
center, denoted by Zsa, also form a complete real vector lattice [12, 2.6.1].

Definition 99. For an element A ∈ Msa, we define its central cover zA as the
infimum of all Z ∈ Zsa with A ≤ Z.

If A is a projection, so is zA [12, 2.6.2]. Next, we connect the above definition of
a central cover from elements in the universal enveloping von Neumann algebra A∗∗

to representations of the underlying C*-algebra A.
Let {π,H} be a non-degenerate representation of A. By Prop. 32, there exists

a normal representation π′′ : A′′ → π(A)′′ that extends π. One can show that
the image of π′′ is isomorphic to A∗∗ for some central projection p ∈ Z(A∗∗) [12,
Cor. 2.5.5].

Definition 100. We call the central cover of the projection p, such that pA∗∗ is
isomorphic to π(A)′′, the central cover of the representation {π,H} and denote it
by zπ.

Before we can state the next result, we need another notion of equivalence for
representations [12, 3.3.6].

Definition 101. We call two representations {π1,H1} and {π2,H2} of a C*-algebra
A quasi-equivalant if there is an isomorphism h of π1(A)′′ to π2(A)′′ such that

h(π1(A)) = π2(A) for all A ∈ A. (5.156)

Now, we can state the following theorem that will allow us to classify the rep-
resentations of A, up to quasi-equivalence, by the central projections in A∗∗ [12,
Thm. 3.8.2].
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Theorem 102. Two representations {π1,H1} and {π2,H2} of a C*-algebra A are
quasi-equivalent if and only if zπ1 = zπ2, and the map (π,H) → zπ gives a bijective
correspondence between equivalence classes of representations of A and non-zero
central projections in A∗∗.

Consider now a pure state ω ∈ A∗. Its GNS-representation is irreducible, so the
corresponding central projection zπ is minimal. Here minimal means that there is
no projection p in the center of A∗∗, other than 0 and zπ, such that 0 ≤ p ≤ zπ.
Minimal projections are also called the atoms of the projection lattice, and the
minimal projections of A∗∗ correspond precisely to the pure states on A. We record
this observation as a statement for arbitrary von Neumann algebras (see [138]).

Lemma 103. Let M be a von Neumann algebra. Then there is a one-to-one corre-
spondence between minimal projections p ∈ M and extremal normal states ω ∈ M∗,
given by

pxp = ω(x)p, for all x ∈ M. (5.157)

Proof. For any projection p, we consider the von Neumann subalgebra M̃ = pMp.
The crucial issue is whether this algebra is one-dimensional. When that is the case,
we must have pxp = ω(x)p for some functional ω, which is necessarily a normal
state. We will proceed by showing the implications “p minimal” ⇔ “dimM̃ = 1”
⇒ “ω extremal” ⇒ “the support projection of ω satisfies dimM̃ = 1”.

Indeed, p is minimal iff, for any projection q, 0 ≤ q ≤ p implies q = 0 or q = p.
This is equivalent to 0 and p being the only projections in M̃, i.e., to dimM̃ = 1.

In this case, consider the state ω. Then from ω = λω1 + (1− λ)ω2 we conclude
ω1 ≤ λ−1ω, hence

|⟨ω1, x(1− p)⟩|2 ≤ ⟨ω1, (1− p)x∗x(1− p)⟩ ≤ λ−1⟨ω, (1− p)x∗x(1− p)⟩ = 0. (5.158)

But then ⟨ω1, x⟩ = ⟨ω1, pxp⟩ = ⟨ω, x⟩⟨ω1, p⟩ and ⟨ω1, p⟩ = 1 by choosing x = 1 in
this equation. Hence ω1 = ω, so ω is extremal.

Now let ω be extremal and normal, and let p be its support, i.e., the smallest
projection such that ⟨ω, p⟩ = 1. Then ω restricted to M̃ is also pure and, in addition,
faithful, i.e., x ∈ M̃ with ⟨ω, x∗x⟩ = 0 implies x = 0. Indeed, the eigenprojection
q ∈ M̃ of x∗x for the spectral set {0} must then satisfy ⟨ω, q⟩ = 1. Hence on the one
hand q ≤ p, because q ∈ pMp, and q ≥ p by minimality of the support projection
p. Therefore x∗x = 0.

So consider the GNS-representation πω of a faithful normal pure state. Faith-
fulness implies that the representation is injective, and general representation theo-
rems [15, 1.16.2] imply that the image πω(M̃) is a von Neumann algebra. By purity,
πω(M̃) is irreducible, so πω(M̃) = B(Hω). On the other hand, ω is given by a vector
Ω ∈ Hω. So, unless dimHω = 1, there is a vector orthogonal to it and hence a non-
zero element x with πω(x)Ω = 0, and hence ⟨ω, x∗x⟩ = 0, contradicting faithfulness.
Hence dimHω = 1, and dimM̃ = 1.

For many von Neumann algebras, this is a statement about the empty set, namely
when M is of type II or III, or L∞(X,µ) when there are no points with positive µ-
measure. However, for a second dual, there are many extreme points. Their central
cover is the smallest projection za so that p ≤ za for all minimal projections and
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zaA∗∗ is called the atomic representation of A∗∗. Similar to the construction
of the universal representation in Eq. (2.49), we can replace the direct sum over
all cyclic representation to those of pure states and get the universal atomic
representation [8, Def. III.6.35]. This part will determine our subalgebras and be
useful for a function representation.

Indeed, consider for a moment the classical case A = C0(X). Then there is a
simple way to associate with an element A ∈ A∗∗ a function Ǎ on X, namely to
evaluate A in the pure state δx, the point measure at x ∈ X, setting Ǎ(x) = δx(A).
However, when A has support in the complement of the atomic subspace, also called
the diffuse subspace, we get

δx(A)p = pAp = 0, (5.159)

where p is the projection associated with δx via Eq. (5.157). Hence, Ǎ = 0, so the
function Ǎ has nothing to say about A.

Nevertheless, for suitable subalgebras of A∗∗, the atomic representation, and
hence the function representation Ǎ, contains complete information. The idea of
[135] is to use monotone limits to construct useful algebras with this property. Since
these constructions work in the same way in arbitrary C*-algebras, they also provide
a Heisenberg picture for general dual channels.

In A∗∗ bounded, increasing nets are automatically weak*-convergent, and if this
algebra is represented on a Hilbert space, the limits exist in the strong operator
topology. This makes the most sense in the hermitian part A∗∗

h of A∗∗. For any
subset M ⊂ A∗∗

h , we denote by Mm the set of limit points of such nets from M .
Similarly, Mm = −(−M)m represents the limits of decreasing nets fromM [8, III.6].

Definition 104. Let A be a C*-algebra. Then

A↑ := (Ah + R1)m

is called the lower semicontinuous cone of A∗∗
h . Accordingly the upper semi-

continuous cone is defined as A↓ = (Ah + R1)m.

We remark that there are some subtle distinctions in defining the semicontinuous
cone, depending on whether the unit is adjoined first (as above) and on whether a
norm closure of the cone is taken. These are discussed carefully in [136, 137] and
are beyond the scope of our application. Our focus lies in their connection to the
multiplier algebra:

Definition 105. The multiplier algebra of a C*-algebra A, denoted by M(A), is
the set of elements m ∈ A∗∗ such that, for all a ∈ A, ma ∈ A and am ∈ A.

Here the main observation for us is the following [8, Thm. III.6.24].

Theorem 106. Let A be a C*-algebra and M(A) its multiplier algebra. Then we
have

A↑ ∩ A↓ =M(A)h. (5.160)

The multiplier algebra is the first candidate for our well-behaved subalgebras of
the bidual. Another one is the following [8, Def. III.6.31f].
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Definition 107. Let A be a C*-algebra. An element a ∈ A∗∗
h is called universally

measurable if, for every state ω ∈ A∗, and every ε > 0, there are x ∈ A↑, y ∈ A↓
such that

x ≤ a ≤ y and ω(y − x) < ε. (5.161)

The real vector space of universally measurable elements of A is denoted by U(A).

A useful property of this space is that it works perfectly with the above intro-
duced atomic representation of the bidual [8, Thm. III.6.37]:

Theorem 108. The universal atomic representation of A is isometric on the class
U(A) of all universally measurable elements in A∗∗

h .

In the classical case, A = C0(X) with X locally compact, the lower semicontinu-
ous cone consists just of the bounded lower semicontinuous functions f in the sense
of point-set topology (lower level sets {x|f(x) ≤ a} are closed). The multipliers are
all bounded continuous functions [139], i.e.,

M(A) = Cb(X). (5.162)

For the universally measurable functions, note that, for a fixed measure µ ∈ C0(X)∗,
by definition, all bounded Borel measurable functions can be integrated. However,
one usually completes the Borel algebra by including all µ-null sets. The completion
can be understood by adding all sets which can be approximated from above and
below by Borel measurable sets, whose µ-volume differs by arbitrarily little. The
completion construction depends on µ, but some sets will be added for all µ, and
these are called universally measurable [55, 8.4].

The functions that are measurable for the completed σ-algebra are called µ-
measurable, and their classes up to µ-a.e. equality form L∞(X,µ). The approxi-
mation from above and below for defining µ-measurable sets has its counterpart for
functions in the definition given above, with fixed µ = ω. Hence, the universally
measurable functions are those that are µ-measurable for all µ.

Heisenberg pictures

After we have now certainly fulfilled the relative abstractness promised at the end
of the previous section, we still have to show that these subsets of A∗∗ allow for a
proper definition of dynamics. Indeed, for both of these subsets of observables, there
is an automatic Heisenberg picture for channels initially defined on states:

Lemma 109. Let A and B be C*-algebras and T : A∗ → B∗ a linear map taking
states to states and T ∗ : B∗∗ → A∗∗ the dual map. Then the inclusions T ∗M(B) ⊂
M(A), T ∗B↑ ⊂ A↑ and T ∗U(B) ⊂ U(A) hold.

Proof. Dual channels T ∗ : B∗∗ → A∗∗ preserve positivity and normalization. The
latter condition can be written as T ∗1 = 1. They map increasing nets to increas-
ing nets and are continuous for the respective limits. Hence T ∗B↑ ⊂ A↑. Then,
the characterization of multipliers as both upper and lower continuous (Thm. 106)
shows T ∗M(B) ⊂ M(A), which is actually not obvious from just the definition of
multipliers.
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For the universally measurable class we proceed directly: Fix b ∈ U(B) and
ε > 0. Then by definition we can find bi ∈ Bi for i =↑, ↓ such that b↑ ≤ b ≤ b↓
and (Tω)(b↓ − b↑) ≤ ε dualizing T in the last inequality and applying T ∗ to the
inequality for b gives the required upper and lower bounds T ∗bi for T ∗b.

We note that such inclusions are always equivalent to a continuity condition for T .
If we chose subspaces Ã ⊂ A∗∗ and B̃ ⊂ B∗∗, the inclusion T ∗(B̃) ⊂ Ã is equivalent
[13, IV.2.1] to the continuity with respect to the weak topologies σ(A∗, Ã) and
σ(B∗, Ã), which are defined to make just those linear functionals A → C continuous,
which are given by elements of Ã (and similarly for B).
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5.3.2 Hybrid observables as functions

Let us now apply the ideas of the previous section to our hybrid systems. The
symplectic form and the group theoretical structure of the phase space do not play
a key role here, so we are looking at a slightly more general case, where the underlying
C*-algebra is A = K(H)⊗ C0(X), where K(H) denotes the compact operators on a
separable Hilbert space H, and X is a locally compact metrizable space generalizing
Ξ0. By Thm. 66, we can identify A with C0(X,K), the functions X 7→ K which
are continuous in norm and vanishing in norm at infinity. Under this identification,
A = f ⊗K becomes the function A(x) = f(x)K. In the introduction of [137], this
algebra is actually suggested as the intuition-building model case for the theory we
outlined in the previous section.

Going to the first dual A∗, we find the states, and their disintegration as in
Eq. (5.80): We can write each state ω as

ω(f ⊗A) =: ⟨ω, f ⊗A⟩ =
∫
µ(dx)m(x) f(x) tr(ρxA), (5.163)

where µ is a (not necessarily finite) measure on X, m ∈ L1(X,µ) is a probability
density, so that µm is an arbitrary probability measure. This splitting of the classical
marginal merely emphasized that we may realize states absolutely continuous with
respect to the same µ in the same Hilbert space. In Eq. (5.163) it is clear that the
integrand at each point x is a linear functional in A ∈ K, hence given by a density
operator ρx. By taking linear combinations and norm limits, we can write this in
terms of the operator-valued function A(x) =

∑
j fj(x)Aj as

ω(A) =: ⟨ω,A⟩ =
∫
µ(dx)m(x) tr(ρxA(x)), (5.164)

or, in a useful shorthand notation,

ω =
∫ ⊕

µ(dx)m(x) ρx. (5.165)

Now Eq. (5.164) is the relation we want to extend to a much larger class of operator-
valued functions x 7→ A(x).

It is worth noting that ρx could be modified on µ-null sets without change, and
for the sake of this integral expression, A(x) might be similarly modified. This is the
hallmark of the µ-dependent approach. The states obtained with fixed µ are in the
tensor product T (H) ⊗ L1(X,µ), the norm completion of the span of the product
states ρ⊗m for which ρx ≡ ρ is constant. We can also express this by the map

iµ : T (H)⊗ L1(X,µ) → A∗, ⟨iµ(ρ⊗m), A⟩ =
∫
µ(dx)m(x) tr(ρA(x)). (5.166)

This provides the first (“µ-dependent”) way of associating operator-valued func-
tions to elements of A∗∗:

For every A ∈ A∗∗, we can consider i∗µ(A) ∈ B(H)⊗L∞(X,µ), the von Neumann
algebra tensor product [8, Ch. IV.5], which is the dual of T (H)⊗L1(X,µ), and also
the von Neumann algebra generated by A in its representation on H ⊗ L2(X,µ).
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Note that while i∗µ is onto, it is not injective: all details of A related to µ-null sets
are obliterated.

The µ-free alternative is given by the formula

⟨ρ⊗ δx, A⟩ = tr ρǍ(x) for A ∈ A∗∗. (5.167)

This is based on the observation that for fixed A, the evaluation on the left-hand
side is a bounded linear functional with respect to ρ, and thus of the given form
with a unique Ǎ(x) ∈ B(H). For fixed x this extends the point evaluation at x, i.e.,
(1 ⊗ δx) : K ⊗ C0(X) → K, to functions in A. It is an extension by continuity for
the weak topology induced by A∗ so Ǎ(x) = (1 ⊗ δx)∗∗(A).

To contrast these approaches, take µ to be Lebesgue measure or any other diffuse
measure assigning µ({x}) = 0 to every singleton. Let zµ be the common support
projection of the states iµ(ρ ⊗ m), i.e., the smallest projection in the W*-algebra
A∗∗ which gives probability 1 to all such states. Then, since δx and µ are disjoint,
their support projections in C0(X)∗∗ are orthogonal, so žµ = 0, although i∗µ(zµ) = 1.
Similarly, we can consider za, the smallest projection in A∗∗ giving 1 on all pure
states |ψ⟩⟨ψ| ⊗ δx. In this case i∗µ(za) = 0, although ža(x) = 1 for all x. So, the
two ways of assigning a function can be diametrically opposite. On the other hand,
for A ∈ A, both approaches give the continuous function representation that we
started from, although i∗µ(A) is strictly speaking an equivalence class up to µ-a.e.
equality. The question is then how far we can extend this agreement if we avoid wild
elements like zµ and za. In the following proposition, this is answered by the notion
of universal measurability and illustrated in Fig. 5.2.

Note that in Fig. 5.2 and in general, we will often abbreviate the algebra of certain
spaces by the according arguments, i.e., write M(X,K) instead of M(C0(X,K)) or
U(Ξ, σ) instead of U(C∗(Ξ, σ)), when there is no risk of confusion.

Proposition 110. Let A ∈ U(A), and let ω =
∫⊕µ(dx)m(x) ρx ∈ A∗ be a state.

Then the function x 7→ tr ρxǍ(x) is µ-measurable, and µ-almost everywhere equal to
i∗µ(A). Moreover,

⟨ω,A⟩ =
∫
µ(dx)m(x) tr(ρxǍ(x)). (5.168)

and ∥A∥ = supx ∥Ǎ(x)∥.

Proof. Fix a state ω, and consider an increasing net Ai ∈ Ah+R1 with limit A ∈ A↑.
Then from Eq. (5.167) we find Ǎ(x) = supiAi(x). Also, in Eq. (5.164), the limit
exists, and by the monotone convergence theorem, the integrand is indeed given by
the pointwise supremum, i.e., tr(ρxǍ(x)). This shows the claim for A ∈ A↑, and, of
course, for A ∈ A↓.

Now suppose A ∈ U(A), and ε > 0. Then we can find X ∈ A↑, Y ∈ A↓ such that
X ≤ A ≤ Y and ⟨ω, Y −X⟩ ≤ ε. Let us first consider the case ω = ρ⊗m with fixed
ρ. Then the function aρ(x) = tr(ρǍ), and the similarly defined functions for X,Y
(which are lower/upper semicontinuous) satisfy xρ ≤ aρ ≤ yρ, and their integrals
with mµ differ by less than ε. By Def. 105, we conclude that aρ is universally
measurable. This establishes the µ-measurability of the integrand in Eq. (5.168) for
constant ρ and the formula itself. Hence i∗µ(A)(x) = Ǎ(x), µ-almost everywhere.
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Clearly, this extends to linear combinations
∑

i ρi⊗mi. These are norm dense in
T (H)⊗L1(X,µ). Thus approximating a general state as in Eq. (5.165) by such step
functions, we find that the functions x 7→ m(x) tr(ρxǍ(x)) converges in L1(X,µ).
So, the limit is µ-measurable, and the formula holds in general. We note that the
function x 7→ tr(ρxǍ(x)) is not universally measurable, since the ρx depend on µ.

For the norm equality, we use Thm. 108, i.e., the fact that the atomic represen-
tation is isometric on U(A). Thus, we only have to show that

sup
x

∥Ǎ(x)∥ = sup
ω

∥πω(A)∥, (5.169)

where the supremum is over all pure states ω, and πω denotes the associated GNS
representation. Now the pure states are of the form ω = |ψ⟩⟨ψ| ⊗ δx with ψ ∈ H, so
we only have to show that ∥Ǎ(x)∥ = ∥πω(A)∥ for any pure state of this form, i.e., the
right-hand side does not depend on ψ. Indeed, we will show that even πω(A) = Ǎ(x)
up to the usual isomorphism around the GNS representation: By the discussion after
the definition in Eq. (5.167) of Ǎ(x), (1 ⊗ δx)∗∗ is a normal representation of A∗∗

on B(H), which is obviously irreducible, hence cyclic for any vector. Hence, if we
identify ψ as the GNS vector, it exactly meets the description of πω.

µ-free setting
states observables

C∗(X,K)∗∗

⊂

U(X,K)

⊂

M(X,K)

⊂

C∗(X,K)∗

C∗(X,K)

µ-dependent setting
statesobservables

B
(
H1 ⊗ L2(X,µ)

)

⊂

B(H1)⊗L∞(X,µ)

⊂M(X,K)

⊂

T 1(H1)⊗ L1(X,µ)

K(H)⊗ C0(X)

i∗µ

∼=

ˇ

Figure 5.2: The two hybrid settings: The µ-free setting is based only
on the C*-algebra C∗(X,K). In the µ-dependent setting, this algebra is
represented on the Hilbert space Hµ = H1 ⊗ L2(X,µ). On the level of
states, the connection is given by the map iµ taking the state space on the
far right to the one on the left (not shown). Its adjoint i∗µ maps all the µ-
free observable spaces to their µ-dependent counterparts. i∗µ is surjective
from U(X,K), indicated by a double arrow tip. This map is also realized
by the function A 7→ Ǎ from Eq. (5.167) (cf. Prop. 110). It is injective on
M(X,K) if µ has full support.

Proposition 111. Let X be locally compact, K the algebra of compact operators
on a separable Hilbert space H1, and set A = C0(X,K). Then for A ∈ M(A)
the function Ǎ is strong*-continuous, i.e., x 7→ Ǎ(x)ψ and x 7→ Ǎ(x)∗ψ are both
continuous for all ψ ∈ H. Conversely, every uniformly bounded function Ǎ with this
property defines a multiplier A ∈M(A).

Sketch of proof: This is found in [139, Cor 3.4]. We nevertheless sketch the basic
ideas of an approach not using the full-fledged theory.
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According to Def. 105, multipliers can be thought of in terms of the operators

Lm, Rm : A → A, Lm(A) = mA, Rm(A) = Am. (5.170)

Their characteristic feature is Lm(AB) = Lm(A)B, and similarly for Rm. We note
that the whole concept is redundant for C*-algebras with a unit since then we just
get multiplication with Lm(1) = m ∈ A. This suggests that the application of
Lm(Uλ) for a bounded approximate unit Uλ may help to characterize the action of
Lm.

The first observation in the hybrid context is that these operators act pointwise,
i.e.,

(
Lm(A)

)
(x) depends only on A(x), or, equivalently: A(x) = 0 ⇒ (LmA)(x) = 0.

To show this, assume A(x) = 0, and take a bounded approximate unit Uλ ∈ A
with ∥UλA − A∥ → 0 for all A ∈ A. Then, because Lm and Uλ are bounded, and
the product in A is defined pointwise:

∥(LmA)(x)∥ ≤ ∥(Lm(A− UλA))(x)∥+ ∥Lm(Uλ)(x)A(x)∥
≤ ∥A− UλA∥+ ∥(Lm(Uλ))(x)∥ ∥A(x)∥. (5.171)

Then, the second term is equal to zero, and the first goes to zero as λ→ 0.
It follows that Lm(A)(x) = Lx

m(A(x)), where Lx
m is a multiplier of K in the

sense that it satisfies the basic relation Lx
m(AB) = Lx

m(A)B for A,B ∈ K. Now, the
multiplier algebra of K is known to be M(K) = B(H). Indeed, for A = |Φ⟩⟨Ψ| with
a unit vector Ψ, we get

Lx
m(A) = Lx

m(A|Ψ⟩⟨Ψ|) = Lx
m(A)|Ψ⟩⟨Ψ| = |Φ̃⟩⟨Ψ| (5.172)

for a suitable vector Φ̃. Clearly, the map Φ → Φ̃ is linear so that we can set
Φ̃ =M(x)Φ for an operator M(x), which is easily checked to be bounded. Since the
operators |Φ⟩⟨Ψ| span a dense subspace of the compact operators, Lx

m(A) =M(x)A.
On the right side, we get

Rm(A)(x) =
(
Lm∗(A∗)(x)

)∗ = (
M(x)∗(A∗(x))

)∗ = A(x)M(x). (5.173)

It remains to check the continuity of M . To this end, we choose Φ,Ψ to be constant
in a neighborhood of x. Then M(x)|Φ⟩⟨Ψ| has to be a norm continuous function,
i.e., M(x)Φ is continuous in norm. Using the right multiplier instead, we find that
M(x)∗Ψ likewise has to be continuous.

This concludes the argument starting from the multiplier condition. For the
converse assume that, x 7→ A(x) is strong*-continuous, and K ∈ C0(X,K). We have
to show that AK,KA ∈ C0(X,K). For this, we can assume that K is in a set whose
linear hull is norm dense, namely the functions K = |ψ⟩⟨ψ| ⊗ f with ψ ∈ H1 and
f ∈ C0(X) with compact support. By assumption, Aψ is then norm continuous in
H1, and so AK is norm continuous. Since f has compact support, so does AK. The
argument for KA ∈ C0(X,K) is analogous.

We remark that in [139, Corr 3.4], the compacts are replaced by a more general
algebra. The continuity is then in the natural topology for multipliers, the so-called
strict topology, which is given by the seminorms

∥m∥A = ∥LmA∥+ ∥RmA∥. (5.174)

For the compact operators, this coincides with the s*-topology [40, I.8.6.3].
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We do not have a similar characterization of U(A). In that case, it is clear from
the proof of Prop. 110 that ψ 7→ ⟨ψ, Ǎ(x)ψ⟩ must be universally measurable on
X, and bounded by ∥A∥∥ψ∥2. This is enough to get the function representation in
Eq. (5.168) of some element in A ∈ A∗∗, but it is unclear (to us) whether this suffices
to conclude A ∈ U(A). However, in the direction of stronger continuity conditions,
we record the following for later use:

Corollary 112. Assume that X = Rn, and denote by αx : A → A the translation
of functions, i.e., (αxA)(y) = A(y + x). Then Eq. (5.167) provides a bijective
correspondence between

(1) elements A ∈ U(A), which are strongly continuous for α∗∗ that is
limx→0 ∥A− α∗∗

x (A)∥ = 0, and

(2) functions Ǎ : X → B(H1), which are uniformly continuous in the sense that
∥Ǎ(x)− Ǎ(y)∥ ≤ ε if |x− y| ≤ δ.

Such elements automatically are in M(A).

Proof. Starting from (1), let Ǎ be the function defined by Eq. (5.167). Then the
action of translations on the functions in A = K ⊗ C0(X) is lifted to the functions
Ǎ. With the sign conventions analogous to Eq. (5.112), we get tr ρ ˇ(αxA)(y) =
⟨ρ⊗ δy, αx(A)⟩ = ⟨ρ⊗ δx+y, A⟩ = tr ρǍ(x+ y), and therefore ˇ(α∗∗

x A)(y) = Ǎ(x+ y).
By Prop. 110,

∥A− α∗∗
x (A)∥ = sup

y
∥Ǎ(y)− Ǎ(y + x)∥. (5.175)

By assumption, this goes to zero as x → 0, which is the stated uniform continuity
with a coordinate change.

For the converse, uniform continuity of Ǎ implies the strong*-continuity of
Prop. 111, so Ǎ defines a multiplier A ∈ M(A), and the strong continuity estimate
is again Eq. (5.175).
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5.3.3 Translations and convolutions

We will later define quasifree channels by their covariance with respect to phase
space translations. This hinges on the characterization of the joint eigenvectors of
the translations, which is the topic of this section. Translations were part of our
basic setup from the outset since the phase space Ξ is a vector space. The definition
of twisted convolutions in Sect. 5.2.3 used this in an essential way. However, we need
to introduce a notation for the translation maps themselves. In terms of canonical
operators in a standard representation, a phase space shift acts as

R′
j = Rj + ηj1, (5.176)

where 1 stands for the identity operator or the constant 1-function. The size of the
shift depends on j, and together, these parameters form the components of a vector
η ∈ Ξ. In terms of Weyl operators, this means

W ′(ξ) = exp(iξ·R′) = exp(iξ·η)W (ξ) =: αη
(
W (ξ)

)
. (5.177)

Here, we have introduced the automorphism αη, which expresses this symmetry as
an automorphism on observables. If we think ofW (ξ) as an operator-valued function
on Ξ0, we have to define it on more general operator-valued functions as

αη(F )(x) =W (ση)F (x+ η0)W (ση)∗, (5.178)

where η = η1⊕η0. This formula makes sense for any of the observable algebras that
are built from B(H1)-valued bounded functions on Ξ0, including the CCR-algebra in
any standard representation, hence also C∗(Ξ, σ). On standard states it is equivalent
to

α∗
η(δx ⊗ ρ) = δx−η0 ⊗W (ση)∗ρW (ση). (5.179)

If we define αη as an automorphism group on C∗(Ξ, σ), in Eq. (5.177), we should
really write α∗∗

η , but we will continue to use the same symbol also for this map.
Then Eq. (5.177) just says that the Weyl operators W (ξ) ∈ C∗(Ξ, σ)∗∗ are joint
eigenvectors of all translations. It will be crucial later on to turn this around:

Lemma 113. Suppose that for some F ∈ U(Ξ, σ) we have αη(F ) = λ(η)F , for some
function λ : Ξ → C. Then there is ξ ∈ Ξ and c ∈ C, such that F = cW (ξ), and
λ(η) = exp(iξ·η).

Proof. Note first that we must have λ(η + η′) = λ(η)λ(η′). Moreover, λ must be a
universally measurable function on Ξ [12, Prop. 7.4.5]. Since the only measurable
characters on R2s+n are exponentials, we conclude that λ(η) = exp(iξ·η).

Consider F ′ = FW (ξ)∗. Then because α is a group of automorphisms, andW (ξ)
satisfies the required eigenvalue equation Eq. (5.177), we get that αη(F ′) = F ′. It
remains to prove that this implies that F ′ = c1, since then F = F ′W (ξ) = cW (ξ).

It suffices to prove this in every standard representation, where Eq. (5.178) has
a direct interpretation. Then, for all η0, η1, W (η1)F ′(x+ η0)W (η1)∗ = F ′(x), where
the operators W (η1) are Weyl operators in the Schrödinger representation. Setting
first η0 = 0, we thus conclude that F (x) = f(x)1 by irreducibility of the standard
quantum Weyl operators. By setting η1 = 0, we get that this f must be constant.
Hence F ′(x) = c1.
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Note that the measurability of F ∈ U(Ξ, σ) is required. For simplicity, we will
construct an example in the classical case (σ = 0). Let ξ → λ(ξ) be an arbitrary
homomorphism Rn → C into the unit circle, of which we do not require any conti-
nuity or measurability. It is well known that there are many discontinuous λ, which
are then necessarily non-measurable (see [140, Ex. 3.2.4] or the review [141]). A
simple construction uses a Hamel basis of Rn as a vector space over Q, i.e., a set
of elements ej , j ∈ J such that every η ∈ Rn can be written uniquely as a finite
linear combination η =

∑
j ηjej . Then we just set λ(η) = exp i

∑
j aiηi, for arbitrary

constants ai. It is easily arranged that such a function is not continuous.
Now consider the set

M =
{
F ∈ C∗(Ξ, σ)∗∗

∣∣∣ ∥F∥ ≤ 1, and, for all ξ: δξ(F ) = λ(ξ)
}
. (5.180)

As a weak*-closed subset of the unit sphere, it is compact and nonempty because
we can define F as a functional on the linear combinations of point measures by the
condition in M and then choose a Hahn-Banach extension. Now define the trans-
formations βη = λ(η)α∗∗

η . Because λ is a character, these maps leave M invariant.
They are also continuous and commute. Hence, by the Markov-Kakutani Fixed
Point Theorem, they have a common fixed point F . F must be non-zero because
it is in M, and as a fixed point of the βη it satisfies the equation α∗∗

η F = λ(η)F .
However, since λ is not continuous, it cannot be of the form given in the lemma.

Convolutions

In the previous section, we saw that hybrid observables in M(X,K) are given by
strong*-continuous operator-valued functions on X. Here, we will study a class
with stronger continuity properties: On one hand, we demand the continuity to be
in operator norm, and on the other, that it be uniform in X. This combination
gives the continuity of ξ 7→ α∗∗

ξ (A) in the norm of the hybrid bidual. In other words,
F is strongly continuous for the translations. Since this property can be stated
without explicitly observing the classical-quantum split, it will be easy to establish
an automatic Heisenberg picture for quasifree channels (Prop. 121), even if quantum
and classical degrees are strongly coupled.

For defining a suitable space of strongly continuous observables, we will make
sure that the observable A has a good function representation in the first place, i.e.,
A ∈ U(Ξ, σ). This excludes unwanted elements like 1 − za, which is even invariant
under all α∗∗

ξ but has a vanishing function representation, as noted above. That is,
we define

Cu(Ξ, σ) =
{
A ∈ U(Ξ, σ) | lim

η→0
∥F − α∗∗

η (F )∥ = 0
}
. (5.181)

In this definition, we do not distinguish between quantum and classical translation
directions. Restricting just to the classical part, Cor. 112 shows that Cu(Ξ, σ) ⊂
M(Ξ, σ). In addition, the argument Ǎ(ξ0) ∈ B(H1) has to be strongly continuous
for the quantum translations, and uniformly so with respect to ξ0.

A basic example is also given by the Weyl operators: Since we have α∗∗
ξ W (η) =

exp(iξ·η)W (η), the required continuity is immediate from the continuity of the phase
factor. This shows that CCR(Ξ, σ) ⊂ Cu(Ξ, σ).
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The algebra Cu(Ξ, σ) is still rather large, for example, not separable. In the
context of Ludwig’s axiomatic approach [142, 143], it seemed natural to single out a
norm separable subspace D ⊂ B(H) as a space of physical observables. One role of
the space D would be to determine a more realistic assessment of the distinguisha-
bility of states compared to norm or weak topologies. It turned out [121, 144] that
in systems with canonical variables, the choices for D on the quantum side are in
one-to-one correspondence with choices on the classical side, which, in turn, can
often be understood in terms of compactifications of phase space. For example,
the CCR-algebra corresponds to the almost periodic functions and the Bohr com-
pactification, whereas the compact operators correspond to C0(Ξ) and adjoining the
identity to the one-point compactification of X. In this section, we will show that
the correspondence naturally also covers the hybrids between the fully quantum and
the fully classical case. That is, the lattice of translation invariant closed subspaces
of Cu(Ξ, σ) does not depend on σ.

This correspondence is best expressed in terms of the following notion of con-
volution. We denote by β− the automorphism of phase space inversion, satisfying
β−(W (ξ)) =W (−ξ), which is given by a coordinate change ξ0 7→ −ξ0 on the classi-
cal part and is implemented by the parity operator on the quantum part. The sign
freedom in the following definition is due to the fact that C∗(Ξ, σ)∗ = C∗(Ξ,−σ)∗:
The twisted positive definiteness conditions in Eq. (5.89) for σ and −σ both im-
ply hermiticity (χ(−ξ) = χ(ξ)), and with ξk 7→ −ξk and complex conjugation they
become equivalent.

Definition 114. Let Ξ be a real vector space with antisymmetric forms σ1 and
σ2 and fix some signs si = ±1 for i = 1, 2. Then, for states ωi ∈ C∗(Ξ, σi)∗
with characteristic functions χi, we define their convolution, denoted by ω1 ∗ ω2 ∈
C∗(Ξ, s1σ1 + s2σ2)∗ by its characteristic function χ(ξ) = χ1(ξ)χ2(ξ).
For ω ∈ C∗(Ξ, σ1)∗ and F ∈ C∗(Ξ, σ2)∗∗, we define ω ∗ F = F ∗ ω ∈ C∗(Ξ, s1σ1 +
s2σ2)∗∗ by evaluating it on an arbitrary ω′ ∈ C∗(Ξ, s1σ1 + s2σ2)∗:

⟨ω′, ω ∗ F ⟩ = ⟨ω′ ∗ (β−ω), F ⟩. (5.182)

Convolution is a bilinear operation C∗(Ξ, σ1)∗×C∗(Ξ, σ2)∗ → C∗(Ξ, s1σ1+s2σ2)∗,
which is obviously commutative, associative, and bi-positive. It is also translation
invariant in the sense that αξ(ω ∗F ) = (αξω)∗F = ω ∗ (αξF ), which also shows why
β− is needed in Eq. (5.182). The freedom of the sign in the definition is used to get
a classical state or observable function as the convolution of two quantum objects.

For pointwise estimates, it is useful to have a direct formula for the convolution,
which bypasses the Fourier transform. When one factor is ω ∈ C∗(Ξ, 0)∗, e.g., a
classical probability measure on Ξ, this is the usual average over translates of the
other factor:

ω ∗ F =
∫
ω(dξ) αξ(F ), (5.183)

where F could be an observable or another state, and the symplectic form is the
same for F and ω ∗F . For a state ω ∈ C∗(Ξ, σ)∗ and an observable F ∈ Cu(Ξ, σ) on
the same hybrid, we get a uniformly continuous function ω ∗ F ∈ Cu(Ξ, 0):(

ω ∗ F
)
(ξ) = ω

(
αξβ−(F )

)
. (5.184)
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The hybrid generalization of correspondence theory [121, 145] is given in the
following proposition. A state ω ∈ C∗(Ξ, σ1 − σ2)∗ is called regular if it is norm
continuous under translations (cf. Prop. 93) and its characteristic function vanishes
nowhere.

Proposition 115. Let Ξ be a vector space. Then the lattice of α-invariant closed
subspaces of Cu(Ξ, σ) does not depend on σ. More precisely, let Di ⊂ Cu(Ξ, σi) be
α-invariant closed subspaces, and ω0 ∈ C∗(Ξ, σ1 − σ2)∗ regular. Then the following
are equivalent:

(1) ω ∗ D1 ⊂ D2 and ω ∗ D2 ⊂ D1 for all ω ∈ C∗(Ξ, σ1 − σ2)∗.

(2) The inclusions (1) hold for ω = ω0.

(3) D2 is the closure of ω0 ∗ D1.

(4) D2 = {A ∈ Cu(Ξ, σ1) | ω0 ∗A ∈ D1}.

Note that because (1) does not depend on ω0, each of the following items holds
for all regular ω0 if it holds for any one, and by the same token, is also equivalent
to the same condition with D1 and D2 exchanged.

Proof. (See [121, Thm. 4.1] for more details.) The crucial fact here is Wiener’s
approximation theorem, which states that the translates of ρ ∈ L1(Ξ, dξ) span a
norm-dense subspace iff the Fourier transform vanishes nowhere. These are precisely
the regular elements of C∗(Ξ, 0)∗. The proof uses the following arguments:

Lemma 116. Let D ⊂ Cu(Ξ, σ) be an α-invariant closed subspace and ρ ∈ C∗(Ξ, 0)∗.
Then

(1) ρ ∗ D ⊂ D,

(2) when ρ is regular, this inclusion is norm dense.

Proof. (1) Now, ρ is a classical standard state, i.e., a probability measure on Ξ.
The convolution integral ρ ∗A =

∫
ρ(dξ)αξβ−(A) can be approximated for strongly

continuous A by partitioning the integration domain into regions, over which either
αξ(A) changes little, or which have small total weight with respect to ρ. We may
then replace αξ(A) by a constant in each region, thus approximating the convolution
uniformly by a linear combination of translates αξ(A).

(2) For A ∈ Cu(Ξ, σ) we can find ρ′ ∈ L1 with sufficiently small support around
the origin so that ∥ρ′ ∗ A− A∥ is small. Approximating ρ′ by a linear combination
of translates αξρ, we find that A itself lies in the closure of the translation-invariant
subspace generated by ρ ∗A.

Coming back to the proof of the proposition, note that (1)⇒(2) is trivial. Given
(2) we get ω0 ∗ ω0 ∗ D1 ⊂ ω0 ∗ D2 ⊂ D1. But since ω0 ∗ ω0 is regular, this inclusion
is dense, which proves (3).

Next, we verify (3)⇔(4) by showing that the spaces defined by these conditions,
which we temporarily call D(3)

2 and D(4)
2 , are equivalent. Suppose that A ∈ D(4)

2 .
Then because A ∈ Cu(Ξ, σ2), A lies in the closed translation invariant subspace
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generated by ω0 ∗ ω0 ∗A ∈ ω0 ∗ D1, which is D(3)
2 . Conversely, if A ∈ D(3)

2 , it can be
approximated by elements of the form ω0 ∗A1, so ω0 ∗A ≈ ω0 ∗ω0 ∗A1 ∈ D1, which
means that A ∈ D(4)

2 .
It remains to show that (3)⇒(1). Indeed ω ∗ D2 ⊂ ω ∗ ω0 ∗ D1 ⊂ D1. On the

other hand, since ω0 ∗ ω0 ∗ D1 ⊂ D1 is dense, we find for arbitrary ω: ω ∗ D1 ⊂
ω ∗ ω0 ∗ ω0 ∗ D1 ⊂ ω ∗ ω0 ∗ D2 ⊂ D2.
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5.4 Hybrid Dynamics: Quasifree Channels
In Sect. 5.1.3, we introduced quasifree channels for quantum systems, which are
completely characterized by linear operators at the phase space level. This linearity
can be expressed as a covariance condition with respect to phase space translations.
For general covariant channels, one has to fix representations of the symmetry group
under consideration in the input system as well as in the output system, with the
desired operations intertwining these two representations. In the case at hand, these
will be two representations of the group of phase translations, and the difference
between the representations is parametrized by a linear operator

S : Ξout → Ξin. (5.185)

Our first step will be to characterize all channels satisfying such a covariance condi-
tion plus a regularity condition, which ensures that standard states in the sense of
the previous sections are mapped to standard states. The action of these channels
on states, i.e., the Schrödinger picture, will then be obvious. This was, in fact, the
starting point of the present study. However, the corresponding Heisenberg pictures
seemed initially rather unclear. Having clarified the necessary spaces in the previous
section, we can now go on to apply these ideas and get Heisenberg picture channels
for all quasifree channels without the need for any extra assumptions.

5.4.1 Definition

In the Schödinger picture, a channel is a completely positive, normalization preserv-
ing, linear map

T : C∗(Ξin, σin)∗ → C∗(Ξout, σout)∗. (5.186)
It thus takes the input states to a device to the output states. Such channels include
measurements when (Ξout, σout) is classical (i.e., σout = 0), preparations (Ξin = {0}),
and all kinds of combinations in which, in addition to an operation on the quantum
subsystem, classical information is used as an input, or is read out in the process
(see Sect. 5.5).

The Heisenberg picture is always denoted by T ∗, and T ∗(A) for an observable
A of the output system is interpreted as that observable on the input system, which
is obtained by first operating with the quantum device and then measuring A. The
two pictures are thus related as two ways of viewing the same experiment. Since all
observables have expectations in the standard hybrid state, they can be considered
as elements of the dual, i.e., C∗(Ξ, σ)∗∗, and from interpretation, it is clear that
T ∗ must indeed be the Banach space adjoint of T . In the definition, we use the
notation S⊤ : Ξin → Ξout for the linear algebra transpose (or adjoint) of the linear
map S : Ξout → Ξin.

Definition 117. Let (Ξin, σin) and (Ξout, σout) be hybrid phase spaces and take a
linear map S : Ξout → Ξin. Then an S-covariant channel is a completely positive,
normalisation preserving linear operator T : C∗(Ξin, σin)∗ → C∗(Ξout, σout)∗ such
that, for all ξ ∈ Ξin,

T ◦ (αin
ξ )∗ = (αout

S⊤ξ)
∗ ◦ T . (5.187)

A quasifree channel is a channel, which is S-covariant for some S.
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There is an alternative characterization in terms of T ∗, which also clarifies the
data needed to specify an S-covariant channel.

Proposition 118. Let T be an S-covariant channel. Then there is a unique con-
tinuous and normalized function f : Ξout → C, which is twisted positive definite with
respect to the antisymmetric form

∆σ = σout − S⊤σinS, (5.188)

such that, for all ξ ∈ Ξout,

T ∗(Wout(ξ)) = f(ξ)Win(Sξ). (5.189)

Conversely, every function f with this property defines an S-covariant channel.

We will again refer to f as the noise function of the channel T , and to the
hybrid state on (Ξout,∆σ) with characteristic function f as its noise state, and
denote it typically by τ .

Before going into the proof, let us explain why the form in Eq. (5.189) determines
a unique state. At first glance, it defines the action of the channel only on the Weyl
operators, hence by norm limits on the CCR-algebra, but no further. The point is
that the formula really defines a transformation T : C∗(Ξin, σin)∗ → C∗(Ξout, σout)∗
on states: By taking expectations of Eq. (5.189) with ωin we get the characteristic
function of ωout = T ωin as

χout(ξ) = f(ξ)χin(Sξ). (5.190)

This shows that the channel is indeed specified completely by S and f . Another
way to put this is to note that since the expectations of Weyl operators specify the
state, the linear hull of these operators is weak*-dense in the bidual C∗(Ξ, σ)∗∗, and
correspondingly in all the observable spaces. Therefore, Eq. (5.189) suffices to define
the Heisenberg picture channel by first a linear extension and then an extension by
weak*-continuity.

Proof of Prop. 118. Applying αin
ξ to Eq. (5.189) and using the eigenvalue equation

in Eq. (5.177) for Wout(ξ) we find that

αin
ξ ◦T ∗(W (η)

)
= T ∗(αout

S⊤ξ(W (η))
)
= T ∗(eiS⊤ξ·ηW (η)

)
= eiξ·SηT ∗(W (η)

)
. (5.191)

That is, T ∗(W (η)
)
is a joint eigenvector of the translations and hence, by Lem. 113,

must be proportional to W (Sη). We denote the proportionality factor by f(η), see
Sect. 5.3.3. This immediately implies Eq. (5.189). Now, we can choose a state ωin
such that χin vanishes nowhere, for example, a Gaussian. Since χin is continuous
by Bochner’s Theorem, and the channel maps standard states to standard states, so
χout is also continuous, we conclude that f is continuous.

We now have to analyze the condition for complete positivity. Here, one should
remember that the channel T is primarily defined on C∗(Ξinσin)∗ and complete posi-
tivity just means that T ⊗1n preserves positivity (i.e., positive semi-definiteness) for
all n (see. Sect. 2.4.1). In order to give an equivalent formulation in the Heisenberg
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picture, one can check complete positivity on any subalgebra A ⊂ C∗(Ξout, σout) so
that the positivity of any element of ωn ∈ C∗(Ξout, σout)∗⊗Mn can be expressed as
the positivity of expectation values of positive elements in A⊗Mn, i.e., the positive
cones are dual to each other. For this, any weak*-dense subalgebra A will do, and
we take here the linear span of the Weyl operators for A.

We now assume that T ∗ is completely positive and aim at deriving the stated
twisted definiteness condition for f . To this end, we use that for a completely positive
operator T ∗, and any choice of finitely many aj , bj , X =

∑
jk ajT ∗(b∗jbk)a∗k ≥ 0. Here

we choose aj = cjW (Sξj) and bj =W (ξj) for an arbitrary choice of ξ1, . . . , ξn ∈ Ξout,
and cj ∈ C. The idea is that then X becomes a multiple of the identity, namely

0 ≤ X =
∑
jk

cjW (Sξj) T ∗(W (ξj)∗W (ξk)
)
ckW (Sξk)∗

=
∑
jk

cjcke
−iξj ·σoutξk/2 W (Sξj)T ∗(W (−ξj + ξk))W (Sξk)∗

=
∑
jk

cjcke
−iξj ·σoutξk/2f(−ξj + ξk) W (Sξj)W (−Sξj + Sξk)W (Sξk)∗

=
∑
jk

cjcke
−iξj ·σoutξk/2f(−ξj + ξk) e−i(Sξj)·σin(Sξk)/2

W (Sξj)W (Sξj)∗W (Sξk)W (Sξk)∗

=
∑
jk

cjf(−ξj + ξk) eiξj ·∆σξk/2ck 1. (5.192)

The positivity of this expression for arbitrary cj and ξj is exactly the stated twisted
definiteness condition in Def. 81 but with a degenerate or hybrid form ∆σ.

Conversely, when f satisfies the conditions, we can define T acting on C∗(Ξin, σin)
by Eq. (5.190), using Bochner’s Theorem, and Prop. 91. Continuity and normaliza-
tion of the output characteristic function are then guaranteed by the corresponding
properties of f . Positivity will be addressed together with complete positivity.

We have to extend Bochner’s Theorem to a version involving an additional tensor
factor Mn. So let ωin ∈ C∗(Ξin, σin) ⊗ Mn be positive. The matrix elements ωin

αβ

then have characteristic functions χin
αβ(η) = ωin

αβ(W (η)), and the positivity condition
for ωin is the positivity of the matrix

χin
αβ(−ηj + ηk)eiηj ·σinηk/2, (5.193)

for arbitrary η1, . . . , ηN , where the indices of this matrix are considered to be the
pairs (α, j) and (β, k). Applying the channel T ⊗ 1n to ωin means the application
of Eq. (5.190) to each matrix element, resulting in a similar matrix for ωout =
(T ⊗ 1n)ωin, namely

χout
αβ (ξi − ξj)e

i
2ξi·σoutξj =

(
f(ξi − ξj)e

i
2ξi·∆σξj

) (
χin
αβ(Sξi − Sξj)e

i
2Sξi·σinSξj

)
.

(5.194)
Here, we used the definition of ∆σ. By assumption, the matrix in the first factor is
positive definite. The second factor is positive because the input state in Eq. (5.193)
is positive with the substitution ηj = Sξj . Hence, the left-hand side is also positive
definite as the Hadamard product of two positive definite matrices.
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5.4.2 State-channel correspondence

In this section, we will describe in more detail the geometry of the correspondence be-
tween an S-covariant channel T and its noise state τ , which was set up in Prop. 118.
The operator S will be fixed, and this is necessary if we want to consider a correspon-
dence of convex sets: The convex combination of quasifree channels with different
S is simply not quasifree. However, convex combinations do not exhaust the de-
sign possibilities for channels by engineering τ . Since arbitrary states are allowed,
superpositions work just as well (see, e.g., [146]).

We begin with a condensed version of state-channel correspondence and cones in
quantum theory: If we restrict to finite-dimensional systems, we can summarize this
by saying that in quantum theory, there is only one isomorphism type of positive
cone for the basic objects: For observables, the elements of the form A∗A, for states,
the dual of the observable cone, and for channels, the completely positive cone.

The inclusion of direct sums of positive semi-definite cones extends this statement
to quantum-classical hybrid systems. As an immediate consequence, we find that
there is only one kind of order interval, which is an ordered vector space, i.e. a set
of the kind

[x1, x2] = {x|x1 ≤ x ≤ x2}, (5.195)

which is obviously determined by just the order relations. In particular, the possible
decompositions ρ = ρ1+ρ2 of a fixed state ρ into a sum of positive ρi are isomorphic
to the corresponding interval [0,1] in which decompositions are just two-valued
observables, and decompositions T = T1 + T2 of a channel into completely positive
terms, i.e., an instrument with overall state change T . This correspondence of order
intervals is, in a sense, more robust than the correspondence of cones: It persists
in infinite-dimensional systems while the isomorphism of cones breaks down. For
example, B(H) has an order unit, whereas the trace class has none.

From the finite-dimensional case, it is clear that the difference between the spaces
of states, observables, and channels lies in the respective normalization conditions.
This is also reflected in the different structures of the convex sets of normalized ele-
ments: The extreme points are the projective Hilbert space for states, the projection
lattice for observables, and something more complicated for channels. Moreover, we
get different natural norms: The trace norm (Def. 10), the operator norm (Def. 2),
and the norm of complete boundedness:

Definition 119. Let A be a unital C*-algebra, Mn(A) the set of n × n matrices
with entries in A, T : A → A a linear map and Tn = T ⊗ 1n. Then T is completely
bounded if supn ∥Tn∥ is finite and we set

∥T ∥cb = sup
n

∥Tn∥. (5.196)

Then ∥·∥cb defines a norm on the space of completely bounded channels [50]. This
norm is also (sometimes only in the Schrödinger picture) referred to as the diamond
norm [147]. For completely positive maps, its value is determined by evaluating it
on the unit [50, Prop. 3.6]:

∥T ∥cb = ∥T (1)∥. (5.197)
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When using ∥ · ∥cb to quantify the distance between channels, their difference is of
course no longer completely positive, and the cb-norm has a reputation of being not
easy to compute [50, 148].

One surprising fact about the isomorphism T ↔ τ is that it connects the normal-
ized subsets of different categories: states on the one hand and quasifree channels
on the other. In light of the above explanations, this is readily traced to the nor-
malization conditions: For a channel, the normalization condition is T ∗(1) = 1,
and for general completely positive maps we have Eq. (5.197). This is not a linear
function of T . However, for a general bounded covariant map T , we have shown
(see Eq. (5.189) with ξ = 0) that T ∗(1) = f(0)1, so

∥T ∥cb = f(0) = ∥τ∥. (5.198)

Then, for positive elements, both norms depend only on one number, and this de-
pendence is linear, i.e., the norm is additive on the positive cone. This is precisely
what makes a complete channel-state correspondence possible here. Other classes
of covariant channels share this feature, i.e., channels that intertwine automorphic
actions of a group G, i.e., αout

g T = T αin
g for g ∈ G. When the αin

g are imple-
mented by an irreducible set of unitaries, a projective representation of G, then,
once again, T ∗1 is a multiple of the identity, and the class of covariant channels
is affinely isomorphic to a state space of a quantum system that can be computed
from the representations involved [149]. We see here that the irreducibility of the
implementing unitaries is not the key condition since, on the classical subsystem,
no such unitaries exist. Instead, the decisive condition is that the representation on
the input side has only the multiples of 1 as invariant elements, in the hybrid case,
a special case of Lem. 113.

The following corollary summarizes the above discussion and lists some transfers-
of-properties for the correspondence.

Corollary 120. Fix hybrid systems with phase spaces (Ξin, σin) and (Ξout, σout),
and a linear map S : Ξout → Ξin. Then there is a bijective correspondence between
S-covariant channels T in the sense of Def. 117, and noise states τ on the hybrid
system (Ξout,∆σ) as stated in Prop. 118. Then if T , T1, T2 correspond to τ, τ1, τ2,
respectively, and λ ∈ R, then

(1) T = λT1 + (1− λ)T2 iff τ = λτ1 + (1− λ)τ2,

(2) λT2 − T1 is completely positive iff λτ2 − τ1 ≥ 0,

(3) ∥T1 − T2∥cb = ∥τ1 − τ2∥,

(4) for ξ ∈ Ξout, T1 = α∗
ξ ◦ T iff τ1 = α∗

ξ(τ),

(5) τ is extremal (= pure) iff T is noiseless in the sense of Sect. 5.4.5,

(6) τ is norm continuous under translations, iff T is smoothing in the sense of
Sect. 5.4.3.

Proof. The bijective correspondence is directly from Prop. 118. (1) and (2) are
obvious, and (4) follows by noting that under the translations by ξ stated in that
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item, the noise function f(η) = ⟨τ,W (η)⟩ changes by a factor exp(iξ·η). (5) is non-
trivial and will be shown in the section mentioned. (6) is trivial from the combination
of (4) and (3), noting that smoothing means that ∥α∗

ξ ◦ T − T ∥cb → 0 for ξ → 0.
This proves all items except (3).

(3) Both norms are additive on the positive cone and coincide there. There
is then a largest norm on the real linear span of the positive elements with this
property, called the base norm [150]. The norm on states is of this type, which
implies the inequality. A bit more explicitly, the base norm has the smallest unit
ball of all the norms with the given restriction, just the convex hull of the positive
and the negative elements of norm one.

∥T1 − T2∥cb ≤ inf
{
p+ + p−

∣∣ T± channels, p± ≥ 0, (T1 − T2) = p+T+ − p−T−
}

= inf
{
p+ + p−

∣∣ τ± states, p± ≥ 0, (τ1 − τ2) = p+τ+ − p−τ−
}

= ∥τ1 − τ2∥. (5.199)

This proves the inequality “≤” in (3).
For the reverse inequality, consider the Weyl operators

W̃ (ξ) =Wout(ξ)⊗W in(Sξ) (ξ ∈ Ξout) (5.200)

for an extended system (Ξout, σout)⊕(Ξin, σin), where, as in the last part of Sect. 5.2.4,
the overline is a complex conjugation inverting the symplectic form, see Eq. (5.144).
Then W̃ is a strongly continuous representation of the relations for (ξout,∆σ). Thus,
using the notation in Eq. (5.93), for any h ∈ L1(Ξout), we have ∥W̃ [h]∥ ≤ ∥W̃∆[h]∥,
because the right-hand side is the supremum over all such representations. In the
sequel, h ∈ L1(Ξout) will be chosen with the only constraint that this norm is ≤ 1.
Then

(T ∗ ⊗ 1)(W̃ [h]) =
∫
dξ h(ξ) T ∗(Wout(ξ)

)
⊗W in(Sξ)

=
∫
dξ h(ξ)f(ξ)

(
Win(Sξ)

)
⊗W in(Sξ) (5.201)

We now apply the squeezed state ωε from Lem. 98 for (Ξin, σin):〈
ωε, (T ∗ ⊗ 1)(W̃ [h])

〉
=
∫
dξ h(ξ)f(ξ)

〈
ωε,

(
Win(Sξ)

)
⊗W in(Sξ)

〉
. (5.202)

Then, as ε → 0, the expectation under the integral goes pointwise to 1, so by
dominated convergence

lim
ε→0

〈
ωε, (T ∗ ⊗ 1)(W̃ [h])

〉
=
∫
dξ h(ξ)f(ξ) = ⟨τ,W∆[h]⟩. (5.203)

Now, the left-hand side of this equation is linear in T ∗, and the right-hand side is
linear in τ . Plugging in a difference, and observing ∥W̃ [h]∥ ≤ 1 and ∥ωε∥ ≤ 1, we
get ∣∣〈τ1 − τ2,W∆[h]

〉∣∣ ≤ ∥T1 − T2∥cb. (5.204)

The result then follows because ∥τ1−τ2∥ is the supremum over all h with the required
norm bound.
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5.4.3 Heisenberg pictures for S-covariant channels

The Heisenberg picture T ∗ of a quasifree channel is initially defined on the bidual
C∗(Ξout, σout)∗∗. However, it also maps better-behaved algebras into each other so
that one can settle for one of these algebras as the basic observables in some contexts.
Since the definitions given in Sect. 5.3 work for arbitrary C*-algebras, commutative,
quantum, or hybrid, the analytic properties defining these more special algebras
are automatically preserved for all quasifree channels. As remarked already after
Lem. 109, each inclusion T ∗A ⊂ B can also be read as a continuity condition for T .

Proposition 121. For (Ξ, σ) = (Ξin, σin) or (Ξ, σ) = (Ξout, σout) consider the alge-
bras

CCR(Ξ, σ) ⊂ Cu(Ξ, σ) ⊂M(Ξ, σ) ⊂ U(Ξ, σ) ⊂ C∗(Ξ, σ)∗∗. (5.205)

Let T ∗ be the Banach space adjoint of a quasifree channel

T : C∗(Ξin, σin)∗ → C∗(Ξout, σout)∗.

Then T ∗ maps the “out” version of an algebra in this inclusion chain to the corre-
sponding “in” version.

Proof. T ∗ is initially defined on the bidual, i.e., the largest element in the chain, so
for this one, there is nothing to prove. For U(Ξ, σ) and M(Ξ, σ) we have shown the
claim in Lem. 109. The other cases use the quasifree structure. For CCR(Ξ, σ) it
is obvious from Prop. 118. For Cu(Ξ, σ), as defined in Eq. (5.181), it follows from
the observation that if ξ 7→ αout

ξ (F ) is norm continuous for some F ∈ U(Ξout, σout),
then

ξ 7→ S⊤ξ 7→ αout
S⊤ξ(F ) 7→ T ∗ ◦ αout

S⊤ξ(F ) = αin
ξ ◦ T ∗(F ) (5.206)

is also continuous.

The algebra C∗(Ξ, σ) is conspicuously absent from the proposition’s list of alge-
bras with an automatic Heisenberg picture. Indeed, it does not belong to that list. A
simple counterexample is a depolarizing channel, for which S = 0, and f = χ0 is the
characteristic function of some output state ω0. Then, after Eq. (5.190), χout = χ0
for all input states. This translates to the Heisenberg picture as T (A) = ω0(A)1. So
even if A ∈ C∗(Ξout, σout), its image under the Heisenberg picture channel map is a
multiple of the identity that is not in C∗(Ξin, σin). Nevertheless, there is an easily
checkable condition that will ensure the Heisenberg picture in this case:

Lemma 122. Let T be an S-covariant channel. Then either

(1) SΞout = Ξin and T ∗C∗(Ξout, σout) ⊂ C∗(Ξin, σin), or

(2) SΞout ̸= Ξin and
(
T ∗C∗(Ξout, σout)

)
∩ C∗(Ξin, σin) = {0}.

Proof. (1) Take an element W [h] =
∫
dξ h(ξ)W (ξ) ∈ C∗(Ξout, σout). By definition

of the algebra C∗(Ξout, σout) as the C*-envelope of the twisted convolution algebra,
such elements are dense. It therefore suffices to show that the image under the
channel is again given by such an integral. Applying the channel gives

T ∗W [h] =
∫
dξ h(ξ)f(ξ)W (Sξ). (5.207)



148 CHAPTER 5. HYBRIDS ON PHASE SPACE

We can split the integration variables into ξ = (ξ⊥, ξ∥) with Sξ⊥ = 0 and a variable
ξ∥ in a suitable linear complement of the kernel. Then ξ∥ uniquely specifies a point
Sξ∥ = η ∈ Ξin. Carrying out the integral over ξ⊥ leaves T ∗W [h] = W [h′] with a
function h′(η) =

∫
dξ⊥h(ξ⊥, ξ∥)f(ξ⊥, ξ∥) which clearly lies in L1(Ξin, dη).

(2) When S is not surjective, there is a non-zero vector η orthogonal to SΞout.
Then we have αη(W (Sξ)) = exp(iη·Sξ)W (Sξ) = W (Sξ) for all η. Integrating with
an arbitrary h ∈ L1(Ξout), it follows that

αη ◦ T ∗W [h] =
∫
dξ h(ξ)f(ξ)αη(W (Sξ)) = T ∗W [h]. (5.208)

This transfers to C∗(Ξout, σout) by continuity. The image therefore consists of F ∈
Cu(Ξin, σin), satisfying αηF = F . We will show that together with F ∈ C∗(Ξin, σin),
this implies F = 0. With Eq. (5.178), the action of translations on functions F ∈
Cu(Ξin, σin) is given by(

αηF
)
(ξ0) =W (ση)∗F (ξ0 + η0)W (ση) = F (ξ0), (5.209)

where the last equality expresses our first conclusion. We take the norm on both
sides so that the non-zero vector η enters only through its classical part η0. We
claim that this classical part must vanish. Indeed, the sequence n 7→ ξ0 + nη0 goes
to infinity for all ξ0, and since F ∈ C∗(Ξin, σin) ∼= K(H1) ⊗ C0(Ξ0) by Prop. 92, we
have limn ∥F (ξ0 + nη0)∥ = 0. But then F (ξ0) = 0 for all ξ0, and F = 0. Hence
η0 = 0.

Now Eq. (5.209) says that the (supposedly) compact operator F (ξ0) commutes
with a one-parameter subgroup of Weyl operators. Then the finite-dimensional
eigenspaces of F (ξ0) + F (ξ0)∗ would have to be invariant under such a group. But
since the generators in the Schrödinger representation have a continuous spectrum,
this is impossible. So, the eigenspaces for non-zero eigenvalues have to be empty,
which implies F (ξ0) + F (ξ0)∗ = 0. Repeating this argument for i(F (ξ0) − F (ξ0)∗)
we get F (ξ0) = 0 for all ξ0, hence F = 0.

Smoothing channels

The µ-dependent setting, with the particular choice µ = dx as the Lebesgue measure,
has been singled out by the norm continuity of states under translations. The
resulting structure also supports other Lp spaces and corresponding Schatten classes.
A natural question is then whether a given quasifree channel preserves the continuity
of states and therefore can be seen as a normal map between the corresponding
hybrid von Neumann algebras L∞(Ξ, σ) as defined in Eq. (5.116). The identity
channel obviously has this property, but, for example, a depolarizing channel with a
pure output state does not. The following lemma gives a positive answer for general
non-singular S and arbitrary noise functions. Because all St in a matrix semigroup
are non-singular, we conclude that this is sufficient for semigroup theory. It shows
that the von Neumann algebra L∞(Ξ, σ), as used in [72] (see also Sect. 4.2.1), is a
sufficient arena for quasifree semigroups.

Lemma 123. Let T be the quasifree channel given by S : Ξout → Ξin and f :
Ξout → C. Suppose that S is injective. Then T maps norm continuous states to
norm continuous states.
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Proof. When S is injective, S⊤Ξin → Ξout is surjective. So let ξ ∈ Ξout, which we
can consequently write as ξ = S⊤η. Suppose that ρin is norm continuous under
translations, and consider ρout = T ρin. Then by Eq. (5.187) the function

t 7→ α∗
tξρout = α∗

tS⊤ηT ρin = T
(
α∗
tηρin

)
is continuous in norm. Since this holds for all ξ ∈ Ξout and the translations commute,
ξ 7→ α∗

ξρout is also norm continuous.

Another criterion implying continuity of states is sufficient noise, no matter what
S may be. In that case, all states, not just the continuous input states, become
continuous. This is a smoothing property, and the following proposition collects
some basic observations.

Proposition 124. Let T be a quasifree channel with noise state τ and noise func-
tion f . Consider the following statements:

(1) f ∈ Lp(Ξ, dξ) for some p ∈ [1, 2].

(2) τ is norm continuous under translations.

(3) limξ→0 ∥α∗
ξ ◦ T − T ∥cb = 0.

(4) For all ω ∈ C∗(Ξin, σin)∗, T ω is norm continuous under translations.

(5) For all A ∈M(Ξout, σout), T ∗A ∈ Cu(Ξin, σin).

Then (1)⇒(2)⇒(3)⇒(4)∧(5). A channel T with the property (3) will be called
smoothing.

Proof. (1)⇒(2) is a part of Prop. 93 applied to the noise state. (2)⇒(3) is an
immediate consequence of items (3) and (4) of Cor. 120, which also proves item (6)
of that corollary. The remaining items follow from (3) by applying T or T ∗ to the
respective arguments. For (3)⇒(5) note Prop. 121 and Cor. 112

For a converse at this point, one would need a uniformity condition on the
modulus of continuity: For example, demanding the existence of an ω-independent
function ε(ξ), which goes to zero as ξ → 0, and satisfies

∥ω − (α∗
ξ ◦ T )⊗ 1nω∥ ≤ ε(ξ) (5.210)

for all states on C∗(Ξin, σin)⊗Mn, is equivalent to (3).
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5.4.4 Composition, concatenation, convolution

This section briefly considers three ways of combining channels or states. They
correspond roughly to the parallel and serial execution of operations and to the
addition of phase space variables. A case distinction for different configurations of
classical and quantum variables is needed for none of these.
Composing subsystems with indices 1, 2 just gives the hybrid phase space

(Ξ12, σ12) = (Ξ1 ⊕ Ξ2, σ1 ⊕ σ2). (5.211)

This corresponds to C*-tensor products at the level of the non-unital algebras
C∗(Ξ, σ). The C*-tensor product C∗(Ξ12, σ12) = C∗(Ξ1, σ1)⊗C∗(Ξ2, σ2) is uniquely
defined, because the algebras involved are nuclear, so maximal and minimal norm
on the algebraic tensor product coincide. This entails that states in C∗(Ξ12, σ12)∗
can be weakly approximated by product elements, but the resulting tensor product
of state spaces requires more than norm limits of product elements. For observ-
able algebras, a simple approach using norm limits also fails (compare Sect. 3.3.1).
It is clear that the compactification of a product is usually not the product of
the compactifications. Even for the one-point compactification, corresponding to
the observable algebras Ai = C∗(Ξi, σi) ⊕ C1, we get additional components, like
1 ⊗ C∗(Ξ2, σ2) ̸⊂ C∗(Ξ12, σ12)⊕ C1.

In spite of these subtleties, quasifree channels allow a straightforward composi-
tion operation T1 ⊗ T2. When Si : Ξi,out → Ξi,in and fi : Ξi,out → C are the data
defining Ti, the tensor product has

S(ξ1 ⊕ ξ2) = (S1ξ1)⊕ (S2ξ2)
f(ξ1 ⊕ ξ2) = f1(ξ1)f2(ξ2). (5.212)

Of course, with the composition of quantum systems comes entanglement. It is
the observation that, while general states on a composite can be approximated by
product elements, these product elements cannot be taken to be positive. Indeed,
non-entangled or separable states are nowadays defined by the existence of a positive
product approximation [151, 152]. Entanglement in Gaussian states is well under-
stood [92, 104, 153, 154, 117], but the hybrid scenario creates no new interesting
possibilities: The classical part of a composite hybrid is just the product of the
classical parts. The pure classical states are point measures on a cartesian product,
and hence product states. This is just saying that classical systems cannot be en-
tangled. In the integral decomposition in Eq. (5.80) of an arbitrary hybrid state,
all entanglement is therefore in the states ρx, where x = (x1, x2) is a point in the
cartesian product.

Executing one operation after the other is called, in different communities or con-
texts, concatenation, or composition (too unspecific, see the previous paragraph),
or multiplication (too overloaded). Clearly, when T1, T2 are quasifree channels, so
is concatenation T = T1T2. When we take S1, S2, S and f1, f2, f as the defining
parameters of these channels then

S = S2S1,

f(ξ) = f1(ξ)f2(S1ξ). (5.213)
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We thus get a category whose objects are the hybrid systems and whose morphisms
are the quasifree channels. Objects in a category are the same if they are connected
by a morphism and its inverse morphism. An introduction to the topic of categories
can be found in [155].

Isomorphism classes in our setting are labeled by the pairs (n, s) ∈ N×N, where
n is the number of quantum degrees of freedom, so that Ξ1 = R2n as a vector space
on which σ is non-degenerate, and s is the number of classical dimensions, i.e., Ξ0 =
kerσ = Rs. Note that, in particular, our theory depends only on (Ξ, σ) and not on a
particular splitting Ξ = Ξ1⊕Ξ0. We have used such splittings above, although only
Ξ0, the null space of σ, is intrinsically defined by the structure (Ξ, σ), and different
complements Ξ1 could be chosen. Changing this splitting is an isomorphism, leaving
Ξ0 fixed. It acts by an ξ0-dependent phase space translation of the quantum part,
which is clearly quasifree and invertible as such.

Other categorical features (monomorphism, epimorphisms, etc.) can be worked
out. An essential result of this kind is a characterization of channels with a one-sided
inverse, see Prop. 129.

A trivial but frequently used concatenation is the formation of marginals of
a channel, i.e., considering only one of the outputs and discarding the other (see
Sect. 5.5 below). The discarding operation is itself a channel, the noiseless one with

S : Ξ1 → Ξ1 ⊕ Ξ2, Sξ1 = ξ1 ⊕ 0, (5.214)

or equivalently, is the tensor product of the identity on Ξ1 with the destructive
channel Ξout = {0} on Ξ2.

We have already met the convolution of states in Def. 114. As in all group
representation theory, one should think of convolutions as a contravariant encoding
of the group multiplication. Consider two systems with the same set Ξ = Ξ1 = Ξ2,
so the addition of phase space elements makes sense. For the moment, we do not
care whether they are classical or quantum. Can we add signals of these types? The
model for this is the addition of random variables. It corresponds to setting the
Fourier arguments dual to the random variables x1 and x2 equal: The characteristic
function for a sum is the expectation of exp(ik(x1+x2)), which we obtain from that
of the joint distribution. So convolution, in general, corresponds to the linear map
Sξ = ξ ⊕ ξ ∈ Ξ1 ⊕ Ξ2. This would suggest a channel acting as T (ρ1 ⊗ ρ2) = ρ1 ∗ ρ2.
This works as a noiseless channel when one of the factors is classical. In the quantum
case, however, although the convolution of arbitrary states is well defined, the map
T with this property would not extend as a channel to entangled states. Thus one
could either add noise or modify the definition by inverting the symplectic form in
one factor, i.e., setting T (ρ1 ⊗ ρ⊤2 ) = ρ1 ∗ ρ2, where ρ⊤ denotes transposition, i.e.,
the inversion of momenta.
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5.4.5 Noiseless operations

Every quasifree channel can be modified by multiplying f with an arbitrary (un-
twisted) positive definite function g. This corresponds to adding classical noise or
averaging the output over translations αξ with a noise probability measure whose
characteristic function is g. Since |g(ξ)| ≤ 1 this always decreases |f |. In fact, un-
less the noise measure is concentrated on a single point, and we thus have a simple
translation, we have |g(ξ)| < 1 for some ξ and the decrease of |f(ξ)| is strict, at least
for some ξ. Accordingly, we define:

Definition 125. A quasifree channel is called a minimal noise channel if it
cannot be constructed in the above way with |g| ≠ 1.

Those channels will be characterized below as the extremal S-covariant channels.
In the same spirit, we define a noiseless channel:

Definition 126. A quasifree channel is noiseless, if |f(ξ)| = 1, for all ξ, i.e., it is
as large as consistent with any kind of twisted positive definiteness.

These are characterized in the following proposition.

Proposition 127. For a quasifree channel T , specified by S : Ξout → Ξin and
f : Ξout → C, the following conditions are equivalent:

(1) |f(ξ)| = 1 for all ξ, i.e., T is noiseless.

(2) ∆σ = 0, and there is some η such that f(ξ) = exp iξ·η for all ξ.

(3) T ∗ : CCR(Ξout, σout) → CCR(Ξin, σin) is a homomorphism.

(4) T ∗ : C∗(Ξout, σout)∗∗ → C∗(Ξin, σin)∗∗ is a homomorphism.

Proof. Let us begin by establishing an equivalent condition for (3) in terms of S and
f . Clearly, using the norm continuity of T ∗, it suffices to establish that

T ∗(W (ξ)W (η)
)
= T ∗(W (ξ)

)
T ∗(W (η)

)
. (5.215)

Using the Weyl relations and our definitions in Eq. (5.188) and Eq. (5.189) we find
that T ∗(W (ξ)W (η)

)
= e−iξ·(∆σ)η/2f(ξ+η)W (Sξ)W (Sη). So, for our noise function,

we get
f(ξ + η) = eiξ·(∆σ)η/2 f(ξ)f(η). (5.216)

Clearly, this is satisfied when (2) holds, proving (2)⇒(3). Moreover, Eq. (5.216)
implies that ξ 7→ |f(ξ)| is a homomorphism. Since f is twisted positive definite,
we must have |f(ξ)| ≤ 1, and by the homomorphism property 1 = |f(ξ)||f(−ξ)| so
|f(ξ)| ≥ 1, i.e., |f(ξ)| = 1. This shows that (3)⇒(1). The direction (1)⇒(2) follows
immediately from Lem. 128 below (see also the remark following the proof).

It remains to verify (3)⇔(4). Here the direction (4)⇒(3) is trivial because
CCR(Ξ, σ) ⊂ C∗(Ξ, σ)∗∗ and Weyl operators go to Weyl operators (see also the
discussion in Sect. 5.4.3). For the converse direction, note that in a von Neumann
algebra, x→ xy is weak*-continuous. So the relation T ∗(AB) = T ∗(A)T ∗(B), which
is assumed to hold for A,B ∈ CCR transfers to arbitrary B ∈ C∗(Ξout, σout)∗∗ by
weak*-continuity, and because CCR is weak*-dense. Repeating this argument for
the first factor extends the relation to all A,B.
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The following Lemma was needed in the proof above, and we separated it because
it is of independent interest.

Lemma 128. Let (Ξ, σ) be a vector space with antisymmetric form, and suppose that
χ is a normalized σ-twisted positive definite function on Ξ. Suppose that |χ(η)| = 1
for some η ̸= 0. Then ση = 0 and, for all ξ ∈ Ξ,

χ(ξ + η) = χ(ξ)χ(η). (5.217)

Proof. Consider a 3× 3-matrix M of the form Eq. (5.89). Abbreviating the matrix
entries as Mkℓ = χ(ξk − ξℓ) exp( i2σ(ξk, ξℓ)), it is of the form

M =

 1 M12 M31
M12 1 M23
M31 M13 1

 . (5.218)

Its determinant is

0 ≤ detM = 1 +M12M23M31 +M12M23M31 − |M12|2 − |M23|2 − |M31|2. (5.219)

Now take the triple of vectors as (−η, 0, ξ), where ξ ∈ Ξ is arbitrary. Then M12 =
χ(−η) = χ(η), M23 = χ(ξ), M31 = χ(ξ + η) exp(− i

2ξ·ση). In particular, |M12| =
|χ(η)| = 1, so this expression simplifies to

0 ≤ detM = −
∣∣∣M31 −M12M23

∣∣∣2. (5.220)

This can only be positive if the absolute value vanishes, which means that

χ(ξ + η) = χ(ξ)χ(η)e
i
2 ξ·ση. (5.221)

Changing ξ 7→ −ξ and η 7→ −η, which also satisfies the assumption of the lemma,
every characteristic function in the last expressions changes to its complex conjugate,
while the exponent does not. Hence, the exponential factor has to be 1. Since ξ 7→ λξ
is also allowed, the exponent has to be zero.

This shows that the maximal absolute value of χ can only be reached on the
classical subsystem. We have not assumed that |χ(λη)| = 1 also holds for all scalar
multiples λη as well. If that is the case, and χ is continuous, then χ(η) = exp(iµ·η)
for some µ ∈ Ξ. We remark that this assumption may fail, and so, even in 1
dimension, we cannot conclude from the assumptions of the lemma that χ is the
characteristic function of a point measure. For example, the classical characteristic
function of a measure supported by the integers is 2π-periodic, so χ(2π) = 1, but
except for a point measure we have |χ(η)| < 1 for 0 < η < 2π.

Let us recapitulate which of the basic operations are noiseless: The states with
the homomorphism property, i.e., ω(AB) = ω(A)ω(B), are only the pure states of
classical systems, corresponding to point measures on Ξ = Ξ0. Noiseless quantum
states do not exist, which also excludes such states on hybrids with non-vanishing σ.

Noiseless observables are the projection-valued ones: The homomorphism prop-
erty implies

F (M)2 = T ∗(χM )2 = T ∗(χ2
M ) = T ∗(χM ). (5.222)
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When the observable is considered as acting on a function algebra Cb(Ξout), this is the
property of having a von Neumann-style functional calculus, T ∗(Φ(A)) = Φ(T ∗(A))
for Φ : R → R. That is, postprocessing of outcomes with a function Φ is the same
as applying this function to the operator in the functional calculus.

Noiseless channels from an irreducible quantum system to itself act by unitary
transformation, where the unitary operator belongs to the metaplectic representation
of the affine symplectic group (see Sect. 5.1.3).

The following proposition characterizes a further class of noiseless channels,
namely those with a right inverse in the Schrödinger picture.

Proposition 129. Let T1 : C∗(Ξ1, σ1)∗ → C∗(Ξ2, σ2)∗ and T2 : C∗(Ξ2, σ2)∗ →
C∗(Ξ1, σ1)∗ be quasifree channels such that T1T2 = 1. Then

(1) T1 is noiseless, and S1 : Ξ2 → Ξ1 is injective.

(2) T2 is an expansion, i.e., there is a system (Ξe, σe) such that there is an iso-
morphism

(Ξ1, σ1) ∼= (Ξ2 ⊕ Ξe, σ2 ⊕ σe),

and T2 = 12 ⊗ Pe, where Pe is a preparation of a (Ξe, σe)-system.

(3) Under the isomorphism from (2), S1 : Ξ2 → Ξ2 ⊕Ξe is the embedding into the
first summand.

Moreover, for i = 1, 2 if a channel Ti satisfies the condition (i), then there is a
channel T3−i so that T1 and T2 satisfy all the above conditions.

Proof. The composition relation in Eq. (5.213) gives that 1 = S2S1 and similarly
f1(ξ)f2(S1ξ) = 1. Since |fi(ξ)| ≤ 1 by positive definiteness, we must have |f1(ξ)| =
|f2(S1ξ)| = 1 for all ξ. In particular, T1 must be noiseless, and since S1 has a left
inverse, it is injective. This shows (1).

Now consider (2). f2 is twisted positive definite for∆σ = σ1−S⊤
2 σ2S2. Moreover,

on the subspace S1Ξ1 this function has the maximal modulus, so by Lem. 128 the
range of S1 is in the null space of ∆σ. This is equivalent to the matrix equation
(∆σ)S1 = 0. Using S2S1 = 1 gives

σ1S1 = S⊤
2 σ2. (5.223)

Since S1S2 is an idempotent operator, every ξ ∈ Ξ1 is naturally split as ξ = S1S2ξ+
(1−S1S2)ξ, where the first summand is obviously in the range S1Ξ2 and the second
satisfies S2(1 − S1S2)ξ = (S2 − S2)ξ = 0. Therefore, by transposing Eq. (5.223),
these parts are σ1-orthogonal:

S1ξ·σ1(1 − S1S2)η = ξ·σ2S2(1 − S1S2)η = 0. (5.224)

Moreover, S1 : Ξ2 → Ξ1 is an isomorphism onto its range, changing σ2 to the
restriction of σ1. This proves the decomposition with Ξe = (1−S1S2)Ξ1 and σe the
restriction of σ1 to this subspace. The action of S2 is very simple in these terms:
It acts separately on the two summands, which makes the corresponding channel a
tensor product. On the first summand, S1Ξ2, it just inverts the isomorphism S1.
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Hence, after identifying the 2 subsystem of Ξ1 with Ξ2, it acts like the identity
channel on this part. The second summand Ξe is annihilated by S2, which is the
hallmark of a preparation (see above). The state prepared lives on (Ξe, σe) and has
characteristic function χe(ξe) = f2(ξe).

5.4.6 Noise factorization and dilations

The Stinespring dilation we have introduced in Sect. 2.4.2 is one of the most powerful
tools in quantum information theory, so it is naturally interesting in the hybrid
scenario. In the standard setting, it is a structure theorem for completely positive
maps T ∗ : Aout → B(Hin), where we have added the star on T and the labels “in”
and “out” to be consistent with the above notation. It provides an additional Hilbert
space K, an isometry V : Hin → K, and a representation π : Aout → B(K) such that

T ∗(A) = V ∗π(A)V. (5.225)

For a quasifree channel, T ∗ will map some subalgebra Aout ⊂ C∗(Ξout, σout)∗∗ into a
representation of a subalgebra Ain ⊂ C∗(Ξin, σin)∗∗, so that there are many choices
to be made, and consequently many variations on the dilation theme. All these
variations have the structure of factorizations through an intermediate system, B(K).
The first step (in the direction from input to output) is the embedding of the input
states in Hin into this larger system, an expansion. The second step, done here by
the representation π, is a noiseless operation in the sense of the previous paragraph.
These features can be phrased entirely in the category of quasifree maps. What is
more, the factorization can be done for arbitrary quasifree channels. This is the
content of Thm. 130.

Note that the channels are written here in the Schrödinger picture, so in the
factorization T = TNTE , the expansion TE is applied to the physical system first,
and TN acts on the expanded system. If we write the expansion channel as tensoring
with a fixed state ωE , the factorization is written as

T ω = TN (ω ⊗ ωE). (5.226)

Theorem 130. Every quasifree channel can be decomposed into T = TNTE, where
TE is an expansion, and TN is a noiseless channel. The phase space of the extension
system is Ξ∆ = Ξout as a vector space but with antisymmetric form ∆σ = σout −
S⊤σinS. The salient linear maps and noise functions are

SN : Ξout → Ξin ⊕ Ξ∆ SNξ = Sξ ⊕ ξ fN (ξ) = 1
SE : Ξin ⊕ Ξ∆ → Ξin SE(ξ1 ⊕ ξ2) = ξ1 fE(ξ1 ⊕ ξ2) = f(ξ2).

(5.227)
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Proof. Let us first verify that the given data for TN and TE satisfy the positivity
condition for channels. The respective difference forms are

ξ·(∆σ)Nη = ξ·σoutη − (SNξ)·(σin ⊕ σ∆)SNη
= ξ·σoutη − (Sξ)·σinSη − ξ·σ∆η = 0 (5.228)

(ξ1 ⊕ ξ2)·(∆σ)E(η1 ⊕ η2) = (ξ1 ⊕ ξ2)·(σin ⊕ σ∆)(η1 ⊕ η2)
−SE(ξ1 ⊕ ξ2)·σinSE(η1 ⊕ η2)

= ξ1·σinη1 + ξ2·σ∆η2 − ξ1·σinη1
= ξ2·σ∆η2. (5.229)

Hence (∆σ)N = 0, as required of a noiseless channel, which makes f = 1 a legitimate
choice. Moreover, (∆σ)E = (0⊕ σ∆), which is exactly the noise function for which
fE has to be twisted positive definite. Hence TN and TE are well defined.

It remains to verify the concatenation relation. Of course, the product of two
channels in our class is again in the class, and there is a simple general formula for
the data (S′, f ′) of the product. By Eq. (5.213), this gives

S′ = SESN = S and f ′(ξ) = fE(SNξ)fN (ξ) = f(ξ). (5.230)

Hence, we have TNTE = T , as claimed.

When only one fixed channel T is under consideration, the above representation
may be very wasteful. For example, when T is itself noiseless, one can clearly choose
TE to be the identity, and there is no need to adjoin an additional system Ξ∆, i.e.,
Eq. (5.227) is not a minimal factorization.

In order to get to a move in that direction, for a general quasifree channel,
consider the noise function f : Ξout → C. Let N ⊂ Ξ∆ denote the largest subspace
on which |f(ξ)| = 1. Then by Lem. 128, f is a character on N , and hence of
the form f1(ξ) = exp(iλ·ξ) for some λ ∈ Ξout. Here λ is not uniquely determined
because only the scalar products λ·ξ with ξ ∈ N appear, but any choice allows us
to proceed. The remainder f ′(ξ) = f(ξ)/f1(ξ) is then a legitimate noise function
with f ′(η + ξ) = f ′(η) for ξ ∈ N . We may therefore consider f ′ as a function fmid
on the quotient Ξmid = Ξout/N . Denoting the quotient map by Smid : Ξout → Ξmid,
this amounts to f(ξ) = f1(ξ)fmid(Smidξ). By Lem. 128, N is also contained in the
null space of ∆σ, so this form also passes to the quotient as σmid. This gives an
alternative noise factorization T = TNTE , closely related to Eq. (5.227), but with
the intermediate system (Ξ∆,∆σ) replaced by (Ξmid, σmid) and

SN : Ξout → Ξin ⊕ Ξmid SNξ = Sξ ⊕ Smidξ f1(ξ) = exp(iλ·ξ)
SE : Ξin ⊕ Ξmid → Ξin SE(ξ1 ⊕ ξ2) = ξ1 fE(ξ1 ⊕ ξ2) = fmid(ξ2).

(5.231)
The map SN in this construction is connected to the previous one by another noise-
less channel based on the quotient map Smid. That is, the modification just described
moves in the direction of including as much of the channel into the noiseless part as
possible.

This follows a categorical approach described in [156] as the Paschke dilation. It
generalizes the Stinespring construction to the category of W*-algebras with normal,
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completely positive maps when the range in the Heisenberg picture (corresponding
to the input in physical terms) is no longer of the form B(H). A Paschke dilation
or a factorization T = TNTE can be turned into a Stinespring dilation in the usual
sense by taking the input algebra as faithfully represented on a Hilbert space H, so
in the Heisenberg picture, the channel maps into B(H), and hence we realize the
standard setting for the Stinespring construction, also containing a minimal one [3].
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5.5 Basic Physical Operations
In the unified picture, every operation, including preparations and measurements,
is given by a quasifree channel. This section aims to advertise this unification by
showing how basic quantum operations fit into the framework. We will assume only
the basic definitions (Sect. 5.4.1) and the parametrization of channels by a linear
map S : Ξout → Ξin and the noise function f , respectively, the noise state τ .

Typically, S specifies the kind of operation one considers, the number of clas-
sical/quantum inputs/outputs, and how they are related. It will typically be fixed
at the beginning of each subsection below. This fixes a hybrid system (Ξout,∆σ),
and hence the possible noise states τ , resp. noise functions f . While the knowledge
of the definitions suffices to verify how the respective examples fit in the general
framework, we do sometimes draw on the general results above or illustrate them in
the particular case.

5.5.1 States

States are the mathematical description of a system preparation. The input system
is therefore a trivial one, Ξin = {0}. Hence S = 0, and ∆σ = σout. The positivity
condition for f thus demands that f is a characteristic function of a standard state for
the out-system. There is no other condition, i.e., all states are quasifree channels in
this sense. We caution the reader that this is in contrast to another well-established
use of the term, by which only Gaussian states are called quasifree [115, 108].

In the theory of channel capacity, e.g., for the Holevo bound [157], [23, 12.3], one
needs state ensembles, usually written as a collection of states with probability
weights. When hybrids are considered as systems in their own right, this is just the
same as a state on a hybrid. This view of state ensembles naturally extends also to
continuous ensembles, in which a non-discrete measure replaces the convex weights.

5.5.2 Disturbance

The word disturbance always refers to a situation deviating from an ideal, which is,
in our case, a deviation from the identity channel. That is, we look at how much
the output states differ from the inputs. This requires input and output to be of the
same type, i.e.,

(Ξin, σin) = (Ξout, σout) = (Ξ, σ). (5.232)
Moreover, since the ideal channel, or “no disturbance”, should be a special case, we
choose S = 1. Then ∆σ = 0, so the condition on the noise function f is the classical
Bochner condition. Hence, f is the Fourier transform of a probability measure τ ,
appropriately called the noise measure. The channel acts as

T ω =
∫
τ(dξ)αξ(ω) = ω ∗ τ, (5.233)

where the convolution is taken in the sense of Def. 114.
The size of the noise can be ascertained in different ways. For example, using

Cor. 120 we get the norm bound

∥1 − T ∥cb = sup
ρ

∥ρ− T ρ∥1 = ∥δ0 − τ∥1, (5.234)
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where δ0 is the point measure at 0, and the last norm is the norm for classical states,
i.e., the total variation. If we decompose τ = (1 − λ)δ0 + λτ ′ for some probability
measure with τ ′({0}) = 0 we get ∥δ0−τ∥1 = 2λ. This norm measure of noise is only
small if we have a large convex component of T , which is equal to 1. In particular,
a channel that introduces a small shift (τ = δξ, ξ ≈ 0) is always at a maximal
distance. Better measures of the noise for many purposes are variances or, more
generally, transport distances [158].

In many cases, it is not necessary to condense the size of the noise into a single
number, and the most accurate description is, of course, the noise measure itself.

5.5.3 Observables

An observable is a channel with classical output, i.e., σout = 0, and Ξout is the space
of measurement outputs. In the quasifree setting, the observable automatically gets
a covariance property with respect to shifts of the outputs.

The theory laid out in Sect. 5.3 shows that the two ways of looking at an ob-
servable, namely as a positive operator-valued measure (POVM) on the one hand
and as an operator on continuous functions on the other, are equivalent Heisenberg
pictures of such a channel. For the POVM view, we have to identify, for every
measurable set M ⊂ Ξout, an effect operator F (M) on the input system. Thus, we
need a Heisenberg picture map T ∗ which is well defined on the indicator function
1M ∈ U(Ξout, 0). The appropriate Heisenberg picture is thus

T ∗ : U(Ξout, 0) → U(Ξin, σin), (5.235)

and the positive operator-valued measure describing the observable is given by
F (M) = T ∗(1M ). Equivalently, we can consider the observable as a map on bounded
continuous functions φ on Ξout, such that T ∗φ =

∫
F (dξ)φ(ξ).

The further characterization of the class of covariant observables so described
depends on the range of S : Ξout → Ξin, and especially on the restriction of σin to
the range SΞout. This is basically the question of whether the quantities measured
are subject to a quantum uncertainty constraint or not. We will consider the two
extreme cases, a position observable and a phase space or position and momentum
observable, separately below. In either case, we take S to be injective because
otherwise, we would have directions in the output space that have distributions not
depending on the quantum input.

By virtue of our definition of S-covariant channels, i.e., Eq. (5.187), quasifree ob-
servables fit into the framework of observables covariant with respect to a projective
unitary representation of a group G. In this traditional subject, [19, 18], the basic
construction of all covariant observables uses a covariant version [159] of the Stine-
spring dilation (called Naimark’s dilation for the case of classical output) to reduce
the construction to the noiseless, i.e., projection-valued case, which is then solved
by Mackey’s theory of induced representations (see [160], and [161] for a worked
example). What has apparently not been considered in detail was the nature of the
noise. In our framework, there is a clear distinction of the position vs. the phase
space case, requiring classical vs. quantum noise. We, therefore, treat these cases
separately below.
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A traditional subject in the general theory is the existence of a direct formula for
the output probability density at a point in the outcome set. If such a formula exists,
it will be given by the expectation value of a positive, possibly unbounded operator,
which is called the operator-valued Radon-Nikodym density of the observable (see
e.g., [18, Sect. IV.2.], [162, Sect. I.5.G], and [19, Thm. 4.5.2] for the compact group
case). That is, we are looking for a family of positive, possibly unbounded operators
Ḟ (x) such that the observable is expressed as

T ∗(g) =
∫
dx Ḟ (x) g(x). (5.236)

Recall that, following the hybrid version of Eq. (5.7), our convention for the action
of translations is (αxg)(y) = g(x + y). So the covariance condition in Eq. (5.187)
translates to αξ

(
Ḟ (x)

)
= Ḟ (x − S⊤ξ). Now since S is injective, S⊤ is onto, so this

equation determines the function Ḟ (x) from one of the values, say Ḟ (0) =: Ḟ :

Ḟ (x) = α−ξ(Ḟ ), for any ξ ∈ Ξin such that S⊤ξ = x. (5.237)

Since S⊤ might have a kernel, this also implies the invariance of Ḟ under αξ with
S⊤ξ = 0.

Of course, there is also an expression for Ḟ in terms of the noise function f since
both quantities determine the observable. For that, we put g(x) = exp(ik·x), i.e.,
g = Wout(k), in the above equation, and solve for Ḟ by inverse Fourier transform.
With n = dimΞout we get:

Ḟ = 1
(2π)n

∫
dk f(k)Win(Sk). (5.238)

In general, e.g., for the canonical position observable, neither Ḟ nor this integral
makes sense. However, with sufficient noise, seen by the decay of f at infinity, both
do.

Position observables

The canonical position observable of a purely quantum system belongs to the self-
adjoint operators Qj from Sect. 5.2.1. The characteristic function of the output
probability distribution is hence the expectation of exp(ik·Q) = W (k, 0). So this is
quasifree with Ξout = {k} = Rn and

Sk = (k, 0), (5.239)

when the variables are arranged as in Sect. 5.2.1. Of course, one could also include
some classical hybrid variables. Since the noise function vanishes, the observable is
projection-valued, which can be said in two equivalent ways, namely that F (M) is
always a projection or that T ∗ is a homomorphism (also compare Prop. 127). For
any input density operator ρ, we write T ρ = ρQ and call it the position distribution
of ρ. Similarly, we define ρP as the momentum distribution.

The beauty of the quasifree formalism is that it automatically includes noisy
versions. These are characterized by choosing the same S but allowing f to be more
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general. This defines the class of generalized position observables, which share the
covariance condition with the canonical one. The structure theory is then imme-
diate: Since ∆σ = 0 the noise is necessarily classical, so the most general position
observable has the output distribution ν ∗ ρQ, where ν is some fixed noise measure
on position space which is independent of ρ, and ρQ is the output distribution of
the standard position observable. Thus, we can always think of such a measurement
as executing the standard one and then adding, from a statistically independent
source, noise with distribution ν.

When the noise distribution has a Radon-Nikodym density ν̇ with respect to
the Lebesgue measure, we have Ḟ = ν̇(Q) in the functional calculus of the com-
muting selfadjoint operators Qk. In contrast, for the canonical observable itself, the
expectation of Ḟ in the state vector Ψ should be |Ψ(x)|2, which might be given a
meaning as a sesquilinear form on a Schwartz space. However, there is no closable
operator Ḟ corresponding to this. This is also seen in the difficulty of making sense
of Eq. (5.238).

Phase space observables

Here we demand a joint measurement of all positions and momenta. So we have
Ξout = Ξin and S = 1, but the symplectic forms are different, namely the standard
quantum one on Ξin and 0 on Ξout. Hence, ∆σ = −σin and the admissible noise
functions are exactly the characteristic functions of quantum states τ . Hence, the
relation in Eq. (5.190) is exactly that for a convolution of quantum states in the
sense of [121] and Def. 114. When τ is the quantum state defining the observable,
and ρ is the input state, the output distribution is thus τ ∗ ρ. Comparing the
expression in Eq. (5.184) with Eq. (5.236) we find the Radon-Nikodym density of
the POVM to be

Ḟ = β−(τ). (5.240)

This is a density operator in two different meanings of the word: A Radon-Nikodym
density, and also a positive operator with trace 1, provided the correct normalization
of phase space Lebesgue measure (see [121]) is used. This characterization of covari-
ant phase space observables is well known [19, 121, 18]. The Gaussian special case is
known in quantum optics as the Husimi distribution or Q-function of ρ. But as the
quasifree formalism clearly indicates, any τ , pure or mixed, will work analogously.

Of course, such a joint position/momentum measurement necessarily includes
errors, which is the subject of measurement uncertainty relations [62]. By this,
we mean any relation expressing that one can either get a fairly good position
measurement with large errors for momenta or conversely. For uncertainty relations,
the covariance condition is an unwanted restriction, but the proof of the general case
[62] works via showing that among the optimal solutions, there is always a covariant
one. This makes the tradeoffs extremely easy to describe. Indeed, the position
marginal of the output distribution is (τ ∗ ρ)Q = τQ ∗ ρQ, a relation which is shown
by setting one set of variables equal to zero in the product of characteristic functions
of τ and ρ. In other words, the position marginal of phase space observable is a noisy
position observable. That statement is obvious from the covariance conditions, but
here we also learn that the noise measure is itself the position distribution τQ of
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a quantum state τ . The same holds for momentum, and, crucially, it is the same
quantum state τ that enters. In other words, the tradeoff between the noises in
the marginals of a phase space observable is the same as the tradeoff between the
concentration of the position distribution τQ and the momentum distribution τP

of a quantum state. This tradeoff is known as preparation uncertainty. The
equality of measurement uncertainty and preparation uncertainty is false for most
other observable pairs but persists [163] for more general observable pairs, which are
related by the Fourier transformation of some locally compact abelian group. This
includes angle and number or qubit strings looked at in different Pauli bases.

5.5.4 Dynamics

In the case of time evolutions, the input and output systems are the same. Let us
start with the reversible case, for which the time parameter t in Tt is allowed to
be positive or negative, i.e., the Tt form a one-parameter group rather than just
a semigroup. Then ∆σ has to vanish, and each Tt must be a noiseless operation
(see Sect. 5.4.5), and by Prop. 127 it follows that T ∗

t must be a homomorphism.
Actually, this conclusion is valid even without the quasifree form: Using the exis-
tence of an inverse for equality in the generalized Schwarz inequality for 2-positive
maps (T (x∗x) ≥ T (x)∗T (x) [50]) implies the homomorphism property. Hence, for
a reversible evolution, the center of the algebra, i.e., the classical part, must be
invariant as a set, and there is a well-defined restriction of Tt to the classical subsys-
tem. That is, by observing the classical subsystem, we can never find out anything
about the initial state of the quantum subsystem. This is another showcase of the
no-interaction theorem discussed in Sect. 3.3.3, which blocks any understanding
of the quantum measurement process by reversible, e.g., Hamiltonian couplings.

A traditional subject in classical probability are processes with independent
increments. Since the increments are supposed to have the same distribution for
any current state, this implies translation invariance, and since successive increments
are assumed independent, we get a convolution semigroup (St ≡ 1). The classic
result is the Lévy-Khintchine Theorem (see, e.g., [164]), characterizing the generators
as a combination of a Gaussian part and a jump part. If we likewise stick to the
choice of trivial St, this result applies verbatim to arbitrary hybrids. Even without
the quasifreeness assumption, it is treated in [72].

For the general case of an arbitrary semigroup St, the precise and general charac-
terization of generators is lacking so far. It is easy to see that the Lévy-Khintchine
formula is still valid, but there are uncertainty-type constraints needed to ensure
complete positivity. These are readily solved in the purely Gaussian case: The log-
arithmic derivative of the noise function at t = 0 has to be an admissible quantum
covariance matrix for the symplectic form computed as the derivative of ∆σ. It
turns out that this is already all [86]: In the general case, the Lévy-Khintchine for-
mula decomposes the generator into a Gaussian part and a jump part. The noise
required for complete positivity depends only on the Gaussian part. The jump part,
which belongs to a classical Lévy process, adds no further requirements, nor can it
be used to ease the noise requirements for the Gaussian part. This is the situation
for finite-dimensional phase spaces, but the quasifree analogs for infinite dimension
offer interesting challenges, including generators not of Lindblad form ([30, 165]).
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Many applications use the quasifree structure. Especially when time-dependent
generators are involved, as in the case of feedback and control, it is vastly eas-
ier to put the process together in phase space than to multiply cp maps on the
infinite-dimensional observable algebra. Continual observation is likewise a hy-
brid scenario in which the classical part can be observed completely and at all times
without incurring disturbance costs. Doing justice to this field would require a book
of its own, and we do not even try to review the literature. The hybrid aspects are
typically neglected, as are the demands of building observable algebras.

5.5.5 Classical limit

The classical limit, ℏ → 0, characterizes the behavior of states and observables
that do not change appreciably over phase space regions whose size is measured
by ℏ. We have suppressed this parameter, which implicitly means that we used
units for quantum position and quantum momentum, which make ℏ = 1. For the
discussion of the classical limit, it is better to make this parameter explicit as a
factor to the commutation form Eq. (5.71), just as physics textbooks have it. The
identity map S between universes with different ℏ is then not symplectic, but one
can build a (necessarily noisy) quasifree channel between such universes, allowing
the comparison of observables. Equivalently, one can scale all phase space variables
by

√
ℏ. The connection maps are then used to formulate a notion of convergent

sequences by a Cauchy-like condition. This approach to the classical limit [166] is
as close to a limit of the entire theory (not just isolated aspects such as WKB wave
functions or partition functions) as one can get. The limit is a classical canonical
system, with quantum Hamiltonian dynamics going to its classical counterpart. For
our context, it should be noted that it can be taken for parts of the system (like the
heavy particles in a Born–Oppenheimer approximation) and, due to the complete
positivity of the connection maps, composes well with further degrees of freedom,
i.e., can be applied to hybrids.

5.5.6 Cloning

Cloning, also known as copying or broadcasting, is a process that generates copies of
a quantum system [116]. Of course, the well-known No-cloning Theorem says that
this cannot be done without error. Quasifree maps are ideally suited as a simple
testbed for this basic operation and the unavoidable errors. Let us consider a fixed
system type (Ξ, σ), which also serves as the input. At the output, we have N such
systems in parallel, so Ξout =

⊕N
j Ξj where Ξj is just an isomorphic copy of the

underlying Ξ = Ξin. The marginals of interest forget all but one output and are thus
described by a disturbance channel with S = 1 (see above). This fixes S on each of
the subspaces in Ξout, and hence by linearity, the overall map S:

S
(⊕

j

ξj
)
=
∑
j

ξj . (5.241)

In other words, this map is exactly what one would write down for an ideal copier
if one had never heard of the No-cloning Theorem. The quasifree formalism then
generates all possible error tradeoffs consistent with this overall behavior.
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The optimal solution of this problem depends on how the quality of the clones is
assessed, and in particular, whether one uses the average fidelity of the clones or the
closeness of the overall output to a product state, i.e., whether one also demands
the output systems to be nearly uncorrelated. The optimization problem should be
stated without assuming quasifreeness, but one can prove that the optimal cloners
will be quasifree with the above S. It turns out that for the criterion of overall
product state fidelity, the optimal cloner is Gaussian, whereas for the average single
state fidelity criterion, it is not, although the best Gaussian cloner performs only
a few percent below optimum [167]. One can also look at asymmetric scenarios, in
which the various copies satisfy different quality requirements, i.e., the output state
is not permutation symmetric.

5.5.7 Instruments

An instrument, according to a now-standard terminology by Davies and Lewis [168,
19], is a channel with both a classical and a quantum output, i.e., a hybrid output.
This is the setting in which one can discuss the tradeoff between information gain
on the classical part of the output and disturbance on the quantum output (see
Fig. 5.3).

(Ξin, σin) ∼= (Ξ, σ)
(Ξ, σ)
⊕

(Ξc, 0)
∼= (Ξout, σout)T

Figure 5.3: A covariant instrument: A quantum system with the phase
space (Ξ, σ) is measured by the instrument T . The output is a hybrid
system with a quantum part on the same space (Ξ, σ) joined by a classical
system, the measurement result, with some classical system (Ξc, 0).

Concretely, let Ξout = Ξin ⊕ Ξc, where Ξc is the classical output. As in the
case of a cloner, linearity of S implies that we just have to fix our demands for
the marginals, i.e., the actions on the summands Ξin and Ξc, to get the overall
map S. On the first summands, we take the identity, in keeping with our intention
to discuss the disturbance inflicted by the instrument. The case of no disturbance
should be included, so we should take S = 1 on the summand Ξin. For the second
summand, Ξc, we just have to say which variable or combination of variables we
wish to measure, i.e., S is chosen exactly as the corresponding map S in Eq. (5.239)
from the above description of observables. To distinguish it from the overall S, we
denote this by Sc. Putting these parts together, we get

S(ξ ⊕ η) = ξ + Scη (5.242)

or, equivalently, S⊤ξ = ξ ⊕ S⊤
c ξ. The noise functions consistent with this choice

then parametrize the class of covariant phase space instruments. Their analysis is
a nice illustration of our theory. The main interest is again in the marginals, which
reflect the tradeoffs between disturbance and information gain. We treat them in
analogy to the corresponding observables.
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Just as for observables, the theory of quasifree instruments fits into the theory
of covariant instruments for more general groups [169, 170, 171, 172]. We begin by
outlining a heuristic argument suggesting a form for general covariant instruments.
We will verify later how this form comes out of our approach. As in the case of
observables, we assume an operator density for the outputs as a function of the
measured parameter: Its interpretation is the quantum channel conditioned on the
classical output x. This captures a typical use of instruments, where the quantum
state is updated based on the classical result. We are thus looking for a family of
cp maps Tx such that the following analog of Eq. (5.236) holds:

T ∗(A⊗ g) =
∫
dx T ∗

x (A)g(x). (5.243)

Putting A = 1, it is clear that T ∗
x is not a channel, as it is not normalized to the iden-

tity. Instead, T ∗
x (1) = Ḟ (x) is the Radon-Nikodym density of the classical marginal

observable. Thus, if the classical marginal has no density, then T ∗
x cannot be defined

either. On the other hand, if Ḟ (x) exists, we can look for a bona fide channel T̃ ∗
x

such that, with the abbreviation D(x) = Ḟ (x)1/2, we have D(x)T̃x(A)D(x) = Tx(A).
With the Kraus decomposition T̃ ∗

x (A) =
∑

j Kj(x)∗AKj(x) we get

T ∗
x (A) =

∑
j

(Kj(x)D(x))∗A Kj(x)D(x). (5.244)

It is clear from this formula that Kj(x) can be thought of as a map from the closed
range of D to H and should be normalized as

∑
j Kj(x)∗Kj(x) = supp (D(x)), where

the right-hand side denotes the support projection of D(x).
A feature shared with the observable case and the general group case is that

Tx(A)∗ needs only be known at one point because this can be transferred to all x by
covariance. Indeed, the covariance of the instrument is equivalent to

T ∗
x+S⊤

c ξ
= α−ξT ∗

x αξ. (5.245)

Thus α−ξKj(x) = Kj(x+S⊤
c ξ), extending the covariance condition in Eq. (5.237) for

the observable F , written for D as α−ξD(x) = D(x+ S⊤
c ξ). Since S⊤

c is surjective,
we only need all values at the origin and abbreviate D(0) =: D and Kj(0) = Kj .
This gives the form

T ∗
x (A) =

∑
j

α−ξ
(
KjD

)∗
A α−ξ

(
KjD

)
, where S⊤

c ξ = x. (5.246)

In this general form, the Kraus operators are only constrained by the normalization∑
j K

∗
jKj = supp (D) and the invariance condition arising from the possibility that

S⊤
c ξ = 0 might have non-zero solutions ξ. In that case, we must demand that the Kj

and the αξ(Kj) describe the same channel. In particular, for extremal instruments,
when there is only one Kraus operator, it has to be invariant up to a phase.
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Position instruments

We will illustrate our formalism by executing the task of finding all position instru-
ments twice: Once directly via the characteristic functions and Prop. 118, and once
in the way inspired by general covariance theory, i.e., via Eq. (5.246). For simplicity,
we look only at the pure case, i.e., we are happy to find the simplest solutions from
which all others arise by mixture.

Beginning with our approach, we use the notational conventions for phase space
and dual vectors outlined earlier. The map Sc comes from the position observable in
Eq. (5.239), i.e., S(p̂, q̂, k) = (p̂+k, q̂). All these quantities can be vectors p̂, q̂, k ∈ Rn

and with the above choice of S we have

(p̂, q̂, k)·∆σ(p̂′, q̂′, k′) = p̂·q̂′ − q̂·p̂′ − (p̂+ k)·q̂′ + q̂·(p̂′ + k′)
= q̂·k′ − k·q̂′. (5.247)

Now Eq. (5.247) is the commutation form of a hybrid phase space with quantum
coordinates (q̂, k) and a classical direction p̂. A pure state on this hybrid fixes the
classical part (cf. Lem. 87) to a point a, say, and is given on the quantum part by
a vector ψ on the Hilbert space of n degrees of freedom, defining the noise state τ .
This gives the noise function of our position instrument as

f(p̂, q̂, k) = eia·p̂ χτ (k, q̂) = eia·p̂ ⟨ψ,W (−k, q̂)ψ⟩. (5.248)

Here we chose the sign of k by a convention for ψ, for literal agreement with the
second approach, as we will prove later on. Together with S, Eq. (5.248) is a
complete description of the position instrument in our quasifree hybrid setting.

For the approach via Eq. (5.246), with a single Kraus operator K, we have to
satisfy the normalization condition K∗K = supp (D) and the invariance condition.
Here we have S⊤

c (ξ)·k = ξ·Sc(k) = ξ·(k, 0) = p̂·k, so our constraint for ξ translates
to vectors of the form ξ = (x, q̂), where q̂ is arbitrary and our invariance means

αξ(K) = u(q)K for ξ = (0, q̂) ∈ kerS⊤
c . (5.249)

Inserting a sum for ξ, it is clear that u(q̂) = exp(−ia·q̂) is a character. The
eigenvalue equation forK is satisfied by the Weyl operatorW (0,−a), but in contrast
to Lem. 113 the Weyl operators W (kerS⊤

c ) do not act irreducibly, and so K is only
determined up to an operator invariant under all αξ(0, q̂). Such operators commute
with all W (σ(0, q̂)) = W (q̂, 0), i.e., are multiplication operators in the position
representation. Thus we have

K =W (0,−a)ψ̃(Q). (5.250)

Similarly, D = ψD(Q) is a positive multiplication operator, whose square is the noise
density ν̇(Q) discussed above for the position observable, so ψD ∈ L2(Rn). The
normalization condition K∗K = supp (D) means that |ψ̃(x)| = 1 for x ∈ supp ψD.
Setting ψ(x) = ψ̃(x)ψD(x), we get KD =W (0,−a)ψ(Q), i.e.,(

KDφ
)
(x) = ψ(x− a)φ(x− a). (5.251)
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Now, we compute the characteristic function of the overall channel to compare it
with Eq. (5.248) from our approach. For the start, we calculate the translates of the
Kraus operator KD using the action of a Weyl operator described in Eq. (5.11) and
our Kraus operator in Eq. (5.251):

(
α−ξ(KD)φ

)
(y) =

(
W (−σξ)∗ KD W (−σξ)φ

)
(y)

=
(
W (q̂,−x) KD W (−q̂, x)φ

)
(y)

= eiq̂y−
i
2 q̂x
(
KD W (−q̂, x)φ

)
(y − x)

= eiq̂y−
i
2 q̂xΨ(y − x− a)

(
W (−q̂, x)φ

)
(y − x− a)

= eiq̂y−
i
2 q̂xΨ(y − x− a)e−

i
2 q̂x−iq̂(y−x−a)φ(y − x− a+ x)

= eiq̂aΨ(y − x− a)φ(y − a). (5.252)

Then, the characteristic function after the action of our instrument can be easily
read off by evaluating T ∗(W (p̂, q̂, k)). So we take two vectors φ, φ′ and get the
following:

⟨φ, T ∗(W (p̂, q̂, k)
)
φ′⟩ =

∫
dx eikx⟨α−ξ(KD)φ,W (p̂, q̂)α−ξ(KD)φ′⟩

=
∫
dx

∫
dy
(
α−ξ(KD)φ

)
(y)e

i
2 p̂q̂+ip̂y(α−ξ(KD)φ′

)
(y + q̂)

=
∫
dx

∫
dy ei(kx+

1
2 p̂q̂+p̂(y+a))

ψ(y − x)ψ(y − x+ q̂)φ(y)φ′(y + q̂)

=
∫
dx

∫
dy ei(k(y−x)+ 1

2 p̂q̂+p̂(y+a))ψ(x)ψ(x+ q̂)φ(y)φ′(y + q̂)

= eip̂a
∫
dx

∫
dy e

i
2 p̂q̂+

i
2kq̂−

i
2 (p̂+k)q̂ψ(x)φ(y)(

W (−k, q̂)ψ(x)
)(
W (p̂+ k, q̂)φ′(y)

)
= eip̂a⟨ψ,W (−k, q̂)ψ⟩⟨φ,W (S(p̂, q̂, k))φ′⟩. (5.253)

Thus we have f(p̂, q̂, k) = eia·p̂⟨ψ,W (−k, q̂)ψ⟩, i.e., the same characteristic func-
tion as in Eq. (5.248), so the two approaches yield the same result, only with less
analytical pain in our quasifree theory.

Finally, we are interested in the tradeoffs for the marginals, namely the quantum
output, which is necessarily of the type discussed prior under the keyword distur-
bance in Sect. 5.5.2, and the measurement output, which is of the type discussed
under position observables in Sect. 5.5.3. From the equation

χout(p̂, q̂, k) = f(p̂, q̂, k)χin(p̂+ k, q̂) (5.254)

we can directly read those off by setting the according variables to zero:

classical marginal: p̂ = q̂ = 0, noise measure = τQ,
quantum marginal: k = 0, noise measure = δa × τP .

(5.255)
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This is a very concise formulation of a well-known intuition: τQ is the distribution
of the noise added to the measurement outcomes, i.e., the error of the measurement.
τP , on the other hand, is the disturbance of the momentum variable. So, these are
reciprocal in exactly the way known for quantum states. We remark that noise could
also occur in the quantum position direction, here given by a deterministic shift a.
Non-pure instruments will have the distribution for that as well, and τ in the above
description generally depends on a, allowing all the complex correlations in a hybrid
noise state.

Phase space instruments

In this case, S(ξ ⊕ η) = ξ + η, and ∆σ is non-degenerate, so the noise state is a
quantum state of twice the number of degrees of freedom. In the pure case, it is
given by a vector ψ ∈ L2(Rn × Rn, dx1, dx2). Such a vector can be identified with
a Hilbert-Schmidt operator over the system Hilbert space H = L2(Rn, dx), and we
will see that this is precisely the required form of the local Kraus operator KD.
This general form for phase space instruments was also obtained independently in
[172]. In the following proposition, which is a straightforward application of our
formalism, we also describe the resulting tradeoff between disturbance (noise in the
quantum marginal) and precision (noise in the classical marginal). They are precisely
related by Fourier transformation almost exactly as in the case of joint measurements
of position and momentum. Only the Fourier transform is not between position
and momentum but between the operator side and the function side of quantum
harmonic analysis.

Proposition 131. (1) Every extremal quasifree phase space instrument is char-
acterized by a Hilbert-Schmidt operator Ψ̂ with tr(Ψ̂∗Ψ̂) = 1 such that

T ∗(A⊗ g) =
∫
dξ α−ξ(Ψ̂)∗Aα−ξ(Ψ̂) g(ξ). (5.256)

(2) Conversely, any such operator Ψ̂ determines an instrument and is determined
by it up to a phase.

(3) The classical marginal is a covariant phase space observable with density

Ḟ = Ψ̂∗Ψ̂. (5.257)

(4) The quantum marginal is addition of translation noise: ρ 7→
∫
dξ m(ξ)αξ(ρ)

with m ∈ L1(Ξ)
m(ξ) = |(FΨ̂)(−σξ)|2. (5.258)

Note that since F is unitary from the Hilbert-Schmidt class onto L2(Ξ), not
only all operator densities Ḟ but also all L1-densities m can occur. The prototype
of this tradeoff is the case of a single degree of freedom with additional covariance
under harmonic oscillator rotations. In particular, we can look at the Gaussians Ψ̂ =
c exp(−βH) withH = (P 2+Q2)/2. Then the Fourier transform is also Gaussian and
proportional to exp(− coth(β/2))ξ2/4, where ξ2 = (p2+q2)/2. Now, for β → 0, Ψ̂ is
a small multiple of the identity, so it can approximately be interchanged with A in
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Eq. (5.256). This even works in trace norm for the action on a trace class operator
for the dual channel. This means that the disturbance goes to zero, and this is
borne out by the computation of m, which for small β is Gaussian with variance
∝ 1/β. On the other hand, the phase space density of the classical marginal becomes
very broad, and the measurement outputs reveal very little about the state. In the
other direction, β → ∞, Ψ̂ becomes a coherent state projection, and the output
distribution becomes the Husimi function. The quantum noise m is still Gaussian,
with a variance on the order of standard quantum uncertainties.

Proof of Prop. 131. The difference symplectic form is now

(ξ, η)·∆σ(ξ′, η′) = ξ·σξ′ − (ξ + η)·σ(ξ′ + η′). (5.259)

Rather than expanding this, we just choose a twisted definite function, evaluated
for the independent variables ξ and ξ + η. That is, for the extremal case, we choose
a pure state on a doubled system, given by a vector Ψ ∈ H ⊗H such that

f(ξ ⊕ η) = ⟨Ψ|W (ξ)⊗W (ξ + η)|Ψ⟩. (5.260)

Here, the bar indicates complex conjugation W (ξ) = θ∗W (ξ)θ with respect to an
arbitrary antilinear involution θ, which has the effect of reversing the symplectic
form and hence takes care of the minus sign in Eq. (5.259). This completes the
parametrization of the family of instruments. What is left is rewriting this in the
stated form and computing the marginals.

To this end, we introduce the isomorphism Ψ 7→ Ψ̂ form H ⊗ H to Hilbert-
Schmidt operators on H given by ψ1⊗ψ2 7→ |ψ1⟩⟨θψ2|. Note that the involution θ is
needed here so that both sides of the identification are linear in ψ2. We next express
the action of the Weyl operators in Eq. (5.260) in terms of the Hilbert-Schmidt
operators. For Ψ = ψ1 ⊗ ψ2, we get

W (ξ)⊗W (ξ + η)Ψ = (W (ξ)ψ1)⊗ (θ∗W (ξ + η)θψ2)
7→ |W (ξ)ψ1⟩⟨W (ξ + η)θψ2| =W (ξ) Ψ̂ W (ξ + η)∗. (5.261)

Inserting this into Eq. (5.260) gives the equivalent expression

f(ξ ⊕ η) = tr
(
Ψ̂∗W (ξ)Ψ̂W (ξ + η)∗

)
. (5.262)

Denoting the Weyl elements on the classical output by W0, and using the identity∫
dζ αζ(A) = tr(A)1, we find

T ∗(W (ξ)⊗W0(η)
)
= tr

(
Ψ̂∗W (ξ)Ψ̂W (ξ + η)∗

)
W (ξ + η)

=
∫
dζ αζ

(
Ψ̂∗W (ξ)Ψ̂W (ξ + η)∗

)
W (ξ + η)

=
∫
dζ αζ

(
Ψ̂
)∗
eiζ·ξW (ξ) αζ

(
Ψ̂
)
e−iζ·(ξ+η) W (ξ + η)∗ W (ξ + η)

=
∫
dζ αζ

(
Ψ̂
)∗
W (ξ) αζ

(
Ψ̂
)
e−iζ·η

=
∫
dζ α−ζ

(
Ψ̂
)∗
W (ξ) α−ζ

(
Ψ̂
)
W0(η)(ζ). (5.263)
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This coincides with Eq. (5.243) and Eq. (5.246) with g = W0(η), A = W (ξ) and
KD = Ψ̂.

The form of the classical marginal is obvious from Eq. (5.256) by putting A = 1
(resp. ξ = 0 in Eq. (5.263)). For the quantum marginal, putting g = 1 leads to a
form from which it is not even clear that it is just convolution with noise. For that,
it is better to go back to the characteristic functions. Indeed, the function m in
Eq. (5.258) is just the inverse Fourier transform of f(ξ ⊕ 0), i.e.,

m(η) = (2π)−2n
∫
dξ eiη·ξ f(ξ ⊕ 0) = (2π)−2n

∫
dξ eiη·ξ tr

(
Ψ̂∗W (ξ)Ψ̂W (ξ)∗

)
= (2π)−2n

∫
dξ eiη·ξ tr

(
Ψ̂∗ασξ(Ψ̂)

)
= (2π)−2n

∫
dξ tr

(
Ψ̂∗ασξ(Ψ̂W (−ση))W (ση)

)
= tr

(
Ψ̂W (−ση)

)
tr
(
Ψ̂∗W (ση)

)
=
∣∣(FΨ̂)(−ση)

∣∣2. (5.264)

In the second line, we used the eigenvalue equation in Eq. (5.177) to absorb the
exponential factor and Eq. (5.120) in the last line to evaluate the integral.



Chapter 6

Conclusion and Outlook

Summary

Let us start this part by answering a fundamental question: How difficult is the
mathematical description of a quantum-classical hybrid?

After our discussion in Chap. 3, the answer is easy: It is difficult. This answer
was to be expected. Quantum and classical systems behave differently, so a priori,
there is no reason a combination should be straightforward.

The common ansatz of just choosing a commutative algebra for our classical
system and doing a tensor product with the quantum system shows its limitations
quite quickly. Unless we choose the special cases of discrete and finite-dimensional
systems, this construction either has reasonable states or observables, but not at
the same time. Accordingly, a description of channels with both Schrödinger and
Heisenberg picture proves to be difficult in this setting.

In a broader sense, this explains why there are plenty of works about quantum-
classical hybrids (Sect. 3.4) but no commonly accepted standard framework: It is
possible to avoid many of the difficulties when working on hybrid systems if focused
on a specific application or only on one part of a system, say hybrid states. The
problems arise if we want a hybrid setting that works for all parts of an experiment,
i.e., states, dynamics, and observables at the same time.

Before we presented a framework that resolves the issues from the straightforward
tensor ansatz, we reassured ourselves that a hybrid treatment has the potential for
real positive gains, i.e., we started answering one of our main questions: What
benefits does a unified hybrid treatment offer? For this, we took a simple hybrid
algebra and generalized a classical result regarding the generators of diffusions to the
hybrid setting (Chap. 4). Precisely as in the classical theory, this leads to generators,
which are second-order differential operators in the classical variables, having a
Lindblad-type quantum part and coupling terms that describe the information flow
between the systems. Here, the unified hybrid treatment shows its strength. In
Thm. 76, a simple positive condition to the coefficients in the generator bounds the
interaction, and thereby the information flow, between the systems. This part is
crucial for describing measurements this way. The theory sets mathematical bounds
on the perturbation of the quantum system associated with any information gained
by the classical subsystem.
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Although it is only defined on a simple hybrid algebra and there are already
other works regarding this topic, it perfectly indicates possible results from a genuine
hybrid approach.

Proceeding to more complex scenarios, we have described a framework for canon-
ical hybrid systems that includes both states and observables. In this framework,
quasifree channels can be discussed with remarkable ease and full generality. The
key idea is straightforward and not new: Instead of requiring a symplectic form σ
in the canonical commutation relations, one allows σ to be degenerate and house
the classical part of the system in its null space. This way, the algebra and notation
stay formally the same. The more complex part begins when we start to describe
its representation and the rest of the framework.

Defining a standard representation on a von Neumann algebra and its normal
states by a hybrid version of the Bochner theorem works out. The downside is that
this von Neumann algebra mostly inherits the problems described in Sect. 3.3, i.e.,
the additional requirements of choosing a measure and taking care of the associated
consequences for the state space and channels. We resolve these by introducing a
measure- or µ-free approach on top of it: The µ-free approach, whose distinction
from a µ-dependent one is sketched at the beginning of Sect. 5.3, enables us to
include pure states from the outset, and taken together with Sect. 5.4, extremal
channels. It is based on the C*-algebra C∗(Ξ, σ), which has our desired state space
in its dual C∗(Ξ, σ)∗. While this algebra itself is too small for an observables alge-
bra, its bidual C∗(Ξ, σ)∗∗ is way too large, so our last step in describing the basic
building blocks is finding a suitable intermediate algebra M ⊂ C∗(Ξ, σ)∗∗ that can
fulfill this role. Here, we had to go to considerable functional analytic lengths, but
the result is simple and easy to apply: With the multiplier algebra or the universally
measurable functions, we get hybrid observable algebras that can be used systemat-
ically with an automatic Heisenberg picture description for the entire class of hybrid
quasifree channels. The calculus for quasifree channels perfectly fits within the well-
established framework for purely quantum ones (Sect. 5.4), including a state-channel
correspondence (Sect. 5.4.2) and factorization theorem (Sect. 5.4.6). Furthermore,
while the restriction to Gaussian systems is a widely chosen simplification in physics,
and we have seen that this subclass does fit well into our framework (Sect. 5.2.4),
working on the larger quasifree class is often easier and beneficial.

Regarding the possible applications of hybrid systems, we have described a tool-
box of basic physical operations on the more practical level in Sect. 5.5. Applying
these in all kinds of different scenarios is now the obvious next step, which perfectly
leads over to the next section.

Outlook

One direction for future work is straightforward: Applying and extending the hybrid
toolbox. This can indeed deliver several positive aspects: The reformulation of
already-known results generally works as a benchmark for our hybrid formulation.
Furthermore, a plain reformulation of standing problems can be a good problem-
solving strategy, having the possibility to reveal new aspects.

In general, a unified hybrid description automatically contains all the interfacing
operations between a quantum system and the classical laboratory, such as prepara-
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tion, destructive and repeated measurements, feedback control, quantum informa-
tion protocols, and dissipative time evolutions describing continuous measurements.
While all these aspects are well and broadly studied, these works often pass over or
do not fully utilize the underlying hybrid nature.

Quantum information protocols, which, like our initial example of teleportation
in Sect. 1.1, are typically true hybrid systems. While they are commonly formulated
in a finite and discrete setting, i.e., use bits and qubits, they often have more general
formulations, including formulations for continuous variable systems and also the
quasifree case [3, 173, 174, 175].

Teleportation

(Ξ,−σ)

(Ξ, σ)

(Ξ, σ) (Ξ, 0) (Ξ, σ)

Figure 6.1: The protocol for teleportation. A double arrow indicates
classical information. All operations in the top row are noiseless, and the
noise arises from the entangled resource state. This can be chosen to be
zero in the finite cases.

So, an important step towards all these different scenarios is clearly to go be-
yond the quasifree case. While, in several ways, our broader quasifree approach
to hybrids is simpler than the more specialized versions like the Gaussian case, it
is highly likely that the next step in generalizing towards general hybrids will be
harder. We heavily used the quasifree nature, so what structure remains if we drop
this assumption? What happens if we exchange the canonical commutation rela-
tions with the canonical anticommutation relations, i.e., switch from the CCR- to
the CAR-algebra? This scenario is clearly more complicated because the classical
variables differ even more from the quantum ones. Whether it be more applied or
theoretical areas, there are plenty of possibilities for future work.
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