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Abstract

In this contribution we present a method to find the closest zeros to ±1 for orthogonal polyno-

mials with respect to analytic perturbations of the Chebyshev weight functions in [−1, 1]. The

error order we obtain is O(n−6).

Keywords: Analytic weights; Chebyshev measures; Zeros of para-orthogonal polynomials;

Zeros of orthogonal polynomials.

2000 MSC: 33C45, 42C05.

1. Introduction

The study of zeros of orthogonal polynomials with respect to analytic weights on the unit

circle has focused the attention of researchers after the classical paper by Nevai and Totik [6].

Special mention deserves the contributions of E. B. Saff et al. and B. Simon et al., among others.

In this contribution we deal with analytic properties of those orthogonal polynomials which

lead to the zero distribution of para-orthogonal polynomials associated with such a kind of

measures. Taking into account the Szegő transformation, we study a similar situation for mea-

sures supported on a bounded interval of the real line and, as a consequence, results concerning

polynomials orthogonal with respect to analytic modifications of the Chebyshev measure of the

first kind are deduced.
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Our main result provides a method to obtain an approximation of the nearest zeros to ±1

of the orthogonal polynomials related to the analytic modifications of the Chebyshev measure

of the first kind, that is, dµ1(x) = w(x)√
1−x2dx. The approximation obtained with a low com-

putational cost has order O(n−6). This method is extended to the first k-th zeros closest to

±1. Furthermore, we discuss the case of analytic modifications of the other three Chebyshev

measures. Finally, an illustrative list of examples is given.

2. Background

2.1. Transformation of modifications of the Chebyshev weights

Let ω(x) be a positive function on [−1, 1] such that the following modifications of the

Chebyshev weights

dµ1(x) =
ω(x)√
1− x2

dx, dµ2(x) = ω(x)
√

1− x2dx,

dµ3(x) = ω(x)

√
1 + x

1− x
dx and dµ4(x) = ω(x)

√
1− x
1 + x

dx

are finite positive Borel measures on [−1, 1] with finite moments of all order. We denote the

sequences of monic orthogonal polynomials with respect to these measures by {Pn,µk(x)}n≥0 for

1 ≤ k ≤ 4.

Let dν(θ) = 1
2
ω(cos θ)dθ, with z = eıθ, be the corresponding measure on the unit circle

T = {z : |z| = 1} obtained through the Joukowsky transformation of the measure dµ1. If we

denote by {φn(z)}n≥0 the sequence of monic orthogonal polynomials with respect to dν and by

{φ∗n(z)}n≥0 the sequence of reversed polynomials defined by φ∗n(z) = znφn(1
z
), then in the next

Proposition the relations between the polynomial sequences {φn(z)}n≥0 and {Pn,µk(x)}n≥0, 1 ≤
k ≤ 4, are given. Notice that in this situation φn(z) has real coefficients.

Proposition 1. Let ω(x) be a positive function on [−1, 1] such that dµ1, dµ2, dµ3, and dµ4,

defined as aqbove, are finite positive Borel measures on [−1, 1] with finite moments of all order.

Let dν(θ) = 1
2
ω(cos θ)dθ, with z = eıθ be the transformed measure of dµ1 through the Joukowsky

transformation. If x = z+z−1

2
, then the following relations hold

(i)

Pn,µ1(x) =
1

2n(1 + φ2n(0))
(z−nφ2n(z) + znφ2n(

1

z
)) =

1

2n(1 + φ2n(0))

φ2n(z) + φ∗2n(z)

zn
.
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(ii)

Pn,µ2(x) =
1

2n(1− φ2n+2(0))

z−(n+1)φ2n+2(z)− zn+1φ2n+2(1
z
)

z − z−1
=

1

2n(1− φ2n+2(0))

φ2n+2(z)− φ∗2n+2(z)

zn(z2 − 1)
.

(iii)

Pn,µ3(x) =
1

2n(1 + φ2n+1(0))

z−(n+1)+ 1
2φ2n+1(z) + zn+1− 1

2φ2n+1(1
z
)

z
1
2 + z−

1
2

=

1

2n(1 + φ2n+1(0))

φ2n+1(z) + φ∗2n+1(z)

zn(z + 1)
.

(iv)

Pn,µ4(x) =
1

2n(1− φ2n+1(0))

z−(n+1)+ 1
2φ2n+1(z)− zn+1− 1

2φ2n+1(1
z
)

z
1
2 − z− 1

2

=

1

2n(1− φ2n+1(0))

φ2n+1(z)− φ∗2n+1(z)

zn(z − 1)
.

Proof. The four relations are well-known. The first and second ones can be seen in [9] and [2].

The two last relations can be seen in [1] and [2].

Since the previous formulas are related to para-orthogonal polynomials, we recall their

definition as well as some properties. If ν is an arbitrary measure on T with monic orthogonal

polynomial sequence {φn(z)}n≥0 and τ is a unimodular complex number, the para-orthogonal

polynomials Wn(z, τ) are defined by Wn(z, τ) = φn(z) + τφ∗n(z), n ≥ 0. It is very well-known

that para-orthogonal polynomials have complex zeros which are simple and located on the unit

circle (see [4]).

In particular, under the hypothesis of Proposition 1, if τ = 1, then φn(z) +φ∗n(z) has simple

and unimodular complex zeros as well as, when n is odd, −1 is also a zero. In any case the zeros

different from −1 are pairwise conjugated. If τ = −1, then the para-orthogonal polynomial

φn(z)−φ∗n(z) has also simple and unimodular complex zeros as well as, when n is even, ±1 are

also zeros and, when n is odd, 1 is a zero. In any case the zeros different from ±1 are pairwise

conjugated.

Since the polynomials in the numerators of the right-hand side of (i), (ii), (iii), and (iv) are

para-orthogonal polynomials, then the above properties hold. In the four cases each pair of

conjugated zeros determine a zero (the real part of both complex numbers) of the corresponding

3



polynomials Pn,µi . Hence if we approximate the zeros of these para-orthogonal polynomials,

then we are able to approximate the zeros of the polynomials Pn,µi . This property will be used

to obtain the zeros of Pn,µi which are closer to 1 and −1.

2.2. Analytic weights on the unit circle and zeros of para-orthogonal polynomials

Analytic weights on the circle were introduced by Nevai and Totik in [6] and they have been

subsequently studied by several authors, (see [5], [7]). In the sequel we present some properties

that we believe are generally known.

We recall that an analytic measure ν on the circle is associated with an analytic function

on an open annulus, with radii 1/r and r, r < 1, which is positive on T. In this situation the

Szegő function Π(z, ν), given by

Π(ν, z) = exp{− 1

4π

∫ 2π

0

log ν ′(θ)
eıθ + z

eıθ − z
dθ}

is analytic up to |z| < 1
r

and the asymptotic results given in the next proposition hold. These

results are an extension of those related to the well known Szegő theory. In what follows we

consider the normalized Szegő function Π(ν,z)
Π(ν,0)

and, for simplicity, we continue denoting by Π(ν, z)

this last function. Furthermore, to simplify the notation we write Π(z) instead of Π(ν, z).

Proposition 2. Let ν be an analytic weight on T, {φn(z)} the monic orthogonal polynomial

sequence related to ν, {Wn(z, τ)}n≥0 the sequence of para-orthogonal polynomials and Π(z) the

normalized Szegő function. Then the following relations hold

(i) lim
n→∞

φ∗n(z) = Π(z) uniformly on T. Moreover φ∗n(z) = Π(z) +O(rn) for z ∈ T.

(ii) lim
n→∞

φn(z)

zn
= Π(

1

z
) uniformly on T. Moreover φn(z) = znΠ(1

z
) +O(rn) for z ∈ T.

(iii) lim
n→∞

(φ∗n)′(z) = Π′(z) uniformly on T. Moreover (φ∗n)′(z) = Π′(z) +O(n2rn) for z ∈ T.

(iv) lim
n→∞

φ′n(z)

nzn−1
= Π(

1

z
) uniformly on T. Moreover φ′n(z) = nzn−1Π(1

z
) +O(1) for z ∈ T.

(v) There exist positive real numbers D and E such that for every z ∈ T and for all n it holds

|Wn(z, τ)| ≤ D, nE ≤ |W ′
n(z, τ)| ≤ nD. Moreover W ′

n(z, τ) = nzn−1Π(1
z
) +O(1).

Notice that the preceding properties are uniformly satisfied on T.

Proof. We give an sketch of the proofs in order to make the paper self-contained.

(i) The first part is well-known. For the second statement we use the Szegő’s recurrence

relation φ∗n+1(z) − φ∗n(z) = φn+1(0)zφn(z), (see [9]). From the properties of the orthogonality

measure we know that φ∗n(z) converges uniformly to Π(z) for |z| < 1
r

and, therefore, φ∗n(z) and
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φn(z) are bounded for |z| = 1. Moreover, it holds that |φn(0)| = O(rn), (see [6]). Then for

z ∈ T we have |φ∗n+1(z) − φ∗n(z)| ≤ Crn+1 and, therefore, |φ∗n+m(z) − φ∗n(z)| ≤ C (1−rm)
(1−r) r

n+1.

Hence, if we take limits when m→∞ we obtain |Π(z)− φ∗n(z)| ≤ C r
1−rr

n for z ∈ T.
(ii) The first part is well-known. The second part follows in a straightforward way from (i).

(iii) The first statement follows from (i). To prove the second part we denote by εn(z) the

analytic function on the disk |z| < 1
r
,

εn(z) = φ∗n(z)− Π(z). (1)

If εn(z) =
∞∑
k=0

Ak,nz
k then the coefficients are bounded in the following form. By applying

Cauchy’s theorem we get

Ak,n =

∣∣∣∣ 1

2πı

∫
T

φ∗n(z)− Π(z)

zk+1
dz

∣∣∣∣ ≤ C1r
n,

for every k, that is, Ak,n = O(rn).

Moreover, for k ≥ n + 1 Ak,n ≤ C2r
k, that is, Ak,n = O(rk). Therefore, since ε′n(z) =

(φ∗n)′(z)− Π′(z) =
∞∑
k=1

kAk,nz
k−1, it is clear that (φ∗n)′(z) = Π′(z) +O(n2rn).

(iv) From (1) we get

φn(z) = znΠ(
1

z
)− znεn(

1

z
). (2)

Then, if we take derivatives we obtain

φ′n(z) = nzn−1

(
Π(

1

z
)− εn(

1

z
)

)
+ zn

[(
Π(

1

z
)

)′
−
(
εn(

1

z
)

)′]
,

from which the statement follows in a straightforward way.

(v) From (i) and (ii) we get that there exists a positive constant D such that |Wn(z, τ)| ≤ D

for every n and for all z. From the Bernstein inequality it follows that |W ′
n(z, τ)| ≤ nD for

every n and for all z ∈ T. The bounded from below and the last part are direct consequences

of (iii) and (iv).

Next we present a result about the location of zeros of para-orthogonal polynomials.

Proposition 3. Let Wn(z, τ) be a nth para-orthogonal polynomial with respect to the measure

ν analytic on T and with Szegő function Π(z) analytic up to |z| < 1
r
. with r < 1. Let α1 and

α2 be two consecutive zeros of Wn(z, τ). If we assume that α1 = eıθ1 and α2 = eıθ2, then

|θ1 − θ2| −
2π

n
= O(

1

n2
). (3)

5



Furthermore, each zero αi of Wn(z, τ) has associated a zero βi of znΠ(1
z
) + τΠ(z) = 0 in such

a way that |βi − αi| = O(rn).

Proof. Maybe the simplest way to prove the result is to illustrate it as a problem of mobile

bodies around a circular velodrome T, with θ playing the role of the time.

To solve the equation Wn(z, τ) = 0, that is, φn(z) + τφ∗n(z) = 0, we write it in the equivalent

form

zn = −τφ
∗
n(z)

φn(z)
zn

. (4)

If z = eıθ, the left hand side of (4) can be considered as a body moving with constant velocity

v1 = n on the unit circle, which turns in the counterclockwise sense as θ increases. The right

hand side of (4) can be considered as a body moving with velocity v2 = d(− τznφ∗n(z)
φn(z)

)/dθ, which

is bounded by a constant A. If n is large enough, then |v2| < A < n.

Thus, if z1 = eıθ1 is a zero of Wn(z, τ), that is, if both bodies are at the same position eınθ1

on the unit circle, then they will be again at the same position for the first time at θ = θ2, with

θ2 ∈ [θ1 + 2π
n
− 2π

n(n+A)
, θ1 + 2π

n
+ 2π

n(n−A)
]. Hence (3) is proved.

To prove the second statement we use that equation (4) for n large enough is very similar

to

zn = −τΠ(z)

Π(1
z
)
. (5)

Now, the same arguments can be used as above. Thus, if α1 = eıθ1 is a zero of (4 ) and we

replace in (5), we get

αn1 + τ
Π(α1)

Π( 1
α1

)
= αn1 +

τφ∗n(α1) +O(rn)
φn(α1)
αn1

+O(rn)
= αn1 +

τφ∗n(α1)
φn(α1)
αn1

+O(rn) = O(rn).

Hence, the difference between the position of the mobile bodies in (5) at the time θ1 is O(rn).

Since the body zn in (5) moves with velocity of order n and the other body has bounded

velocity, then they find one to each other at a time belonging to [θ1 −O(rn), θ1 +O(rn)].

3. The largest zero of Pn,µ1(x).

Let ω(x) be an analytic and positive function on [−1, 1] and let us consider the measures

dµ1(x) =
ω(x)√
1− x2

and dν(θ) = 1
2
ω(cos θ)dθ, with z = eıθ. Let {Pn,µ1(x)}n≥0 be the monic

orthogonal polynomial sequence associated with µ1 and let {Wn(z, 1)}n≥0 be the sequence of
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para-orthogonal polynomials with respect to ν. As we have seen before, the Szegő function

Π(z) has analytic extension outside the unit disk up to 1
r
, r < 1, and its Taylor expansion has

real coefficients.

Based on the ideas given above, the zero of Pn,µ1(x) which is closest to 1 is associated with

the pairwise zeros of W2n(z, 1) which are closest to 1. Moreover, by using Proposition 3, these

zeros are very close to the pairwise zeros of z2nΠ(1
z
) + Π(z) = 0 closer to 1. Indeed, taking into

account this previous result, the distance on the arc between these last zeros of W2n(z, 1) is at

most 2π
2n

+O( 1
(2n)2

). Consequently, the argument of the zero in the upper plane is π
2n

+O( 1
(2n)2

).

Now our aim is to obtain a better approximation of this zero on T by solving the equation

z2nΠ(1
z
)+Π(z) = 0, for which we solve the equivalent equation −z2n = Π(z)

Π( 1
z

)
. If we take z = eıθ,

then it can be rewritten as

−eı2nθ =
Π(eıθ)

Π(e−ıθ)
, (6)

and by taking logarithms in (6) we get

π + 2nθ = log

(
Π(eıθ)

Π(e−ıθ)

)
/ı+ 2kπ.

Since log
(

Π(eıθ)
Π(e−ıθ)

)
= ı arg( Π(eıθ)

Π(e−ıθ)
), then if we denote by A(θ) = arg

(
Π(eıθ)

Π(e−ıθ)

)
, then the previous

equation can be rewritten as

π + 2nθ = A(θ) + 2kπ. (7)

Here π represents the argument of the initial position at the time θ = 0 of the body which

moves with velocity 2n, 2nθ is the traveled arc by this body, A(θ) means the position of the

second body and 2kπ means the number of times that the first body meets the second one.

Thus, for k = 1 we have the zero nearest to θ = 0 and for k = 2 we get the second zero nearest

to θ = 0 .

To solve (7), first we point out some properties satisfied by A(θ):

(i) A(θ) takes real values for every θ.

(ii) A(θ) is an odd function in θ, that is, A(−θ) = −A(θ).

(iii) A(θ) has derivatives of every order (in the region where we are dealing with, that is, θ

near 0) and all of them are bounded.

(iv) The even derivatives vanish at 0, that is, A(2k)(0) = 0 for every k.

To approximate the zeros of (7) for k = 1, that is, A(θ)− 2nθ + π = 0, we substitute A(θ)

by its Taylor polynomial of fourth order around 0 and thus we propose to solve the following

7



equation

A′′′(0)

6
θ3 + (A′(0)− 2n)θ + π = 0. (8)

This cubic polynomial takes positive values for θ = 0 and, for n large enough, it is easy to see

that it takes negative values for θ = π
n
. Hence, for n large enough, each cubic polynomial has

a positive real zero near π
n
. Moreover, it is easy to see that the two other zeros have modulus

of order
√
n.

To identify the zero which is nearest to 0, we apply Cardano formulas as follows

(8) may have only one or three real solutions depending on the sign of A′′′(0) and if we

denote A′′′(0) = a and A′(0) = b, then it can be rewritten

θ3 + 6
(b− 2n)

a
θ +

6π

a
= 0. (9)

Indeed, if a < 0, then there exists only one real zero, given by

θ1 =
3
√

3
3

√√
8(b− 2n)3

9a3
+
π2

a2
− π

a
− 3
√

3
3

√√
8(b− 2n)3

9a3
+
π2

a2
+
π

a
. (10)

Otherwise, if a > 0, then (9) has three real zeros. Two of them are of order
√
n and the third

one, which is the nearest to zero, can be obtained in an easy way by using the trigonometric

expressions of the three zeros. This leads to

θ1 =
e−

2ıπ
3

3
√

2

3

√√√√−6π

a
+ ı2

√∣∣∣∣8 (b− 2n)3

ã3
+

9π2

a2

∣∣∣∣+
e

2ıπ
3

3
√

2

3

√√√√−6π

a
+ ı2

√∣∣∣∣8 (b− 2n)3

a3
+

9π2

a2

∣∣∣∣. (11)

Notice that the zero of (7) for k = 1 and the zero θ1 of (8) nearest to 0 are very similar.

If we consider the Taylor expansion of fourth order of A(θ) around 0, then we obtain

A(θ)− 2nθ =
A′′′(0)

6
θ3 + (A′(0)− 2n)θ + π +

A(v)(ξ)

5!
θ5 (12)

for some ξ. Since A(θ1) − 2nθ1 = A(v)(ξ)
5!

θ5
1, then A(θ1) − 2nθ1 has order n−5. By using again

the argument of the velodrome, the true zero of (7) must be θ1 +O(n−6).

If we want to obtain the zero of Pn(x, µ1) which is nearest to −1 it suffices to consider

w1(x) = w(−x) which leads to the Szegő function Π1(z) = Π(−z), and determine, in the same

way as above, the zero θ1 which is nearest to 1 with an approximation of order O(n−6). In this

situation cos(π ± θ1) is the approximation that we are looking for.

In summary, we have proved the following theorem
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Theorem 1. Let w(x) be an analytic and positive function on [−1, 1] and let us consider

the measure dµ1(x) = w(x)√
1−x2dx with monic orthogonal polynomial sequence {Pn,µ1(x)}n≥0. Let

dν(θ) = 1
2
w(cos θ)dθ for z = eıθ and Π(z) be the normalized Szegő function of ν.

1. If we denote a = d3

dθ3

(
log

(
Π(eıθ)

Π(e−ıθ)

))∣∣∣∣
θ=0

and b = d
dθ

(
log

(
Π(eıθ)

Π(e−ıθ)

))∣∣∣∣
θ=0

then

(a) If a > 0 and cos(θ1) is the zero of Pn(x, µ1) nearest to 1, then θ1 can be approximated

by

e−
2ıπ
3

3
√

2

3

√√√√−6π

a
+ i2

√∣∣∣∣8 (b− 2n)3

a3
+

9π2

a2

∣∣∣∣ 3
√

2 +
e

2iπ
3

3
√

2

3

√√√√−6π

a
+ i2

√∣∣∣∣8 (b− 2n)3

a3
+

9π2

a2

∣∣∣∣(13)

with an error of order O(n−6).

(b) If a < 0 and cos(θ1) is the zero of Pn(x, µ1) nearest to 1, then θ1 can be approximated

by

3
√

3
3

√√
8(b− 2n)3

9a3
+
π2

a2
− π

a
− 3
√

3
3

√√
8(b− 2n)3

9a3
+
π2

a2
+
π

a
. (14)

with an error of order O(n−6).

2. If we denote ã = d3

dθ3

(
log

(
Π(−eıθ)

Π(−e−ıθ)

))∣∣∣∣
θ=0

and b̃ = d
dθ

(
log

(
Π(−eıθ)

Π(−e−ıθ)

))∣∣∣∣
θ=0

, then

(a) If ã > 0 and cos(θ2) is the zero of Pn(x, µ1) nearest to −1, then θ2 can be approxi-

mated by

e−
2iπ
3

3
√

2

3

√√√√√−6π

ã
+ i2

√√√√∣∣∣∣∣8 (b̃− 2n)3

ã3
+

9π2

ã2

∣∣∣∣∣+
e

2iπ
3

3
√

2

3

√√√√√−6π

ã
+ i2

√√√√∣∣∣∣∣8 (b̃− 2n)3

ã3
+

9π2

ã2

∣∣∣∣∣(15)

with an error of order O(n−6).

(b) If ã < 0 and cos(θ2) is the zero of Pn(x, µ1) nearest to −1, then θ2 can be approxi-

mated by

3
√

3
3

√√√√√8(b̃− 2n)3

9ã3
+
π2

ã2
− π

ã
− 3
√

3
3

√√√√√8(b̃− 2n)3

9ã3
+
π2

ã2
+
π

ã
. (16)

with an error of order O(n−6).
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Remark 1. As we have said before, the equation that we have solved

A′′′(0)

6
θ3 + (A′(0)− 2n)θ + π = 0

comes from a more general one

A′′′(0)

6
θ3 + (A′(0)− 2n)θ + (2k − 1)π = 0,

where k denotes the order of the zero according to its distance to 1. For fixed values of k and n

large enough, formulas (13), (14), (15) and (16) can be adapted to determine the zero number

k nearest to 1 and −1 by changing
π

a
by

(2k − 1)π

a
and

π

ã
by

(2k − 1)π

ã
, respectively.

Remark 2. Proceeding in a similar way, we can obtain the corresponding theorems for the

other three measures µ2, µ3, and µ4. Now we need to use the relations given in (ii), (iii),and

(iv) of Proposition 1.

For the measure µ2 the equation equivalent to (6) is

eı(2n+2)θ =
Π(eıθ)

Π(e−ıθ)
,

and, therefore, (2n+ 2)θ = A(θ) + 2kπ holds. Thus one has to solve

θ3 + 6
(b− (2n+ 2))

a
θ + 6

2kπ

a
= 0.

For the measure µ3 the equation equivalent to (6) is

−eı(2n+1)θ =
Π(eıθ)

Π(e−ıθ)
,

and, therefore, π + (2n+ 1)θ = A(θ) + 2kπ holds. Thus one has to solve

θ3 + 6
(b− (2n+ 1))

a
θ + 6

(2k − 1)π

a
= 0.

For the measure µ4 the equation equivalent to (6) is

eı(2n+1)θ =
Π(eıθ)

Π(e−ıθ)
,

and, therefore, (2n+ 1)θ = A(θ) + 2kπ holds. Thus one has to solve

θ3 + 6
(b− (2n+ 1))

a
θ + 6

2kπ

a
= 0.

10



Measure Change 8(b−2n)3

a3
in (13) and (14) by Change π

a
in (13) and (14) by

µ1
8(b− 2n)3

a3

(2k − 1)π

a

µ2
8(b− (2n+ 2))3

a3

2kπ

a

µ3
8(b− (2n+ 1))3

a3

(2k − 1)π

a

µ4
8(b− (2n+ 1))3

a3

2kπ

a

Table 1: Changes in (13) and (14) to obtain cos θ1, the kth zero of de Pn,µi(x) nearest to 1

Thus the changes needed in (13) and (14) to obtain the kth zero of Pn,µi(x), nearest to 1

are given in Table 1.

Proceeding in the same way, formulas (15) and (16) can be adapted for the measures µi in

order to obtain the kth zero of Pn,µi(x) nearest to −1. The changes corresponding to µ1 and µ2

are evident, while for µ3 and µ4 one must take into account that µ3(−z) is µ4(z) and viceversa.

See Table 2.

4. Numerical examples

In this section we give several examples to illustrate how the method just presented can be

implemented.

Example 1. We consider a rational modification of the Chebyshev measure of the first kind

by using the weight function w(x) =
1

p(x)
, p(x) a positive polynomial in [−1, 1]. In this case,

the transformed measure dν(θ) is a Bersntein-Szegő measure given by dν(θ) = 1
2
w(θ)dθ =

1
2|Q(z)|2 , z = eıθ, where Q(z) is a polynomial well determined from p(x), (see [9]). It is well

known that the zeros of Q(z) are located outside the unit disk. Indeed, they are obtained by

applying the Joukowsky transformation to the zeros of p(x). The monic orthogonal polynomials

related to ν are given by φn(z) = zn−degQQ∗(z)

Q(0)
and the normalized Szegő function is Π(z) = Q(z)

Q(0)
.

In this first example we have chosen p(x) = (x+4)(x2+ 4
3
x+ 2

3
). Since its zeros are −4,

√
2

ı−
√

2
,

and
√

2
ı−
√

2
, then the zeros of Q(z) are −4 −

√
15, −1 −

√
2ı, and −1 +

√
2ı. The normalized

11



Measure Change 8(b̃−2n)3

ã3
in (15) and (16) by Change π

ã
in (15) and (16) by

µ1
8(b̃− 2n)3

ã3

(2k − 1)π

ã

µ2
8(b̃− (2n+ 2))3

ã3

2kπ

ã

µ3
8(b̃− (2n+ 1))3

ã3

2kπ

ã

µ4
8(b̃− (2n+ 1))3

ã3

(2k − 1)π

ã

Table 2: Changes in (15) and (16) to obtain cos θ1, the kth zero of Pn,µi
(x) nearest to −1

Szegő function is Π(z) = (1 + z
4+
√

15
)(1 + z

1+
√

2ı
)(1 + z

1−
√

2ı
).

By applying formula (13), adapted as in the last remark, we have obtained the five zeros

closest to 1 of p500,µ1(x). Based on these approximations, we have proceeded to refine them by

using the FindRoot command from Mathematica, obtaining the following table 3.

zero number Value of θ1 applying (13) Refined value Error

1 0.003146497210659052 0.003146497210659047 -4.21110 E-18

2 0.009439491547931159 0.009439491547930136 -1.02331 E-15

3 0.015732485633065297 0.015732485633052137 -1.31601 E-14

4 0.022025479297969563 0.022025479297898782 -7.07806 E-14

5 0.028318472374552163 0.028318472374303474 -2.48688E-13

Table 3: Using Table 1 to adapt (13) for obtaining cos θ1, the kth zero of P500,µ1
(x) nearest to 1

To show numerically that the errors evolve with the suggested order we have repeated the

experiment using n = 5000, that is, multiplying n by 10 and we have obtained Table 4.

Notice that the above errors are less than the former ones multiplied by 10−6

Example 2. For this second example we consider the measure dµ1(x) = 1√
1−x2w

(q)
RS(x)dx, that

is, we consider the modification of the Chebyshev measure of the first kind by the weight function

w
(q)
RS(x) = 4π(2πa)−

1
2

∞∑
j=∞

e
−(arccos x−2πj)2

2a , with a = log

(
1

q

)
, and q ∈ (0, 1).

12



zero number Value of θ1 applying (13) Refined value Error

1 0.000314208242149350 0.000314208242149350 -4.175773 E-24

2 0.000942624726439695 0.000942624726439695 -1.014713 E-21

3 0.001571041210704967 0.001571041210704967 -1.304929 E-20

4 0.002199457694928451 0.002199457694928451 –7.018227 E-20

5 0.002827874179093432 0.002827874179093432 -2.465755E-19

Table 4: Using Table 1 to adapt (13) for obtaining cos θ1, the kth zero of P5000,µ1
(x) nearest to 1

The Joukowsky transformation of the measure µ1 gives the well known Rogers-Szegő measure,

(see [7])

dνq(θ) = 2π(2πa)−
1
2

∞∑
j=∞

e
−(θ−2πj)2

2a ,

which can also be described by its moments cn = q
n2

2 and also by the Verblunsky coefficients

αn = (−1)nq
(n+1)

2 .

The monic orthogonal polynomials are given by φn(z) =
∑n

j=0(−1)n−j
[
n
j

]
q
q

(n−j)
2 zj and it is

also well known that the normalized Szegő function is given by

Π(z) =
1

(−q 1
2 z; q)∞

=
1

∞∏
j=0

(1 + zqj+
1
2 )
.

Now we are in conditions to apply formulas (14) and (15) as well as their modifications.

We have chosen q = 0.5 and n = 1000 and we have applied (14) and (15) adapted following

the last remark to approximate the five zeros closer to 1 and −1 of P1000,µ2(x). Based on these

approximations, we have proceed to refine the results by using the FindRoot command from

Mathematica, obtaining the following table 5.

zero number Value of θ1 applying (14) Refined value Error

1 0.00313906378824043883390501 0.00313906378824043866844337 -1.654616E-19

2 0.00627812757320344212021217 0.00627812757320343682543901 -5.294773E-18

3 0.00941719135161157434554271 0.00941719135161153413835115 -4.020719E-17

4 0.01255625512018740006495599 0.01255625512018723063213537 -1.694328E-16

5 0.01569531887565348393616855 0.01569531887565296686805296 -5.170681E-16

Table 5: Using Table 1 to adapt (14) for obtaining cos θ1, the kth zero of P1000,µ2(x) closest to 1.
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The second table contains a similar experiment, but now with the zeros of P1000,µ2(x) closest

to −1 .

zero number Value of θ2 applying (15) Refined value Error

1 3.138455139396180461250 3.138455139396180469349 8.099632E-18

2 3.135317625184155535532 3.135317625184155794718 2.591858E-16

3 3.132180110935306311722 3.132180110935308279884 1.968161E-15

4 3.129042596631220638073 3.129042596631228931710 8.293636E-15

5 3.1259050822534863595977 3.125905082253511669060 2.530946E-14

Table 6: Using table 1 to adapt (15) for obtaining cos θ1, the kth zero of P1000,µ2
(x) closer to -1

Example 3. Let us consider the following modification of the Chebyshev measure dµ1(x) =
1√

1−x2 e
p(x)dx, where p(x) is a polynomial with real coefficients. If we consider the expansion of

p(x) with respect to the Chebyshev polynomials of the first kind, p(x) =
m∑
j=0

ajTj(x), then we

denote by P (z) the polynomial P (z) =
m∑
j=0

ajz
j.

If we apply the Joukowsky transformation to the measure µ1, then we get

dν(θ) =
1

2
ep(cos θ)dθ =

1

2
e
P (z)
2 e

P (z)
2 dθ, z = eıθ,

and the Szegő function is

Π(z) =
e

−P (z)
2

e
−P (0)

2

since

w(θ) ∝ 1

Π(z)Π(1
z
)
, z = eıθ.

For this third example we have taken p(x) = −x2, that is, p(x) = −1
2
T2(x)− 1

2
. Then P (z) =

−1
2
− 1

2
z2 and dν(θ) = 1

2
e−( 1

4
+ z2

4
)e−( 1

4
+ 1

4z2
). In particular, the Szegő function is Π(z) = e

1
4 z

2+1
4

e
1
4

.

Thus we can apply (14) and (16) adapted following the last remark. First, we have obtained the

arguments of the first five zeros of P500,µ3 closest to 1 . Based on these approximations, we have

proceeded to refine the results by using the FindRoot command from Mathematica, obtaining

the following table 7. Notice that we apply the previous command to z2n = − Π(z)

Π( 1
z

)
and take into

account Proposition 3.

The second table contains a similar experiment for the first five zeros of P500,µ4 closest to

−1.
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zero number Value of θ1 applying (14) Refined value Error

1 0.001570796325502968 0.001570796325502969 6.375408 E-19

2 0.004712388945502629 0.004712388945502784 1.549221 E-16

3 0.007853981472483468 0.007853981472485460 1.992303 E-15

4 0.010995573844432959 0.010995573844443674 1.071502 E-14

5 0.014137165999338603 0.014137165999376249 3.764542 E-14

Table 7: Using table 1 to adapt (14) for obtaining cos(θ1), the kth zero of P500,µ3
(x) closest to 1

zero number Value of θ2 applying (16) Refined value Error

1 3.140021857264290270 3.140021857264290269 - 6.375408 E-19

2 3.136880264644290609 3.136880264644290454 -1.549221 E-16

3 3.133738672117309769 3.133738672117307777 -1.992303 E-15

4 3.130597079745360279 3.130597079745349564 -1.071502 E-14

5 3.127455487590454634 3.127455487590416989 -3.764542 E-14

Table 8: Using table 2 to adapt (16) for obtaining cos θ1, the kth zero of P500,µ4
(x) closest to −1

Obviously the second part of the example could be solved taking into account that the kth

zero of Pn,µ3(x) closest to 1 is just the opposite of the kth zero of Pn,µ4(x) closest to −1 . Thus

the arguments are supplementary angles.

Note 1. The FindRoot command of Mathematica does not necessarily converge to a zero, even

using a good start. We can observe this by executing

FindRoot[z10000 − 1, z, 1.01].

So, by evaluating the corresponding equations in the refined values we have done an extra

test. In all cases, the equation was satisfied with negligible errors.
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[9] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, 4th ed.,

Amer. Math. Soc., Providence, RI, 1975.

[10] M. L. Wong, First and second kind paraorthogonal polynomials and their zeros, J. Approx.

Theory 146 (2) (2007), 282-293.

16


	ELSEVIER.pdf
	raizmasgrande.26-06-17._ (002).pdf

