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Abstract

This dissertation investigates the utilization of factor models to measure

performance in corporate bond markets, identifies an optimal factor model

for corporate bond returns, and finally provides a comprehensive analysis

of factor pricing and market integration across asset classes. Chapter 1

introduces the main concepts and delivers an overview of the following

chapters.

Chapter 2 seeks to answer the question “which factor model do investors

in corporate bonds use?” by tracking investors’ decisions to invest in actively

managed corporate bond mutual funds with a revealed preference approach.

The main result is that all bond factor models are dominated by the

simple Sharpe ratio and Morningstar ratings. For all major corporate bond

mutual fund styles, the Sharpe ratio explains fund flows better than alphas

from bond factor models. Since the Sharpe ratio (and to some extent also

Morningstar ratings) can be easily manipulated in bond markets, these

findings have potentially severe implications for all market participants.

Going a step further, Chapter 3 addresses the following important

questions, from both an academic and a practitioner’s perspective: What are

important drivers of corporate bond returns? What should be a benchmark

model for pricing and investing in corporate bond markets? The central

finding is that factors related to carry, duration, equity momentum, and
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the term structure are the most important risk factors in corporate bond

markets. From a large set of factor candidates for corporate bond returns,

we condense an optimal model with a two-step approach. First, we filter

out factors that do not systematically move bond prices. Second, we use a

Bayesian model selection approach to determine the optimal, parsimonious

model. Many prominent factors do not move prices, or are redundant. We

document the new model’s good performance compared to that of existing

models in time-series and cross-sectional tests and analyze the economic

drivers of the factors.

While Chapter 2 and Chapter 3 focus on corporate bonds, the study

conducted in Chapter 4 extends the understanding to a bigger picture of

factor pricing and market integration across asset classes. Factor models

specializing in one asset class have limited pricing power for other asset

classes. Thus, we reject perfect market integration. However, an optimal

integrated factor model across asset classes can effectively characterize

the returns of multiple asset classes and provide a useful benchmark for

multi-asset, multi-factor investing. The optimal model includes several

equity and corporate bond factors, suggesting the presence of multiple

systematic return drivers. Despite this, there appears to be some degree

of cross-market linkages, as the optimal model does not require factors from

all asset classes.

Finally, Chapter 5 concludes and outlines possible future directions for

research.

Keywords: Bond factor models, Sharpe ratio, bond mutual funds, investor

flows, performance evaluation, flow—performance sensitivity, corporate

bonds, risk factors, model comparison, factor models, asset classes, market

integration.
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Zusammenfassung

Diese Dissertation untersucht die Verwendung von Faktormodellen zur

Messung der Performance in Unternehmensanleihen, identifiziert ein op-

timales Faktormodell für die Renditen von Unternehmensanleihen und

liefert schließlich eine umfassende Analyse der Faktorpreisbildung und der

Marktintegration über verschiedene Anlageklassen hinweg. Kapitel 1 führt

in die wichtigsten Konzepte ein und gibt einen Überblick über die folgenden

Kapitel.

In Kapitel 2 wird versucht, die folgende Frage zu beantworten:

Welches Faktormodell verwenden Investoren in Unternehmensanleihen?

Dazu werden die Entscheidungen der Investoren in aktiv verwaltete

Investmentfonds für Unternehmensanleihen zu investieren, mit einem

Ansatz der offengelegten Präferenz verfolgt. Unser Hauptergebnis ist, dass

Anleihefaktormodelle von der einfachen Sharpe Ratio und Morningstar

Ratings dominiert werden. Für alle wichtigen Arten von Investmentfonds

für Unternehmensanleihen erklärt die Sharpe Ratio die Fondsströme besser

als die Alphas von Anleihefaktormodellen. Da die Sharpe Ratio (und bis zu

einem gewissen Grad auch die Morningstar-Ratings) auf Anleihemärkten

leicht manipuliert werden können, haben unsere Ergebnisse potenziell

weitreichende Folgen für alle Marktteilnehmer.

In einem weiteren Schritt werden in Kapitel 3 die folgenden wichtigen
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Fragen sowohl aus akademischer als auch aus praktischer Sicht behandelt:

Was sind wichtige Faktoren für die Rendite von Unternehmensanleihen?

Wie sollte ein Benchmark-Modell für die Preisbildung und Investitionen auf

den Märkten für Unternehmensanleihen aussehen? Das zentrale Ergebnis

ist, dass die wichtigsten Risikofaktoren auf den Märkten für Unternehmen-

sanleihen die Carry, Duration, Equity-Momentum und Laufzeitstruktur

Faktoren sind. Aus einer großen Anzahl von Faktoren, die für die Renditen

von Unternehmensanleihen in Frage kommen, ermitteln wir ein optimales

Modell mit einem zweistufigen Ansatz. Zunächst filtern wir Faktoren

heraus, die die Anleihekurse nicht systematisch beeinflussen. Als Zweites

verwenden wir einen Bayes’schen Modellauswahlansatz, um das optimale

Modell mit einer geringen Anzahl an Faktoren zu bestimmen. Viele

prominente Faktoren beeinflussen die Kurse nicht oder sind redundant. Wir

dokumentieren die gute Performance des neuen Modells im Vergleich zu den

bestehenden Modellen in Zeitreihen- und Querschnittstests und analysieren

die wirtschaftlichen Triebkräfte der Faktoren.

Während sich Kapitel 2 und Kapitel 3 auf Unternehmensanleihen

konzentrieren, erweitert die in Kapitel 4 durchgeführte Studie das Verständ-

nis mit einer breiteren Analyse der Faktoren und der Marktintegration

über verschiedene Anlageklassen hinweg. Faktormodelle, die für eine An-

lageklasse spezialisiert sind, haben einen begrenzten Erklärgehalt für Ren-

diten anderer Anlageklassen. Daher lehnen wir die Hypothese ab, dass die

Märkte perfekt integriert sind. Ein optimales integriertes Faktormodell über

alle Anlageklassen hinweg kann jedoch die Renditen mehrerer Anlageklassen

effektiv charakterisieren und eine nützliche Benchmark für Multi-Asset- und

Multi-Faktor-Investitionen bieten. Das optimale Modell enthält mehrere

Faktoren für Aktien und Unternehmensanleihen, was auf das Vorhandensein

mehrerer systematischer Renditetreiber hindeutet. Dennoch scheint es ein

gewisses Maß an marktübergreifenden Verknüpfungen zu geben, da das
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optimale Modell nicht Faktoren aus allen Anlageklassen erfordert.

In Kapitel 5 werden schließlich Schlussfolgerungen gezogen und

mögliche zukünftige Forschungsrichtungen skizziert.

Schlüsselwörter: Anleihefaktormodelle, Sharpe Ratio, Anleihenfonds, An-

legerströme, Leistungsbewertung, Sensitivität zwischen Strom und Leis-

tung, Unternehmensanleihen, Risikofaktoren, Faktormodelle, verschiedene

Anlageklassen, Modellvergleich, Marktintegration.
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Chapter 1

Introduction

In finance, factor models are well-established with a wide range of

applications in both theory and practice. They are used for a variety of

purposes, including return prediction, performance evaluation, anomaly

assessment, and portfolio construction, among others.

Asset pricing theories have developed from a simple one-factor model

to more comprehensive multi-factor models. In the early 1960s, the Capital

Asset Pricing Model (CAPM) is one cornerstone laid by Treynor (1961),

Sharpe (1964), Lintner (1965), and Mossin (1966). The key insight of the

model is that an asset’s expected return is determined by how much it

is exposed to one fundamental risk factor: the market factor. An asset

that has a large exposure to this factor is risky, because it performs poorly

when the market goes down and well when the market goes up, resulting

in high systematic variation in future payoffs. Conversely, an asset with

low exposure to the market factor is less risky because its future payoffs

will be less systematically volatile. Market participants typically demand a

higher risk premium as compensation for investing in high-beta assets than

low-beta assets.

To resolve the theoretical critiques and poor empirical performance of
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CHAPTER 1. INTRODUCTION

the CAPM, in the 1970s, more general models, evolving from a one-factor

to a multi-factor setting, came up in the literature. The most prominent

examples are the Intertemporal Capital Asset Pricing Model (ICAPM) of

Merton (1973) and the Arbitrage Pricing Theory (APT) of Ross (1976),

which allow to include other sources of risk in addition to the market risk.

Building on these studies, Fama & French (1993) specify a reduced-form

three-factor model for U.S. equities, which became very celebrated. In Fama

& French (2015), they extend their model to five factors. For equities alone,

hundreds of factors have been proposed (Harvey, Liu, & Zhu, 2016).

As a result, factor-based investing has become increasingly popular

among practitioners such as asset managers and has been widely adopted

in equity markets. The underlying idea is to capture equity risk factors,

such as size, value, etc., and to earn the corresponding risk premiums.

Therefore, when considering any active strategy, investors should have a

clear understanding of the sources of expected returns and the underlying

risk exposures of the investment portfolios.

Investors should pay attention to factor-related returns when assessing

managers’ skill. Active fund managers should be credited not only for

offering exposure to common risk factors to harvest factor premiums that

could be achieved through passive investments, but also for their skills to

actively seek to produce alpha.

Despite the size and the importance of the corporate bond market, it

has received far less research attention compared to that for equities. Factor

models and factor-based investing should not only be relevant for stocks,

but for bonds as well.

Chapter 2 investigates how investors evaluate the performance of

corporate bond mutual funds. More specifically: Which factor model do

they use to measure performance? Do investors even use factor models, or

do they rely on simpler performance measures?

2



To address these questions, we employ a revealed preference approach

as in Barber, Huang, & Odean (2016) and Berk & Van Binsbergen (2016).

Technically, we conduct a flow–performance horse race test to infer which

performance measures corporate bond mutual fund investors use when

making investment decisions. Performance measures used to compare funds

can vary widely from the simple raw returns to the alphas from a complex

multi-factor model for returns. In our analysis, we consider a range of single-

and multi-factor models as well as ratios that are popular in the asset pricing

literature, all of which investors might reasonably use.

The central finding is that the Sharpe ratio and Morningstar ratings

consistently explain corporate bond fund flows significantly better than the

raw return or any alpha from single- or multi-factor models. It thus seems

that most investors do not use any factor model at all.

The main contribution of Chapter 2 is thus a systematic analysis

of which measures investors in corporate bond markets use to assess

performance. To the best of my knowledge, this chapter is the first to

comprehensively analyze this and the questions stated above.

The finding of investors’ reliance on Sharpe ratio and Morningstar

ratings to assess funds’ performance carries important implications for

both fund managers and investors. Fund managers have more incentives

to manipulate these measures (e.g. smoothing returns by holding illiquid

assets) to mislead investors’ fund selections. This opportunistic behavior of

corporate bond fund manager can create trading opportunities for active

traders by exploiting net asset value misvaluations. Due to the mismatch

between the illiquidity of the corporate bond funds’ underlying assets and

the liquidity they offer to investors, the gains of the active traders are

matched with the losses suffered by buy-and-hold fund investors and poses

a potentially serious threat of fund runs.

The finding that investors tend to use simple measures instead of

3



CHAPTER 1. INTRODUCTION

factor models in Chapter 2 may be not surprising because one can

argue that corporate bond investors are likely much less aware of factor

models than investors in equity markets given that research in factors and

factor-investing for bonds is still in the nascent stage. Which set of factors

can span the efficient frontier of corporate bonds and thus should serve as

the benchmark model for investors in corporate bond markets is still an

open question.

Both stocks and corporate bonds are contingent claims on the value of

the same underlying firm. However, bond markets have some distinguishable

features from equity markets, indicating potential market segmentation. In

fact, Chordia, Goyal, Nozowa, Subrahmanyam, & Tong (2017) and Choi

& Kim (2018) report evidence of discrepancies in risk premiums between

corporate bonds and stocks. Therefore, it is essential to investigate the cross-

section of corporate bond returns by also using factors constructed based

on corporate bond characteristics, rather than only relying on the available

commonly used factors from the equity market. Recently, inspired by the

way characteristics have been used for constructing equity factors, there is

a rapidly growing number of studies devoted to discover factors and factor

models for corporate bond returns, paving the way for factor-based investing

in corporate bond markets.

Given the proliferation of factors, it is crucial from both an academic

and a practitioner’s perspective to know which are genuine risk factors

in corporate bond markets, and which factors do not provide incremental

information about returns, and thus are redundant. Chapter 3 addresses the

following questions: Do we really need all factors proposed in the corporate

bond literature to explain the cross-section of returns? Which factors move

corporate bond prices systematically? What set of factors overall best

describes corporate bond returns? Are some factors redundant relative to

others? To what extent does each needed factor play a role in explaining

4



time-series and cross-sectional variation in corporate bond returns? Which

economic forces drive the factors?

From a collection of, from our point of view, the 23 most prominent

factor candidates for corporate bond returns in the literature, we use a

two-step approach to uncover an optimal model. First, we screen out factors

that do not systematically move bond prices by checking the necessary

condition of the factor identification protocol proposed by Pukthuanthong,

Roll, & Subrahmanyam (2019). Only the viable factors that pass the

identification protocol are eligible for model selection in the next step.

Second, we employ the Bayesian marginal likelihood model comparison

approach recently developed by Barillas & Shanken (2018) and Chib, Zeng,

& Zhao (2020) (BS-CZZ) to identify the optimal, parsimonious model from

all the models that are possible combinations of these factors.

The main finding that emerges from our analysis is that the best factor

model for corporate bond returns is based on the combination of carry,

duration, stock momentum, and term structure factors. We show that many

prominent factors do not move prices, or are redundant. The optimal model

outperforms the existing models proposed in the literature and has good

performance in both time-series and cross-sectional tests with test assets.

The main contribution of Chapter 3 is a systematic analysis of the

factors proposed in the corporate bond pricing literature. This chapter helps

academics and practitioners separate useful factors from redundant ones

and search the growing list of bond factors for a set that collectively best

explains the differences in corporate bond returns. Based on this, we can

build an “optimal” corporate bond factor model. The winning factor model

can be used as a benchmark model for future research, for investors in

corporate bond markets to implement factor-investing strategies, and to

evaluate performance. To the best of my knowledge, this chapter is the first

to systematically compare a broad set of common and recently proposed
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factors and factor models for corporate bonds.

So far, Chapter 2 and Chapter 3 focus on the corporate bond market.

The findings in these first two studies of the dissertation contribute to the

growing literature for corporate bonds in an attempt to fill the gaps and

catch up with the rich literature for equities. However, corporate bonds are

just one type of assets. The last chapter looks at a bigger picture of factor

pricing and market integration across multiple major asset classes.

Under the law of one price (LOOP), it is possible to construct a single-

factor or multi-factor proxy for the stochastic discount factor (SDF) that

prices all assets (Hansen & Jagannathan, 1991; Cochrane, 2009; Kozak,

Nagel, & Santosh, 2018). In a factor model, the SDF is expressed as a linear

function of a small number of dominant drivers of returns. Factor models are

prevalent in empirical asset pricing because they are a useful way to provide

a concise summary of the cross-section of asset returns. Models for equities

such as the three-factor of Fama & French (1993) and various extensions

(e.g. Carhart, 1997; Fama & French, 2015) are popular among academics

and practitioners.

To construct well-diversified portfolios, investors should consider as

broad a range of assets as possible when allocating capital. Factor investing

simplifies the problem of portfolio construction by shrinking the asset

space. Factor models narrow the search for investment strategies among

the universe of individual assets to the more manageable task of finding the

optimal risk-return trade-off among a handful number of factors.

Despite the conceptual elegance of factor models, two factual issues

exist. First, there is a plethora of factors. To describe the hundreds of factors

discovered in equity research, Cochrane (2011) coined the term “factor

zoo”. The second problem is that most academic studies conventionally

examine different markets in isolation, and develop asset-class-specific factor

models for stocks, bonds, commodities, and the like. Therefore, from both
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a theoretical and a practical perspective, it is worthwhile to search for a

handful of factors that span the Markowitz (1952) mean-variance-efficient

frontier and capture the returns of all assets.

Important questions related to this endeavor, to the best of our

knowledge, have not yet been fully resolved, for example: To what extent

can the factors of different asset classes also price the assets of others? What

is the degree of integration between the different asset classes? What does

an optimal (empirical) stochastic discount factor across all asset classes

look like? What is an appropriate benchmark model for portfolios of global

securities across asset classes?

The objectives of Chapter 4 are therefore twofold. First, we comprehen-

sively examine the prominent traded factors proposed in the asset pricing

literature for various individual asset classes and investigate the extent of

market integration based on their explanatory power across other asset

classes. Second, we attempt to identify an integrated empirical model based

on a sparse number of risk factors that spans and explains returns across

multiple asset classes.

The first main goal of this chapter is to investigate the extent of market

integration. We examine this through the lens of the pricing power of factor

models from one asset class for others. We find that factor models that

specialize in one asset class typically have difficulty pricing the factors from

other asset classes. We therefore reject perfect integration. There appear

to be multiple underlying systematic risk drivers across asset classes and

markets. However, we also detect some cross-market linkages.

These findings further motivate us to pursue the second major goal of

this chapter, which is to find an optimal integrated factor model that can

describe returns across asset classes. To avoid creating high-dimensional

factor models, we focus on the best factors for each of seven major asset

classes when building the combined model by again using the BS–CZZ
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method. The optimal model consists of a total of eight factors, including

the U.S. equity market, the size, management, and quality-minus-junk

factors for international equities, the carry and equity momentum factors

for corporate bonds, the currency momentum factor, and the equity index

carry factor.

The optimal unified model performs quite well across asset classes.

It subsumes a long list of factors and performs on a par with the best

single-asset-class-specialized models in pricing assets across different asset

classes. The top integrated model achieves high in-sample and out-of-sample

Sharpe ratios. Factors from equities and corporate bonds prove to be the

most important. In addition, the fact that not all asset classes from which

factors are needed to build the integrated model suggests the presence of

some degree of cross-market linkages.

The major contribution of Chapter 4 is to provide an integrated view of

asset pricing. Moving beyond the common practice of analyzing individual

asset classes in isolation, this chapter uncovers an optimal factor model that

can span the multi-asset return space. The proposed integrated model can

serve as a benchmark for future research in pricing securities across different

asset classes, and as a useful guide for investors to exploit factor-based

investing through a multi-asset, multi-factor lens.

This dissertation proceeds as follows. Chapter 2 investigates the use

of factor models to measure performance in corporate bond markets

by inferring from the sensitivity of investors flows of actively managed

corporate bond mutual funds to different performance measures. Chapter

3 identifies an optimal factor model for corporate bond returns. Chapter 4

provides a comprehensive analysis of factor pricing and market integration

across asset classes. Finally, Chapter 5 summarizes the main findings of this

dissertation and suggests several lines for future research.

For reasons of improved readability, especially of the separate parts
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constituting the complete thesis, each chapter is self-contained. This means,

variables and acronyms are redefined in each chapter. Whenever possible,

notations are consistent throughout the dissertation in order to facilitate

the reading.
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Chapter 2

How Do Corporate Bond

Investors Measure

Performance? Evidence from

Mutual Fund Flows∗

2.1 Introduction

Corporate bonds are an important, yet underresearched asset class. While

the total market is somewhat smaller than for equities, the annual issuance

of corporate bonds is on a significantly larger scale (by both value and

number of issues) than that of equity for U.S. corporations: for example, in

2020, there were 2,097 corporate bond issues totaling approximately $2.3

∗This chapter is based on the Article “How Do Corporate Bond Investors Measure
Performance? Evidence from Mutual Fund Flows” authored by Thuy Duong Dang,
Fabian Hollstein and Marcel Prokopczuk, Journal of Banking and Finance, Volume 142,
106553.
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trillion compared to 1,073 common stock issues totaling $343.7 billion.1

In this chapter, we study performance measurement in corporate bond

markets. We address the following research questions: How do investors

evaluate corporate bond mutual funds? Which factor model do they use to

measure the performance? Do investors even use factor models, or do they

rely on simpler performance measures?

We adopt a revealed preference approach as in Barber et al. (2016)

and Berk & Van Binsbergen (2016). Mutual funds provide a suitable

empirical setting for this research because we can observe both performance

measures and aggregate investment decisions on a timely and frequent basis.

Recently, the assets under management by fixed-income mutual funds have

experienced significant growth. Through several market turmoil periods

over most of the past decade, bond mutual funds have experienced net

inflows, while equity funds have continuously experienced net outflows.2

Bond mutual funds have thus become an important investment vehicle, in

particular for individual investors, who seek exposure to bond markets.

In our empirical analysis, we perform a flow–performance horse race test

to infer which performance measures corporate bond mutual fund investors

use when making capital allocation decisions. At one extreme, investors

may simply use raw returns to rank funds. At the other extreme, they may

compare fund performance based on the alpha from a multi-factor model

for returns. Given the substantial uncertainty about corporate bond factor

models, we measure performance using a range of single- and multi-factor

models as well as ratios that are commonly found in the asset pricing

literature, all of which investors might reasonably employ. For our main

1SIFMA Fact Book 2021, sources: Bloomberg, Refinitiv, Dealogic.
Available at https://www.sifma.org/wp-content/uploads/2021/07/
CM-Fact-Book-2021-SIFMA.pdf.

2See Investment Company Institute Fact Book (2021). Available at https://www.
ici.org/system/files/2021-05/2021_factbook.pdf.
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analysis, we use the best-known and most widely used measures and models,

including: the raw return, the Sharpe ratio, a single-factor model with a

bond market index, a two-factor model with a stock and a bond market

index, the Bekaert & De Santis (2021) three-factor model, the Elton,

Gruber, & Blake (1995) four-factor model, and the Fama & French (1993)

five-factor model for bonds. We conduct our tests while controlling for

well-known predictor variables such as lagged fund flows, expense ratios,

fund size, age, and Morningstar ratings.

Our main contribution is thus a systematic analysis of which measures

investors in corporate bond markets use to assess performance. To the best

of our knowledge, we are the first to comprehensively analyze this and the

questions stated above.

In the first part of the empirical analysis, we use Morningstar ratings

as the main control variables since Ben-David, Li, Rossi, & Song (2022)

have recently shown for equity mutual funds that investors strongly react

to them. We find that the Sharpe ratio consistently explains corporate

bond fund flows significantly better than the raw return or any alpha

from single- or multi-factor models. The differences are highly statistically

significant. Compared to the raw return and other factor models, the Elton

et al. (1995) four-factor model further has a significantly higher explanatory

power, although it is clearly not as high as that of the Sharpe ratio.

Next, we examine to what extent the use of simple performance

measures such as the Sharpe ratio is related to investor sophistication. It is

likely that the least sophisticated investors are unaware of all factor models,

while those with a higher sophistication may base their investment decisions

on factor models to a much greater extent. We therefore perform splits of

the corporate bond fund sample into (i) retail- and institutional-oriented,

(ii) high-yield and investment-grade, and (iii) rear-load and non-rear-load

share classes. Institutional investors, those in high-yield bond markets, and
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those in non-rear-load share classes may arguably be more sophisticated.

However, we show that for each of these subsamples, even in those with

the presumably most sophisticated investors, the Sharpe ratio explains

corporate bond mutual fund flows substantially better than all factor

models.

Since part of the corporate bond mutual funds have non-trivial

investments also in other asset classes, we also split the sample into those

funds that invest mainly in corporate bonds and those with substantial

holdings in other markets. It is likely that corporate bond factor models

perform better in the former group. We find that, regardless of corporate

bond mutual fund holdings ratios in corporate bonds, the Sharpe ratio

explains their flows significantly better than the raw return and any factor

model. Additionally, fund flows in illiquid periods could be affected by payoff

complementarity (Goldstein, Jiang, & Ng, 2017). Therefore, we separately

examine the flows in liquid and illiquid periods, showing that the Sharpe

ratio explains fund flows better than any factor model in both.

In a further step, we consider the Morningstar ratings also as a

potential explanatory variable. Morningstar ratings measure the long-term

performance of a fund compared to its peer group. They are virtually

uncorrelated to all other performance measures used in this study, which

are based mainly on short historical horizons. We find that Morningstar

ratings explain corporate bond fund flows better than any other performance

measure, consistent with the finding of Ben-David et al. (2022) for equity

markets. However, we also show that investors at the very least tend

to use the Sharpe ratio for investment and redemption decisions within

the different Morningstar rating groups. Further dissecting the importance

of both the Sharpe ratio and the Morningstar Risk-Adjusted Return

(MRAR(2)) measure underlying the calculation of the Morningstar ratings,

it seems that investors rely on the Morningstar ratings mainly because they
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are salient and easily accessible. When put on an equal footing, the Sharpe

ratio generally explains fund flows substantially better than the MRAR(2).

Finally, we examine whether investors’ fund flows react to the return

components related to bond risk factors. Consistent with our main results,

we detect stronger fund-flow sensitivities to risk-factor related returns than

to the factor model alphas.

We run a battery of robustness tests. Our results are qualitatively

similar (i) when using Fama & MacBeth (1973) instead of panel regressions;

(ii) with quintile instead of decile sorts of the performance measures;

(iii) for alternative Sharpe ratio definitions; (iv) for a longer performance

evaluation horizon (one year); (v) using various alternative factor models

such as the Ludvigson & Ng (2009) bond macro factor model, as well as

the bond factor model recently suggested by Bai, Bali, & Wen (2019);

(vi) for an analysis at the fund instead of the share-class level; (vii)

when controlling for time-varying effects of Morningstar ratings and the

Morningstar fixed-income style box; and (viii) for an extended corporate

bond sample without size filter. Lastly, we show that the Sharpe ratio

also has superior explanatory power for future fund flows compared to the

manipulation-proof performance measures of Getmansky, Lo, & Makarov

(2004) and Goetzmann, Ingersoll, Spiegel, & Welch (2007).

Our horse race tests are similar in spirit to recent studies for equity

markets by Barber et al. (2016) and Berk & Van Binsbergen (2016). It

is natural to compare our corporate bond mutual fund evidence with the

findings documented for equity mutual funds and hedge funds to have an

integrated view across asset classes. Both Barber et al. (2016) and Berk &

Van Binsbergen (2016) for equity mutual funds, and Blocher & Molyboga

(2017) and Agarwal, Green, & Ren (2018) for hedge funds, show that the

CAPM alpha explains investor flows better than the raw return or alphas

from any factor model. Ben-David et al. (2022), on the other hand, show
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that Morningstar ratings and raw returns are the first and second most

important drivers of mutual fund flows in equity markets. None of these

studies analyzes corporate bond markets.

Our results reveal important differences between corporate bond funds

and those of other asset classes. The contrast is particularly strong compared

with Barber et al. (2016), Berk & Van Binsbergen (2016), Blocher &

Molyboga (2017), and Agarwal et al. (2018), but also substantial compared

with Ben-David et al. (2022). We find that raw returns and all CAPM-style

models explain corporate bond mutual fund flows significantly less well

than other performance measures.3 Even more strikingly, both Morningstar

ratings and the simple Sharpe ratio turn out to be more important than all

factor models for corporate bonds.4

Our results carry potentially important implications for investors and

fund managers. Unlike equity funds, corporate bond funds tend to hold

more illiquid assets whose prices are often stale. As Cici, Gibson, &

Merrick Jr (2011) and Choi, Kronlund, & Oh (2021) show, corporate

bond mutual funds have substantial discretion in the valuation of their

investments and, thus, could smooth reported returns. Smoothing returns

over time leaves the portfolio’s mean return unchanged but reduces its

variance, which biases Morningstar ratings, the Sharpe ratio, and other

similar performance measures upward (Getmansky et al., 2004; Bollen &

3Ben-David et al. (2022) argue that the raw return is the second-most important
historical performance measure while all other studies cited in this paragraph find that
CAPM alphas are the most important determinants of mutual fund flows in the equity
and hedge fund markets. For corporate bond mutual funds, however, we find that these
performance measures cannot explain fund flows well. For example, we show that the
Elton et al. (1995) model explains corporate bond mutual fund flows significantly better
than raw returns and all CAPM-style models (a single-factor corporate bond market
model, a two-factor corporate bond–stock CAPM, and a three-factor corporate bond–
stock–government bond CAPM).

4Note that Barber et al. (2016) do not present their result of pairwise comparisons
between the Sharpe ratio and other measures. Berk & Van Binsbergen (2016), Blocher
& Molyboga (2017), Agarwal et al. (2018), and Ben-David et al. (2022) do not consider
the Sharpe ratio at all in their empirical studies.
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Pool, 2008, 2009).5 If investors use Morningstar ratings and the Sharpe

ratio as the main performance measures to evaluate corporate bond funds,

then fund managers aware of this will have an obvious incentive to take

actions that enhance these measures without adding real economic value.

Funds with illiquid assets, whose prices are only reported occasionally, may

benefit from greater inflows. Reported performance could therefore strongly

mislead investors’ decisions. Fund managers who want to manipulate

their performance measures can do so by holding more illiquid assets

or “mismarking” bonds. However, such mismarking provides chances for

active investors. The potential impact of Sharpe ratio (and Morningstar

ratings) manipulations is thus reminiscent of the stale-price mutual fund

trading scandal in 2003: managers that smooth reported returns create

trading opportunities for active traders at the expense of their buy-and-hold

investors.

The remainder of this chapter is organized as follows. Section 2.2

describes our data and estimation methods. Section 2.3 conducts the

flow–performance horse race. In Section 2.4, we show further evidence

and test the robustness of our main findings. Section 2.5 discusses the

implications of our results. Section 2.6 provides concluding remarks and

suggestions for further research.

5Kim (2021) shows that fund managers also manipulate Morningstar ratings by
portfolio pumping. That is, they tend to bid up the prices of their holdings shortly before
new ratings are issued. This return manipulation positively affects both Morningstar
ratings and the Sharpe ratio. It is arguably easier to perform for corporate bond mutual
funds which generally have less liquid holdings than equity funds.
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2.2 Data and Methodology

2.2.1 Data

Our data on U.S. actively managed corporate bond funds come from the

Center for Research in Security Prices (CRSP) Survivorship-Bias-Free U.S.

Mutual Fund Database. We use data from 1991 to 2017. Since we use an

estimation window of five years in our empirical analysis, our final sample

period used for testing is from 1996 to 2017.

A corporate bond mutual fund often offers various share classes to

attract investors with different wealth levels and investment horizons.

These share classes are designed as different combinations of front-end

and/or back-end sales charges, expense ratios, management fees, minimum

investment requirements, as well as restrictions on investor types. Since

these fund-share level characteristics can influence the investment and

redemption decisions of mutual fund investors, we follow Goldstein et al.

(2017) and use individual fund share classes as our unit of observation.6

Fund performance measures, such as Morningstar or Lipper ratings, are

disseminated and displayed at the share-class level. As shown in Section

2.4.6, the results are qualitatively similar when conducting the analysis on

the fund level.

We select corporate bond funds based on the objective codes provided

by CRSP.7 Since our interest is in investors that attempt to identify

6Performing analyses of fund flows on the share-class level is common in the literature,
particularly for corporate bond mutual funds. See also, e.g., Zhao (2005), Del Guercio &
Tkac (2008), Chen, Goldstein, & Jiang (2010a), Huang, Wei, & Yan (2012), Chen & Qin
(2016), and Jiang & Yuksel (2017).

7Specifically, to be classified as a corporate bond fund, a mutual fund must have a
(i) Lipper object code in the set (‘A’, ‘BBB’, ’CPB’, ‘HY’, ‘SII’, ‘SID’, ‘IID’), or a (ii)
Strategic Insight objective code in the set (‘CGN’, ‘CHQ’, ‘CHY’, ‘CIM’, ‘CMQ’, ‘CPR’,
‘CSM’), or a (iii) Wiesenberger objective code in the set (‘CBD’, ‘CHY’), or (iv) ‘IC’ as
the first two characters of the CRSP objective code.
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managerial skill in their fund allocation decisions, we exclude index funds,

exchange traded funds, and exchange traded notes. We remove fund share

classes with total net assets (TNA) less than $10 million to mitigate data

biases.8 We merge the CRSP data with the Morningstar Direct database,

matching on fund CUSIPs and Tickers (Berk & Van Binsbergen, 2015 and

Pástor, Stambaugh, & Taylor, 2015).

To measure the performance of corporate bond funds, for our main

tests we use the raw return, the Sharpe ratio, and six different models that

investors might reasonably employ for performance evaluation. The Sharpe

ratio is probably the best-known and most widely used measure of portfolio

performance employed in the fund industry (Goetzmann et al., 2007 and

Elton & Gruber, 2013). The Sharpe ratio is used, for example, in the Schwab

Select List, the Standard and Poor’s Select Funds mutual fund rating, and

in the Hulbert Financial Digest newsletter ratings.9

The factor models used include a single-factor CAPM bond model of

the aggregate corporate bond market (MKT bond) return (Cb), a two-factor

model of both the aggregate corporate bond return and stock market

(MKT stock) return (Csb) following Goldstein et al. (2017), a three-factor

model following Bekaert & De Santis (2021), which includes an alternative

aggregate corporate bond excess return (MKT bond∗), as well as those from

8As shown in Section 2.4.9, the results are qualitatively similar without the filter
on fund TNA. Our results are not subject to incubation bias (Evans, 2010), as we use
a 60-month estimation window (with a minimum requirement of 30 observations) for
Equation (2.2) below before considering the fund share classes for the analysis of the
flow–performance relationship.

9In cases when the excess returns are negative, the Sharpe ratio rankings remain valid.
To see that, consider two examples. First, supposing that two fund managers delivered
the same negative returns, the one with a higher volatility performed better than the
other, because the same loss was achieved with a higher positive return potential. Second,
suppose that fund A has a more negative return and a higher volatility than fund B, but
a higher/less negative Sharpe ratio. A combined strategy of fund and Treasury bill with
a targeted volatility using fund A performs better than one using fund B.
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the stock and government bond (MKT gov) markets (B3).10 Additionally,

we consider the Elton et al. (1995) four-factor model (E4) including the

aggregate corporate bond and stock market excess returns, as well as default

risk (DEF) and option (OPTION) factors and the Fama & French (1993)

five-factor model (F5) including three common stock factors: MKT stock, the

size factor (SMB), the value factor (HML), and two bond factors: the term

spread (TERM) and DEF.11 Finally, we also use an augmented F5 model

that adds the liquidity (LIQ) and momentum (MOM) factors to the F5

model (F7).12 We provide additional details on the factors in the following

paragraphs.

The excess corporate bond market return (MKT bond) is proxied by

the Barclays U.S. Aggregate Bond Index in excess of the one-month

T-bill return. For the B3 model, we calculate ourselves a value-weighted

corporate bond market excess return using data from NAIC and TRACE

(MKT bond∗). The main difference to the Barclays index is that our

self-calculated corporate bond index also includes high-yield bonds, which

Bekaert & De Santis (2021) argue is an important feature of their model

specification. For the excess government bond return, we use the 7–10

year Thomson Datastream benchmark bond total price index. TERM

10We use a local three-factor model rather than a global one-factor CAPM also
featured in Bekaert & De Santis (2021). We do so because (i) this model specification is
more flexible, (ii) the global data are not available for our full sample period, (iii) we focus
on U.S. corporate bond mutual funds, and (iv) Bekaert & De Santis (2021) show that (1)
a global one-factor model does not perform significantly better than a local one-factor
model and (2) a local three-factor model (which we use) significantly outperforms a local
one-factor model.

11Elton, Gruber, Agrawal, & Mann (2001) show that in addition to expected default
and state taxes, the Fama and French stock factors explain the rate spread on corporate
bonds. Empirical evidence in Gebhardt, Hvidkjaer, & Swaminathan (2005a) and Lin,
Wang, & Wu (2011) show that DEF and TERM betas are important determinants of
required corporate bond returns.

12The factors MKT stock (excess market return), SMB (small minus big), HML (high
minus low), MOM (winners minus losers), and LIQ (liquidity risk) are described in and
obtained from Kenneth French’s and Lubos Pástor’s online data libraries: http://mba.
tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html and https://
faculty.chicagobooth.edu/lubos.pastor/research/liq_data_1962_2017.txt.
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is defined as the difference between the monthly long-term government

bond return and the one-month Treasury bill rate, which captures returns

generated by increasing duration (i.e., higher interest rate risk). DEF is

defined as the difference between the return on a high-yield bond index

and the Barclays Intermediate Government bond return, capturing returns

generated by taking on higher default risk. OPTION captures nonlinearities

due to investment in mortgage-backed securities and is measured by the

difference between the Barclays GNMA index and the Barclays Intermediate

Government Index. We obtain monthly return data on the Barclays bond

indices from Morningstar Direct.

We use equity MOM and LIQ factors in our main test instead of the

Jostova, Nikolova, Philipov, & Stahel (2013) bond MOM and the Lin et al.

(2011) LIQ factors, for two reasons. First, the factors are only available

from the authors for a subset of our sample period, while the equity

factors are available for our entire sample period. Second, the results of

Lin et al. (2011) show that the coefficient of the Pástor & Stambaugh

(2003) stock liquidity factor beta is significant even after incorporating

bond characteristic variables, suggesting a possible cross-market liquidity

risk effect. Gebhardt, Hvidkjaer, & Swaminathan (2005b) and Jostova et al.

(2013) find significant evidence of a momentum spillover from equities to

corporate bonds (i.e., past equity returns significantly predict future bond

returns). However, in Section 2.4.5 we also conduct robustness tests using

the bond LIQ and MOM factors as well as the Bai et al. (2019) factor

model for a shorter sample period corresponding to the period for which
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those factors are available.13 The results of these analyses are qualitatively

similar to those of our main analysis.

2.2.2 Empirical Approach

Fund Flows

The key variables in our empirical analysis are mutual fund flows and the

different performance measures. Following standard practice, we calculate

the flows (Fp,t) of fund share class p in month t as the percentage growth

of new assets:

Fp,t =
TNAp,t

TNAp,t−1

− (1 +Rp,t), (2.1)

where TNAp,t is the total net assets under management of fund share class

p at the end of month t, and Rp,t is the return of fund share class p in

month t. That is, the fund flows are the growth rate in total net assets

minus the growth rate explainable by the return on the previous month’s

total net assets. Note that this approach assumes that all flows take place

at the end of the month. To mitigate the influence of outliers (for example,

due to fund mergers and splits), we remove extreme fund flows at the 1%

and 99% levels.

Fund Performance Measures

In the following, we will outline the procedure to estimate the realized

alpha in detail for the F5 model. The procedure is similar for all other

13Bond MOM data are provided from 1974 until June 2011 on Gergana Jostova’s
website https://business.gwu.edu/gergana-jostova. Bai et al. (2019) propose a new
bond factor model which includes: downside risk (DRF), credit risk (CRF), and liquidity
risk (LRF). Data for the factors are available on Turan Bali’s website: https://sites.
google.com/a/georgetown.edu/turan-bali/data-working-papers. DRF and CRF
cover the period from July 2004, LRF from August 2002. Using the TRACE database
to create the factors ourselves would also limit the sample period, because TRACE does
not start before July 2002.
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factor models. First, we obtain factor loadings by the following time-series

regression using 60 months of return data for months τ = t− 60 until t− 1:

(Rp,τ −Rf,τ ) = αp,t + βp,tMKT stock
τ + sp,tSMBτ + hp,tHMLτ + tp,tTERM τ

+dp,tDEF τ + ep,τ . (2.2)

The parameters βp,t, sp,t, hp,t, tp,t, and dp,t represent the exposures to stock

market, size, value, term risk, and default risk, respectively, of fund share

class p at time t. αp,t is the average return that cannot be explained by

factor tilts and epτ is a mean-zero error term.

Second, we calculate the alpha for the fund share class in month t as

the difference between its realized return and its model-implied return in

month t :

α̂p,t = (Rp,t −Rf,t)−
[
β̂p,tMKT stock

t + ŝp,tSMBt + ĥp,tHMLt + t̂p,tTERM t

+d̂p,tDEF t

]
. (2.3)

For other factor models, we adjust Equations (2) and (3) accordingly.

The Sharpe ratio of fund share class p at the end of month t is calculated

as the ratio of the average excess return of fund share class p at the end of

month t over the standard deviation of its monthly returns over the past year. In

Section 2.4.3, we also test the robustness of our main results to alternative ways

to calculate the Sharpe ratio.

Performance Evaluation Horizon

Rational investors respond to their perceptions about the skill of a fund manager.

With new information, they should update this perception. To make a decision

about how investors weight past returns and what performance horizon to analyze

when comparing models, first, we estimate the following simple model of the

flow–return relation:

Fp,t = a+

S∑
s=1

bsRp,t−s + ep,t, (2.4)
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where Fp,t are fund flows for share class p in month t and Rp,t−s represents the

lagged returns for the fund share class at lag s, where we vary the number of

maximum lagged return from S = 1 to 48 months. The Akaike information

criterion (AIC) yields a minimum for S = 1.14 We thus settle on a lag length

of 1 month. In Figure 2.1, the black line depicts the estimated bs coefficients (y

axis) at various lags (x axis). From this figure, it becomes clear that the first

lag return is the most influential indicator about fund performance to investors,

while the sensitivities to more distant returns are close to zero. Interestingly, and

consistent with this result, Choi et al. (2021) document the return predictability

of corporate bond mutual funds up to the one-month horizon.

Figure 2.1: Fund Flow–Past Return Relation

The figure presents the regression coefficient estimates (y axis) at various lags (x axis)

for two models of monthly fund flows. The first (in black) is a simple unrestricted model,

which includes twelve lags of monthly fund returns. We present the individual coefficient

estimates on each lagged return. The second (smooth orange line) is an exponential decay

model as in Equation (2.9) with the decay rate parameter λ.
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14The Bayesian information criterion (BIC) also yields a minimum for S = 1. Both
AIC and BIC also yield a minimum for S = 1 when we additionally include control
variables and time fixed effects.
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2.2.3 Descriptive Statistics

In Table 2.1, we provide summary statistics. Our final sample includes 1,591

unique funds and 3,577 unique share classes (1,042 high-yield share classes and

2,535 investment-grade share classes) with in total 356,243 share class–month

observations from January 1996 to June 2017. The minimum number of unique

share classes (funds) available per month during our sample period is 637 (447)

in 1996. The maximum is 1,935 (852) in 2017. On average, our sample includes

1,387 fund share classes belonging to 706 funds per month. Panel A of Table 2.1

summarizes the fund characteristics. The average fund share class has total net

assets of about $609.15 million. The median is considerably smaller with $113

million, which suggests that the fund size is skewed by large funds. The mean

(median) fund age is 10.61 (8.59) years. The average annual expense ratio for our

sample is 0.96%. The majority of share classes (75%) has either a front-end or

back-end load. The average fund return standard deviation amounts to 1.22%,

which is substantially lower compared to that of equity funds (Barber et al., 2016

report 4.92% for their sample).

Panel B of Table 2.1 reports descriptive statistics of monthly fund flows and

returns, the two key variables of our analysis. Over the sample period, the mean

return (the time-series average of the cross-sectional distribution of monthly fund

returns) of all share classes in our fund sample is 0.42% per month (5.04% per

annum). Investment-grade bond share classes yield an average return of 0.37%,

while high-yield share classes yield an average return of 0.55% per month. The

average (median) of the percentage fund flow is 0.58 (–0.11), with a standard

deviation of 5.09% per month. The dispersion in fund flows is higher than that

documented by Barber et al. (2016) for equity funds, 2.25%. High-yield bond

fund returns exhibit an average first order autocorrelation of 23.07%, which is

higher than that of investment-grade funds (16.15%). There is also a substantial

serial correlation in the fund flows. The first-order autocorrelation is 28%, which

is approximately equal for high-yield and investment-grade funds.
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Table 2.1: Descriptive Statistics

This table presents summary statistics. Our sample contains 3,577 unique fund share
classes (1,042 high-yield bond share classes and 2,535 investment-grade share classes) of
actively managed U.S. corporate bond mutual funds from January 1996 to June 2017.
Panel A summarizes the fund characteristics. SD denotes the standard deviation. P25
and P75 are the 25% and 75% quantiles, respectively. Panel B reports the time-series
average of the cross-sectional distribution of fund returns and flows. ρ1 is the first-order
autocorrelation, reported in percentage points. Panel C summarizes the time-series of
the different model alphas estimated using rolling 60-month fund past returns. Panel
D presents the correlation matrix between different performance measures. The unit of
observation is fund share–month.

A. Fund characteristics
Mean SD P25 Median P75

Size ($mil) 609.15 2913.23 39.10 113.00 376.70
Age (years) 10.61 8.90 4.42 8.59 14.39
Expense ratio (%) 0.96 0.47 0.62 0.85 1.22
Noload dummy 0.32 0.47 0.00 0.00 1.00
Volatility (t-12 to t-1)(%) 1.22 1.03 0.68 0.96 1.44

B. Fund return and flow
Mean SD P25 Median P75 ρ1

Fund return (% per month)

All funds 0.42 1.65 –0.15 0.43 1.12 18.14
Investment-grade 0.37 1.22 –0.12 0.36 0.94 16.15
High-yield 0.55 2.41 –0.31 0.72 1.62 23.07

Fund flow (% per month)

All funds 0.58 5.09 –1.57 –0.11 1.76 28.32
Investment-grade 0.59 4.94 –1.47 –0.07 1.72 28.39
High-yield 0.57 5.44 –1.81 –0.23 1.87 28.17

C. Fund alpha
Mean SD P25 Median P75

Sharpe ratio 0.231 1.297 -0.424 0.338 0.934
Cb alpha 0.062 1.538 -0.207 0.032 0.388
Csb alpha -0.044 1.133 -0.286 -0.031 0.221
B3 alpha 0.014 1.036 -0.266 -0.007 0.291
E4 alpha -0.043 0.741 -0.229 -0.026 0.181
F5 alpha -0.010 0.837 -0.303 -0.006 0.302
F7 alpha -0.007 0.860 -0.306 -0.005 0.312

D. Correlation between different performance measures
(a) (b) (c) (d) (e) (f) (g) (h) (i)

(a) Raw return 1.00 0.74 0.88 0.62 0.42 0.29 0.34 0.33 0.06
(b) Sharpe ratio 1.00 0.53 0.37 0.25 0.22 0.29 0.28 0.08
(c) Cb alpha 1.00 0.69 0.48 0.34 0.36 0.35 0.05
(d) Csb alpha 1.00 0.75 0.52 0.51 0.50 0.06
(e) B3 alpha 1.00 0.65 0.59 0.57 0.06
(f) E4 alpha 1.00 0.85 0.82 0.09
(g) F5 alpha 1.00 0.97 0.08
(h) F7 alpha 1.00 0.08
(i) MS rating 1.00
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As can be seen from Panel D of Table 2.1, some of the performance measures

are materially correlated. Hence, the different models likely yield similar rankings

in many cases. The empirical approach we use entails exploiting those cases in

which rankings differ across models (Barber et al., 2016). This helps us determine

the performance measure that best explains investors’ capital allocation choices

to actively managed corporate bond mutual funds. The correlations between

Morningstar ratings and other performance measures are quite low, all below

10%.15

2.3 Empirical Results

2.3.1 Model Horse Race

As in Barber et al. (2016), we classify fund share class performance using decile

ranks and examine in a pairwise fashion which model better explains the flows

when the models yield different performance ranks.16 To obtain the relation

between fund flows and the ranking of a fund share class based on two different

performance measures, we estimate the following regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t, (2.5)

where the dependent variable Fp,t is the fund flow of mutual fund share class p

in month t. In each month of our test period, we assign the decile performance

15Del Guercio & Tkac (2008) report a correlation between Morningstar ratings and
the Sharpe ratio of 0.65 for their equity fund sample from Nov 1996 to Oct 1999.
Sharpe (1998) also documents a high correlation. There are three reasons for the low
correlation we report. First, our sample covers both a period before and one after the
2002 major change in the methodology used by Morningstar. The two studies mentioned
examine the Morningstar rating only before the methodology change in 2002. Second,
Morningstar ratings are based on three-, five-, and ten-year returns while the main
performance measures covered in this study are based on much more recent returns.
Finally, Morningstar ratings are discrete while the Sharpe ratio is continuous. Sharpe
(1998), for example, reports the percentile correlation rather than the raw one.

16In Section 2.4.2, we show that the results are also robust to using quintile instead
of decile ranks.
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rank for each fund share class based on each of the measures.17 Decile 10 includes

the best-performing fund share classes and decile 1 contains the worst fund share

classes based on the performance measure. Dij,p,t−1 is a dummy variable that

takes on a value of one if fund share class p in month t− 1 is in the decile i based

on the first model and decile j based on the second model. To estimate the model

in Equation (2.5), the dummy variable for i = 5 and j = 5 is excluded. Xp,t−1

represents control variables including the lagged fund flow from month t− 1, the

lagged expense ratio, a dummy for no-load share classes, the return standard

deviation estimated over the prior twelve months, the log of fund share class size,

the log of fund age in month t−1, as well as Morningstar rating dummies in month

t − 1.18 The studies of Del Guercio & Tkac (2008) and Ben-David et al. (2022)

find that Morningstar ratings are an important determinant of equity mutual fund

flows. In a first step, we use Morningstar ratings as control variables. In Section

2.3.3, we also analyze their performance as an explanatory variable of corporate

bond mutual fund flows. Our results are qualitatively similar without Morningstar

rating control variables. We also include time fixed effects (µt).

In the main analysis, we use panel regressions to estimate Equation (2.5).

In Section 2.4.1, we show that the results are robust to using Fama & MacBeth

(1973) regressions instead (see Ben-David et al., 2022). Following Petersen (2009)

and Cameron, Gelbach, & Miller (2011), we double-cluster the standard errors by

fund and month. We cluster on the fund rather than only on the share-class level.

This helps address correlations in the residuals among the different share classes

of a given fund, both contemporaneous and over time. Clustering by month helps

address cross-sectional correlation in residuals across different funds at a given

time point.

17We rank a fund share class based on each performance measure within its category
peer group (i.e., investment-grade or high-yield). This ensures that the rankings are
driven mainly by managerial skill rather than choice of investment style or systematic
events that affect all share classes in a category peer group.

18Note that we expand the set of control variables in Barber et al. (2016) because
Del Guercio & Tkac (2008), Evans & Sun (2021), and Ben-David et al. (2022) show
that Morningstar ratings substantially influence allocation decisions, in particular for
retail investors. Morningstar is the dominant information intermediary among financial
advisors, being more influential than, for example, Lipper and Standard & Poor’s.
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The key coefficients of interest are bij (i = 1, 2, ..., 10 and j = 1, 2, ..., 10).

These can be interpreted as the percentage flows received by a fund share class,

which is in decile i based on the first performance measure and in decile j for

the second measure relative to a corporate bond fund share class that ranks in

the fifth decile for both performance measures. With each pair of coefficients bij

and bji, we can determine whether investors are more sensitive to the first or to

the second measure (alpha estimated using the first model or using the second

model). We test the null hypothesis that bij = bji for all i ̸= j. If investors are more

responsive to the first measure than the second one, we would expect to reject

the null hypothesis in favor of the alternative hypothesis that bij is greater than

bji. For each pairwise comparison of two performance measures, we have 45 such

b coefficient comparisons. We test the null hypothesis that the summed difference

across all 45 comparisons is equal to zero using a Wald test. In addition, we test

the null hypothesis that the proportion of positive and negative differences equals

50% using a binomial test. We present a “winning model” if the sum of coefficient

differences is significantly different from zero.

Figure 2.2 presents the main results. We compare the Sharpe ratio to all

other performance measures. We find that compared to the raw return, the sum

of coefficient differences amounts to 17.42, which is highly statistically significant.

91.11% of the coefficient differences are positive. It is thus clear that investors are

substantially more responsive to the Sharpe ratio than they are to the raw return.

That is, investors appear to risk-adjust past returns. The pairwise comparisons of

the Sharpe ratio with all factor models yield similar results. The sum of coefficient

differences with the bond CAPM amounts to 14.16, that with the stock and bond

CAPM to 9.85, and that with the B3 model to 10.43, all of which are highly

statistically significant. The differences are comparably smallest between the

Sharpe ratio and the E4 model, where the sum of coefficient differences amounts

to 6.55. However, this is also highly statistically significant and 73.33% of the

coefficient differences are positive. For the F5 and F7 models, the results are even

more pronounced and highly statistically significant. Our first main result is, thus,
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that investors appear to rely on the Sharpe ratio rather than raw returns or any

more sophisticated factor model when making their capital allocation decisions

among corporate bond mutual funds.

Figure 2.2: Model Horse Race – Full Sample

The figure presents the results of pairwise comparisons of different performance

measures to explain fund flows using the full corporate bond fund sample. Candidate

performance measures are: the Sharpe ratio (SR), the raw return (RR), and the alphas

of the single-factor model with bond market factor (Cb), the two-factor model with both

bond and stock market factors (Csb), the Bekaert & De Santis (2021) three-factor model

(B3), the Elton et al. (1995) four-factor model (E4), the Fama & French (2015) five-factor

model for bonds (F5), and an augmented F5 model with liquidity and momentum factors

(F7). We present the sum of coefficient differences (dark blue, left axis) as well as the

share of positive coefficient differences (light blue, right axis). Values greater than zero

indicate that the Sharpe ratio outperforms other performance measures. The standard

errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.

We report the full details underlying Figure 2.2 as well as the comparisons

between all other performance measures in Table A.1 in the Appendix A.2. We find

that corporate bond mutual fund investors are substantially and significantly more

responsive to alphas relative to the Elton et al. (1995) E4 model than to the raw

return and those based on the other competing models. The sums of coefficients

are significantly larger for the E4 model than for all others in the pairwise

comparisons. However, even the E4 model explains fund flows substantially less
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well than the simple Sharpe ratio.

2.3.2 Tests on Subsamples of Corporate Bond Fund

Share Classes

In our main analysis, we treat all corporate bond mutual fund investors as one

homogeneous group. However, there are likely vast differences across investors.

First and foremost, they differ in their degree of sophistication, ranging from

unsophisticated retail investors to professionals. It appears reasonable to assume

that more sophisticated investors may use different, more complex methods

to assess the performance of corporate bond mutual funds than do the most

unsophisticated retail investors. While these may be unaware of multi-factor

models and hence have to rely on simple, readily available performance measures,

the most sophisticated investors may be more likely to rely on complex factor

models for their investment decisions. In this section, we thus test whether there

are differences between investor flows to funds with different characteristics that

may attract differing investor clienteles.

First, we directly split the fund share classes into those catering to retail

and institutional investors. The latter group of investors are arguably more

sophisticated and may be more likely to use factor models than are the

former. Second, we split high-yield and investment-grade funds. High-yield and

investment-grade markets are somewhat segmented. It is therefore interesting to

look at each market on its own. On top of that, the results of Ben-Rephael, Choi,

& Goldstein (2021) indicate that high-yield bond markets might contain more

sophisticated investors. Third, we split the sample into rear-load and non-rear-load

funds. Sophisticated investors likely prefer funds without rear-load expenses that

substantially reduce short-term trading profits.

In an additional step, we split the corporate bond funds into those that hold

mainly corporate bonds and those that also have non-trivial holdings in other

asset classes. The corporate bond factor models arguably work better for the

former and, hence, may be more widely used for these. Finally, we separate the

30



2.3. EMPIRICAL RESULTS

sample into liquid and illiquid periods to analyze whether the flow–performance

relationship differs in different aggregate illiquidity regimes.19

Retail and Institutional-Oriented Corporate Bond Fund Share Classes

While the corporate bond market is largely populated by institutions, retail

investors make up a substantial share in corporate bond mutual fund holders. It is

thus important to check whether there are differences in the performance measures

used by institutional and retail investors. We hypothesize that institutional

investors should be generally expected to use more sophisticated performance

measures, while retail investors have limited information access and knowledge

(Del Guercio & Tkac, 2002; Chen et al., 2010a; Evans & Fahlenbrach, 2012).

Hence, they may rely on simpler measures when evaluating fund performance.

We split the sample into retail- and institutional-investor-oriented fund share

classes by the classification provided by the CRSP Mutual Fund Database. From

December 1999, CRSP assigns each fund share class a dummy for institutional

share class and a dummy for retail share class.20 The main classification criteria

used are the minimum investment requirement and the distribution channel.21

The two dummies are not mutually exclusive. Therefore, we set a fund share class

as institutional-oriented if the CRSP institutional share class dummy is one and

the CRSP retail share class dummy is zero.

Our results, presented in Panel A of Figure 2.3 (the full details are in

Table A.2 in the Appendix A.2), show that retail investors in corporate bond

mutual funds are most responsive to the Sharpe ratio among all performance

measures. For retail-oriented mutual funds, the Sharpe ratio explains investor

19We thank two anonymous referees for suggesting that we should pursue these
analyses in Sections 2.3.2.

20We backfill the CRSP investor-oriented classification for the share classes for which
this information becomes available in 1999.

21According to the ICI Fact Book, institutional accounts include accounts direct-sold
or purchased by an institution, such as business or financial organizations. Accounts of
individuals are issued by a broker–dealer. Morningstar classifies as institutional fund
share classes those typically purchased by large institutional buyers such as pension
funds. These share classes are only offered to investors who invest $1 million or more,
with the lowest expenses in the mutual fund universe.
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flows strongly and highly significantly better than any other performance measure.

For institutional-oriented mutual funds, we find that the Sharpe ratio also explains

investor flows better than any other model. The sum of coefficient differences

is positive in every case. However, since institutional-oriented funds only make

up little more than one third on average of our entire sample, these tests are

somewhat less powerful. The differences are only statistically significant when

compared to the raw return and alphas of the CAPM bond, F5, and F7 models.

Moreover, further analysis reveals that for institutional-oriented mutual funds,

factor models generally explain investor flows better than the simple raw return.

These results are provided in the Appendix A.2, Table A.3.

On the one hand, although we use a different method, these results are

consistent with James & Karceski (2006). They find that institutional fund flows

are more sensitive to risk-adjusted performance measures than retail fund flows,

which show no significant difference in sensitivity to raw return and factor models.

On the other hand, our finding that the preference for the Sharpe ratio as a

performance evaluation measure does not depend on bond mutual fund investors’

sophistication lines up with a similar result of Agarwal et al. (2018) for hedge

fund investors with the CAPM alpha.

High-Yield and Investment-Grade Corporate Bond Fund Share Classes

The corporate bond market is divided into two main segments: investment-grade

and high-yield bonds. Many market participants treat them as two separate

asset classes (Ambastha, Dor, Dynkin, Hyman, & Konstantinovsky, 2010; Chen,

Lookman, Schürhoff, & Seppi, 2014). It is thus possible that participants in both

markets differ. Plausibly then, these different investors in the two market segments

may employ different performance metrics. We thus test whether investors in

investment-grade and high-yield bond funds differ in the way they evaluate

performance of the fund when making capital allocation decisions. To perform this

analysis, we split the entire sample into separate high-yield and investment-grade

groups. Following Chen & Qin (2016), we categorize funds with Lipper object
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Figure 2.3: Model Horse Race – Corporate Bond Fund

Subsamples

The figure presents the results of pairwise comparisons of different performance

measures to explain fund flows using several subsamples of corporate bond fund share

classes. We separate the corporate bond mutual fund share classes into those oriented

to retail and institutional investors (Panel A), those investing into high-yield and

investment-grade segments (Panel B), those with and without rear-load fees (Panel C),

and those with mainly corporate bond holdings and non-trivial holdings in other asset

classes (Panel D). Candidate performance measures are: the Sharpe ratio (SR), the raw

return (RR), and the alphas of the single-factor model with bond market factor (Cb),

the two-factor model with both bond and stock market factors (Csb), the Bekaert &

De Santis (2021) three-factor model (B3), the Elton et al. (1995) four-factor model (E4),

the Fama & French (2015) five-factor model for bonds (F5), and an augmented F5 model

with liquidity and momentum factors (F7). We present the sum of coefficient differences.

Values greater than zero indicate that the Sharpe ratio outperforms other performance

measures. The dark blue bars indicate the value for the respective first subset while the

orange bars are for the respective second subset. The standard errors are double-clustered

by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level,

respectively.

A. Retail- and institutional-oriented bond fund share classes

B. High-yield and investment-grade bond fund share classes
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Figure 2.3: Model Horse Race – Corporate Bond Fund Subsamples

(continued)

C. Rear-load and non-rear-load bond fund share classes

D. Mainly corporate bond holdings and non-trivial holdings

in other asset classes

code ‘HY’, Strategic Insight objective code ‘CHY’ or Wiesenberger objective code

‘CHY’ as high-yield bond funds. Funds with all other objective codes are classified

as investment-grade corporate bond funds.

We present the results for these two corporate bond market segments in

Panel B of Figure 2.3. One can observe that the Sharpe ratio is able to best explain

variation in flows across both high-yield and investment-grade bond mutual funds.

Thus, investors in both classes appear to rely on the Sharpe ratio more than on

the raw return or any factor model for their capital allocation decisions. Regarding

factor models, Table A.3 in the Appendix A.2 reveals that investors of high-yield

bond funds are somewhat more sensitive to alphas of models that include the

default risk factor than factor models which do not include this factor. Investors

of investment-grade bond funds seem to be more sensitive to the abnormal return
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relative to the bond (and stock) CAPM than to that of more complex models.

Rear-Load and Non-Rear-Load Corporate Bond Fund Share Classes

Equity and corporate bond mutual funds also differ substantially in the liquidity

of the assets they are invested in. Price staleness in the net asset values

(NAVs) of corporate bond mutual funds may present sophisticated investors with

“hit-and-run” market timing opportunities. That is, the own private research of

a sophisticated investor may indicate that the values of some of the holdings

should be substantially lower than those recorded in the fund’s NAV. In this

case, she can still redeem her investments at the price recorded in the NAV

until it is updated. Such updating is difficult and often takes time in corporate

bond markets where the assets are rather illiquid and their prices can be stale,

often lacking recorded market prices; a problem that is largely absent in equity

markets. To deter these sophisticated investors, management companies’ response

has primarily been to use prohibitively high rear-load fees in order to prevent

such short-term trading opportunities. Following this logic, sophisticated investors

likely prefer funds without rear-load fees (front loads, on the other hand, are less

likely to be an issue as long as these sophisticated investors have sufficient capital).

Therefore, we split the sample into share classes with and without rear-load fees.

The results are in Panel C of Figure 2.3. We find that the Sharpe ratio

explains fund flows significantly better for both classes. The sums of coefficient

differences do not vary materially across the two corporate bond fund share class

subsets. Interestingly, Table A.3 in the Appendix A.2 shows that the factor models

generally explain fund flows better than raw returns for non-rear-load bond funds.

This finding is consistent with the investors in non-rear-load asset classes being

somewhat more sophisticated. However, the simple Sharpe ratio still explains

their flows significantly better than each of the factor models. Thus, in summary

this and the previous two subsections indicate that the Sharpe ratio is used for

investment decisions largely independently of the degree of investor sophistication

within the corporate bond mutual fund market.
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Mainly Corporate Bond Fund Share Classes and Those with non-trivial

Investments in Other Asset Classes

In a next step, we separate the funds into two groups based on whether they have

exposure mainly to the corporate bond market or also non-trivially to stocks,

Treasuries, or asset-backed securities. As shown by Choi, Hoseinzade, Shin, &

Tehranian (2020) and Jiang, Li, & Wang (2021), some funds classified as corporate

bond funds have substantial investments in these other asset classes. It is possible

that investors use corporate bond factor models for funds mainly invested in

corporate bonds. Recognizing that these factor models may be less suitable when

managers also have non-trivial investments in other asset classes, they may resort

to simpler performance measures for these.

For the classification, we define refined corporate bond fund share classes

as those with at least 70% holdings in corporate bonds during more than 90%

of their reportings (Chen & Qin, 2016). Approximately one third of the share

classes satisfies these criteria. This subsample holds on average 89% of their assets

in corporate bonds. The remaining share classes are categorized as an impure

subsample of corporate bond mutual funds with non-trivial investments in other

asset classes.

We present the results in Panel D of Figure 2.3. We find that for both

subsamples the Sharpe ratio explains fund flows significantly better than any

factor model. Thus, investors’ use of the Sharpe ratio to measure the performance

of corporate bond mutual funds does not seem to depend on the holdings

structures of the funds.22

Aggregate Illiquidity

An important defining feature of corporate bond mutual funds is the existence

of payoff complementarity (Chen et al., 2010a; Goldstein et al., 2017). That is,

investors in mutual funds that hold particularly illiquid assets have incentives to
22Interestingly, from Table A.3 in the Appendix A.2 we can see that in the sample of

mainly corporate bond holdings, none of the factor models explains investor flows better
than the raw return.
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redeem their shares first. Following substantial redemptions, the fund may have

to sell its illiquid holdings at a loss. Thus, fund flows may behave substantially

differently in times of market stress than in calm periods. Therefore, we form

subsamples based on two indicators of the aggregate liquidity state: the S&P

500 volatility index (VIX) and the TED spread, i.e., the difference between the

three-month LIBOR and the three-month Treasury bill rate. The high-VIX and

high-TED-spread subsamples are defined based on whether the corresponding

time-series variables exceed their sample means.

The results of this analysis are in Figure 2.4 (the full details are in Table

A.4 in the Appendix A.2). We find that the Sharpe ratio explains mutual fund

flows better than the raw return and all factor models in both liquid and illiquid

periods. The differences are statistically significant in every case except for the

comparison with the E4 model in illiquid periods. However, even in these cases

the sums of coefficient differences are positive and the binomial test rejects its

null hypothesis. Thus, in both liquid and illiquid periods the investors appear to

rely on the simple Sharpe ratio rather than a factor model.23

23Table A.5 in the Appendix A.2 shows that investors tend to follow factor models
more than the raw return in high-VIX and low-TED-spread regimes.
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Figure 2.4: Model Horse Race – Aggregate Illiquidity Regimes

The figure presents the results of pairwise comparisons of different performance

measures to explain fund flows during different aggregate illiquidity regimes. We use

the VIX (Panel A) and the TED spread (Panel B) to capture the aggregate illiquidity.

Candidate performance measures are: the Sharpe ratio (SR), the raw return (RR), and

the alphas of the single-factor model with bond market factor (Cb), the two-factor

model with both bond and stock market factors (Csb), the Bekaert & De Santis (2021)

three-factor model (B3), the Elton et al. (1995) four-factor model (E4), the Fama &

French (2015) five-factor model for bonds (F5), and an augmented F5 model with liquidity

and momentum factors (F7). We present the sum of coefficient differences. Values greater

than zero indicate that the Sharpe ratio outperforms other performance measures. The

dark blue bars indicate the value for the respective first subset while the orange bars are

for the respective second subset. The standard errors are double-clustered by fund and

month. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

A. High-VIX and low-VIX samples

B. High-TED-spread and low-TED-spread samples
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2.3.3 Morningstar Ratings

Having documented that the Sharpe ratio explains investor flows in corporate

bond mutual funds substantially better than all factor models, we next turn to

the ability of the Morningstar ratings to explain corporate bond mutual fund flows.

Responding to the studies of Barber et al. (2016) and Berk & Van Binsbergen

(2016), Ben-David et al. (2022) show that the Morningstar ratings can explain

equity mutual fund flows substantially better than CAPM alphas. Thus, we seek

to examine whether Morningstar ratings are also the main drivers of corporate

bond fund flows.

In doing so, we proceed in two steps. First, we include the Morningstar

ratings both in the horse race tests conducted and in the alternative test of Berk

& Van Binsbergen (2016). We have to adjust the test described in Equation (2.5)

to quintiles because Morningstar only issues five different ratings (1 star up to

5 stars). However, even then the comparison is imperfect as the Morningstar

ratings do not reflect actual quintiles of the distribution (see below). The Berk &

Van Binsbergen (2016) methodology, which we describe in detail in Appendix A.1,

relies only on the signs of flows and performance measures. This method is also

imperfect as we have to define strategies based on the non-continuous Morningstar

ratings variables. As Artavanis, Eksi, & Kadlec (2019) note, strategies that only

use five-star funds end up selecting substantially fewer and only the best-rated

funds, whereas the other performance measures use more. Therefore, to have a

full picture, we consider three strategies: one that buys funds with 5 stars, one

that buys all fund share classes with 4 or more, and one that buys all funds with

at least 3 stars. The strategies simultaneously sell those fund share classes with

less stars.

Despite these shortcomings, we perform the two tests to get an idea whether

the Morningstar ratings are also a more important driver of flows in corporate

bond mutual funds than raw returns, factor model alphas, or the Sharpe ratio.

The results for the model horse race are in Table A.6 in the Appendix A.2.

We find that the Morningstar ratings explain fund flows better than any other
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performance measure considered in this study, including the Sharpe ratio. In

Tables A.7 and A.8 in the Appendix A.2, we present the results for the Berk

& Van Binsbergen (2016) test. Consistent with the other test, we find that the

Morningstar rating strategies have higher flow–performance sensitivity probability

estimates than all alternatives, with the differences being statistically significant

in every case.24 At the same time, these results confirm that the Sharpe ratio can

explain fund flows better than the raw return or any factor model.25

Second, we perform a conditional double-sort based on Morningstar ratings

and the Sharpe ratio. In Table 2.2, we present the associated equally and

value-weighted percentage fund flows of the 25 double-sorted quintile portfolios.

Consistent with our previous results, we find that both the Morningstar ratings

and the Sharpe ratio are important drivers of fund flows. The smallest fund flows

occur in the intersection of both the lowest Morningstar rating quintiles and the

lowest Sharpe ratio quintiles. Similarly, the largest fund flows can be observed

in the intersection of the highest Morningstar rating quintiles and the highest

Sharpe ratio quintiles. Thus, while the Morningstar ratings have an important

role for determining investors’ fund flows, the Sharpe ratio clearly also has an

important part, at the very least in determining in which of the many funds with

the same Morningstar rating they allocate their flows. This is underlined by the

highly statistically significant differences in investor flows between the high- and

low-Sharpe-ratio portfolios within each Morningstar rating group.

24To keep the presentation of the tables manageable, we only present the results for
a subset of models. Those for the other models considered in this study are qualitatively
similar.

25Furthermore, we see that all of the flow–performance sensitivity probability
estimates, (βflow,performance + 1)/2, are greater than 50%, implying that a positive
flow–performance relation exists for all performance measures. It is also noticeable that a
significant fraction of flows remains unexplained when only considering past performance
measures and Morningstar ratings, as none of the measures can explain more than 63%.
Naturally, we cannot make out a significant difference between the Sharpe ratio and the
raw return in Table A.8 in the Appendix A.2. This is because the Berk & Van Binsbergen
(2016) approach only considers the sign of the performance measure. The sign of the
Sharpe ratio is, to a large extent, defined by the sign of the return. However, the Sharpe
ratio and the raw return may not have exactly identical signs because the risk-free rate
is subtracted when computing the Sharpe ratio.
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Table 2.2: Double-Sorts on the Sharpe Ratio within Morningstar

Ratings Groups

This table reports the average percentage fund flows for 25 equally (Panel A) and

value-weighted (Panel B) portfolios of fund share classes sorted into Sharpe ratio quintiles

within each Morningstar rating category. We use the lagged TNA for value weighting. The

final column presents the spread in average flows between the high- and low-Sharpe-ratio

quintiles within the same Morningstar rating group. ∗, ∗∗, and ∗∗∗ indicate significance

at the 10%, 5%, and 1% level, respectively.

A. Equally weighted

SR1 (low) SR2 SR3 SR4 SR5 (high) SR5 – SR1

1-star -1.53 -1.21 -0.96 -0.98 -0.63 0.89***

2-star -1.17 -0.73 -0.52 -0.52 -0.41 0.76***

3-star -0.36 -0.08 0.00 -0.03 0.16 0.52***

4-star 0.40 0.67 0.62 0.82 0.92 0.53***

5-star 1.37 1.57 1.73 1.78 2.00 0.63***

B. Value-weighted

SR1 (low) SR2 SR3 SR4 SR5 (high) SR5 – SR1

1-star -1.44 -1.10 -0.88 -0.94 -0.54 0.90***

2-star -1.15 -0.75 -0.51 -0.49 -0.40 0.76***

3-star -0.45 -0.06 0.03 -0.04 0.10 0.55***

4-star 0.27 0.47 0.48 0.63 0.66 0.39***

5-star 0.91 1.26 1.24 1.34 1.55 0.64***
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Having documented that investors respond both to the Sharpe ratio and to

Morningstar ratings, we next examine the relation between the two more closely.

For each share class p, Morningstar first computes the Morningstar risk-adjusted

return (MRAR(γ)p,t), which is essentially the expected utility of an investor with

power utility and a relative risk aversion coefficient of γ = 2:

MRAR(γ)p,t =

 1

T

T∑
j=1

(1 +Rp,t−j −Rf,t−j)
−γ

− 12
γ

− 1. (2.6)

Morningstar calculates the MRAR(2) measure each month t for each share class p

over 3-, 5-, and 10-year horizons (assuming the share class has sufficient continuous

monthly returns over the respective periods). Each MRAR(2) measure is further

adjusted for sales charges, loads, and redemption fees. Subsequently, for each

horizon, Morningstar allocates the star ratings among the category peer groups.

Finally, the horizon-specific star ratings are consolidated to form an overall star

rating.26

Hence, both the Sharpe ratio and the Morningstar rating are risk-adjusted

performance measures. However, they differ in several important aspects: (i) the

exact risk-adjustment method (scale-independent versus utility-based), (ii) the

horizon for performance measurement, and (iii) the adjustment for category peers.

On top of that, Morningstar ratings are very salient, generally being directly

publicly disseminated along with information on a share class. On the other

hand, there is no consensus about the historical horizon to use for computing

the Sharpe ratio. Thus, while there is only one Morningstar rating for each share

class, there are potentially many different Sharpe ratios investors may consider

for their capital allocation decisions.

In a next step, we thus aim to dissect the reasons for the different flow

sensitivities to these measures. We calculate the Sharpe ratio and the MRAR(2)

of each fund for the 12-, 36-, 60-, and 120-month horizons. Then we compute
26Share classes with less than 3 years of historical return data are not rated. Share

classes younger than 5 years receive the 3-year rating. Those between 5 and 10 years
receive a weighted average rating with 60% weight on the 5-year MRAR(2). For those
older than 10 years, the 10-year rating has a weight of 50%, the 5-year rating one of 30%,
and the 3-year rating one of 20%.
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hypothetical Sharpe-ratio-based and MRAR(2)-based ratings applying different

parts of the Morningstar ratings calculation methodology. That is, we rank the

Sharpe ratio and MRAR(2) for each horizon the same way Morningstar would

do, but within a single group (i.e., top 10% – 5 stars, next 22.5% – 4 stars, next

35% – 3 stars, next 22.5% – 2 stars, and the bottom 10% – 1 star). We obtain the

long-horizon rating by assigning different weights on the 3-, 5-, 10- year ratings of

these two risk-adjusted return measures. To be able to perform a clean analysis,

we focus on the period starting from July 2002, after the Morningstar rating

methodology change.

Table 2.3 reports the results of this additional analysis on Morningstar

ratings and the Sharpe ratio. We focus on the major differences between the

two measures to find out which is the main driving force. First, in Panel A, we

conduct pairwise comparisons between Sharpe ratio ranks and MRAR(2) ranks

for different horizons. In this setting, we plainly analyze whether investors tend to

use the Sharpe ratio or rather the MRAR(2) for performance measurement. When

both measures are calculated based on a one-year horizon, the simple Sharpe ratio

explains fund flows significantly better than the MRAR(2). For longer horizons

(3 and 5 years), the outperformance of the Sharpe ratio is somewhat weaker but

still statistically significant at the 10% level. When combining different horizons

including the 10-year one, the Sharpe ratio still explains fund flows marginally

better than the MRAR(2), but the difference is not statistically significant. Hence,

we can conclude from this analysis that, when having to calculate the measures

themselves, investors appear to prefer the Sharpe ratio over the utility-based

MRAR(2).

Second, in Panel B of Table 2.3, we examine the impact of the historical

horizon used to calculate the performance measures. That is, we perform pairwise

comparisons between the one-year Sharpe ratio ranking and an aggregated ranking

using 3-, 5-, and 10-year horizons. We find that the 1-year Sharpe ratio explains

fund flows significantly better than the long-term aggregated rankings based both

on the Sharpe ratio and the MRAR(2). Thus, when having to calculate the
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Table 2.3: Dissecting the Impact of Morningstar Ratings
and the Sharpe Ratio

This table reports further pairwise comparisons between the Sharpe ratio and the
Morningstar risk adjusted return (MRAR(2)) in various specifications to explain fund
flows using the full corporate bond mutual fund sample.

We first calculate the funds’ Sharpe ratios and the MRAR(2) for different horizons (12,
36, 60, and 120 months). Subsequently, we rank them in the same way Morningstar does,
except from the peer-group adjustment (i.e., the top 10% of funds receive five stars, the
next 22.5% receive four stars, the next 35% three stars, the next 22.5% two stars, and the
bottom 10% one star). We obtain the long-horizon rating by assigning different weights
on the 3-, 5-, 10- year ratings of these two risk adjusted return measures. Finally, in Panel
C, we compare these measures to the original star ratings disseminated by Morningstar
(orgMS). We employ the Barber et al. (2016) approach with some adjustments. We
estimate the relation between fund flow and its ranking based on different performance
measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy variable
that takes on a value of one if fund share class p in month t− 1 receives the star rating
i based on the first measure and star rating j based on the second measure (excluding
the dummy variable for i = 3 and j = 3). Xp,t−1 contains the following control variables
(observed at the end of month t−1): lagged fund flow, lagged expense ratio, a dummy for
no-load share classes, return standard deviation estimated over the prior twelve months,
log of fund share class size, and log fund age. We also include time fixed effects (µt).

Panel A presents the comparisons of the sensitivity of fund flows to the two risk-
adjusted return measures for different horizons. Panel B analyzes the horizon over which
bond investors seem to care more when evaluating fund performance. Panel C examines
the preferred setting (simply within a broad single category or based on the narrow
peer-group adjustment embedded in Morningstar ratings) that bond investors use to
rank fund performance when making investment decision.

For each pairwise comparison, we have 10 b coefficient comparisons. With each pair of
coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table
reports the results of two hypothesis tests: (1) H0: The summed difference across all 10
comparisons is equal to zero, (2) H0: The proportion of positive and negative differences
equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial
test. We present a “winning model” if the sum of coefficient differences is significantly
different from zero. “–” indicates that there is no significant difference. The standard
errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the
10%, 5%, and 1% level, respectively.
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Table 2.3: Dissecting the Impact of Morningstar Ratings

and the Sharpe Ratio (continued)

Panel A: Sharpe ratio vs. MRAR(2)

Winning measure SR SR SR –

Losing measure MRAR(2) MRAR(2) MRAR(2) –

1-year 3-year 5-year long horizon

Sum of coeff. Diff. 4.466*** 1.839* 1.753* 1.499

p-Value 0.000 0.060 0.082 0.230

% of coeff. Diff. >0 100.00*** 80.00* 90.00** 80.00*

Binomial p-Value 0.001 0.055 0.011 0.055

Panel B: Short vs. long horizon (3, 5, and 10 years)

Winning measure 1-year SR 1-year SR

Losing measure long-horizon SR long-horizon MRAR(2)

Sum of coeff. Diff. 2.206*** 3.548***

p-Value 0.003 0.000

% of coeff. Diff. >0 90.00** 100.00***

Binomial p-Value 0.011 0.001

Panel C: Broad single category vs. peer-group adjustment

Winning setting Peer-group adjustment Peer-group adjustment

Losing setting Broad single category Broad single category

orgMS vs. long-horizon SR orgMS vs. long-horizon MRAR(2)

Sum of coeff. Diff. 5.468*** 7.815***

p-Value 0.000 0.000

% of coeff. Diff. >0 100.00*** 100.00***

Binomial p-Value 0.001 0.001

measures themselves, investors seem to prefer a shorter historical horizon to that

used by Morningstar.

Finally, in Panel C of Table 2.3, we examine the impact of the peer-group

adjustment and the salience of the reported measures. That is, we compare

the simple rankings without adjustment for the investment style to those

disseminated by Morningstar, which perform this adjustment. We find that the

disseminated Morningstar ratings with the peer-group adjustment explain fund
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flows substantially better than both the Sharpe ratio and the MRAR(2) without

this adjustment.

Overall, Morningstar ratings appear to cause fund flows mainly because

of their salience and easy availability. Investors are not per se more sensitive

to the underlying MRAR(2) base measure. On the contrary, when put on an

equal footing, the simple Sharpe ratio explains fund flows generally better than

the MRAR(2) measure. Only when directly using the exact measure actually

disseminated by Morningstar does the MRAR(2) outperform the Sharpe ratio.

These findings are consistent with the results of Evans & Sun (2021) and

Ben-David et al. (2022) for equity mutual funds.

2.3.4 Response of Investor Flows to Components of

Fund Returns

The preceding analysis indicates that the Sharpe ratio explains fund flows better

than any factor model overall and also for every single market segment considered.

In addition, Morningstar ratings appear to explain fund flows even better than

does the Sharpe ratio. Thus, investors seem to react to very simple risk-adjusted

return measures. It is likely that they do not fully account for the fact that a fund’s

performance in part depends on its passive exposure to systematic risk factors.

Thus, we expect that investors also react to returns due to such exposure. In this

section, we therefore examine to what extent investors consider factor-related

returns when evaluating fund performance.

We decompose each fund’s excess return into its alpha and factor-related

returns by rearranging Equation (2.3). We conduct the return decomposition

analysis for a seven-factor model, which is an augmented Fama & French (1993)

five-factor model with added momentum and liquidity risk factors:

(Rp,t −Rf,t) = α̂p,t +
[
β̂p,tMKT stock

t + ŝp,tSMBt + ĥp,tHMLt + t̂p,tTERM t

+d̂p,tDEF t + m̂p,tMOM t + l̂p,tLIQt

]
. (2.7)
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In this return decomposition, the return of a fund share class is due

to eight components: the fund’s seven-factor alpha as well as its exposure to

stock market risk, size, value, term risk, default risk, momentum, and liquidity

risk. We calculate, for example, the portion of the return related to term risk

as: TERMRETp,t−1 = t̂p,t−1TERM t−1. Using this return decomposition, we

estimate the following regression across p fund share classes and t months to

test how investors react to different return components:

Fp,t = γ0 + γ1ALPHAp,t−1 + γ2MKTRET stock
p,t−1 + γ3SIZRETp,t−1

+γ4V ALRETp,t−1 + γ5TERMRETp,t−1 + γ6DEFRETp,t−1

+γ7MOMRETp,t−1 + γ8LIQRETp,t−1 + cXp,t−1 + ep,t, (2.8)

where the control variables, Xp,t−1 and the month fixed effect µt, are defined as

before. In Equation (2.8), we are interested in the parameter estimates γi, i = 1,

..., 8. If investors react to returns from fund exposure to any specific factor, we

expect the γ coefficient estimate corresponding to that factor to be significantly

greater than 0. Based on Ben-David et al. (2022), we use the Fama & MacBeth

(1973) method rather than panel regressions to estimate Equation (2.8).

The results are presented in Table 2.4. We observe that the sensitivities

of investor flows to the unsystematic return part are significantly positive.

However, the investor fund flows also respond significantly positively to returns

due to size risk exposure. The coefficients on the size return components even

exceed those on the factor model alpha. Thus, the investors appear to react to

return components that are entirely unrelated to a fund manager’s skill and can

simply be obtained by following a size strategy. For exposures to other factors,

the average coefficients are in part also large, although not statistically significant.
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Table 2.4: Response of Fund Flows to Different Components of

Fund Returns

This table reports the coefficient estimates from a Fama & MacBeth (1973) regression

of percentage fund flows on the components of a fund’s return based on a seven-factor

model, which is an augmented Fama & French (1993) five-factor model with added

momentum and liquidity factors. The regression also include control variables and month

fixed effects. The standard errors are calculated by the Newey & West (1987) procedure

with six lags (p-values are in parentheses). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%,

5%, and 1% level, respectively.

All funds Investment grade High yield

ALPHA 0.331*** 0.385*** 0.355***

(0.000) (0.000) (0.000)

MKTRET stk -0.280 -0.102 -0.784

(0.571) (0.919) (0.260)

SIZRET 11.32* 8.663* 12.97**

(0.06) (0.068) (0.03)

VALRET -2.573 -5.303 -3.855

(0.440) (0.296) (0.204)

MOMRET 2.863 8.004 5.647

(0.550) (0.108) (0.484)

TERMRET 5.104 1.694 0.359

(0.499) (0.810) (0.950)

DEFRET -4.298 -7.449 -7.018

(0.351) (0.311) (0.377)

LIQRET 7.645 10.61 3.253

(0.186) (0.16) (0.546)

2.4 Robustness

2.4.1 Fama–MacBeth Regressions

Ben-David et al. (2022) argue that panel regressions such as Equation (2.5) can

be biased due to the time-varying nature of the flow–performance sensitivities.
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To address this potential bias, they suggest also using Fama & MacBeth (1973)

regressions. We follow their advice and test the robustness of our results to using

Fama & MacBeth (1973) regressions of Equation (2.5).27 The results are in Table

A.9 in the Appendix A.2. Our conclusions are unchanged. The Sharpe ratio also

explains corporate bond mutual fund flows significantly better than the raw return

and any factor model when estimating Equation (2.5) with the Fama & MacBeth

(1973) method.

2.4.2 Quintile Sorts

Next, we test the robustness of our results to building quintile instead of decile

portfolios based on the different performance measures. Since the sample of

corporate bond funds is somewhat smaller than that of equity funds, it is worth

examining whether using the sorting mechanism based on deciles is a sensible

choice. For this robustness check, we amend the main approach of Equation (2.5)

accordingly. Consequently, instead of 45 b coefficient comparisons, we have only

10. We present the results in Table A.10 in the Appendix A.2. These are very

similar to those when forming decile portfolios.

2.4.3 Alternative Sharpe Ratio Calculations

In our main analysis, we define the Sharpe ratio as the ratio of the previous

one-month excess return to the one-year standard deviation so that its calculation

is aligned with the estimation of all other performance measures, which are based

on a one-month horizon for performance valuation (as indicated in Section 2.2.2).

One possible concern is that this particular horizon may not be used by investors.

In this section, we show that our findings are robust to a conventional way to

calculate the Sharpe ratio as the ratio of the monthly average twelve-month excess

return to the one-year standard deviation. As can be seen from Table A.11 in the

Appendix A.2, the Sharpe ratio based on a twelve-month window can explain the

27Naturally, we do not use the time fixed effects µt when performing Fama & MacBeth
(1973) regressions as the intercept already captures these.
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fund flows even better than that used in the main part of this study: the sum

of coefficient differences and the share of positive coefficient differences are both

larger than with one-month returns. Both the sums of coefficient differences and

the proportions of positive coefficient differences are higher and more strongly

statistically significant.

As an alternative to the simple volatility estimate, we use a volatility forecast

of a GARCH(1,1) model. To estimate the model, we use 60 months of past returns,

to align the estimation period with the method to estimate alphas. We then repeat

our model horse race. The results, as reported in Panel B of Table A.11, are

qualitatively similar to those from our main test.

2.4.4 One-Year Horizon for Performance Evaluation

To test the robustness of our main results, in this section, we examine a one-year

horizon, instead of the one-month horizon for the performance evaluation as

in our main analysis. While our analysis based on the AIC indicates that a

one-month window is optimal, one might argue that a one-year window is also

suitable because it broadly balances relevance (i.e., recent returns are likely

more informative) and the signal-to-noise ratio (i.e., returns obtained over short

horizons may mostly be noise and carry only little signal). Furthermore, there

may be frictions such as inattention and transaction costs, which could create

delays in the response of flows to fund performance.

The regression using Equation (2.4) yields a series of coefficient estimates, bs,

that represent the relation between flows in month t and the fund’s return lagged

s months, s = 1, ..., 12. Figure 2.1 shows that the most recent past return seems

to be much more important to explain fund flows than more distant returns (i.e.,

the weights investors attach to past return quickly decay after the first previous

month). Therefore, we follow Barber et al. (2016) and weight the performance

measures. We empirically estimate the rate of decay λ in the flow–return relation
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using an exponential decay model:

Fp,t = a+ b
12∑
s=1

e−λ(s−1)Rp,t−s + ep,t. (2.9)

We present the results of this regression in Figure 2.1. The orange smooth

line represents the estimated exponential decay function. It closely tracks the

unconstrained coefficient estimates from the regression of Equation (2.4). We

apply this decay function to calculate each fund’s alphas as the weighted average

of the prior twelve monthly alphas:

ALPHAp,t−1 =

(∑12
s=1 e

−λ̂(s−1)α̂p,t−s∑12
s=1 e

−λ̂(s−1)

)
. (2.10)

We estimate this weighted alpha for each of the five models that we evaluate. We

obtain the exponential decay rate λ̂ based on the estimates from Equation (2.9).

The Sharpe ratio of fund p at the end of month t is calculated as the ratio of

weighted average of prior 12-month excess return of fund share class p using the

decay rate λ over the one-year return standard deviation.

Table A.12 in the Appendix A.2 reports the result of the test using the

one-year performance horizon. Consistent with the one-month horizon, the Sharpe

ratio explains fund flows significantly better than the raw return and all factor

models.

2.4.5 Alternative Factor Models

We check the robustness of our main results with a battery of alternative relevant

recent factor models for corporate bonds, including:

1. An augmented Fama & French (1993) model with the Jostova et al. (2013)

bond momentum factor (MOMb).

2. The Bai et al. (2019) four-factor model including a bond market factor and

three new factors: downside risk, credit risk, and liquidity risk (B4).

3. An augmented Fama & French (1993) model with liquidity risk and

aggregate volatility risk as in Chung, Wang, & Wu (2019) (C7).

4. The Ludvigson & Ng (2009) macro-factors for bonds (Macro).
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5. An augmented Fama & French (2015) five-factor model with TERM and

DEF (F7e).

6. An augmented Hou, Xue, & Zhang (2015) q-4 factor model with TERM

and DEF (HXZ).

7. An augmented Stambaugh & Yuan (2017) M4 mispricing factor model with

TERM and DEF (M4).

Table A.13 in the Appendix A.2 reports the results of the horse races between

each alternative factor model and the other measures used in our main test.

Consistent with our previous results, the Sharpe ratio also explains investor flows

significantly better than each of these additional factor models.

2.4.6 Analysis on the Fund Level

In our main analysis, we follow Goldstein et al. (2017) and perform the analysis

on the share-class level. This helps us to (i) have a larger sample size, (ii) account

for the differences in performance and characteristics at the share-class level,

and (iii) analyze different subsets of corporate bond share classes with different

characteristics. We account for cross-correlations in the flows to different share

classes of the same fund by clustering the standard errors by both fund and

month. In this section, we test the robustness of our results to performing the

analysis directly at the fund level. We aggregate the fund flows and value-weight

the share-class returns and other variables to obtain those on the fund level. The

results are in Table A.14 in the Appendix A.2. These are qualitatively similar to

those of our main analysis on the share-class level.

2.4.7 Controlling for Time-Varying Effects of Morn-

ingstar Ratings

In our main analysis, we control for Morningstar ratings by including dummy

variables. However, the Morningstar ratings may have time-varying effects. Hence,

in this section, we examine the robustness of our results to controlling for
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Morningstar ratings-times-month interaction fixed effects. We present the results

in Table A.15 in the Appendix A.2. These are qualitatively similar to those with

just Morningstar dummy variables.

2.4.8 Controlling for Morningstar Fixed-Income Style

Box

We also follow Aragon, Li, & Qian (2019) and additionally control for fund-style

effects. We do so by including Morningstar fixed-income style box-times-month

interaction fixed effects as further control variables. The results, reported in Table

A.16 in the Appendix A.2, clearly show that fixed-income styles do not account

for our main result: the Sharpe ratio explains fund flows significantly better than

all factor models. It is thus unlikely that unobservable time-varying variables

common to Morningstar ratings or fund styles drive both investor flows and the

Sharpe ratio.

2.4.9 Extended Corporate Bond Fund Sample

Lastly, we test the robustness of our results to the sample screening. That is, we

drop the filter that fund share classes have to have a TNA of at least $10 million.

The results, presented in Table A.17 in the Appendix A.2, are very similar to

those of our main analysis.

2.5 Implications

Style- or factor-investing strategies have been implemented widely in equity

markets. However, there are currently few investment vehicles for investors to

harvest factor premia in the corporate bond market. Implementation of bond

factor strategies in investment portfolios may not be easy because bond trading

costs can be very high. This suggests that corporate bond investors may be less
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aware of factor models than investors in equity funds.28 Therefore, one may argue

that our finding that investors use simple measures instead of factor models to

evaluate fund performance may be not that surprising.29 On the other hand, on

a broader level, our finding that investors rely on simple performance measures

rather than multi-factor alphas is consistent with the findings of Ben-David et al.

(2022) for equity markets.

However, if investors use Morningstar ratings and the Sharpe ratio instead of

more sophisticated performance measures, this has much more severe implications

for corporate bond fund managers and investors than for actors in equity mutual

fund markets. Managers have strong incentives to “improve” both measures of

their funds. They may be inclined to achieve this by smoothing their returns to

reduce volatility instead of improving their investment decisions.30 Some specifics

of the corporate bond markets may enable them to do precisely that.

Corporate bonds are relatively more illiquid compared with government

bonds and equities. The Investment Company Act of 1940 states that “A fund is

generally required to price its portfolio using readily available market quotations”

(emphasis added). However, many corporate bonds are held mainly in long-term

investment portfolios of insurance companies or pension funds and are rarely

traded. In case of thinly-traded bonds, the fund should value the securities at their

“fair value”, determined in “good faith” by, or under the direction of, the fund’s

board of directors. From these quotes, fund managers appear to have substantial

discretion when it comes to valuing those illiquid assets on a daily basis.

28While the equity factor models of, e.g., Fama & French (1993), are rather well
known among investors and there are numerous small-cap, value, and growth mutual
funds, things are different in bond markets. Only few funds are explicitly designed to
follow factor-related strategies. Thus, given the same level of sophistication, a corporate
bond fund investor is likely less aware of factor models, simply lacking exposure to direct
or indirect information about them.

29It should be noted that while the traditional players in the corporate bond markets
are institutions such as insurance companies, pension funds, etc., the main investors in
bond mutual funds are retail investors, who hold individual accounts sold through a
broker–dealer.

30While reducing volatility trivially increases the Sharpe ratio by reducing its
denominator, Morningstar ratings also penalize volatility (see, e.g., Barber et al., 2016;
Ben-David et al., 2022).
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Indeed, Cici et al. (2011) find that the valuations of the same bonds at the

same point in time differ substantially across mutual funds. The authors find

that the interquartile range (i.e., the width of the middle 50% of the distribution)

of bond valuations is on average 0.30% of the bond face value for investment-

grade bonds and 0.56% for high-yield bonds. While these numbers may seem

large already, one should bear in mind that they are averages over a large number

of bonds and that they do not reflect the most extreme valuations in the top

and bottom quartiles. Thus, the extremest valuation differences are most likely

multiples of these.

We implement two tests to check whether investors’ capital allocation

decisions in corporate bond mutual funds can be affected by such return smoothing

manipulations. First, we examine the manipulation-proof performance measure

(MPPM) of Goetzmann et al. (2007) as an alternative determinant of fund flows.

The MPPM is a kind of enhanced Sharpe ratio and is defined as follows:

Θ̂p,t =
1

(1− ρ)∆τ
ln

(
1

s

t∑
τ=t−s

[
(1 +Rp,τ )/(1 +Rf,τ )

]1−ρ
)
, (2.11)

where s is the length of the measurement horizon (in months) and ∆τ = 1/12.

We use relative risk aversion coefficients (ρ) of 3 and 4, as in Goetzmann et al.

(2007). The higher ρ, the more heavily risk is penalized.

In Table 2.5, Panel A presents the pairwise comparison between the MPPM

measure and the Sharpe ratio for different specifications. For the one-month

horizon, as used in our main analysis, we find that the Sharpe ratio explains

fund flows significantly better than the MPPM. The sum of coefficient differences

is 17.42 and 91% of coefficient differences favor the Sharpe ratio. Also for a

12-month horizon and different values for the relative risk aversion, the results are

qualitatively similar. Investors seem to rely on the simple Sharpe ratio instead of

an alternative manipulation-proof measure.

Second, we conduct horse race tests between the simple Sharpe ratio and

a smoothing-adjusted Sharpe ratio. Getmansky et al. (2004) propose a method

to correct for the impact of return smoothing. Return smoothing implies that

the reported or observed return Rp,t of a fund in month t is a weighted average
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Table 2.5: Model Horse Race – Manipulation-Proof Performance
Measures

This table presents the results of pairwise comparisons between the Sharpe ratio (SR)
and two performance measures that adjust for return-smoothing manipulations, including
the manipulation-proof performance measure (MPPM) proposed by Goetzmann et al.
(2007) and the smoothing-adjusted Sharpe ratio (adjSR) proposed by Getmansky et al.
(2004) to explain fund flows using the full corporate bond fund sample. We estimate
the relation between flow and the decile ranking of a fund share class based on different
performance measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy variable
that takes on a value of one if fund share class p in month t− 1 is in the decile i based on
the first model and decile j based on the second model (excluding the dummy variable
for i = 5 and j = 5). Xp,t−1 contains the following control variables (observed at the
end of month t− 1): lagged fund flow, lagged expense ratio, a dummy for no-load share
classes, return standard deviation estimated over the prior twelve months, log of fund
share class size, log fund age, as well as Morningstar rating dummies. We also include
time fixed effects (µt).

We estimate the candidate performance measures for measurement horizons of one
month and twelve months as well as with two different relative risk aversion coefficients
for the MPPM (for the one-month horizon, the MPPM is independent of ρ).

For each pairwise comparison, we have 45 b coefficient comparisons. With each pair of
coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table
reports the results of two hypothesis tests: (1) H0: The summed difference across all 45
comparisons is equal to zero, (2) H0: The proportion of positive and negative differences
equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial
test. We present a “winning model” if the sum of coefficient differences is significantly
different from zero. “–” indicates that there is no significant difference. The standard
errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the
10%, 5%, and 1% level, respectively.

A. Sharpe ratio vs. MPPM

Winning model SR SR SR

Losing model MPPM MPPM MPPM

Measurement horizon one month twelve months twelve months

Risk aversion ρ = 3 ρ = 4

SR_MPPM SR_MPPM SR_MPPM

Sum of coeff. Diff. 17.42*** 16.88*** 17.40***

p-Value 0.000 0.000 0.000

% of coeff. Diff. >0 91.11*** 88.89*** 93.33***

Binomial p-Value 0.000 0.000 0.000

B. Simple vs. smoothing-adjusted Sharpe ratio

Winning model SR SR

Losing model adjSR adjSR

Measurement horizon one month twelve months

SR_adjSR SR_adjSR

Sum of coeff. Diff. 11.12*** 14.46***

p-Value 0.001 0.000

% of coeff. Diff. >0 75.56*** 88.89***

Binomial p-Value 0.000 0.000
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of its unobservable true returns (R∗
p,t) in the current and k lagged periods. We

follow Chen, Ferson, & Peters (2010b) and use a moving-average model with

one lag (k = 1) because in our sample the first-order return autocorrelations

are significant while the second-order autocorrelations are small and generally

insignificant. Specifically, the observed returns of fund p are:

Rp,t = θ0R
∗
p,t + (1− θ0)R

∗
p,t−1. (2.12)

To obtain the parameter θ0 in Equation (2.12), we estimate a MA(1) model on

the observed return series and re-scale the parameters to satisfy the equation (see

Getmansky et al., 2004). Since the degree of return smoothing of a fund may

be varying over time, we use rolling 12-month windows to obtain the parameters.

We use the smoothing-adjusted return series R∗
p,t to calculate a return smoothing-

adjusted Sharpe ratio.

Panel B of Table 2.5 reports the results for the comparison between the simple

Sharpe ratio and its smoothing-adjusted counterpart. For both evaluation horizons

of one and twelve months, the response of investor flows to the simple Sharpe

ratio is significantly stronger than to the smoothing-adjusted Sharpe ratio. The

sum of coefficient differences is greater than 10 and more than 75% of coefficient

differences favor the simple Sharpe ratio. This analysis provides further evidence,

which supports the conclusion that investors appear to rely on the simple Sharpe

ratio when making their investment decisions, while making no adjustment for

the effect of return smoothing.

Thus, fund managers both have the means and strong incentives to

manipulate their Sharpe ratios and Morningstar ratings. Cici et al. (2011) detect

further evidence consistent with return smoothing behavior by corporate bond

mutual fund managers. That is, the bond valuations are on average particularly

high (in comparison to those of other funds) when the entire fund portfolio

performs badly and low when the entire fund portfolio performs well.

Collectively, investors’ reliance on Morningstar ratings and the Sharpe

ratio for performance measurement can have high costs for investors. First,

manipulations by fund managers may mislead them into adverse investment
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decisions and fund selections. Second, fund managers’ return smoothing behavior

can generate trading opportunities for active traders. There is a mismatch between

the illiquidity of corporate bond funds’ underlying assets and the liquidity they

offer to investors by providing withdrawal rights on a daily basis. Similar to

stale price-oriented mutual fund trading strategies (see, e.g., Chalmers, Edelen, &

Kadlec, 2001; Goetzmann, Ivković, & Rouwenhorst, 2001; Boudoukh, Richardson,

Subrahmanyam, & Whitelaw, 2002; Greene & Hodges, 2002; Zitzewitz, 2003, Choi

et al., 2021) active investors can benefit from simple strategies based on the fund’s

observed valuations. This entails a further wealth transfer because buy-and-hold

investors suffer from the offsetting losses and expenses (for example, from dilution

effects). On top of this, fund managers may be forced to sell good securities to have

enough cash for redemptions, which could further increase the adverse effects.

2.6 Concluding Remarks

How do corporate bond mutual fund investors measure performance? To answer

this question, we analyze the relation between mutual fund flows and different

performance measures. We run a horse race among different performance

measures, ranging from the simple raw return and the Sharpe ratio to alphas

estimated by using single and different multi-factor models. Our empirical analysis

reveals that the Sharpe ratio explains the net flows into actively managed U.S.

corporate bond mutual funds better than any of these alternatives. Morningstar

ratings appear to explain an even larger share of investor fund flows, but the

Sharpe ratio has important explanatory power within the Morningstar ratings

groups. It thus seems that most investors do not use any factor model at all.

The use of Morningstar ratings and the Sharpe ratio as primary performance

measures is problematic for several reasons. First, it facilitates the opportunistic

behavior of fund managers to boost both measures on purpose (for example

by holding illiquid assets or “hard-to-mark” bonds). Therefore, our findings

have potentially important implications for both investors and managers of
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corporate bond mutual funds. Second, mutual fund return predictability caused

by inaccurate prices allows profitable active trading strategies. Gains earned by

active fund traders from trades that exploit NAV misvaluations are matched with

the losses suffered by buy-and-hold fund investors.

We believe that further research should be undertaken to explore bond factors

and make bond factor investing strategies more feasible. This might help corporate

bond mutual funds to provide vehicles for bond investors to harvest factor

premiums and make more sophisticated factor-model-based investor decisions.

In the meantime, investors should be cautious about manipulation of reported

measures and at least rely on manipulation-proof measures rather than on the

simple Sharpe ratio.
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A Appendix

A.1 The Berk–Van Binsbergen Testing Approach

First, we test for a positive relation between fund flows and performance (i.e.,

whether the regression coefficient of the sign of the subsequent flows on the sign

of the performance measure is positive). Φ is defined as a simple sign function

that returns the sign of a real number, taking values of 1 for a positive number,

–1 for a negative number, and 0 for zero. We test the following null hypothesis:

βflow,performance =
cov(Φ(Fp,t), (Φ(αp,t−1))

var(Φ(αp,t−1))
> 0. (A.1)

For the ease of interpretation, Table A.7 reports (βflow,performance + 1)/2

which denotes the average likelihood that the sign of the fund flow [S(flow)]

is positive (negative) conditional on the sign of the past performance measure

[S(performance)] being positive (negative).

Furthermore, we can consider pairwise comparisons of two performance

measures (models) and test which better captures how investors assess fund

performance to allocate their capital by the following equation:

Φ(Fp,t) = a+ b1

(
Φ(αm1

p,t−1)

var(Φ(αm1
p,t−1))

−
Φ(αm2

p,t−1)

var(Φ(αm2
p,t−1))

)
+ ξp,t. (A.2)

If the coefficient of this regression is positive (i.e., b1 > 0), this implies that the

flow–performance regression coefficient of model m1 is larger than that of model

m2, and we can infer that model m1 better explains the sign of the subsequent

fund flows than model m2.
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A.2 Additional Tables

Table A.1: Model Horse Race – Full Sample

This table presents the results of pairwise comparisons of different performance

measures to explain fund flows using the full corporate bond fund sample. We estimate

the relation between flow and the decile ranking of a fund share class based on different

performance measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy variable

that takes on a value of one if fund share class p in month t− 1 is in the decile i based on

the first model and decile j based on the second model (excluding the dummy variable

for i = 5 and j = 5). Xp,t−1 contains the following control variables (observed at the

end of month t− 1): lagged fund flow, lagged expense ratio, a dummy for no-load share

classes, return standard deviation estimated over the prior twelve months, log of fund

share class size, log fund age, as well as Morningstar rating dummies. We also include

time fixed effects (µt).

Candidate performance measures are: the Sharpe ratio (SR), the raw return (RR),

and the alphas of the single-factor model with bond market factor (Cb), the two-factor

model with both bond and stock market factors (Csb), the Bekaert & De Santis (2021)

three-factor model (B3), the Elton et al. (1995) four-factor model (E4), the Fama &

French (2015) five-factor model for bonds (F5), and an augmented F5 model with liquidity

and momentum factors (F7).

For each pairwise comparison, we have 45 b coefficient comparisons. With each pair of

coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table

reports the results of two hypothesis tests: (1) H0: The summed difference across all 45

comparisons is equal to zero, (2) H0: The proportion of positive and negative differences

equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial

test. We present a “winning model” if the sum of coefficient differences is significantly

different from zero. “–” indicates that there is no significant difference. The standard

errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.
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Table A.1: Model Horse Race – Full Sample (continued)

A. Sharpe ratio

Winning model SR SR SR SR SR SR SR
Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7
Sum of coeff. Diff. 17.42*** 14.16*** 9.848*** 10.43*** 6.547*** 9.482*** 9.462***
p-Value 0.000 0.000 0.000 0.000 0.001 0.000 0.000
% of coeff. Diff. >0 91.11*** 93.33*** 88.89*** 88.89*** 73.33*** 84.44*** 86.67***
Binomial p-Value 0.000 0.000 0.000 0.000 0.001 0.000 0.000

B. Raw return

Winning model – – – E4 – –
Losing model – – – RR – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7
Sum of coeff. Diff. -5.286 -4.041 -1.964 -5.508** -1.456 -0.994
p-Value 0.154 0.107 0.380 0.016 0.490 0.628
% of coeff. Diff. >0 28.89*** 31.11*** 40.00 15.56*** 35.56** 40.00
Binomial p-Value 0.003 0.008 0.116 0.000 0.036 0.1163

C. CAPM bond

Winning model – – E4 – –
Losing model – – Cb – –

Cb_Csb Cb_B3 Cb_E4 Cb_F5 Cb_F7
Sum of coeff. Diff. -2.308 -0.176 -4.626** 0.180 0.936
p-Value 0.373 0.938 0.046 0.938 0.675
% of coeff. Diff. >0 40.00 57.78 20.00*** 57.78 53.33
Binomial p-Value 0.116 0.186 0.000 0.186 0.383

D. CAPM stock + bond

Winning model – E4 – –
Losing model – Csb – –

Csb_B3 Csb_E4 Csb_F5 Csb_F7
Sum of coeff. Diff. 1.927 -4.841* 3.100 3.692
p-Value 0.463 0.089 0.235 0.139
% of coeff. Diff. >0 64.44** 42.22 62.22* 71.11***
Binomial p-Value 0.036 0.186 0.068 0.003

E. B3

Winning model E4 – –
Losing model B3 – –

B3_E4 B3_F5 B3_F7
Sum of coeff. Diff. -4.629* 1.458 1.561
p-Value 0.085 0.562 0.511
% of coeff. Diff. >0 24.44*** 55.56 60.00
Binomial p-Value 0.000 0.276 0.116

F. E4

Winning model E4 E4
Losing model F5 F7

E4_F5 E4_F7
Sum of coeff. Diff. 7.710*** 7.593***
p-Value 0.006 0.002
% of coeff. Diff. >0 75.56*** 86.67***
Binomial p-Value 0.000 0.000

G. F5

Winning model –
Losing model –

F5_F7
Sum of coeff. Diff. 3.569
p-Value 0.456
% of coeff. Diff. >0 53.33
Binomial p-Value 0.383
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Table A.2: Model Horse Race – Corporate Bond Fund
Subsamples

This table presents the results of pairwise comparisons of different performance
measures to explain fund flows using several subsamples of corporate bond fund share
classes. We separate the corporate bond mutual fund share classes into those oriented
to retail and institutional investors (Panel A), those investing into high-yield and
investment-grade segments (Panel B), those with and without rear-load fees (Panel C),
and those with mainly corporate bond holdings and non-trivial holdings in other asset
classes (Panel D). In each case, we perform the analysis separately for the corporate
bond fund subcategory indicated in the corresponding panel headings. We estimate the
relation between flow and the decile ranking of a fund share class based on different
performance measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy variable
that takes on a value of one if fund share class p in month t− 1 is in the decile i based on
the first model and decile j based on the second model (excluding the dummy variable
for i = 5 and j = 5). Xp,t−1 contains the following control variables (observed at the
end of month t− 1): lagged fund flow, lagged expense ratio, a dummy for no-load share
classes, return standard deviation estimated over the prior twelve months, log of fund
share class size, log fund age, as well as Morningstar rating dummies. We also include
time fixed effects (µt).

Candidate performance measures are: the Sharpe ratio (SR), the raw return (RR),
and the alphas of the single-factor model with bond market factor (Cb), the two-factor
model with both bond and stock market factors (Csb), the Bekaert & De Santis (2021)
three-factor model (B3), the Elton et al. (1995) four-factor model (E4), the Fama &
French (2015) five-factor model for bonds (F5), and an augmented F5 model with liquidity
and momentum factors (F7).

For each pairwise comparison, we have 45 b coefficient comparisons. With each pair of
coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table
reports the results of two hypothesis tests: (1) H0: The summed difference across all 45
comparisons is equal to zero, (2) H0: The proportion of positive and negative differences
equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial
test. We present a “winning model” if the sum of coefficient differences is significantly
different from zero. “–” indicates that there is no significant difference. The standard
errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the
10%, 5%, and 1% level, respectively.
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Table A.2: Model Horse Race – Corporate Bond Fund Subsamples

(continued)

A.1 Retail-oriented bond fund share classes

Winning model SR SR SR SR SR SR SR

Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7

Sum of coeff. Diff. 15.19*** 13.16*** 12.78*** 12.67*** 9.043*** 10.48*** 10.41***

p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

% of coeff. Diff. >0 91.11*** 93.33*** 95.56*** 84.44*** 80.00*** 86.67*** 82.22***

Binomial p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

A.2 Institutional-oriented bond fund share classes

Winning model SR SR – SR – SR SR

Losing model RR Cb – B3 – F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7

Sum of coeff. Diff. 26.76*** 21.33*** 6.939 8.423** 5.324 10.94*** 9.588***

p-Value 0.000 0.004 0.125 0.042 0.155 0.003 0.006

% of coeff. Diff. >0 86.67*** 80.00*** 60.00 55.56 62.22* 75.56*** 71.11***

Binomial p-Value 0.000 0.000 0.116 0.276 0.068 0.000 0.003

B.1 High-yield bond fund share classes

Winning model SR SR SR SR SR SR SR

Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7

Sum of coeff. Diff. 21.56*** 21.12*** 19.47*** 17.61*** 9.331** 12.05*** 10.09***

p-Value 0.000 0.000 0.000 0.000 0.013 0.000 0.001

% of coeff. Diff. >0 88.89*** 95.56*** 95.56*** 88.89*** 71.11*** 86.67*** 73.33***

Binomial p-Value 0.000 0.000 0.000 0.000 0.003 0.000 0.001

B.2 Investment-grade bond fund share classes

Winning model SR SR SR SR SR SR SR

Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7

Sum of coeff. Diff. 14.97*** 6.599** 4.358* 6.936*** 5.077** 8.062*** 8.670***

p-Value 0.000 0.033 0.061 0.003 0.013 0.000 0.000

% of coeff. Diff. >0 86.67*** 77.78*** 62.22* 82.22*** 64.44** 75.56*** 77.78***

Binomial p-Value 0.000 0.000 0.068 0.000 0.036 0.000 0.000
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Table A.2: Model Horse Race – Corporate Bond Fund Subsamples

(continued 2)

C.1 Rear-load bond fund share classes

Winning model SR SR SR SR SR SR SR

Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7

Sum of coeff. Diff. 11.14*** 13.72*** 11.67*** 10.06*** 5.793** 8.402*** 8.034***

p-Value 0.001 0.000 0.000 0.000 0.026 0.000 0.000

% of coeff. Diff. >0 66.67** 80.00*** 88.89*** 75.56*** 71.11*** 68.89*** 75.56***

Binomial p-Value 0.018 0.000 0.000 0.000 0.003 0.008 0.000

C.2 Non-rear-load bond fund share classes

Winning model SR SR SR SR SR SR SR

Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7

Sum of coeff. Diff. 21.44*** 13.78*** 8.624*** 10.55*** 6.993*** 10.10*** 10.21***

p-Value 0.000 0.000 0.001 0.000 0.002 0.000 0.000

% of coeff. Diff. >0 91.11*** 88.89*** 80.00*** 86.67*** 73.33*** 88.89*** 77.78***

Binomial p-Value 0.000 0.000 0.000 0.000 0.001 0.000 0.000

D.1 Mainly corporate bond holdings

Winning model SR SR SR SR SR SR SR

Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7

Sum of coeff. Diff. 14.25*** 10.26** 10.30*** 9.304*** 7.028** 11.65*** 10.89***

p-Value 0.003 0.017 0.002 0.010 0.041 0.000 0.000

% of coeff. Diff. >0 71.11*** 77.78*** 75.56*** 71.11*** 66.67** 68.89*** 73.33***

Binomial p-Value 0.003 0.000 0.000 0.003 0.018 0.008 0.001

D.2 Non-trivial holdings in other asset classes

Winning model SR SR SR SR SR SR SR

Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7

Sum of coeff. Diff. 17.79*** 14.14*** 8.952*** 9.419*** 6.381*** 9.104*** 9.136***

p-Value 0.000 0.000 0.001 0.000 0.002 0.000 0.000

% of coeff. Diff. >0 93.33*** 88.89*** 84.44*** 80.00*** 82.22*** 80.00*** 84.44***

Binomial p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table A.3: Model Horse Race – Corporate Bond Fund
Subsamples (Raw Return)

This table presents the results of pairwise comparisons of different performance
measures to explain fund flows using several subsamples of corporate bond fund share
classes. We separate the corporate bond mutual fund share classes into those oriented
to retail and institutional investors (Panel A), those investing into high-yield and
investment-grade segments (Panel B), those with and without rear-load fees (Panel C),
and those with mainly corporate bond holdings and non-trivial holdings in other asset
classes (Panel D). In each case, we perform the analysis separately for the corporate
bond fund subcategory indicated in the corresponding panel headings. We estimate the
relation between flow and the decile ranking of a fund share class based on different
performance measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy variable
that takes on a value of one if fund share class p in month t− 1 is in the decile i based on
the first model and decile j based on the second model (excluding the dummy variable
for i = 5 and j = 5). Xp,t−1 contains the following control variables (observed at the
end of month t− 1): lagged fund flow, lagged expense ratio, a dummy for no-load share
classes, return standard deviation estimated over the prior twelve months, log of fund
share class size, log fund age, as well as Morningstar rating dummies. We also include
time fixed effects (µt).

Candidate performance measures are: the raw return (RR) and the alphas of the
single-factor model with bond market factor (Cb), the two-factor model with both bond
and stock market factors (Csb), the Bekaert & De Santis (2021) three-factor model (B3),
the Elton et al. (1995) four-factor model (E4), the Fama & French (2015) five-factor model
for bonds (F5), and an augmented F5 model with liquidity and momentum factors (F7).

For each pairwise comparison, we have 45 b coefficient comparisons. With each pair of
coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table
reports the results of two hypothesis tests: (1) H0: The summed difference across all 45
comparisons is equal to zero, (2) H0: The proportion of positive and negative differences
equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial
test. We present a “winning model” if the sum of coefficient differences is significantly
different from zero. “–” indicates that there is no significant difference. The standard
errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the
10%, 5%, and 1% level, respectively.
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Table A.3: Model Horse Race – Corporate Bond Fund Subsamples (Raw

Return) (continued)

A.1 Retail-oriented bond fund share classes

Winning model – – – – – –

Losing model – – – – – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7

Sum of coeff. Diff. -2.805 0.725 1.385 -2.070 1.086 1.508

p-Value 0.462 0.780 0.563 0.396 0.619 0.470

% of coeff. Diff. >0 44.44 55.56 57.78 37.78* 60.00 53.33

Binomial p-Value 0.276 0.276 0.186 0.068 0.116 0.383

A.2 Institutional-oriented bond fund share classes

Winning model – Csb B3 E4 – –

Losing model – RR RR RR – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7

Sum of coeff. Diff. -10.65 -13.20*** -7.930* -12.08*** -6.652 -6.554

p-Value 0.102 0.004 0.063 0.006 0.111 0.111

% of coeff. Diff. >0 40.00 24.44*** 48.89 31.11*** 35.56** 42.22

Binomial p-Value 0.116 0.000 0.500 0.008 0.036 0.186

B.1 High-yield bond fund share classes

Winning model – – – – – –

Losing model – – – – – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7

Sum of coeff. Diff. 10.07 5.005 1.493 -5.820 -4.898 -4.524

p-Value 0.254 0.189 0.673 0.139 0.180 0.177

% of coeff. Diff. >0 68.89*** 55.56 55.56 33.33** 35.56** 37.78*

Binomial p-Value 0.008 0.276 0.276 0.018 0.036 0.068

B.2 Investment-grade bond fund share classes

Winning model Cb Csb – E4 – –

Losing model RR RR – RR – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7

Sum of coeff. Diff. -8.554** -6.217** -2.812 -4.740* -0.042 0.491

p-Value 0.018 0.023 0.262 0.055 0.985 0.830

% of coeff. Diff. >0 20.00*** 26.67*** 24.44*** 31.11*** 42.22 48.89

Binomial p-Value 0.000 0.001 0.000 0.008 0.186 0.500
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Table A.3: Model Horse Race – Corporate Bond Fund Subsamples (Raw

Return) (continued 2)

C.1 Rear-load bond fund share classes

Winning model – – – – – –

Losing model – – – – – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7

Sum of coeff. Diff. 4.258 3.167 2.221 -1.349 1.129 1.555

p-Value 0.358 0.279 0.424 0.626 0.645 0.513

% of coeff. Diff. >0 71.11*** 66.67** 62.22* 46.67 46.67 53.33

Binomial p-Value 0.003 0.018 0.068 0.383 0.383 0.383

C.2 Non-rear-load bond fund share classes

Winning model Cb Csb B3 E4 – –

Losing model RR RR RR RR – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7

Sum of coeff. Diff. -10.40** -8.149*** -4.395* -7.727*** -2.796 -2.454

p-Value 0.011 0.006 0.096 0.005 0.271 0.323

% of coeff. Diff. >0 15.56*** 22.22*** 28.89*** 17.78*** 37.78* 44.44

Binomial p-Value 0.000 0.000 0.003 0.000 0.068 0.276

D.1 Mainly corporate bond holdings

Winning model – – – – – –

Losing model – – – – – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7

Sum of coeff. Diff. -0.984 0.356 0.609 -1.964 1.623 1.878

p-Value 0.871 0.921 0.863 0.583 0.637 0.557

% of coeff. Diff. >0 48.89 51.11 53.33 46.67 51.11 53.33

Binomial p-Value 0.500 0.500 0.383 0.383 0.500 0.383

D.2 Non-trivial holdings in other asset classes

Winning model Cb Csb – E4 – –

Losing model RR RR – RR – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7

Sum of coeff. Diff. -6.977* -5.445** -3.165 -6.003** -1.787 -1.500

p-Value 0.083 0.046 0.198 0.013 0.436 0.507

% of coeff. Diff. >0 28.89*** 28.89*** 24.44*** 26.67*** 42.22 44.44

Binomial p-Value 0.003 0.003 0.000 0.001 0.186 0.276
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Table A.4: Model Horse Race – Aggregate Illiquidity Regimes

This table presents the results of pairwise comparisons of different performance

measures to explain fund flows during different aggregate illiquidity regimes. We use

the VIX (Panel A) and the TED spread (Panel B) to capture the aggregate illiquidity.

In each case, we perform the analysis separately for the different illiquidity regimes as

defined by whether the corresponding variables exceed their averages. We estimate the

relation between flow and the decile ranking of a fund share class based on different

performance measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy variable

that takes on a value of one if fund share class p in month t− 1 is in the decile i based on

the first model and decile j based on the second model (excluding the dummy variable

for i = 5 and j = 5). Xp,t−1 contains the following control variables (observed at the

end of month t− 1): lagged fund flow, lagged expense ratio, a dummy for no-load share

classes, return standard deviation estimated over the prior twelve months, log of fund

share class size, log fund age, as well as Morningstar rating dummies. We also include

time fixed effects (µt).

Candidate performance measures are: the Sharpe ratio (SR), the raw return (RR),

and the alphas of the single-factor model with bond market factor (Cb), the two-factor

model with both bond and stock market factors (Csb), the Bekaert & De Santis (2021)

three-factor model (B3), the Elton et al. (1995) four-factor model (E4), the Fama &

French (2015) five-factor model for bonds (F5), and an augmented F5 model with liquidity

and momentum factors (F7).

For each pairwise comparison, we have 45 b coefficient comparisons. With each pair of

coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table

reports the results of two hypothesis tests: (1) H0: The summed difference across all 45

comparisons is equal to zero, (2) H0: The proportion of positive and negative differences

equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial

test. We present a “winning model” if the sum of coefficient differences is significantly

different from zero. “–” indicates that there is no significant difference. The standard

errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.
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Table A.4: Model Horse Race – Aggregate Illiquidity Regimes (continued)

A.1 High-VIX sample

Winning model SR SR SR SR – SR SR

Losing model RR Cb Csb B3 – F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7

Sum of coeff. Diff. 25.21*** 15.46*** 8.095** 9.779*** 4.187 8.358*** 9.821***

p-Value 0.000 0.001 0.018 0.001 0.119 0.004 0.000

% of coeff. Diff. >0 82.22*** 77.78*** 66.67** 84.44*** 66.67** 71.11*** 77.78***

Binomial p-Value 0.000 0.000 0.018 0.000 0.018 0.003 0.000

A.2 Low-VIX sample

Winning model SR SR SR SR SR SR SR

Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7

Sum of coeff. Diff. 13.88*** 13.39*** 11.99*** 11.98*** 9.665*** 11.47*** 10.25***

p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

% of coeff. Diff. >0 93.33*** 86.67*** 91.11*** 82.22*** 82.22*** 91.11*** 82.22***

Binomial p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B.1 High-TED-spread sample

Winning model SR SR SR SR – SR SR

Losing model RR Cb Csb B3 – F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7

Sum of coeff. Diff. 12.05*** 15.70*** 10.88*** 12.23*** 3.774 6.465* 8.846***

p-Value 0.007 0.001 0.007 0.001 0.251 0.062 0.009

% of coeff. Diff. >0 73.33*** 82.22*** 71.11*** 73.33*** 62.22* 64.44** 66.67**

Binomial p-Value 0.001 0.000 0.003 0.001 0.068 0.036 0.018

B.2 Low-TED-spread sample

Winning model SR SR SR SR SR SR SR

Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7

Sum of coeff. Diff. 18.47*** 13.11*** 9.010*** 9.286*** 7.139*** 10.25*** 9.435***

p-Value 0.000 0.000 0.001 0.000 0.001 0.000 0.000

% of coeff. Diff. >0 93.33*** 93.33*** 86.67*** 80.00*** 73.33*** 84.44*** 86.67***

Binomial p-Value 0.000 0.000 0.000 0.000 0.001 0.000 0.000
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Table A.5: Model Horse Race – Aggregate Illiquidity Regimes

(Raw Return)

This table presents the results of pairwise comparisons of different performance

measures to explain fund flows during different aggregate illiquidity regimes. We use

the VIX (Panel A) and the TED spread (Panel B) to capture the aggregate illiquidity

regimes. In each case, we perform the analysis separately for the different illiquidity

regimes as defined by whether the corresponding variables exceed their averages. We

estimate the relation between flow and the decile ranking of a fund share class based on

different performance measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy variable

that takes on a value of one if fund share class p in month t− 1 is in the decile i based on

the first model and decile j based on the second model (excluding the dummy variable

for i = 5 and j = 5). Xp,t−1 contains the following control variables (observed at the

end of month t− 1): lagged fund flow, lagged expense ratio, a dummy for no-load share

classes, return standard deviation estimated over the prior twelve months, log of fund

share class size, log fund age, as well as Morningstar rating dummies. We also include

time fixed effects (µt).

Candidate performance measures are: the raw return (RR) and the alphas of the

single-factor model with bond market factor (Cb), the two-factor model with both bond

and stock market factors (Csb), the Bekaert & De Santis (2021) three-factor model (B3),

the Elton et al. (1995) four-factor model (E4), the Fama & French (2015) five-factor model

for bonds (F5), and an augmented F5 model with liquidity and momentum factors (F7).

For each pairwise comparison, we have 45 b coefficient comparisons. With each pair of

coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table

reports the results of two hypothesis tests: (1) H0: The summed difference across all 45

comparisons is equal to zero, (2) H0: The proportion of positive and negative differences

equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial

test. We present a “winning model” if the sum of coefficient differences is significantly

different from zero. “–” indicates that there is no significant difference. The standard

errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.
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Table A.5: Model Horse Race – Aggregate Illiquidity Regimes (Raw

Return) (continued)

A.1 High-VIX sample

Winning model Cb Csb – E4 – –

Losing model RR RR – RR – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7

Sum of coeff. Diff. -12.72** -9.347** -4.227 -10.27*** -5.022 -2.917

p-Value 0.029 0.014 0.194 0.003 0.129 0.362

% of coeff. Diff. >0 26.67*** 26.67*** 37.78* 20.00*** 33.33** 37.78*

Binomial p-Value 0.001 0.001 0.068 0.000 0.018 0.068

A.2 Low-VIX sample

Winning model – – – – – –

Losing model – – – – – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7

Sum of coeff. Diff. -1.132 -0.042 0.823 -1.220 2.034 1.212

p-Value 0.795 0.989 0.768 0.665 0.416 0.614

% of coeff. Diff. >0 42.22 60.00 46.67 42.22 55.56 68.89***

Binomial p-Value 0.186 0.116 0.383 0.186 0.276 0.008

B.1 High-TED-spread sample

Winning model – – – – – –

Losing model – – – – – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7

Sum of coeff. Diff. 1.902 -0.223 4.101 -3.523 -0.518 1.817

p-Value 0.703 0.959 0.274 0.323 0.888 0.607

% of coeff. Diff. >0 60.00 46.67 53.33 40.00 51.11 62.22*

Binomial p-Value 0.116 0.383 0.383 0.116 0.500 0.068

B.2 Low-TED-spread sample

Winning model – Csb – E4 – –

Losing model – RR – RR – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7

Sum of coeff. Diff. -7.133 -5.224* -4.263 -5.820** -1.488 -1.756

p-Value 0.111 0.071 0.110 0.030 0.537 0.456

% of coeff. Diff. >0 24.44*** 28.89*** 26.67*** 20.00*** 35.56** 48.89

Binomial p-Value 0.000 0.003 0.001 0.000 0.036 0.500
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Table A.6: Model Horse Race with Morningstar Ratings

This table presents the results of pairwise comparisons of different performance

measures to explain fund flows using the full corporate bond fund sample. We estimate

the relation between flow and the quintile ranking of a fund share class based on different

performance measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy variable

that takes on a value of one if fund share class p in month t− 1 is in the quintile i based on

the first model and quintile j based on the second model (excluding the dummy variable

for i = 3 and j = 3). Xp,t−1 contains the following control variables (observed at the

end of month t− 1): lagged fund flow, lagged expense ratio, a dummy for no-load share

classes, return standard deviation estimated over the prior twelve months, log of fund

share class size, and log fund age. We also include time fixed effects (µt).

Candidate performance measures are: the Morningstar ratings (MS), the Sharpe

ratio (SR), the raw return (RR), and the alphas of the single-factor model with bond

market factor (Cb), the two-factor model with both bond and stock market factors

(Csb), the Bekaert & De Santis (2021) three-factor model (B3), the Elton et al. (1995)

four-factor model (E4), the Fama & French (2015) five-factor model for bonds (F5), and

an augmented F5 model with liquidity and momentum factors (F7).

For each pairwise comparison, we have 10 b coefficient comparisons. With each pair of

coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table

reports the results of two hypothesis tests: (1) H0: The summed difference across all 10

comparisons is equal to zero, (2) H0: The proportion of positive and negative differences

equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial

test. We present a “winning model” if the sum of coefficient differences is significantly

different from zero. “–” indicates that there is no significant difference. The standard

errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.

Morningstar ratings

Winning model MS MS MS MS MS MS MS MS

Losing model SR RR Cb Csb B3 E4 F5 F7

MS_SR MS_RR MS_Cb MS_Csb MS_B3 MS_E4 MS_F5 MS_F7

Sum of coeff. Diff. 5.867*** 7.202*** 6.615*** 6.642*** 6.757*** 6.197*** 6.670*** 6.749***

p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

% of coeff. Diff. >0 100.00*** 100.00*** 100.00*** 100.00*** 100.00*** 100.00*** 100.00*** 100.00***

Binomial p-Value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
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Table A.7: Single Flow–Performance Sensitivity Estimations

This table reports the beta estimates from the following equation for different risk

models:

βflow,performance =
cov(Φ(Fp,t), (Φ(αp,t−1))

var(Φ(αp,t−1))
> 0,

where Φ is a function that returns the sign of a real number, taking values of 1 for a

positive number, −1 for a negative number, and 0 for zero. The sample period is from 1996

to June 2017. For the ease of interpretation, the table reports (βflow,performance + 1)/2

which denotes the average probability that the sign of the fund flow [S(flow)] is positive

(negative) conditional on the sign of the performance measure [S(performance)] being

positive (negative). Each row corresponds to a different performance measure. p-values

are based on a t-test of βflow,performance using double-clustered standard errors (by fund

and month).

Candidate performance measures are: the Morningstar rating = 5, Morningstar rating

≥ 4, Morningstar rating ≥ 3, the Sharpe ratio (SR), the raw return (RR), and the alphas

of the single-factor model with bond market factor (Cb) and the Elton et al. (1995)

four-factor model (E4).

S (Flow) p-Value

S (MS rating = 5) 63.03 0.00

S (MS rating ≥ 4) 60.42 0.00

S (MS rating ≥ 3) 59.34 0.00

S (Sharpe ratio) 54.25 0.00

S (Raw return) 54.18 0.00

S (Cb alpha) 53.02 0.00

S (E4 alpha) 52.78 0.00
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Table A.8: Flow–Performance Model Horse Race: Berk &

Van Binsbergen (2016) Pairwise Model Comparisons

This table reports the results from pairwise comparisons of Morningstar rating

dummies, the Sharpe ratio, raw returns, and different factor model alphas as in Berk

& Van Binsbergen (2016). Columns (1) and (2) provide the coefficient estimates and the

double-clustered (by fund and month) t-statistics of univariate regressions of signed flows

on signed outperformance. Columns (3) to (9) provide the double-clustered t-statistics

of the pairwise test coefficients b1 in the following equation:

Φ(Fp,t) = a+ b1

(
Φ(αm1

p,t−1)

var(Φ(αm1
p,t−1))

−
Φ(αm2

p,t−1)

var(Φ(αm2
p,t−1))

)
+ ξp,t,

where we compare the flow–performance regression coefficients, βflow,performance of two

models m1 and m2.

Candidate performance measures are: the Morningstar rating = 5, Morningstar rating

≥ 4, Morningstar rating ≥ 3, the Sharpe ratio (SR), the raw return (RR), and the alphas

of the single-factor model with bond market factor (Cb) and the Elton et al. (1995)

four-factor model (E4).

β Uni. t-stat
Rating Rating Rating Sharpe Raw Cb E4

= 5 ≥ 4 ≥ 3 ratio return alpha alpha

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Rating = 5 0.2420 20.94 0.00 4.19 4.46 8.59 8.25 10.82 14.70

Rating ≥ 4 0.2021 23.81 0.00 2.44 7.49 6.67 10.77 16.68

Rating ≥ 3 0.1949 20.14 0.00 6.04 5.23 8.57 13.46

Sharpe ratio 0.0850 8.98 0.00 -0.37 2.11 4.67

Raw return 0.0836 8.58 0.00 1.86 4.58

Cb alpha 0.0603 7.62 0.00 4.81

E4 alpha 0.0556 9.98 0.00
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Table A.9: Model Horse Race – Robustness with Fama–MacBeth
Regressions

This table presents the results of pairwise comparisons of different performance
measures to explain fund flows using the full corporate bond fund sample. We estimate
the relation between flow and the decile ranking of a fund share class based on different
performance measures by running the Fama & MacBeth (1973) regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy
variable that takes on a value of one if fund share class p in month t− 1 is in the decile i
based on the first model and decile j based on the second model (excluding the dummy
variable for i = 5 and j = 5). Xp,t−1 contains the following control variables (observed
at the end of month t− 1): lagged fund flow, lagged expense ratio, a dummy for no-load
share classes, return standard deviation estimated over the prior twelve months, log of
fund share class size, log fund age, as well as Morningstar rating dummies.

Candidate performance measures are: the Sharpe ratio (SR), the raw return (RR),
and the alphas of the single-factor model with bond market factor (Cb), the two-factor
model with both bond and stock market factors (Csb), the Bekaert & De Santis (2021)
three-factor model (B3), the Elton et al. (1995) four-factor model (E4), the Fama &
French (2015) five-factor model for bonds (F5), and an augmented F5 model with liquidity
and momentum factors (F7).

For each pairwise comparison, we have 45 b coefficient comparisons. With each pair of
coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table
reports the results of two hypothesis tests: (1) H0: The summed difference across all 45
comparisons is equal to zero, (2) H0: The proportion of positive and negative differences
equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial
test. We present a “winning model” if the sum of coefficient differences is significantly
different from zero. “–” indicates that there is no significant difference. The standard
errors are calculated by the Newey & West (1987) procedure with six lags. ∗, ∗∗, and ∗∗∗

indicate significance at the 10%, 5%, and 1% level, respectively.

Sharpe ratio

Winning model SR SR SR SR SR SR SR
Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7
Sum of coeff. Diff. 8.687*** 7.138*** 7.201*** 8.033*** 4.553*** 7.806*** 7.561***
p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
% of coeff. Diff. >0 84.44*** 84.44*** 82.22*** 77.78*** 66.67** 86.67*** 82.22***
Binomial p-Value 0.000 0.000 0.000 0.000 0.018 0.000 0.000
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Table A.10: Model Horse Race with Quintile Sorts

This table presents the results of pairwise comparisons of different performance

measures to explain fund flows using the full corporate bond fund sample. We estimate

the relation between flow and the quintile ranking of a fund share class based on different

performance measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy variable

that takes on a value of one if fund share class p in month t− 1 is in the quintile i based

on the first model and quintile j based on the second model (excluding the dummy

variable for i = 3 and j = 3). Xp,t−1 contains the following control variables (observed

at the end of month t− 1): lagged fund flow, lagged expense ratio, a dummy for no-load

share classes, return standard deviation estimated over the prior twelve months, log of

fund share class size, and log fund age, as well as Morningstar rating dummies. We also

include time fixed effects (µt).

Candidate performance measures are: the Sharpe ratio (SR), the raw return (RR),

and the alphas of the single-factor model with bond market factor (Cb), the two-factor

model with both bond and stock market factors (Csb), the Bekaert & De Santis (2021)

three-factor model (B3), the Elton et al. (1995) four-factor model (E4), the Fama &

French (2015) five-factor model for bonds (F5), and an augmented F5 model with liquidity

and momentum factors (F7).

For each pairwise comparison, we have 10 b coefficient comparisons. With each pair of

coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table

reports the results of two hypothesis tests: (1) H0: The summed difference across all 10

comparisons is equal to zero, (2) H0: The proportion of positive and negative differences

equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial

test. We present a “winning model” if the sum of coefficient differences is significantly

different from zero. “–” indicates that there is no significant difference. The standard

errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.
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Table A.10: Model Horse Race with Quintile Sorts (continued)

A. Sharpe ratio

Winning model SR SR SR SR SR SR SR
Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7
Sum of coeff. Diff. 3.894*** 3.027*** 2.115*** 2.328*** 1.311*** 2.046*** 2.070***
p-Value 0.000 0.000 0.000 0.000 0.003 0.000 0.000
% of coeff. Diff. >0 100.00*** 100.00*** 100.00*** 100.00*** 90.00** 100.00*** 100.00***
Binomial p-Value 0.001 0.001 0.001 0.001 0.011 0.001 0.001

B. Raw return

Winning model Cb Csb – E4 – –
Losing model RR RR – RR – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7
Sum of coeff. Diff. -1.450* -1.021** -0.456 -1.377*** -0.469 -0.359
p-Value 0.062 0.048 0.338 0.004 0.308 0.403
% of coeff. Diff. >0 10.000** 10.000** 30.00 0.000*** 20.00* 20.00*
Binomial p-Value 0.011 0.011 0.172 0.001 0.055 0.055

C. CAPM bond

Winning model – – E4 – –
Losing model – – Cb – –

Cb_Csb Cb_B3 Cb_E4 Cb_F5 Cb_F7
Sum of coeff. Diff. -0.534 0.185 -0.988* 0.154 0.269
p-Value 0.333 0.719 0.062 0.760 0.573
% of coeff. Diff. >0 40.00 70.00 20.00* 70.00 60.00
Binomial p-Value 0.377 0.172 0.055 0.172 0.377

D. CAPM stock + bond

Winning model – E4 – –
Losing model – Csb – –

Csb_B3 Csb_E4 Csb_F5 Csb_F7
Sum of coeff. Diff. 0.648 -1.166* 0.683 0.695
p-Value 0.349 0.061 0.233 0.201
% of coeff. Diff. >0 60.00 0.000*** 80.00* 100.00***
Binomial p-Value 0.377 0.001 0.055 0.001

E. B3

Winning model E4 – –
Losing model B3 – –

B3_E4 B3_F5 B3_F7
Sum of coeff. Diff. -1.302** 0.132 0.199
p-Value 0.022 0.822 0.710
% of coeff. Diff. >0 10.000** 40.00 80.00*
Binomial p-Value 0.011 0.377 0.055

F. E4

Winning model E4 E4
Losing model F5 F7

E4_F5 E4_F7
Sum of coeff. Diff. 1.742*** 1.707***
p-Value 0.007 0.003
% of coeff. Diff. >0 100.00*** 100.00***
Binomial p-Value 0.001 0.001

G. F5

Winning model –
Losing model –

F5_F7
Sum of coeff. Diff. 1.339
p-Value 0.147
% of coeff. Diff. >0 60.00
Binomial p-Value 0.377
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Table A.11: Model Horse Race – Alternative Sharpe Ratio

Calculations

This table presents the results of pairwise comparisons of different performance

measures to explain fund flows using the full bond fund sample. We estimate the relation

between flow and the decile ranking of a fund share class based on different performance

measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy variable

that takes on a value of one if fund share class p in month t− 1 is in the decile i based on

the first measure and decile j based on the second measure. To estimate the model, the

dummy variable for i = 5 and j = 5 is excluded. Xp,t−1 contains the following control

variables (observed at the end of month t − 1): lagged fund flow, lagged expense ratio,

a dummy for no-load share classes, return standard deviation estimated over the prior

twelve months, log of fund share class size, log fund age, as well as Morningstar rating

dummies. We also include time fixed effects (µt).

We consider two alternative ways to calculate the Sharpe ratio: (i) as the ratio of

the monthly average twelve-month excess return to the one-year standard deviation in

Panel A (SR) and (ii) employing a GARCH (1,1) model using 60-month past returns to

estimate fund’s variance to align with our method to estimate alphas in Panel B (SR_G).

Other candidate performance measures are: the raw return (RR) and the alphas of the

single-factor model with bond market factor (Cb), the two-factor model with both bond

and stock market factors (Csb), the Bekaert & De Santis (2021) three-factor model (B3),

the Elton et al. (1995) four-factor model (E4), the Fama & French (2015) five-factor model

for bonds (F5), and an augmented F5 model with liquidity and momentum factors (F7).

For each pairwise comparison, we have 45 b coefficient comparisons. With each pair of

coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table

reports the results of two hypothesis tests: (1) H0: The summed difference across all 45

comparisons is equal to zero, (2) H0: The proportion of positive and negative differences

equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial

test. We present a “winning model” if the sum of coefficient differences is significantly

different from zero. “–” indicates that there is no significant difference. The standard

errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.
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Table A.11: Model Horse Race – Alternative Sharpe Ratio Calculations
(continued)

A. Twelve-month return window

Winning model SR SR SR SR SR SR SR
Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7
Sum of coeff. Diff. 17.71*** 17.04*** 15.80*** 17.27*** 14.46*** 16.39*** 16.68***
p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
% of coeff. Diff. >0 100.00*** 100.00*** 95.56*** 97.78*** 91.11*** 91.11*** 93.33***
Binomial p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B. Volatility based on a GARCH (1,1) model

Winning model SR_G SR_G SR_G SR_G SR_G SR_G SR_G
Losing model RR Cb Csb B3 E4 F5 F7

SR_G_RR SR_G_Cb SR_G_Csb SR_G_B3 SR_G_E4 SR_G_F5 SR_G_F7
Sum of coeff. Diff. 13.73*** 11.52*** 6.726*** 8.224*** 4.469** 7.550*** 7.280***
p-Value 0.000 0.000 0.004 0.000 0.022 0.000 0.000
% of coeff. Diff. >0 75.56*** 77.78*** 73.33*** 75.56*** 62.22* 77.78*** 80.00***
Binomial p-Value 0.000 0.000 0.001 0.000 0.068 0.000 0.000
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Table A.12: Model Horse Race (12-Month Window)

This table presents the results of pairwise comparisons of different performance

measures to explain fund flows using the full bond fund sample. We estimate the relation

between flow and the decile ranking of a fund share class based on different performance

measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy variable

that takes on a value of one if fund share class p in month t− 1 is in the decile i based on

the first measure and decile j based on the second measure. To estimate the model, the

dummy variable for i = 5 and j = 5 is excluded. Xp,t−1 contains the following control

variables (observed at the end of month t − 1): lagged fund flow, lagged expense ratio,

a dummy for no-load share classes, return standard deviation estimated over the prior

twelve months, log of fund share class size, log fund age, as well as Morningstar rating

dummies. We also include time fixed effects (µt).

Candidate performance measures are: the Sharpe ratio (SR), the raw return (RR),

and the alphas of the single-factor model with bond market factor (Cb), the two-factor

model with both bond and stock market factors (Csb), the Bekaert & De Santis (2021)

three-factor model (B3), the Elton et al. (1995) four-factor model (E4), the Fama &

French (2015) five-factor model for bonds (F5), and an augmented F5 model with liquidity

and momentum factors (F7). Each of the measures is calculated as a weighted average

of the prior twelve monthly alphas (or returns for the Sharpe ratio).

For each pairwise comparison, we have 45 b coefficient comparisons. With each pair of

coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table

reports the results of two hypothesis tests: (1) H0: The summed difference across all 45

comparisons is equal to zero, (2) H0: The proportion of positive and negative differences

equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial

test. We present a “winning model” if the sum of coefficient differences is significantly

different from zero. “–” indicates that there is no significant difference. The standard

errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.
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Table A.12: Model Horse Race (12-Month Window) (continued)

A. Sharpe ratio

Winning model SR SR SR SR SR SR SR
Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7
Sum of coeff. Diff. 16.32*** 6.280*** 4.494** 5.725*** 2.969* 6.377*** 7.091***
p-Value 0.000 0.006 0.018 0.001 0.063 0.000 0.000
% of coeff. Diff. >0 95.56*** 68.89*** 57.78 73.33*** 55.56 75.56*** 75.56***
Binomial p-Value 0.000 0.008 0.186 0.001 0.276 0.000 0.000

B. Raw return

Winning model Cb Csb B3 E4 – –
Losing model RR RR RR RR – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7
Sum of coeff. Diff. -9.834*** -6.461*** -3.741* -6.672*** -2.114 -0.955
p-Value 0.003 0.003 0.063 0.001 0.263 0.601
% of coeff. Diff. >0 17.78*** 22.22*** 33.33** 13.33*** 37.78* 46.67
Binomial p-Value 0.000 0.000 0.018 0.000 0.068 0.383

C. CAPM bond

Winning model – – – Cb Cb
Losing model – – – F5 F7

Cb_Csb Cb_B3 Cb_E4 Cb_F5 Cb_F7
Sum of coeff. Diff. -0.135 1.658 -2.223 3.547** 5.057***
p-Value 0.945 0.392 0.171 0.046 0.003
% of coeff. Diff. >0 51.11 53.33 48.89 64.44** 71.11***
Binomial p-Value 0.500 0.383 0.500 0.036 0.003

D. CAPM stock + bond

Winning model Csb – Csb Csb
Losing model B3 – F5 F7

Csb_B3 Csb_E4 Csb_F5 Csb_F7
Sum of coeff. Diff. 4.665* -2.361 5.194** 7.401***
p-Value 0.089 0.254 0.021 0.001
% of coeff. Diff. >0 62.22* 42.22 80.00*** 84.44***
Binomial p-Value 0.068 0.186 0.000 0.000

E. B3

Winning model E4 – –
Losing model B3 – –

B3_E4 B3_F5 B3_F7
Sum of coeff. Diff. -5.335* 1.743 3.175
p-Value 0.056 0.470 0.151
% of coeff. Diff. >0 26.67*** 62.22* 60.00
Binomial p-Value 0.001 0.068 0.116

F. E4

Winning model E4 E4
Losing model F5 F7

E4_F5 E4_F7
Sum of coeff. Diff. 10.52*** 12.36***
p-Value 0.000 0.000
% of coeff. Diff. >0 88.89*** 84.44***
Binomial p-Value 0.000 0.000

G. F5

Winning model –
Losing model –

F5_F7
Sum of coeff. Diff. 6.82
p-Value 0.211
% of coeff. Diff. >0 73.33***
Binomial p-Value 0.001

82



A. APPENDIX

Table A.13: Model Horse Race – Alternative Factor Models

This table presents the results of pairwise comparisons of different performance

measures to explain fund flows using the full bond fund sample. We estimate the relation

between flow and the decile ranking of a fund share class based on different performance

measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy variable

that takes on a value of one if fund share class p in month t− 1 is in the decile i based on

the first model and decile j based on the second model (excluding the dummy variable

for i = 5 and j = 5). Xp,t−1 contains the following control variables (observed at the

end of month t− 1): lagged fund flow, lagged expense ratio, a dummy for no-load share

classes, return standard deviation estimated over the prior twelve months, log of fund

share class size, log fund age, as well as Morningstar rating dummies. We also include

time fixed effects (µt).

The main candidate performance measures are: the Sharpe ratio (SR), the raw return

(RR), and the alphas of the single-factor model with bond market factor (Cb), the

two-factor model with both bond and stock market factors (Csb), the Bekaert & De Santis

(2021) three-factor model (B3), the Elton et al. (1995) four-factor model (E4), the Fama &

French (2015) five-factor model for bonds (F5), and an augmented F5 model with liquidity

and momentum factors (F7). In addition, we consider the factor models indicated in the

respective panel headings.

For each pairwise comparison, we have 45 b coefficient comparisons. With each pair of

coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table

reports the results of two hypothesis tests: (1) H0: The summed difference across all 45

comparisons is equal to zero, (2) H0: The proportion of positive and negative differences

equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial

test. We present a “winning model” if the sum of coefficient differences is significantly

different from zero. “–” indicates that there is no significant difference. The standard

errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.
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Table A.13: Model Horse Race – Alternative Factor Models (continued)

Augumented Fama & French (1993) factor model with bond MOM (MOMb)

Winning model SR MOMb – – – E4 – –
Losing model MOMb RR – – – MOMb – –

SR_MOMb RR_MOMb Cb_MOMb Csb_MOMb B3_MOMb E4_MOMb F5_MOMb F7_MOMb
Sum of coeff. Diff. 7.670*** -5.163** 0.094 0.687 -1.508 6.844* -2.330 -2.631
p-Value 0.000 0.033 0.973 0.819 0.580 0.061 0.665 0.569
% of coeff. Diff. >0 71.11*** 28.89*** 44.44 53.33 42.22 75.56*** 37.78* 42.22
Binomial p-Value 0.003 0.003 0.276 0.383 0.186 0.000 0.068 0.186

Bai et al. (2019) factor model (B4)

Winning model SR – – – – E4 – –
Losing model B4 – – – – B4 – –

SR_B4 RR_B4 Cb_B4 Csb_B4 B3_B4 E4_B4 F5_B4 F7_B4
Sum of coeff. Diff. 15.13*** 1.707 0.233 3.957 3.407 5.155* 0.356 1.018
p-Value 0.000 0.682 0.950 0.141 0.192 0.051 0.889 0.670
% of coeff. Diff. >0 91.11*** 55.56 60.00 57.78 62.22* 60.00 51.11 62.22*
Binomial p-Value 0.000 0.276 0.116 0.186 0.068 0.116 0.500 0.068

Chung et al. (2019) factor model (C7)

Winning model SR – – Csb – E4 – –
Losing model C7 – – C7 – C7 – –

SR_C7 RR_C7 Cb_C7 Csb_C7 B3_C7 E4_C7 F5_C7 F7_C7
Sum of coeff. Diff. 10.26*** -0.190 1.974 3.956* 2.602 8.779*** 2.990 0.916
p-Value 0.000 0.923 0.367 0.095 0.264 0.001 0.546 0.820
% of coeff. Diff. >0 91.11*** 53.33 66.67** 71.11*** 60.00 86.67*** 62.22* 62.22*
Binomial p-Value 0.000 0.383 0.018 0.003 0.116 0.000 0.068 0.068

Ludvigson & Ng (2009) macro factors (Macro)

Winning model SR RR Cb Csb B3 E4 F5 F7
Losing model Macro Macro Macro Macro Macro Macro Macro Macro

SR_Macro RR_Macro Cb_Macro Csb_Macro B3_Macro E4_Macro F5_Macro F7_Macro
Sum of coeff. Diff. 17.84*** 10.22*** 9.561*** 9.556*** 8.074*** 10.69*** 8.000*** 7.414***
p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
% of coeff. Diff. >0 95.56*** 84.44*** 84.44*** 88.89*** 86.67*** 91.11*** 88.89*** 88.89***
Binomial p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Augumented Fama & French (2015) factor model with TERM and DEF (FF7e)

Winning model SR – – – – E4 – –
Losing model FF7e – – – – FF7e – –

SR_FF7e RR_FF7e Cb_FF7e Csb_FF7e B3_FF7e E4_FF7e F5_FF7e F7_FF7e
Sum of coeff. Diff. 9.321*** -1.283 0.993 3.617 1.516 7.238*** 2.680 2.802
p-Value 0.000 0.518 0.639 0.1328 0.483 0.005 0.454 0.387
% of coeff. Diff. >0 86.67*** 40.00 57.78 62.22* 57.78 84.44*** 68.89*** 55.56
Binomial p-Value 0.000 0.116 0.186 0.068 0.186 0.000 0.008 0.276

Augumented Hou et al. (2015) factor model with TERM and DEF (HXZ)

Winning model SR – – – – E4 – –
Losing model HXZ – – – – HXZ – –

SR_HXZ RR_HXZ Cb_HXZ Csb_HXZ B3_HXZ E4_HXZ F5_HXZ F7_HXZ
Sum of coeff. Diff. 8.606*** -2.843 0.135 1.625 -0.200 6.774** 0.393 -1.215
p-Value 0.000 0.153 0.950 0.517 0.931 0.011 0.916 0.684
% of coeff. Diff. >0 82.22*** 37.78* 57.78 64.44** 48.89 75.56*** 42.22 40.00
Binomial p-Value 0.000 0.068 0.186 0.036 0.500 0.000 0.186 0.116

Augumented Stambaugh & Yuan (2017) factor model with TERM and DEF (M4)

Winning model SR – – – – E4 – –
Losing model M4 – – – – M4 – –

SR_M4 RR_M4 Cb_M4 Csb_M4 B3_M4 E4_M4 F5_M4 F7_M4
Sum of coeff. Diff. 9.676*** -1.185 0.552 2.957 1.088 7.747*** 1.307 0.212
p-Value 0.000 0.549 0.798 0.230 0.634 0.006 0.761 0.951
% of coeff. Diff. >0 91.11*** 40.00 55.56 68.89*** 48.89 84.44*** 48.89 51.11
Binomial p-Value 0.000 0.116 0.276 0.008 0.500 0.000 0.500 0.500
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Table A.14: Model Horse Race – Fund-Level Sample

This table presents the results of pairwise comparisons of different performance

measures to explain fund flows using fund-level observations of full corporate bond mutual

fund sample. We aggregate the fund flows and value-weight the share-class returns and

other variables to obtain those on the fund level using total net asset values. We estimate

the relation between flow and the decile ranking of a fund based on different performance

measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t.

Fp,t is the fund flow of mutual fund p in month t. Dij,p,t−1 is a dummy variable that

takes on a value of one if fund p in month t− 1 is in the decile i based on the first model

and decile j based on the second model (excluding the dummy variable for i = 5 and

j = 5). Xp,t−1 contains the following control variables (observed at the end of month

t−1): lagged fund flow, lagged expense ratio, a dummy for no-load funds, return standard

deviation estimated over the prior twelve months, log of fund size, log fund age, as well

as Morningstar rating dummies. We also include time fixed effects (µt).

Candidate performance measures are: the Sharpe ratio (SR), the raw return (RR),

and the alphas of the single-factor model with bond market factor (Cb), the two-factor

model with both bond and stock market factors (Csb), the Bekaert & De Santis (2021)

three-factor model (B3), the Elton et al. (1995) four-factor model (E4), the Fama &

French (2015) five-factor model for bonds (F5), and an augmented F5 model with liquidity

and momentum factors (F7).

For each pairwise comparison, we have 45 b coefficient comparisons. With each pair of

coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table

reports the results of two hypothesis tests: (1) H0: The summed difference across all 45

comparisons is equal to zero, (2) H0: The proportion of positive and negative differences

equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial

test. We present a “winning model” if the sum of coefficient differences is significantly

different from zero. “–” indicates that there is no significant difference. The standard

errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.
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Table A.14: Model Horse Race – Fund-Level Sample (continued)

A. Sharpe ratio

Winning model SR SR SR SR SR SR SR
Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7
Sum of coeff. Diff. 19.04*** 16.44*** 8.051*** 8.220*** 5.084** 7.678*** 7.402***
p-Value 0.000 0.000 0.002 0.001 0.028 0.001 0.001
% of coeff. Diff. >0 86.67*** 80.00*** 77.78*** 73.33*** 62.22* 73.33*** 73.33***
Binomial p-Value 0.000 0.000 0.000 0.001 0.068 0.001 0.001

B. Raw return

Winning model – Csb B3 E4 – –
Losing model – RR RR RR – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7
Sum of coeff. Diff. -4.340 -6.834*** -5.291** -7.467*** -2.672 -3.167
p-Value 0.262 0.008 0.023 0.002 0.218 0.127
% of coeff. Diff. >0 37.78* 40.00 31.11*** 24.44*** 40.00 44.44
Binomial p-Value 0.068 0.116 0.008 0.000 0.116 0.276

C. CAPM bond

Winning model Csb – E4 – –
Losing model Cb – Cb – –

Cb_Csb Cb_B3 Cb_E4 Cb_F5 Cb_F7
Sum of coeff. Diff. -6.215** -3.199 -6.711*** -1.381 -1.576
p-Value 0.040 0.227 0.009 0.585 0.510
% of coeff. Diff. >0 37.78* 42.22 22.22*** 46.67 51.11
Binomial p-Value 0.068 0.186 0.000 0.383 0.500

D. CAPM stock + bond

Winning model – – – –
Losing model – – – –

Csb_B3 Csb_E4 Csb_F5 Csb_F7
Sum of coeff. Diff. 0.704 -5.100 3.618 2.288
p-Value 0.842 0.144 0.173 0.381
% of coeff. Diff. >0 48.89 35.56** 60.00 57.78
Binomial p-Value 0.500 0.036 0.116 0.186

E. B3

Winning model – – –
Losing model – – –

B3_E4 B3_F5 B3_F7
Sum of coeff. Diff. -4.240 4.006 1.902
p-Value 0.176 0.168 0.492
% of coeff. Diff. >0 42.22 62.22* 48.89
Binomial p-Value 0.186 0.068 0.500

F. E4

Winning model E4 E4
Losing model F5 F7

E4_F5 E4_F7
Sum of coeff. Diff. 6.528* 5.210*
p-Value 0.060 0.082
% of coeff. Diff. >0 68.89*** 68.89***
Binomial p-Value 0.008 0.008

G. F5

Winning model –
Losing model –

F5_F7
Sum of coeff. Diff. -2.691
p-Value 0.692
% of coeff. Diff. >0 40.00
Binomial p-Value 0.180
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Table A.15: Model Horse Race – Full Sample (monthFE x MS

stars)

This table presents the results of pairwise comparisons of different performance

measures to explain fund flows using the full corporate bond fund sample. We estimate

the relation between flow and the decile ranking of a fund share class based on different

performance measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy

variable that takes on a value of one if fund share class p in month t− 1 is in the decile i

based on the first model and decile j based on the second model (excluding the dummy

variable for i = 5 and j = 5). Xp,t−1 contains the following control variables (observed

at the end of month t− 1): lagged fund flow, lagged expense ratio, a dummy for no-load

share classes, return standard deviation estimated over the prior twelve months, log of

fund share class size, log fund age, as well as the month-times-Morningstar ratings fixed

effects.

Candidate performance measures are: the Sharpe ratio (SR), the raw return (RR),

and the alphas of the single-factor model with bond market factor (Cb), the two-factor

model with both bond and stock market factors (Csb), the Bekaert & De Santis (2021)

three-factor model (B3), the Elton et al. (1995) four-factor model (E4), the Fama &

French (2015) five-factor model for bonds (F5), and an augmented F5 model with liquidity

and momentum factors (F7).

For each pairwise comparison, we have 45 b coefficient comparisons. With each pair of

coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table

reports the results of two hypothesis tests: (1) H0: The summed difference across all 45

comparisons is equal to zero, (2) H0: The proportion of positive and negative differences

equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial

test. We present a “winning model” if the sum of coefficient differences is significantly

different from zero. “–” indicates that there is no significant difference. The standard

errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at
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Table A.15: Model Horse Race – Full Sample (monthFE x MS stars)
(continued)

A. Sharpe ratio

Winning model SR SR SR SR SR SR SR
Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7
Sum of coeff. Diff. 18.94*** 15.17*** 10.09*** 10.53*** 7.087*** 10.16*** 10.14***
p-Value 0.000 0.000 0.000 0.000 0.001 0.000 0.000
% of coeff. Diff. >0 88.89*** 95.56*** 86.67*** 86.67*** 82.22*** 86.67*** 86.67***
Binomial p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B. Raw return

Winning model – Csb – E4 – –
Losing model – RR – RR – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7
Sum of coeff. Diff. -6.210 -4.763* -2.558 -5.632** -1.537 -1.009
p-Value 0.102 0.059 0.269 0.018 0.486 0.640
% of coeff. Diff. >0 33.33** 26.67*** 35.56** 13.33*** 42.22 40.00
Binomial p-Value 0.018 0.001 0.036 0.000 0.186 0.116

C. CAPM bond

Winning model – – E4 – –
Losing model – – Cb – –

Cb_Csb Cb_B3 Cb_E4 Cb_F5 Cb_F7
Sum of coeff. Diff. -3.119 -0.581 -4.619* 0.387 1.220
p-Value 0.227 0.810 0.064 0.876 0.613
% of coeff. Diff. >0 37.78* 57.78 22.22*** 55.56 60.00
Binomial p-Value 0.068 0.186 0.000 0.276 0.116

D. CAPM stock + bond

Winning model – – – Csb
Losing model – – – F7

Csb_B3 Csb_E4 Csb_F5 Csb_F7
Sum of coeff. Diff. 2.348 -3.929 4.000 4.542*
p-Value 0.416 0.182 0.151 0.087
% of coeff. Diff. >0 64.44** 42.22 60.00 75.56***
Binomial p-Value 0.036 0.186 0.116 0.000

E. B3

Winning model – – –
Losing model – – –

B3_E4 B3_F5 B3_F7
Sum of coeff. Diff. -3.553 2.378 2.401
p-Value 0.212 0.383 0.350
% of coeff. Diff. >0 31.11*** 57.78 62.22*
Binomial p-Value 0.008 0.186 0.068

F. E4

Winning model E4 E4
Losing model F5 F7

E4_F5 E4_F7
Sum of coeff. Diff. 8.162*** 8.023***
p-Value 0.005 0.002
% of coeff. Diff. >0 75.56*** 84.44***
Binomial p-Value 0.000 0.000

G. F5

Winning model –
Losing model –

F5_F7
Sum of coeff. Diff. 2.793
p-Value 0.565
% of coeff. Diff. >0 55.56
Binomial p-Value 0.276
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Table A.16: Model Horse Race – Full Sample (monthFE x MS

styles)

This table presents the results of pairwise comparisons of different performance

measures to explain fund flows using the full corporate bond fund sample. We estimate

the relation between flow and the decile ranking of a fund share class based on different

performance measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy

variable that takes on a value of one if fund share class p in month t− 1 is in the decile i

based on the first model and decile j based on the second model (excluding the dummy

variable for i = 5 and j = 5). Xp,t−1 contains the following control variables (observed

at the end of month t− 1): lagged fund flow, lagged expense ratio, a dummy for no-load

share classes, return standard deviation estimated over the prior twelve months, log of

fund share class size, log fund age, as well as the month-times-Morningstar styles fixed

effects.

Candidate performance measures are: the Sharpe ratio (SR), the raw return (RR),

and the alphas of the single-factor model with bond market factor (Cb), the two-factor

model with both bond and stock market factors (Csb), the Bekaert & De Santis (2021)

three-factor model (B3), the Elton et al. (1995) four-factor model (E4), the Fama &

French (2015) five-factor model for bonds (F5), and an augmented F5 model with liquidity

and momentum factors (F7).

For each pairwise comparison, we have 45 b coefficient comparisons. With each pair of

coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table

reports the results of two hypothesis tests: (1) H0: The summed difference across all 45

comparisons is equal to zero, (2) H0: The proportion of positive and negative differences

equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial

test. We present a “winning model” if the sum of coefficient differences is significantly

different from zero. “–” indicates that there is no significant difference. The standard

errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.
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Table A.16: Model Horse Race – Full Sample (monthFE x MS styles)
(continued)

A. Sharpe ratio

Winning model SR SR SR SR SR SR SR
Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7
Sum of coeff. Diff. 19.68*** 14.16*** 10.70*** 9.918*** 6.934*** 10.34*** 10.35***
p-Value 0.000 0.000 0.000 0.000 0.001 0.000 0.000
% of coeff. Diff. >0 95.56*** 95.56*** 86.67*** 84.44*** 82.22*** 91.11*** 88.89***
Binomial p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B. Raw return

Winning model Cb – – E4 – –
Losing model RR – – RR – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7
Sum of coeff. Diff. -7.484* -3.539 -2.895 -5.476** -1.337 -0.726
p-Value 0.054 0.212 0.253 0.029 0.586 0.758
% of coeff. Diff. >0 28.89*** 31.11*** 33.33** 15.56*** 42.22 48.89
Binomial p-Value 0.003 0.008 0.018 0.000 0.186 0.500

C. CAPM bond

Winning model – – – – –
Losing model – – – – –

Cb_Csb Cb_B3 Cb_E4 Cb_F5 Cb_F7
Sum of coeff. Diff. 0.105 -0.473 -3.748 0.818 1.440
p-Value 0.972 0.857 0.135 0.758 0.577
% of coeff. Diff. >0 46.67 46.67 33.33** 57.78 62.22*
Binomial p-Value 0.383 0.383 0.018 0.186 0.068

D. CAPM stock + bond

Winning model – E4 – –
Losing model – Csb – –

Csb_B3 Csb_E4 Csb_F5 Csb_F7
Sum of coeff. Diff. -0.093 -5.747* 2.607 3.258
p-Value 0.978 0.073 0.371 0.248
% of coeff. Diff. >0 48.89 28.89*** 57.78 64.44**
Binomial p-Value 0.500 0.003 0.186 0.036

E. B3

Winning model – – –
Losing model – – –

B3_E4 B3_F5 B3_F7
Sum of coeff. Diff. -3.470 2.539 2.696
p-Value 0.268 0.364 0.308
% of coeff. Diff. >0 33.33** 62.22* 60.00
Binomial p-Value 0.018 0.068 0.116

F. E4

Winning model E4 E4
Losing model F5 F7

E4_F5 E4_F7
Sum of coeff. Diff. 8.809*** 8.690***
p-Value 0.004 0.002
% of coeff. Diff. >0 80.00*** 80.00***
Binomial p-Value 0.000 0.000

G. F5

Winning model –
Losing model –

F5_F7
Sum of coeff. Diff. 6.856
p-Value 0.259
% of coeff. Diff. >0 51.11
Binomial p-Value 0.5
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Table A.17: Model Horse Race – Extended Corporate Bond

Fund Sample

This table presents the results of pairwise comparisons of different performance

measures to explain fund flows using an extended corporate bond fund sample (no

exclusion of observations with monthly TNA less than $10 million). We estimate the

relation between flow and the decile ranking of a fund share class based on different

performance measures by running the regression:

Fp,t = a+
∑
i

∑
j

bijDij,p,t−1 + cXp,t−1 + µt + ep,t.

Fp,t is the fund flow of mutual fund share class p in month t. Dij,p,t−1 is a dummy variable

that takes on a value of one if fund share class p in month t− 1 is in the decile i based on

the first model and decile j based on the second model (excluding the dummy variable

for i = 5 and j = 5). Xp,t−1 contains the following control variables (observed at the

end of month t− 1): lagged fund flow, lagged expense ratio, a dummy for no-load share

classes, return standard deviation estimated over the prior twelve months, log of fund

share class size, log fund age, as well as Morningstar rating dummies. We also include

time fixed effects (µt).

Candidate performance measures are: the Sharpe ratio (SR), the raw return (RR),

and the alphas of the single-factor model with bond market factor (Cb), the two-factor

model with both bond and stock market factors (Csb), the Bekaert & De Santis (2021)

three-factor model (B3), the Elton et al. (1995) four-factor model (E4), the Fama &

French (2015) five-factor model for bonds (F5), and an augmented F5 model with liquidity

and momentum factors (F7).

For each pairwise comparison, we have 45 b coefficient comparisons. With each pair of

coefficients bij and bji, we test the null hypothesis that bij = bji for all i ̸= j. The table

reports the results of two hypothesis tests: (1) H0: The summed difference across all 45

comparisons is equal to zero, (2) H0: The proportion of positive and negative differences

equals 50%. We test the first hypothesis with a Wald test and the second with a Binomial

test. We present a “winning model” if the sum of coefficient differences is significantly

different from zero. “–” indicates that there is no significant difference. The standard

errors are double-clustered by fund and month. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.

91



CHAPTER 2. HOW DO CORPORATE BOND INVESTORS MEASURE
PERFORMANCE? EVIDENCE FROM MUTUAL FUND FLOWS

Table A.17: Model Horse Race – Extended Corporate Bond Fund Sample
(continued)

A. Sharpe ratio

Winning model SR SR SR SR SR SR SR
Losing model RR Cb Csb B3 E4 F5 F7

SR_RR SR_Cb SR_Csb SR_B3 SR_E4 SR_F5 SR_F7
Sum of coeff. Diff. 19.84*** 16.80*** 12.99*** 12.74*** 10.84*** 10.09*** 10.89***
p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
% of coeff. Diff. >0 88.89*** 80.00*** 84.44*** 77.78*** 71.11*** 80.00*** 84.44***
Binomial p-Value 0.000 0.000 0.000 0.000 0.003 0.000 0.000

B. Raw return

Winning model – – – – – –
Losing model – – – – – –

RR_Cb RR_Csb RR_B3 RR_E4 RR_F5 RR_F7
Sum of coeff. Diff. -6.054 -4.009 -3.075 -4.400 -2.942 -1.222
p-Value 0.309 0.268 0.348 0.164 0.287 0.655
% of coeff. Diff. >0 31.11*** 35.56** 40.00 35.56** 44.44 53.33
Binomial p-Value 0.008 0.036 0.116 0.036 0.276 0.383

C. CAPM bond

Winning model – – – – –
Losing model – – – – –

Cb_Csb Cb_B3 Cb_E4 Cb_F5 Cb_F7
Sum of coeff. Diff. -2.034 -2.162 -3.607 -0.381 1.342
p-Value 0.614 0.527 0.249 0.907 0.675
% of coeff. Diff. >0 55.56 57.78 46.67 55.56 51.11
Binomial p-Value 0.276 0.186 0.383 0.276 0.500

D. CAPM stock + bond

Winning model – – – –
Losing model – – – –

Csb_B3 Csb_E4 Csb_F5 Csb_F7
Sum of coeff. Diff. -1.804 -5.501 -1.818 0.586
p-Value 0.707 0.228 0.666 0.882
% of coeff. Diff. >0 35.56** 37.78* 48.89 51.11
Binomial p-Value 0.036 0.068 0.500 0.500

E. B3

Winning model – – –
Losing model – – –

B3_E4 B3_F5 B3_F7
Sum of coeff. Diff. -4.457 -1.401 0.760
p-Value 0.321 0.744 0.848
% of coeff. Diff. >0 37.78* 60.00 60.00
Binomial p-Value 0.068 0.116 0.116

F. E4

Winning model – –
Losing model – –

E4_F5 E4_F7
Sum of coeff. Diff. 0.682 4.447
p-Value 0.893 0.295
% of coeff. Diff. >0 60.00 66.67**
Binomial p-Value 0.116 0.018

G. F5

Winning model –
Losing model –

F5_F7
Sum of coeff. Diff. 10.91
p-Value 0.136
% of coeff. Diff. >0 57.78
Binomial p-Value 0.186
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Chapter 3

Which Factors for Corporate

Bond Returns?∗

3.1 Introduction

A pivotal issue in finance is understanding why certain types of assets, on average,

earn vastly different returns than others do. Researchers and practitioners often

attempt to explain these returns with factor models that consist of a sparse set

of factors. In equity markets, hundreds of factors have been proposed, and equity

managers have applied factor investing successfully for decades.1 Factor investing

in corporate bonds, on the other hand, is a relatively unexplored field. However,

searching for bond factors has recently attracted growing interest, and, based on

these discoveries, factor investing is likely to pick up substantially in the coming

∗This chapter is based on the Article “Which Factors for Corporate Bond Returns?”
authored by Thuy Duong Dang, Fabian Hollstein, and Marcel Prokopczuk, Review of
Asset Pricing Studies, Volume 13(4), 615-652.

1Morgan Stanley reports that in 2017 $1.5 trillion was invested in smart beta, quant,
and factor-based strategies and that assets under management have steadily grown at
an average rate of 17% since 2010. By the end of 2018, exchange-traded funds (ETFs)
had more than $900 billion in assets under management, and the top-two managers,
Vanguard and BlackRock, each held more than $300 billion in assets in factor products.
See at https://www.robeco.com/hk/en/essentials/factor-investing/.
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years.

A plethora of factors lead to the necessity from both an academic and a

practitioner’s perspective to know which are genuine risk factors in corporate

bond markets that provide incremental information about returns. In this chapter,

we thus address the following questions: Do we really need all factors proposed

in the corporate bond literature to explain the cross-section of returns? Which

factors move corporate bond prices systematically? What set of factors overall best

describes corporate bond returns? Are some factors redundant relative to others?

To what extent does each needed factor play a role in explaining time-series and

cross-sectional variation in corporate bond returns? Which economic forces drive

the factors?

Our main contribution is a systematic analysis of the factors proposed in the

corporate bond pricing literature. Our study helps academics and practitioners

separate useful factors from redundant ones and search the growing list of bond

factors for a set that spans the tangency portfolio and collectively best explains

the differences in corporate bond returns. Based on this, we can build an “optimal”

corporate bond factor model. To the best of our knowledge, we are the first to

comprehensively compare a broad set of common and recently proposed factors

and factor models for corporate bonds.

We start our empirical analysis by considering a collection of, from our point

of view, the 23 most prominent risk factors in the corporate bond literature. We

use the bond market (MKTb), term (TERM), and default risk (DEF) (Fama &

French 1993), credit risk (CRF), downside risk (DRF), liquidity risk (LRF), and

short-term reversal (STR) (Bai et al. 2019), momentum (MOMb) and long-term

reversal (LTR) (Jostova et al. 2013; Bali, Subrahmanyam, & Wen 2017b, 2021a),

bond volatility (BVL), carry (CRY), duration (DUR), stock momentum (MOMs),

and value (VAL) (Israel, Palhares, & Richardson 2018; Kelly, Palhares, & Pruitt

2023), economic uncertainty (UNC) and (tax) policy uncertainty (EPU, EPUtax)

(Bali, Brown, & Tang 2017a; Bali, Subrahmanyam, & Wen 2021b; Tao, Wang,

Wang, & Wu 2022; Lee 2022), and volatility risk (VOL) (Chung et al. 2019),

94



3.1. INTRODUCTION

along with the five Fama & French (2015) stock market factors (MKT, SMB,

HML, RMW, CMA) (Bektić, Wenzler, Wegener, Schiereck, & Spielmann 2019).

Given the apparent importance and need for replicability of factor premiums,

as highlighted by a growing number of meta-studies, for instance, Welch & Goyal

(2008), Harvey et al. (2016), McLean & Pontiff (2016), Green, Hand, & Zhang

(2017), Linnainmaa & Roberts (2018), and Hou, Xue, & Zhang (2020), we examine

these published factors on the same pedestal using the same period, data sources,

and bond return definitions. While the choice of alternative specifications and

procedures is not technically wrong, using factors that are constructed consistently

helps us to avoid comparing apples with oranges.

In the first part of our empirical study, we use the necessary condition of

the factor identification protocol popularized by Pukthuanthong et al. (2019).

With this step, we basically separate factor candidates that systematically move

corporate bond prices from those that do not. A factor candidate cannot be a

viable risk factor if it does not move prices. Technically, we analyze whether the

factor candidates can explain the canonical correlations between the entire set

of factors and test asset principal components. We only retain those factors that

pass the identification protocol for further analysis. We find that many prominent

factors already fail this first test. For example, all the factors proposed by Bai

et al. (2019) do not satisfy the necessary condition for being a risk factor in

corporate bond markets. In addition, the Tao et al. (2022) and Lee (2022) policy

uncertainty factors, the Israel et al. (2018) value factor, the short-term reversal

factor, and all Fama & French (2015) stock market factors are eliminated.

As a second step, we employ the Bayesian marginal likelihood model

comparison method recently developed by Barillas & Shanken (2018) and Chib

et al. (2020) (BS-CZZ). The key advantages of this approach are that (a) it

enables us to simultaneously compute the model probabilities for the collection

of all possible models that are subsets of the given factors, while (b) it takes

into account the matter of parsimony. The first main result is that a four-factor

union of carry, duration, stock momentum, and term structure factors is revealed
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by the data as the best (no. 1) corporate bond risk factor model in terms of

the Bayesian posterior probability. Based on a Bayes factor cutoff, only three

further models remain as serious contenders. All four winning models contain the

carry and stock momentum factors. The duration and term-structure factors have

cumulative posterior probabilities around 50%.

To provide direct statistical evidence on the relative performance of different

models, we use the Barillas, Kan, Robotti, & Shanken (2020) test of the equality

of squared Sharpe ratios. We conduct pairwise comparisons among the winning

models and various existing models. We find that the no. 1 winning factor

model yields a substantially and significantly larger squared Sharpe ratio than all

other contenders. Thus, the selected set of factors clearly dominates the existing

models. We show that this is not only true in-sample. Also, out-of-sample, with

two different sample splitting schemes, the winning models generate the highest

Sharpe ratios.

We continue our analysis by running two sets of spanning tests. The purpose

of the first set is to demonstrate why the various existing models fall short of

explaining the winning factors. We find that the existing models largely fail to

explain the average returns of the carry and stock momentum factors. However,

even the Israel et al. (2018) and Kelly et al. (2023) models that contain one or

both of these factors are rejected by the Gibbons, Ross, & Shanken (1989) (GRS)

test. On the other hand, the no. 1 winning model can explain all other factors

that pass the first-step identification protocol.

In a penultimate step, we use time-series and cross-sectional asset pricing

tests with test assets to thoroughly analyze the performance of all models. We find

that the winning models perform reasonably well for these tasks. In the time-series

tests, the four winning models, along with those of Israel et al. (2018) and Kelly

et al. (2023), which share many of the same factors, typically yield the smallest

GRS test statistics, the lowest average absolute alphas, and the smallest squared

Sharpe ratios of the alphas for different sets of test assets. In cross-sectional tests,

the same set of models performs best. We find that the no. 1 winning model yields
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the largest cross-sectional R2s.

Finally, we examine the economic drivers of the corporate bond risk factors

contained in the winning models. We find that corporate bond illiquidity along

with volatility are important drivers of the carry and duration factors. The

duration factor, however, is also strongly driven by intermediary distress and

inflation. The main determinant of the stock momentum factor is inflation, while

the term factor is mainly driven by the change in industrial production.

The findings in this chapter have important practical implications. The

winning set of factors can be used as a benchmark model for future research and

in performance evaluation. Furthermore, investors in corporate bond markets can

build on our findings to implement the most promising factor-investing strategies.

The remainder of this paper is organized as follows. In Section 3.2, we briefly

review the literature. Section 3.3 describes our data and methodology. In Section

3.4, we present the factor and model selection results. We perform asset pricing

tests to compare the winning models to existing ones in Section 3.5. In Section

3.6, we analyze the economic drivers of the set of winning factors. Section 3.7

provides concluding remarks.

3.2 Literature Review

Both stocks and corporate bonds are contingent claims on the value of the same

underlying firm. However, several notable features distinguish bond from stock

markets, suggesting potential market segmentation. Indeed, Chordia et al. (2017)

and Choi & Kim (2018) find a discrepancy in risk premiums between corporate

bond and equity markets. Therefore, it is important to investigate the cross-section

of corporate bond returns by also using the factors constructed based on corporate

bond characteristics, rather than only relying on the available commonly used

factors from the equity market. This direction also helps to facilitate factor-based

investing strategies in corporate bond markets. Hence, we focus our study mainly

on corporate bond factors.
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Earlier studies, notably Fama & French (1993), generally utilize aggregate

bond indexes, such as the term and default spread factors, to explain the

cross-sectional variation in corporate bond returns. Recently, inspired by the way

characteristics have been used for constructing equity factors, substantial research

efforts have been devoted to exploring new factors that drive corporate bond

returns. Bali et al. (2017b) and Bali et al. (2021a) examine whether short-term

reversal, momentum, and long-term reversal are priced in the corporate bond

market. Bali et al. (2017b) introduce a return-based factor model including

three factors constructed based on the bond market factor and these past return

characteristics. Bai et al. (2019) propose a four-factor model, including the bond

market as well as factors that build on the downside risk, credit risk, and liquidity

risk characteristics, which appear to be prevalent in the corporate bond market.

Israel et al. (2018) and Kelly et al. (2023) propose alternative factors and factor

models based on the bond volatility, carry, duration, stock momentum, and value

characteristics. Bektić et al. (2019) study the Fama & French (2015) five-factor

model in corporate bond markets. Chung et al. (2019), Bali et al. (2021b), Tao

et al. (2022), and Lee (2022) find that aggregate volatility and economic and

policy uncertainty are priced in the cross-section of corporate bond returns. In

this study, we comprehensively examine the properties of the factors introduced

in these studies (in total 23) and form an optimal factor model.

Two competing approaches demonstrate the ability of factor models in

explaining the cross-section of returns: left-hand-side (LHS) and right-hand-side

(RHS) approaches, as classified by Fama & French (2018). LHS approaches

introduce additional test assets and examine the models based on their abilities

to price these test assets. For these, it often comes down to alphas, which are the

estimated intercepts from time-series regressions of base asset returns on these

factor models. Alphas capture the difference between the return an asset actually

earns and what a factor model would predict, and hence gauges the model’s

error. A model with lower average pricing errors is deemed to perform better.

Empirical implementations using characteristic/industry-sorted portfolios as the
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LHS test assets and assessing model performance by alpha-based statistics from

time-series regressions to explain the LHS assets are ubiquitous. In numerous

studies in equity markets, such as Fama & French (2015, 2018), Hou et al. (2015),

or Stambaugh & Yuan (2017), competing factor models are evaluated using several

comparative alpha-based criteria, for example, the number of significant alphas

based on t-statistics, the number of rejections by the GRS test, the point estimates

of average absolute alpha, and the average absolute t-statistic. Among others,

Bali et al. (2017b) and Bai et al. (2019) also aim to identify a superior model for

corporate bond returns as the one that generates a smaller average absolute alpha

and delivers a larger average time-series regression R2 for certain test assets.

While the LHS alpha-based setting appears frequently in the empirical

literature, some criticize it as being problematic. First, the selection of test assets is

not innocuous. One important critique about standard asset pricing tests, brought

forward by Lewellen, Nagel, & Shanken (2010), is that characteristic-sorted

portfolios used as test assets do not have sufficient independent variation in

the loadings of factors constructed with the same characteristics. Second, this

framework ignores the pricing impact of factors from other models. Third,

Barillas & Shanken (2017), Fama & French (2018), and Ahmed, Bu, & Tsvetanov

(2019) show in numerous examples that informally comparing point estimates of

alpha-based performance metrics may yield inconsistent model rankings, which

can lead to incorrect judgments on the pricing performance of different models.

Barillas & Shanken (2017) straightforwardly emphasize that models should

be judged in terms of their power to explain not only test assets but also the

traded factors in other models (ideally, the entire universe of returns). They argue

that LHS test portfolios do not provide any further information about model

comparisons beyond what can be obtained by examining how well each model

prices the factors of other models. Thus, following their argument, test assets are

irrelevant for the purpose of model comparison.

This revealing insight leads to the development of the so-called “RHS

approach.” Here, spanning regressions only involve other factors regressed on those
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of a model in order to decide whether candidate factors add explanatory power

to a benchmark model. If the intercept is zero, the candidate factors contribute

no additional information. Spanning tests are the main method adopted by Hou,

Mo, Xue, & Zhang (2019) and Daniel, Hirshleifer, & Sun (2020) to compare factor

models.

Barillas & Shanken (2018) develop a Bayesian RHS setting that permits us to

compare a large set of models simultaneously and identify the best, parsimonious

one. There are also alternative recent (LHS) approaches for model selection (e.g.,

Feng, Giglio, & Xiu 2020; Hwang & Rubesam 2020; Harvey & Liu 2021). We opt

for the BS-CZZ approach because it is economically motivated for exactly the

task we intend it for: to find an optimal factor model.2 In addition, the approach

turns out to be reasonably powerful, and the results of this RHS approach hold

up well under an alternative LHS evaluation.3

Taking all the issues discussed above into consideration without being

dogmatic on the LHS/RHS debate, the first part of this chapter is based on

an RHS approach, in which we scan for the best corporate bond factor model

using a Bayesian marginal-likelihood-based method. Afterward, we analyze the

2The approach of Feng et al. (2020) was mainly designed to accommodate very high-
dimensional factor selection problems. This is much more relevant for equity markets than
for corporate bond markets. After our first-step screening of whether the factors move
corporate bond prices, only 11 factors remain. These can be well handled by standard
statistical tools. Furthermore, the main goal of the Feng et al. (2020) approach is the
evaluation of new factors rather than the selection of an optimal factor model.

3The Harvey & Liu (2021) approach is a very careful statistical approach to detect
helpful factors in the presence of data mining and multiple testing. As such, it is very
useful to gauge the significance of any new factor given the previous factors and possibly
many others that have been tried. The multiple-testing adjustment, however, makes
the approach quite conservative. For cross-sectional asset pricing in equity markets, the
Harvey & Liu (2021) conclusion that the market factor is dominant is controversial.
Indeed, when applying the Harvey & Liu (2021) approach to our corporate bond data,
we obtain a similar result, that is, that only the corporate bond market factor is chosen.
We back up the usefulness of the selected models by comparing them to existing models
using state-of-the-art time-series and cross-sectional asset pricing tests. These clearly
show that the corporate bond capital asset pricing model (CAPM) is inferior to the
models selected by our application of the Barillas & Shanken (2018) approach for pricing
the cross-section of corporate bonds. We address the (justified) criticism that the Sharpe-
ratio-based methods, to which the Barillas & Shanken (2018) approach belongs, may
choose well-performing factors that do not move prices by adding a first preselection step
based on the factor identification protocol of Pukthuanthong et al. (2019).

100



3.3. DATA AND METHODOLOGY

winning models further by comparing their performance to existing models using

two RHS approaches. Finally, we use multiple sets of LHS test portfolios to analyze

the performance of the winning models and the existing ones for explaining

cross-sectional and time-series variation in corporate bond returns.

3.3 Data and Methodology

3.3.1 Corporate bond data

We use the corporate bond data set of Kelly & Pruitt (2022). It is compiled from

four sources: the Trade Reporting and Compliance Engine (TRACE) Enhanced,

the Mergent Fixed Income Securities Database (FISD), Compustat, and the

Center for Research in Security Prices (CRSP). Corporate bond transaction

data (intraday clean price and volume) are from TRACE Enhanced and bond

characteristics, such as bond ratings or coupons, are from FISD. Additional

equity characteristics are from Compustat and CRSP. Special types of bonds,

such as convertible bonds, bonds with floating coupon rates, and callable bonds

are excluded from the data set.

The monthly return of corporate bond i in month t is calculated as

ri,t =
Pi,t +AIi,t + Ci,t

Pi,t−1 +AIi,t−1
− 1, (3.1)

where Pi,t is the clean transaction price, AIi,t is the accrued interest, and

Ci,t is the coupon payment, if any, of bond i in month t.4

3.3.2 Candidate factors and models

In Table 3.1, we briefly summarize the definitions of the bond variables (panel A)

as well as the 23 candidate factors used in this study (panel B). More details on

the exact construction of all variables and factors can be found in Appendix B.1.5

4To limit the effect of extreme outliers, Kelly & Pruitt (2022) winsorize the return
data at the 0.05% and 99.95% quantiles.

5We only consider factors defined by one characteristic. Combinations of different
characteristics suffer from overfitting bias (Novy-Marx 2016).
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In addition to the individual factors, for comparison, we also consider a set

of existing factor models. We indicate the set of factors included in the models in

braces. That is, we consider a corporate bond CAPM (CAPMbond: {MKTb}),

the Fama & French (1993) three-factor model for corporate bonds (FF3: {MKTb,

TERM, DEF}), the Fama & French (1993) three-factor model for corporate bonds

augmented by a liquidity risk factor and a bond momentum factor (aug. FF3:

{MKTb, TERM, DEF, LRF, MOMb}), the Fama & French (1993) five-factor

model for corporate bonds (FF5stkb: {MKTs, SMB, HML, TERM, DEF}), the

Bai et al. (2019) four-factor model (BBW: {MKTb, DRF, CRF, LRF}), the four-

factor model in the spirit of Bali et al. (2017b) (BSW: {MKTb, STR, MOMb,

LTR}), the five-factor model in the spirit of Israel et al. (2018) (IPR: {CRY, DUR,

MOMb, MOMs, VAL}), and the observable five-factor model of Kelly et al. (2023)

(KPP: {MKTb, CRY, DUR, BVL, VAL}).

3.3.3 First step: Factor identification protocol

For a first-step screening, we use the necessary condition of the factor identification

protocol of Pukthuanthong et al. (2019). The goal of this step is to identify factors

that systematically move corporate bond prices. That is, the factors should be

related to the covariance matrix of corporate bond returns.

As representative test assets for this step, we use a set of 12 industry

portfolios, 25 size-maturity portfolios, 25 rating-maturity portfolios, and further

5 × 5 double-sorted portfolios on the bond rating and 29 corporate bond

characteristics provided by Kelly & Pruitt (2022). This set of portfolios clearly

satisfies the requirements of Pukthuanthong et al. (2019) that the test assets

should belong to different industries and have sufficient heterogeneity. From these

portfolios, we extract the first 10 principal components using the method of

Connor & Korajczyk (1988).6 To account for possible nonstationarity, we cut

our sample into two halves and do the analysis separately for each subperiod

6To be precise, we obtain the matrix Ω = (1/T )RR′, where T is the number of
time-series observations, and R is the T × N matrix of the N de-meaned test asset
returns. The extracted principal components are the first 10 eigenvectors of Ω.
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(Pukthuanthong et al. 2019). Next, we calculate the canonical correlations

between the candidate factors and these 10 principal components. Finally, we

regress each of the 10 canonical variates (which are all weighted averages of

the 10 principal components) on a constant and the set of factor candidates.

As in Pukthuanthong et al. (2019), for an eligible factor we require an average

of the absolute t-statistics associated with the significant canonical correlations

exceeding 1.96 and the average number of single absolute t-statistics exceeding

1.96 has to be higher than 2.5.

All factors that do not pass this first test apparently do not move bond prices

and can be rejected as viable risk factors. Hence, we will only consider candidate

factors that pass this factor identification protocol for the next steps.

3.3.4 Second step: BS-CZZ model comparison proce-

dure

Among the factors that move corporate bond prices, we next aim to find those

that best price the cross-section. We employ the Bayesian marginal-likelihood-

based model comparison approach introduced by Barillas & Shanken (2018) and

revisited by Chib et al. (2020).7 This method allows us to simultaneously compare

all possible models based on the subsets of the given factor space. To scan for

the best model, we compute their log marginal likelihoods to perform the prior-

posterior update and then rank them based on their posterior probabilities.

In more detail, starting with a set of K (traded) potential risk factors, in

general J = 2K −1 factor combinations are possible. With the factor set resulting

from the first-step factor identification and the restrictions on correlated factors

described in Section 3.4.2, 1,024 candidate factor models remain. The model space

is thus M = {M1,M2, ...,MJ}. Mj is one possible model defined by the vector of

included factors f̃j and that of excluded factors f∗j .

7Chib et al. (2020) show that the original prior definition by Barillas & Shanken
(2018) is unsound for model comparisons. They propose an alternative approach with a
modified prior. We follow exactly the general approach suggested by Chib et al. (2020).
The authors show their approach performs the best in their simulations.
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3.3. DATA AND METHODOLOGY

Each of the 1,024 factor models thus has a Lj × 1 vector of included factors

f̃j and a (K −Lj)× 1 vector of excluded factors f∗j . The data generating process

of model j is thus given by

f̃j,t = α̃j + ϵ̃j,t, (3.2)

and

f∗j,t = B∗
j,f f̃j,t + ϵ∗j,t. (3.3)

α̃j is a Lj × 1 parameter vector and ϵ̃j,t is a multivariately normally distributed

residual vector.B∗
j,f is a (K−Lj)×Lj parameter matrix. ϵ∗j,t is also a multivariately

normally distributed residual vector. A special case applies when all factors are

included in fj .8

The log marginal likelihood of a model Mj (j ̸= J) with y given the sample

data of the factors over T time periods in closed form is

log m̃(y|Mj) = log m̃(f̃ |Mj) + log m̃(f∗|Mj). (3.4)

We provide the details on the computation of the terms in Equation (3.4) in

Appendix B.2.

The end product of the scanning procedure is a ranking of models

{M1∗,M2∗, ...,MJ∗} (3.5)

by

m̃(y|M1∗) > m̃(y|M2∗) > ... > m̃(y|MJ∗), (3.6)

where M1∗ denotes the winning model, identified as the one that has the highest

posterior model probability. Since the remaining terms in the posterior-probability

8ϵ̃j,t and ϵ∗j,t are also assumed to be not serially correlated. To thoroughly examine the
potential issue of autocorrelations in the factor returns, we perform Ljung & Box (1978)
tests of general dependency in the time series. For an overwhelming majority of factors,
we cannot reject the null hypothesis of no significant dependency in the factor returns.
Among the factors surviving the first-step screening, 10 of 11 factors have no significant
dependency in their time series (only the VOL factor, which is not included in any of
the top models, does). The White (1980) and Newey & West (1987) standard errors for
the factor returns are also very similar (the average difference is 0.01 percentage points).
The normality assumption is also not crucial. Chib & Zeng (2020) provide an alternative
approach assuming student t-distributions of the factors. This approach yields a similar
result with the same winning model.
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calculation can be summarized by just a normalization constant, the ranking of

posterior probabilities is equivalent to that of marginal livelihoods m̃(y|Mj).

3.3.5 Model comparison based on squared Sharpe

ratios

After having determined the top model(s), the next step is a comparison to

existing ones. For this purpose, among others, we use the Sharpe-ratio-based

approach of Barillas et al. (2020) that requires a series of tests. First, we compute

the differences between the bias-adjusted sample squared Sharpe ratios for various

pairs of factor models.9 Second, we calculate the p-values for the test of equality

of the squared Sharpe ratios in two cases of nested models and non-nested models.

In the case of nested models (i.e., all of the factors in one model are included

in the other model), in order to determine whether the model with more factors is

superior, we check whether the squared Sharpe ratio of the larger model is higher

than that of the model with fewer factors. This is a test of whether alphas of the

noncommon factors in the larger model (i.e., that are not contained in the smaller

model) regressed on the smaller one are significantly different from zero, which

can be done simply with the GRS test.

In the case of non-nested models (i.e., each model contains factors not

included in the other model), the statistical analysis is a sequential test. The

preliminary step entails comparing the squared Sharpe ratios of the model

composed of all the factors from both models and the smaller one that contains

only the common factors. It becomes equivalent to testing the null hypothesis that

the alphas of the nonoverlapping factors on the common ones are zero. If this test

fails to reject, then the evidence is consistent with the notion that the common

factors model is as good as the models that add the noncommon factors. If this

test is rejected, some or all of the noncommon factors are not redundant and

9The squared Sharpe ratio for each model is modified to be unbiased for small samples
under joint normality by multiplying it by (T −K − 2)/T and subtracting K/T , where
T is the number of return observations and K is the number of factors.
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contribute to an increase in the squared Sharpe ratio compared to the common

factors model. However, we still do not know which non-nested model has a higher

squared Sharpe ratio. Therefore, we then proceed with a direct test of the equality

of the squared Sharpe ratios from the two non-nested models by calculating the

p-value based on the results in Proposition 1 of Barillas et al. (2020).10

3.4 Model Selection

3.4.1 Summary statistics

Our sample includes 8,759 U.S. corporate bonds issued by 1,220 unique firms with

443,485 bond-month return observations in total during the sample period from

July 2002 to December 2019. Over the sample period, on average, 83.85% of our

rated bond sample are investment grade and 16.15% are noninvestment grade.11

On average, our sample includes approximately 5,361 bonds per month over the

whole period.

Panel A of Table 3.2 reports the descriptive statistics of our bond sample.

The average monthly bond return is 0.50%, with a standard deviation of 2.17%.

The sample contains bonds with an average rating of 8.02 (i.e., BBB+), and an

average amount outstanding of $913 million. The average corporate bond in our

sample is 3.44 years old, has a time-to-maturity of 8.57 years, and a duration

of 5.92 years. The average corporate bond return, its distribution, as well as the

other summary statistics are very similar to those reported in other studies (e.g.,

10The p-value in this direct test is computed as the bias-adjusted squared Sharpe ratio
difference divided by its standard error. The standard error of the squared Sharpe ratio
difference is the square root of the asymptotic variance divided by the number of monthly
observations. The asymptotic variance can be calculated as dt = 2(uA,t −uB,t)− (u2A,t −
u2B,t) + (θ2A − θ2B), with uA,t = µ′

AV
−1
A (fA,t − µA) and uB,t = µ′

BV
−1
B (fB,t − µB). θ2A

and θ2B are the bias-adjusted squared Sharpe ratios of models A and B, respectively. µA

is a vector of the average returns of the factors in model A, VA is the corresponding
covariance matrix, and fA,t is the vector of factor returns at time t.

11The ratings are coded as numbers between 1 and 21. Higher numerical scores imply
higher credit risk. Numerical ratings of 10 or below (i.e., BBB- or better) are labeled as
investment grade and ratings of 11 or higher are considered as high yield.
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Jostova et al. 2013; Bai et al. 2019; Bali et al. 2021a; Kelly et al. 2023).

Panel B of Table 3.2 presents the summary statistics of the monthly factor

returns between August 2003 and December 2019. Since a certain amount of data

is first necessary to obtain the measures, the time series of DRF, CRF, EPU,

EPUtax, LTR, STR, UNC, and VOL returns start somewhat later. LTR is the

last factor with data available and starts in August 2006. For all tests, including

LTR, we use the common sample period from August 2006. To place all factors on

equal footing, we follow the approach of Bai et al. (2019), who are inspired by the

classical Fama & French (1993) approach to equity factors, and obtain the factors

via double-sorts with credit ratings. This way, we ensure that the factors genuinely

pick up the risk and return related to their underlying economic variables rather

than just passive exposure to credit risk.

The average bond market excess return for our sample is 0.34% per month

and highly statistically significant with a t-statistic of 3.35. The average return is

very similar to the 0.39% per month reported by Bai et al. (2019) for a slightly

shorter sample period. The corporate bond factors mostly yield significantly

positive average returns that are consistent with the previous literature.12

12In a bit more detail for some of the historically most important factors: The TERM
factor yields a mean return of 0.46% per month with a t-statistic of 2.18. The DEF factor,
on the other hand, only has an insignificant average monthly return of 0.06%. The very
small and insignificant return for the DEF factor is consistent with the 0.02% per month
reported by Fama & French (1993) and the 0.04% per month reported by Gebhardt
et al. (2005a). On the other hand, the TERM factor return is substantially larger for our
sample period than that reported by Fama & French (1993) (0.06% per month). As in
Bai et al. (2019), the credit risk, downside risk, liquidity risk, and short-term reversal
factors yield large monthly average returns, which are all highly statistically significant.
The downside risk factor has an average return of 0.66% per month. The credit risk
factor yields 0.36%, the liquidity risk factor 0.43%, and the short-term reversal factor
has a monthly average return of 0.39%. The only notable exception where our results
differ is the bond momentum factor, which yields a significant negative return as opposed
to a positive single-sorted excess return reported by Jostova et al. (2013) for the period
1973–2011. These results are consistent with the findings of Israel et al. (2018), who
show that the lion’s share of the positive combined bond and equity momentum profits
accumulates in the pre-TRACE sample period. Thus, in their combined figure the positive
equity momentum and the negative bond momentum approximately cancel out from 2002
on. Furthermore, Galvani & Li (2020) find that momentum returns in corporate bond
markets crucially depend on outlier observations.
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Table 3.2: Summary Statistics

Our sample contains 8,759 U.S. corporate bonds issued by 1,220 unique firms over
the period from July 2002 to December 2019. Panel A reports the descriptive statistics
including the mean, median, standard deviation, skewness, kurtosis, and percentiles of
bond–month observations of returns (in %) and bond characteristics including the credit
rating, the size (amount outstanding in $ million), the age (in years), the time-to-maturity
(in years), the duration (in years), and the bond spread (in %). Ratings are numerical
scores, where 1 refers to an AAA and 21 refers to a C rating. Panel B presents the
summary statistics of the time series of the 18 corporate bond and 5 equity candidate
factors. The t-statistics (in parentheses) are based on Newey & West (1987) standard
errors with 4 lags. For each factor, we also report the exact sample period from the first
to the last month the data are available. The definitions of the factors can be found in
Appendix B.1.

Panel A Mean Median SD Skew Kurt
Percentiles

10th 25th 75th 90th

Return (%) 0.50 0.32 2.17 0.45 18.6 −1.31 −0.23 1.20 2.56

Rating 8.02 8.00 2.97 0.31 3.22 5.00 6.00 10.0 12.0

Size ($ million) 913 700 717 3.39 28.2 350 500 1, 000 1, 750

Age (years) 3.44 2.67 2.96 1.72 7.88 0.50 1.25 4.75 7.42

Time to maturity (years) 8.57 5.76 8.45 1.75 6.87 1.50 3.12 9.17 25.5

Duration (years) 5.92 4.88 4.32 1.09 3.44 1.39 2.82 7.36 13.5

Spread (%) 1.78 1.31 1.50 1.98 8.31 0.47 0.77 2.28 3.79

Panel B Mean (t-statistic) Median SD Skew Kurt First Last

Bond Factors
MKTb 0.34∗∗∗ (3.35) 0.41 1.31 0.16 10.4 Aug-2003 Dec-2019
BVL 0.53∗∗∗ (3.25) 0.64 2.16 0.38 8.28 Aug-2003 Dec-2019
CRF 0.36∗∗ (2.02) 0.25 1.81 −0.32 8.55 Jul-2004 Dec-2019
CRY 0.95∗∗∗ (5.60) 1.00 2.02 0.91 7.33 Aug-2003 Dec-2019
DEF 0.06 (0.45) 0.05 1.99 −0.49 7.95 Aug-2003 Dec-2019
DRF 0.66∗∗∗ (3.16) 0.59 2.23 0.90 8.79 Jul-2004 Dec-2019
DUR 0.52∗∗∗ (2.68) 0.64 2.52 0.01 7.95 Aug-2003 Dec-2019
EPU 0.11 (1.38) 0.14 0.83 −1.11 8.35 Aug-2005 Dec-2019
EPUtax 0.03 (0.47) 0.05 0.63 −1.63 11.4 Aug-2005 Dec-2019
LRF 0.43∗∗∗ (3.10) 0.28 1.29 3.95 32.9 Aug-2003 Dec-2019
LTR 0.07 (0.46) −0.09 1.73 1.80 12.6 Aug-2006 Dec-2019
MOMb −0.38∗∗∗ (−3.07) −0.25 1.52 −3.01 23.0 Aug-2003 Dec-2019
MOMs 0.22∗∗∗ (4.46) 0.20 0.78 −0.05 9.36 Aug-2003 Dec-2019
STR 0.39∗∗∗ (3.60) 0.43 1.27 0.37 6.53 Sep-2003 Dec-2019
TERM 0.46∗∗ (2.18) 0.39 3.16 0.37 5.29 Aug-2003 Dec-2019
UNC 0.00 (0.03) 0.07 1.18 −1.46 12.1 Aug-2005 Dec-2019
VAL 0.75∗∗∗ (6.84) 0.81 1.35 −0.33 5.45 Aug-2003 Dec-2019
VOL 0.12∗ (1.94) 0.09 0.65 2.25 18.1 Aug-2003 Dec-2019

Stock Factors
MKTs 0.77∗∗ (2.47) 1.29 4.00 −0.77 5.02 Aug-2003 Dec-2019
SMB 0.09 (0.57) 0.16 2.37 0.28 2.90 Aug-2003 Dec-2019
HML −0.05 (−0.24) −0.17 2.50 −0.03 5.27 Aug-2003 Dec-2019
RMW 0.26∗∗ (2.16) 0.27 1.58 0.18 3.45 Aug-2003 Dec-2019
CMA 0.01 (0.05) −0.02 1.43 0.32 2.75 Aug-2003 Dec-2019
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3.4.2 Factor identification results

We begin the empirical analysis with the factor identification protocol step of

Pukthuanthong et al. (2019). In panel A of Table 3.3, we show the results for the

canonical correlations between the 10 principal components extracted from the

large set of test assets and the 23 candidate factors. We do this analysis for the

two equal halves of our sample period. We find that in both halves 9 of the 10

canonical correlations are statistically significant. Thus, several pairs of canonical

variates between the test assets and factors, with each being orthogonal to the

others, have substantial intercorrelations.

The main output of the factor identification protocol step is in panel B of

Table 3.3. The bond market factor reaches an average t-statistic in the multiple

regressions to explain the significant canonical variates of 4.9. In both subperiods,

7 of the 10 t-statistics for the bond market are statistically significant. Thus,

MKTb clearly passes the hurdles set by Pukthuanthong et al. (2019) for the factor-

identification-protocol step. Other prominent corporate bond factors, however,

fail this step. For example, the Bai et al. (2019) CRF, DRF, and LRF factors are

eliminated. They are not sufficiently strongly related to the significant canonical

variates of the test asset principal components. Hence, they do not appear to

sufficiently strongly and systematically move corporate bond prices. Similarly,

the factor identification protocol step eliminates STR from consideration.

In total, 12 of the 23 candidate factors are eliminated by this step. Quite

intuitively, this step eliminates all five Fama & French (2015) equity factors. The

factors being kept for further consideration include {MKTb, BVL, CRY, DEF,

DUR, LTR, MOMb, MOMs, TERM, UNC, VOL}. Next, we aim to form an

optimal factor model from a subset of these factors.

Before doing so, we should have a look at the correlations of the factors

surviving the first-step factor identification. We present these correlations in panel

C of Table 3.3. Many factors are moderately correlated. Part of the factors have

positive correlations in excess of 0.4 with the aggregate bond market: BVL, CRY,

DEF, DUR, and TERM. On the other hand, LTR, MOMb, MOMs, UNC, and
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3.4. MODEL SELECTION

VOL have rather small correlations with the aggregate bond market. Among the

other factors, we find that TERM and DEF are negatively correlated, consistent

with Fama & French (1993). BVL, CRY, DEF, and DUR are also positively

correlated among one another. MOMb and MOMs have negative correlations with

most other factors. Finally, LTR, UNC, and VOL are not strongly correlated to

most other factors.

The highest correlations are between the set of factors {MKTb, BVL, DUR},

each of which exceeds 0.8. It is thus likely that these factors capture similar

economic risk sources (Gospodinov & Robotti 2021). Hence, going forward we

will not consider models that include more than one of these factors.

The fact that the surviving factors apparently drive systematic movements

in corporate bond returns and that most of them yield a statistically significant

average return indicates that they could all be useful for pricing corporate bonds.

The substantial correlations among different factors, on the other hand, suggest

that the factors are not all that different. Thus, some factors are likely redundant

and a parsimonious optimal factor model does not need all of them.

3.4.3 Model selection results

In a next step, we thus use the model selection approach to form an optimal model

out of the 11 candidate factors. That is, we perform the second model selection

step using the approach of Barillas & Shanken (2018) and Chib et al. (2020).

Panel A of Table 3.4 reports the log marginal likelihoods, the posterior

probabilities, and the ratios of the posterior probability to the prior probability

of the top models. We further illustrate the posterior probabilities for all models

in Figure 3.1. The best combination of factors includes CRY, DUR, MOMs, and

TERM. The model made up of these four factors yields the highest log marginal

likelihood and, hence, the largest posterior probability. Thus, carry risk, duration

risk, stock momentum, and term risk appear to be the most important factors

in corporate bond markets in our sample. We call this set of factors the “no. 1

winning model,” or just “winning model.”
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3.4. MODEL SELECTION

Figure 3.1: The Model Scan Result

This figure illustrates the results of the model scanning algorithm. We plot the

posterior probabilities Pr(Mj |y) for all 1,024 models. The models are ranked in ascending

order by their posterior probabilities. Beside the dots for the four winning models,

separated by the Bayes factor cutoff from the remaining ones, we indicate the respective

factors.
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CHAPTER 3. WHICH FACTORS FOR CORPORATE BOND RETURNS?

We view the model selection approach not only as a tool to determine the

optimal model but also as one that helps us find the most important factors. Thus,

it is also worth having a look at the next-best factor sets. In panel A of Table 3.4,

we report the top-four models based on a Bayes factor cutoff.13 The second-best

factor model contains only 2 of the 4 factors of the winning model: CRY and

MOMs. The third- and fourth-best models also include these two factors. They

only differ in the additional factor included (DEF in case of the third-best and

DUR in case of the fourth-best model).14

Thus, while quite naturally, based on a large set of candidate factors and a

rather short sample period, the posterior probability of the winning model does

not approach unity, a clear pattern emerges around the set of winning factors.

This information is also reflected by the cumulative posterior probabilities of the

factors presented in panel C of Table 3.4. These are 100.0% for CRY, 99.96% for

MOMs, 55.79% for DUR, and 47.78% for TERM. All other factors have cumulative

posterior probabilities lower than 30%. Interestingly, the bond market factor yields

the lowest cumulative posterior probability of 4.77%.

The DEF factor is only included in one of the top-four models and has a

cumulative posterior probability of 29.20%. Thus, its explanatory power for the

cross-section of corporate bond returns in our sample appears to be limited. This

is surprising in light of the results of Gebhardt et al. (2005a), who show that DEF

betas perform well in explaining cross-sectional variation in beta-sorted portfolios.

Thus, while performing well for these, the DEF factor appears to be much less

able to explain the returns of other characteristics-sorted portfolios.15

Another metric to judge the performance of the selected models is the ratio

of the posterior model probability to the prior model probability of any model

13The Bayes factor postulates substantial/significant differences between two models
if the marginal likelihood is different by more than log(100.5) = 1.15 or, equivalently, the
posterior probability is lower by a factor of more than 3.2 (Kass & Raftery 1995).

14Note that as further factors are added to the winning set, the posterior probabilities
may deteriorate markedly. For example, when adding all factors, the posterior is 0.00%.
This is because the model selection algorithm is designed to encourage parsimony. Models
that include redundant factors receive lower posterior probabilities.

15One reason for the difference is likely that Gebhardt et al. (2005a) study investment-
grade bonds only, while our sample contains both high-yield and investment-grade bonds.
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3.4. MODEL SELECTION

Mj , denoted by Pr(Mj |y)
Pr(Mj)

. This ratio reflects the information improvement of the

posterior over the prior, which is the same for all models, given the data observed.

In the case of the winning model, improvement is very clear. Its posterior is more

than 160 times as high as its prior.

In panel B of Table 3.4, we also examine the performance of the existing

factor models spanned by the set of factors that survive the first-step screening.

We find that both the corporate bond CAPM and the FF3 model perform poorly.

The posterior probabilities are 0.00% and the ratios of the posterior probability

to the prior probability are 0.00. A model with all factors (which we consider

as a benchmark by way of exception, despite the high correlations of MKTb,

BVL, and DUR) also performs rather poorly with a posterior-to-prior-probability

ratio of 0.02. This implies that all 11 candidate factors together contain

information redundancies. Thus, in the trade-off between slightly enhanced

in-sample performance and the parsimony encouraged by the Barillas & Shanken

(2018) and Chib et al. (2020) model selection approach, adding all these additional

factors hurts the model performance.

Thus, the most important set of factors in corporate bond markets appears to

consist of CRY, DUR, MOMs, and TERM. Carry reflects the return of an asset if

the market conditions stay the same (Koijen, Moskowitz, Pedersen, & Vrugt 2018).

As such, it is not unique to corporate bond markets. However, it is an important

measure of risk and expected return. Duration and TERM are important due to

the interest rate risk, which is a unique feature of bond markets that strongly

differs from equity markets. Corporate bonds with higher interest rate risk earn

systematically larger returns. Finally, high stock momentum increases the equity

cushion available and reduces firm leverage, hence making the more senior claims

of corporate bonds less risky. The factors associated with these corporate bond

characteristics seem to systematically drive and explain corporate bond returns.
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CHAPTER 3. WHICH FACTORS FOR CORPORATE BOND RETURNS?

3.5 Asset Pricing Tests

3.5.1 Model Sharpe ratios

Having selected an optimal set of factors, we next turn to analyzing whether the

selected winning models outperform other factor models based on more traditional

model comparison approaches. That is, instead of Bayesian statistics, in this

section, we use classical statistics and conduct pairwise tests of the equality of

squared Sharpe ratios following Barillas et al. (2020). Their method enables us

to provide reliable inference regarding relative model performance gauged by the

squared Sharpe ratio improvement.

Table 3.5 reports the differences between the sample squared Sharpe ratios

(column model minus row model) of different pairs of models. The estimated

model squared Sharpe ratios are modified to be unbiased in small samples. The

associated p-values are shown in brackets.

The final column of Table 3.5 clearly indicates that the top factor model of

the model selection approach dominates all other existing models by producing a

higher Sharpe ratio. The bias-adjusted squared Sharpe ratio of the winning model

is higher by 0.45 compared to the CAPMbond model. For the other factor models,

the improvements are generally only somewhat smaller. For example, compared to

the FF3 model, the improvement is 0.43, compared to the augmented FF3 model

0.38, and compared to the BBW model 0.40. In terms of squared Sharpe ratios,

the IPR and KPP models perform best among the existing models. However,

the squared Sharpe ratio improvement of the no. 1 winning model is still 0.04

and 0.17, respectively. All these Sharpe ratio differences are highly statistically

significant, as specified by the corresponding p-values that are virtually zero in

all instances.

The no. 1 winning model also outperforms the second- to fourth-best models

of the model selection. Its squared Sharpe ratios are significantly larger. The

no. 2 to 4 winning models also outperform all other models except for the IPR
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model. Among the existing ones, the IPR model clearly performs best. This is not

surprising as the model overlaps with the winning model in three of its factors.

Relying on comparisons of in-sample Sharpe ratios is not enough, though.

Kan, Wang, & Zheng (2022) show that in the presence of estimation risk, the

multifactor in-sample Sharpe ratios are typically unattainable for investors in

real time. Therefore, we also analyze out-of-sample Sharpe ratios.

We present the results in Table 3.6. As in Barillas & Shanken (2018), we

show the full-sample Sharpe ratios of the models as well as the in- and out-of-

sample Sharpe ratios for two different sample splitting schemes. Consistent with

the results of Table 3.5, the no. 1 winning model has the highest in-sample Sharpe

ratio of 0.76, followed by the IPR model with 0.74 and the other winning models

(0.67 up to 0.71).16

Next, we have a look at the out-of-sample Sharpe ratios with the different

sample splitting schemes. When using the first half of the sample to determine the

weights in the tangency portfolio, the out-of-sample Sharpe ratios are smaller than

those in-sample and also those that could be achieved with an optimal ex post

weighting of the factors. However, the winning models also provide the highest

out-of-sample Sharpe ratios, with the best performance being achieved by the no.

4 winning model (0.55), followed by the no. 2 and no. 1 winning models (0.51

and 0.50, respectively). It is not surprising that the no. 4 and no. 2 winning

models perform somewhat better than the no. 1 winning model for this exercise

as the estimation risk is smaller in these models that have fewer factors than

the no. 1 winning model. However, the four winning models have clearly higher

out-of-sample Sharpe ratios than all existing models.

Finally, we also examine the out-of-sample Sharpe ratios for a different

sample splitting scheme, using two-thirds of the sample period for estimation

of the optimal weights in the tangency portfolio. We find, again, that the no. 1,

no. 2, and no. 4 winning models achieve the best out-of-sample performance with

16Note that the IPR model is not obtainable with the model selection approach
because the VAL factor is knocked out by the first-step factor identification. This factor
performs extremely well with a mean return of 0.75% per month and a t-statistic of 6.84
(see Table 3.2).
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Table 3.6: Out-of-Sample Sharpe Ratios

This table presents the in- and out-of-sample performance of the existing corporate

bond pricing models and the four winning models from the model scan (sorted in

ascending order such that winning 1 is the top model from Table 3.4). The existing

corporate bond factor models include: (i) CAPMbond: {MKTb}, (ii) FF3: {MKTb,

TERM, DEF}, (iii) aug. FF3: {MKTb, TERM, DEF, LRF, MOMb}, (iv) FF5stkb:

{MKTs, SMB, HML, TERM, DEF}, (v) BBW: {MKTb, DRF, CRF, LRF}, (vi) BSW:

{MKTb, STR, MOMb, LTR}, (vii) IPR: {CRY, DUR, MOMb, MOMs, VAL}, and (viii)

KPP: {MKTb, CRY, DUR, BVL, VAL}. The first column shows the full-sample monthly

Sharpe ratio of the model tangency portfolios. The remainder of the table shows the

results for out-of-sample tests where the initial estimation period for the factor weights

in the tangency portfolio is half of the sample period (T/2) or two thirds of the sample

period (2T/3). In each case, EST shows the in-sample Sharpe ratio of the estimation

period, PERF the in-sample Sharpe ratio of the remaining period, and PERFw the actual

out-of-sample Sharpe ratio when using the weights from the first in-sample estimation

period.

T T/2 2T/3

Sample SR EST PERF PERFw EST PERF PERFw

winning 1 0.756 0.977 0.819 0.503 0.811 0.881 0.615

winning 2 0.670 0.826 0.547 0.511 0.703 0.655 0.589

winning 3 0.706 0.980 0.547 0.461 0.795 0.655 0.523

winning 4 0.707 0.834 0.776 0.545 0.726 0.855 0.648

CAPMbond 0.288 0.312 0.271 0.271 0.273 0.356 0.356

FF3 0.343 0.422 0.303 0.237 0.360 0.371 0.305

aug. FF3 0.434 0.542 0.377 0.300 0.488 0.399 0.310

FF5stkb 0.309 0.320 0.396 0.223 0.324 0.412 0.243

BBW 0.401 0.469 0.351 0.325 0.428 0.444 0.347

BSW 0.434 0.676 0.347 0.153 0.541 0.388 0.157

IPR 0.738 0.922 0.814 0.448 0.782 0.932 0.568

KPP 0.634 0.927 0.693 0.360 0.767 0.767 0.379
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Sharpe ratios between 0.59 and 0.65.

3.5.2 Spanning tests

In this section, we conduct two sets of factor spanning tests. The main questions

are: Which of the factors are most important? Which factors explain time-series

variation in others? For what factors do the existing models fail most strongly?

Thus, while these exercises do not provide new insights into which model is the

best, they help us to better understand the winning model(s) superior performance

compared to the existing ones.

First, we run the spanning regressions of the nonoverlapping factors of the

no. 1 winning model (which largely also overlap with those in models two to four)

on the alternative existing models to see how those factors not included in the

existing models add information to the existing model benchmarks. Sizable and

significant alphas indicate that the noncommon factors of the best model can add

more power to explain average returns, which is missed by the benchmark models.

We present the results in Table 3.7. We find that the bond CAPM fails

for the CRY and MOMs factors. It can explain the DUR factor (with which

it is highly correlated) and the TERM factor. All versions of the Fama-French

factor models and the BBW and BSW models also fail for the CRY and MOMs

factors. The IPR model, which contains both CRY and MOMs, in turn fails to

explain the TERM factor. Finally, for the KPP model, both MOMs and TERM

have significant positive alphas. For each model, the GRS test rejects the null

hypothesis that all alphas for a given factor model are jointly zero.

Next, we turn the table and try to explain the factors not in the winning

set with the selected factor model. We present the results in Table 3.8. Splitting

the analysis into two parts, we first present the spanning tests for the factors that

pass the first-step identification before also turning to those that do not.

Starting with the factors that pass the identification protocol, we present

the results in panel A of Table 3.8. We find that the bond market factor is well

explained by the winning factor model. It has significant exposures to the DUR,
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Table 3.8: Spanning Tests:
Regressions of the Other Factors on the Winning Model

This table reports the results of spanning regressions of factors not selected on the
no. 1 winning model {CRY, DUR, MOMs, TERM} from the model scanning procedure.
We categorize the alternative factors into those that pass the first-step identification
(Panel A) and those that do not (Panel B). We present the intercept from the spanning
regressions (α) as well as the excluded factors’ loadings on the winning model factors.
The t-statistics in parentheses are based on robust Newey & West (1987) standard errors
with 4 lags. R2 presents the coefficient of determination of the single spanning regressions.
GRS indicates the results for the Gibbons et al. (1989) test of the null hypothesis
that all alphas are jointly zero. Below the GRS test statistic in brackets we present
the corresponding p-value. We separately test the joint significance of the factors that
pass the first-step identification (in Panel A) and that of all factors including those that
pass the first-step identification and those that do not. ∗,∗∗, and ∗∗∗ indicate significance
at the 10%, 5%, and 1% level, respectively.

α CRY DUR MOMs TERM R2

Panel A: Factors that pass the first-step identification
MKTb 0.03 0.16∗∗∗ 0.33∗∗∗ −0.06 0.08∗∗∗ 82.6

(0.44) (2.67) (8.55) (−0.77) (4.85)

BVL 0.10∗ 0.06 0.84∗∗∗ −0.20∗∗ −0.05∗∗ 96.6

(1.89) (1.61) (34.1) (−2.36) (−2.32)

DEF 0.03 0.01 0.64∗∗∗ −0.29∗ −0.51∗∗∗ 76.2

(0.28) (0.09) (4.84) (−1.74) (−6.74)

LTR 0.23 −0.05 0.08 −0.43∗∗ −0.11 9.17

(1.61) (−0.51) (0.48) (−2.35) (−1.58)

MOMb −0.24∗ −0.20∗ −0.07 0.53∗ −0.01 24.7

(−1.70) (−1.69) (−0.66) (1.85) (−0.24)

UNC 0.03 −0.20 0.24∗∗ 0.08 0.00 17.9

(0.34) (−1.36) (2.21) (0.44) (0.01)

VOL −0.02 0.12 −0.00 0.24 −0.06 18.5

(−0.28) (1.27) (−0.01) (1.42) (−1.42)

GRS 1.44

[0.19]

Panel B: Remaining corporate bond factors
CRF 0.41∗∗∗ −0.22 0.51∗∗∗ 0.06 −0.23∗∗∗ 23.9

(3.19) (−1.50) (3.06) (0.33) (−3.08)

DRF 0.26 0.36∗ 0.05 −0.19 0.19∗∗ 21.5

(1.26) (1.89) (0.48) (−0.46) (2.41)

EPU 0.15∗∗ −0.14∗∗ 0.25∗∗∗ −0.12 −0.07∗∗ 26.9

(2.47) (−2.04) (3.16) (−1.21) (−2.10)

EPUtax 0.06 −0.04 0.07∗∗ −0.03 −0.07∗∗ 9.43

(0.95) (−0.64) (2.27) (−0.35) (−2.06)

LRF 0.08 0.46∗∗∗ −0.10 −0.19 0.07∗∗ 41.2

(0.99) (3.43) (−1.31) (−1.31) (2.11)

STR 0.15 0.27∗∗ −0.28∗∗∗ 0.30 0.03 15.2

(1.10) (2.56) (−4.58) (1.37) (0.60)

VAL 0.05 0.48∗∗∗ 0.07 0.60∗∗∗ 0.04 62.8

(0.55) (6.86) (1.47) (3.68) (1.27)

GRS 1.86∗∗

[0.04]
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CRY, and TERM factors (sorted by the size of the factor sensitivities). The alpha

is 0.03% and clearly not statistically significant. All other factors in this set also

can be explained reasonably well by the set of winning factors. The individual

factor alphas are all close to zero and generally much smaller than the factor

average returns. None of the alphas is statistically significant at 5%. The BVL

and MOMb factors, though, have alphas that are significant at 10%. The GRS

test does not reject the hypothesis that all these alphas are jointly zero. Thus,

the winning factor model does a very good job in summarizing the information

contained in those factors that systematically move corporate bond prices.

Next, we cast the net wider and test if the winning model can also explain the

factors that have been rejected by the factor identification protocol. We present

the results in panel B of Table 3.8.17 The DRF, EPUtax, LRF, STR, and VAL

long-short returns are well explained by the winning factors. However, those for

CRF and EPU are not. The GRS test rejects the null hypothesis that the alphas

of all factor candidates from panels A and B are jointly zero. Thus, credit risk

and economic policy uncertainty still appear to be anomalies with respect to

the winning factor model. These either reflect mispricing or suggest that the

optimal corporate bond factor model should also include further, yet undiscovered

factors.18 Finally, all four factors help to explain time variation in the returns of

other factors. Seven other factor candidates are significantly exposed to CRY,

eight to DUR, five to MOMs, and eight to TERM.

3.5.3 Time-series tests with test assets

In this section, we investigate the empirical performance of the winning model

for various test assets in the time-series domain. While the RHS approach is

17We skip the five equity factors for this analysis since corporate bond and equity
markets are potentially segmented (Chordia et al. 2017; Choi & Kim 2018).

18The model, though, should not be expanded with CRF and EPU factors as these
do not significantly move corporate bond prices. They both fail the factor identification
clearly, not narrowly. It is possible that the true factor(s) behind these anomalies are only
weakly correlated with the CRF and EPU portfolio returns and noise in these returns
masks the price-moving signals.
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elegant and useful, in practice many factor model users may remain interested

in understanding how factor models explain LHS returns. Furthermore, it is

interesting if there are any (and if yes, which) sets of test portfolios that still

produce significant alphas with respect to the best factor models.

A factor model that can explain a variety of unrelated anomalies appears

more useful than one that is only able to explain its own factors. More importantly,

to improve the power of asset pricing tests, Lewellen et al. (2010) suggest testing

risk factors based on additional test portfolios that are not related to the risk

characteristics used to construct those factors. Thus, we use a comprehensive set

of test assets.

Table 3.9 summarizes the results. We start with long-short portfolios

generated from the 23 corporate bond characteristics of Kelly & Pruitt (2022) that

are not used to construct factors.19 As for the factors, we use 25 double-sorted

portfolios (generally with rating) to calculate the value-weighted long-short

returns. We present the results of time-series tests for these test assets in panel

A of Table 3.9. We find that none of the models jointly explains all characteristic

long-short returns. The GRS test rejects in every instance. However, since it is well

known that the GRS test tends to overreject its null hypothesis in finite samples

(Bekaert & De Santis 2021), its results should not be taken at face value. We

can see that the four winning models perform quite well compared to the existing

models. They yield the lowest GRS statistics and also the lowest squared Sharpe

ratios achievable from the alphas of the characteristic long-short test portfolios.

The no. 1 winning model yields one of the lowest average absolute alphas and one

of the largest time-series R2s. Again, the IPR and KPP models, which have some

overlap with the winning model(s) in their factors, perform quite well, too.

In panels B–D of Table 3.9, we also examine alternative test portfolios (as,

19These characteristics include bond face value, maturity, bond age, coupon, face
value, book-to-price, debt-to-EBITDA, earnings-to-price, equity market cap, equity
volatility, firm total debt, industry momentum, momentum times ratings, book leverage,
market leverage, turnover volatility, operating leverage, profitability, profitability change,
rating, distance-to-default, bond skewness, and momentum spread. For more information
on these characteristics, see Table A.I of Kelly et al. (2023).
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Table 3.9: Time-Series Asset Pricing Tests with Test Assets

This table reports the results for test-asset-based time-series asset pricing tests of

the existing corporate bond pricing models and the four winning models from the model

scan (sorted in ascending order such that winning 1 is the top model from Table 3.4).

The existing corporate bond factor models include: (i) CAPMbond: {MKTb}, (ii) FF3:

{MKTb, TERM, DEF}, (iii) aug. FF3: {MKTb, TERM, DEF, LRF, MOMb}, (iv)

FF5stkb: {MKTs, SMB, HML, TERM, DEF}, (v) BBW: {MKTb, DRF, CRF, LRF}, (vi)

BSW: {MKTb, STR, MOMb, LTR}, (vii) IPR: {CRY, DUR, MOMb, MOMs, VAL}, and

(viii) KPP: {MKTb, CRY, DUR, BVL, VAL}. In Panel A, we examine the performance

for 23 long–short portfolios based on the Kelly & Pruitt (2022) dataset. In Panels B and

C, we use 25 double-sorted size–maturity and maturity–rating portfolios as test assets,

respectively. Finally, in Panel D, we report the results for 12 Fama & French (1997)

industry portfolios. In the different panels, GRS indicates the results for the Gibbons

et al. (1989) test of the null hypothesis that all alphas are jointly zero for a model, with

the corresponding p-value in brackets. A|αi| is the average absolute alpha of the test

portfolios. #sig αi reports how many test portfolios have significant alphas at the 10%

level. We use Newey & West (1987) standard errors with 4 lags. A|αi|
A|ri| is the ratio of the

average absolute alpha to the average absolute portfolio return. Aα2
i

Ar2i
is the ratio of the

respective squares. As2(αi)
Aα2

i
is the ratio of the average squared standard error of the alphas

to the average squared alpha. A(R2) is the average adjusted R2 of the regressions (in

percentage points). SH2(f) is the squared Sharpe ratio of the optimal portfolio from the

model factors and SH2(α) is the squared Sharpe ratio attainable with the alphas of the

test assets. ∗,∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

GRS [p-value] A|αi| #sig αi
A|αi|
A|ri|

Aα2
i

Ar2i

As2(αi)
Aα2

i
A(R2) SH2(f) SH2(α)

Panel A: Long–short anomaly portfolios

winning 1 2.91∗∗∗ [0.00] 0.09 8 0.41 0.17 0.29 55.5 0.57 0.76

winning 2 3.13∗∗∗ [0.00] 0.10 5 0.48 0.29 0.51 35.4 0.45 0.75

winning 3 3.00∗∗∗ [0.00] 0.11 6 0.53 0.25 0.56 40.5 0.50 0.75

winning 4 2.81∗∗∗ [0.00] 0.05 6 0.26 0.07 0.93 50.4 0.50 0.70

CAPMbond 5.21∗∗∗ [0.00] 0.12 7 0.56 0.35 0.24 20.9 0.08 0.94

FF3 5.61∗∗∗ [0.00] 0.10 6 0.48 0.32 0.24 34.3 0.12 1.04

aug. FF3 5.45∗∗∗ [0.00] 0.11 11 0.53 0.29 0.19 40.0 0.19 1.08

FF5stkb 5.99∗∗∗ [0.00] 0.11 5 0.53 0.42 0.22 35.4 0.10 1.09

BBW 4.54∗∗∗ [0.00] 0.13 11 0.59 0.29 0.24 31.5 0.16 0.88

BSW 5.11∗∗∗ [0.00] 0.10 7 0.47 0.26 0.31 27.0 0.19 1.01

IPR 3.42∗∗∗ [0.00] 0.07 7 0.32 0.09 0.57 56.9 0.54 0.88

KPP 3.63∗∗∗ [0.00] 0.08 6 0.36 0.11 0.46 55.8 0.40 0.85

continued on the next page
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Table 3.9: Time-Series Asset Pricing Tests with Test Assets (continued)

GRS [p-value] A|αi| #sig αi
A|αi|
A|ri|

Aα2
i

Ar2i

As2(αi)
Aα2

i
A(R2) SH2(f) SH2(α)

Panel B: Size–maturity portfolios

winning 1 2.70∗∗∗ [0.00] 0.09 13 0.22 0.05 0.41 66.9 0.57 0.78

winning 2 2.69∗∗∗ [0.00] 0.12 6 0.29 0.15 0.74 38.8 0.45 0.71

winning 3 2.57∗∗∗ [0.00] 0.11 6 0.27 0.12 0.90 39.5 0.50 0.71

winning 4 2.91∗∗∗ [0.00] 0.10 17 0.25 0.07 0.36 65.8 0.50 0.80

CAPMbond 4.03∗∗∗ [0.00] 0.10 20 0.25 0.06 0.21 73.3 0.08 0.80

FF3 3.82∗∗∗ [0.00] 0.08 17 0.19 0.04 0.31 77.3 0.12 0.78

aug. FF3 3.50∗∗∗ [0.00] 0.08 19 0.21 0.05 0.20 78.4 0.19 0.76

FF5stkb 4.25∗∗∗ [0.00] 0.17 20 0.41 0.16 0.23 55.9 0.10 0.86

BBW 4.05∗∗∗ [0.00] 0.10 20 0.26 0.07 0.18 76.1 0.16 0.86

BSW 3.88∗∗∗ [0.00] 0.08 19 0.20 0.04 0.32 75.9 0.19 0.85

IPR 2.66∗∗∗ [0.00] 0.10 16 0.24 0.06 0.43 68.7 0.54 0.75

KPP 3.48∗∗∗ [0.00] 0.07 12 0.16 0.03 0.47 79.3 0.40 0.90

Panel C: Maturity–rating portfolios

winning 1 2.64∗∗∗ [0.00] 0.11 12 0.27 0.09 0.27 64.0 0.57 0.76

winning 2 2.95∗∗∗ [0.00] 0.13 4 0.32 0.18 0.68 34.7 0.45 0.78

winning 3 2.84∗∗∗ [0.00] 0.11 7 0.27 0.12 0.95 36.1 0.50 0.78

winning 4 2.71∗∗∗ [0.00] 0.11 17 0.27 0.08 0.40 59.5 0.50 0.75

CAPMbond 4.65∗∗∗ [0.00] 0.13 16 0.30 0.11 0.29 64.0 0.08 0.92

FF3 4.78∗∗∗ [0.00] 0.11 14 0.26 0.09 0.32 68.9 0.12 0.98

aug. FF3 4.13∗∗∗ [0.00] 0.11 13 0.28 0.12 0.23 70.5 0.19 0.90

FF5stkb 5.22∗∗∗ [0.00] 0.17 17 0.41 0.18 0.30 53.6 0.10 1.05

BBW 4.06∗∗∗ [0.00] 0.12 17 0.29 0.10 0.22 69.1 0.16 0.87

BSW 4.05∗∗∗ [0.00] 0.11 12 0.26 0.10 0.37 66.6 0.19 0.88

IPR 2.54∗∗∗ [0.00] 0.10 12 0.24 0.07 0.53 62.0 0.54 0.72

KPP 2.89∗∗∗ [0.00] 0.09 8 0.21 0.08 0.37 72.2 0.40 0.74

Panel D: Industry portfolios

winning 1 1.38 [0.19] 0.07 3 0.17 0.04 0.60 81.1 0.57 0.16

winning 2 1.29 [0.23] 0.11 1 0.25 0.10 0.96 38.7 0.45 0.14

winning 3 1.38 [0.19] 0.10 1 0.24 0.08 1.09 39.4 0.50 0.15

winning 4 1.56 [0.12] 0.10 6 0.24 0.07 0.38 78.6 0.50 0.17

CAPMbond 1.31 [0.22] 0.07 4 0.16 0.03 0.58 77.6 0.08 0.10

FF3 1.18 [0.31] 0.06 5 0.14 0.02 0.73 80.1 0.12 0.10

aug. FF3 1.50 [0.14] 0.08 7 0.19 0.04 0.37 81.0 0.19 0.13

FF5stkb 1.75∗ [0.07] 0.16 8 0.37 0.14 0.31 67.2 0.10 0.14

BBW 1.87∗∗ [0.05] 0.08 6 0.19 0.04 0.39 81.2 0.16 0.16

BSW 1.52 [0.13] 0.07 4 0.16 0.04 0.55 78.4 0.19 0.13

IPR 1.97∗∗ [0.04] 0.09 3 0.22 0.07 0.42 80.0 0.54 0.22

KPP 1.53 [0.13] 0.07 5 0.17 0.04 0.53 86.6 0.40 0.16
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e.g., in Bai et al. 2019). In panel B, we show the results for 25 size-maturity

portfolios and in panel C those for 25 maturity-rating portfolios. The results are

overall very similar to those for the characteristic long-short portfolios. The four

winning models along with the IPR model perform best. For the maturity-rating

portfolios, the KPP model also performs well. These models yield the lowest

(although still significant) GRS statistics, small average absolute alphas, and the

lowest squared Sharpe ratios of the portfolio alphas.

Panel D of Table 3.9 shows the results for 12 Fama & French (1997) corporate

bond industry portfolios. Most of the factor models can price these. The GRS

statistics are generally insignificant. The four winning models are among those not

rejected and perform well. The IPR model, on the other hand, fails for industry

portfolios with a significant GRS test and the largest squared Sharpe ratio from

the industry portfolio alphas.

3.5.4 Cross-sectional asset pricing tests

To complement our time-series asset pricing tests, we next perform cross-sectional

tests of the factor models. With these, we can test which factors and factor models

perform best for explaining cross-sectional differences in corporate bond returns.

To do so, we first regress the time series of each test asset return on a constant

and the model factors to determine the full-sample betas. Then, we run a cross-

sectional regression of the average test-asset excess returns on a constant and

the betas estimated in the first step. We account for model-misspecification and

errors-in-variables by using the robust standard errors of Kan, Robotti, & Shanken

(2013). We also use the standard errors and hypothesis tests for the ordinary least

squares (OLS) and generalized least squares (GLS) R2s provided by Kan et al.

(2013) and report the result of the Shanken (1992) T 2 test, for which the null

hypothesis is that all cross-sectional pricing errors are jointly zero.

As test assets, we use all the portfolios examined in the previous subsection:

23 characteristic long-short portfolios, 25 size-maturity portfolios, 25 maturity-

rating portfolios, and 12 industry portfolios. This wide range and heterogeneity
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of test assets is designed to obtain robust results (Lewellen et al. 2010).

The results are in Table 3.10. In the winning models, we find that mainly

the CRY and DUR factors can explain cross-sectional differences in corporate

bond returns. The risk premiums associated with these factors are economically

large and highly statistically significant. The MOMs factor has a marginally

insignificant positive risk premium. Finally, TERM does not seem to add much

in terms of explanatory power for the cross-section of corporate bond returns.

Thus, MOMs and TERM in the no. 1 winning model appear to primarily explain

time-series variation in corporate bond prices.20 Looking at the existing models,

we find that MKTb often yields a significant positive risk premium estimate. Also,

LRF, STR, MOMb, VAL, and BVL appear to be priced in (part of) the models

that they are included in.

Most important, however, when comparing models are the cross-sectional

R2s. The OLS R2s are all significantly greater than zero. For the no. 1 winning

model and the IPR model, the cross-sectional R2s are highest with 91.3%. Even

more importantly from an investment perspective is the GLS cross-sectional R2,

which gives a direct indication of the relative mean-variance efficiency of a factor

model (Kandel & Stambaugh 1995). The GLS R2 is clearly largest for the no. 1

winning model, with 10.1%.21 Thus, the test-asset-based cross-sectional regression

test further underlines the very good performance of the selected winning model.

20This is akin to the market factor for equity pricing. While it is essential for explaining
time-series variation and the level in equity prices, it has little power to explain cross-
sectional differences in average returns. Since the former is also very important, the equity
market remains an undisputed risk factor.

21Given the comparably short sample period and large overlaps in the factors of the
models, the differences in cross-sectional R2s are often not statistically significant. The
OLS R2 of the no. 1 winning model is significantly larger than those of the CAPMbond
and FF5stkb models. The GLS R2 is significantly larger than those of the CAPMbond,
FF3, FF5stkb, and BBW models (the GLS R2 is also significantly larger than that of
the no. 4 winning model).
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Table 3.10: Cross-Sectional Asset Pricing Tests

This table reports the results for test-asset-based cross-sectional asset pricing tests
of the existing corporate bond pricing models and the four winning models from the
model scan (sorted in ascending order such that winning 1 is the top model from Table
3.4). The existing corporate bond factor models include: (i) CAPMbond: {MKTb}, (ii)
FF3: {MKTb, TERM, DEF}, (iii) aug. FF3: {MKTb, TERM, DEF, LRF, MOMb}, (iv)
FF5stkb: {MKTs, SMB, HML, TERM, DEF}, (v) BBW: {MKTb, DRF, CRF, LRF}, (vi)
BSW: {MKTb, STR, MOMb, LTR}, (vii) IPR: {CRY, DUR, MOMb, MOMs, VAL}, and
(viii) KPP: {MKTb, CRY, DUR, BVL, VAL}. As test assets, we use the 23 long–short
portfolios based on the Kelly & Pruitt (2022) dataset along with the 25 double-sorted
size–maturity and maturity–rating portfolios and the 12 Fama & French (1997) industry
portfolios. We present the results of cross-sectional tests, where we first estimate full-
sample betas for each factor model and each test asset. Then we regress the average test
asset returns on these betas, the results of which are presented in this table. In the main
part of the table (below the heading Variables), we present the intercept (Const) as well
as the cross-sectional risk premia of the factors. For the t-statitics below in parentheses
we use the errors-in-variables and model-misspecification consistent standard errors of
Kan et al. (2013). In the next two columns we present the OLS R2 and the GLS R2 (both
in percentage points). For both, the standard errors in braces are based on Kan et al.
(2013) and the stars indicate the outcome of the test of the null hypothesis H0 : R2 = 0.
The final column presents the result of the Shanken (1992) T 2 test, for which the null
hypothesis is that all cross-sectional pricing errors are jointly zero. The corresponding
p-values are in brackets. ∗,∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level,
respectively.

Model Variables OLS R2 GLS R2 T 2

Const CRY DUR MOMs TERM

winning 1 0.08∗∗∗ 1.07∗∗∗ 0.54∗∗∗ 0.15∗ −0.03 91.3∗∗∗ 10.1∗∗∗ 365∗∗∗

(3.67) (6.30) (2.65) (1.46) (−0.11) {4.92} {3.51} [0.00]

Const CRY MOMs

winning 2 0.08∗∗∗ 0.66∗∗∗ 0.06 84.3∗∗ 7.96∗∗∗ 491∗∗∗

(3.11) (2.68) (0.54) {11.6} {2.81} [0.00]

Const CRY DEF MOMs

winning 3 0.09∗∗∗ 0.72∗∗∗ 0.11 0.03 85.4∗∗∗ 8.87∗∗∗ 472∗∗∗

(3.44) (2.78) (0.40) (0.28) {11.1} {3.18} [0.00]

Const CRY DUR MOMs

winning 4 0.08∗∗∗ 0.99∗∗∗ 0.57∗∗∗ 0.13 89.7∗∗∗ 8.82∗∗∗ 398∗∗∗

(3.60) (4.78) (2.64) (1.22) {5.76} {3.45} [0.00]

continued on the next page
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Table 3.10: Cross-Sectional Asset Pricing Tests (continued)

Model Variables OLS R2 GLS R2 T 2

Const MKTb

CAPMbond 0.10∗∗∗ 0.33∗∗∗ 69.6∗∗∗ 1.98∗∗∗ 567∗∗∗

(3.90) (2.96) {15.9} {1.24} [0.00]

Const MKTb TERM DEF

FF3 0.04∗∗ 0.41∗∗∗ 0.02 0.20 83.5∗∗∗ 2.74∗∗∗ 483∗∗∗

(1.87) (3.18) (0.07) (0.79) {9.44} {1.56} [0.00]

Const MKTb TERM DEF LRF MOMb

aug. FF3 0.04∗∗ 0.41∗∗∗ 0.07 0.16 0.38∗∗ −0.31 84.0∗∗∗ 4.79∗∗∗ 463∗∗∗

(1.91) (3.35) (0.20) (0.60) (2.20) (−0.58) {8.14} {1.93} [0.00]

Const MKTs SMB HML TERM DEF

FF5stkb 0.07∗ 0.81 0.88 −2.26∗∗∗ −0.21 0.53 81.0∗∗ 1.65 268∗∗∗

(1.61) (0.62) (0.54) (−3.50) (−0.37) (1.16) {12.0} {1.71} [0.00]

Const MKTb DRF CRF LRF

BBW 0.09∗∗∗ 0.33∗∗∗ 0.58 0.59∗∗ 0.43∗∗ 76.9∗∗ 4.34∗∗∗ 506∗∗∗

(3.71) (2.72) (0.55) (1.69) (2.04) {12.1} {1.73} [0.00]

Const MKTb STR MOMb LTR

BSW 0.05∗∗ 0.42∗∗∗ 0.91∗∗∗ −0.49 0.37 82.0∗∗∗ 3.87∗∗ 349∗∗∗

(1.96) (3.51) (2.73) (−1.07) (0.86) {10.6} {2.28} [0.00]

Const CRY DUR MOMb MOMs VAL

IPR 0.06∗∗∗ 0.99∗∗∗ 0.56∗∗∗ −0.59∗∗ 0.16 0.53∗∗∗ 91.3∗∗∗ 8.98∗∗∗ 365∗∗∗

(3.66) (4.55) (2.64) (−2.22) (1.01) (3.68) {5.24} {3.59} [0.00]

Const MKTb CRY DUR BVL VAL

KPP 0.09∗∗∗ 0.32∗∗∗ 1.00∗∗∗ 0.53∗∗∗ 0.48∗∗∗ 0.75∗∗∗ 89.1∗∗∗ 7.97∗∗∗ 400∗∗∗

(2.36) (2.49) (5.45) (2.60) (2.45) (4.96) {7.48} {2.82} [0.00]
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3.6 Explaining Corporate Bond Factors

Having established the very good performance of the winning models both using

the RHS and the test-asset-based LHS approach, we finally turn to a fundamental

question: What are the fundamental economic drivers behind the winning set of

factors?

The traditional view would be that the factors are likely related to

changes in perceptions about macroeconomic variables (e.g., Cochrane 2005;

Pukthuanthong et al. 2019). A recent alternative strand in the literature also

suggests intermediary frictions as an important driver of variation in asset prices

(e.g., He & Krishnamurthy 2013; Adrian, Etula, & Muir 2014; He, Kelly, & Manela

2017; Friewald & Nagler 2019; He, Khorrami, & Song 2022). In particular the

corporate bond market, which largely operates with over-the-counter transactions,

relies strongly on the services of broker-dealer intermediaries. On top of that, it is

also possible that the factors are driven by (il)liquidity, a very important feature

in corporate bond markets, or total market risk and risk aversion.

As explanatory variables, we thus follow He et al. (2022) and consider

intermediary distress and intermediary inventory. For intermediary distress, we

obtain data on the squared intermediary leverage ratio from He et al. (2017)

and data on the noise variable from Hu, Pan, & Wang (2013). Intermediary

distress is the first principal component of the changes in the two variables. For

intermediary inventory, we aggregate the inventories of dealers using data from

TRACE. Furthermore, we consider the TED spread as a proxy for intermediary

funding costs (Friewald & Nagler 2019). We obtain the data from the Federal

Reserve Bank of St. Louis (FRED). As macroeconomic variables, we consider the

change in the seasonally adjusted monthly industrial production and the monthly

inflation rate. For both, we use the Archival FRED (ALFRED) database, which

contains the vintage data available at each point in time. We also consider the

corporate bond market illiquidity of Dick-Nielsen, Feldhütter, & Lando (2012).

Finally, we include the VIX as a measure of equity risk and investor risk aversion.
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The data are from the Chicago Board Options Exchange (CBOE).

For each factor contained in at least 1 of the 4 winning models, we

then perform a regression of the monthly returns on a constant and the

contemporaneous changes in these variables. We present the results in Table 3.11.

We standardize all explanatory variables to have a mean of zero and a standard

deviation of one.

Starting with CRY, we find that the factor is significantly negatively related

to the change in industrial production, the change in bond illiquidity, and the

change in the VIX. Thus, the factor returns are particularly low in times of

increasing illiquidity and stock market volatility or risk aversion. This result

is also consistent with what one would intuitively expect. Carry returns are

high if market conditions stay the same, but if they do not, as indicated by

an increase in illiquidity or volatility, the factor performs poorly. On the other

hand, CRY returns tend to be high if industrial production decreases. Thus, from

a macroeconomic perspective it partially behaves like a hedge.

DEF is also negatively exposed to changes in bond illiquidity and the VIX.

DUR, on the other hand, has significant negative exposures to intermediary

distress, inflation, illiquidity, and the VIX. Thus, the duration factor is indeed

related to intermediary frictions. An increase in intermediary distress clearly

reduces the DUR return. This result is intuitively consistent, as corporate

bonds with long duration are likely subject to particularly high demand for

intermediation since there are likely few counterparties willing to trade in them.

Similarly, an increase in consumer prices has a negative impact on the factor.

Inflation tends to be followed by interest rate rises, to which long-duration

corporate bonds are particularly sensitive. Thus, both the traditional view and

the intermediary asset pricing view have some merit in explaining the returns of

the duration factor. The exposures to illiquidity and the VIX are similar to those

of the CRY and DEF factors.

Next, we analyze the MOMs factor. It has only a weakly significant exposure

to one of the explanatory variables: inflation. Thus, when consumer prices
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Table 3.11: Explaining Corporate Bond Factors

This table reports the results of regressions of the excess returns of the factors in any

of the four winning models on different economic variables. We run contemporaneous

multiple time-series regressions of the monthly factor long–short returns on a constant,

the change in intermediary distress, the change in inventories held by intermediaries,

the change in the TED spread, the change in industrial production, the inflation rate,

the change in bond illiquidity, and the change in the VIX. The factor returns are in

percentage points and all explanatory variables are standardized to have a mean of zero

and a standard deviation of one. The t-statistics (in parentheses) are based on Newey &

West (1987) standard errors with 4 lags. ∗,∗∗, and ∗∗∗ indicate significance at the 10%,

5%, and 1% level, respectively. Adj. R2 presents the adjusted R2s (in percentage points).

CRY DEF DUR MOMs TERM

Const 0.95∗∗∗ 0.06 0.52∗∗∗ 0.22∗∗∗ 0.46∗∗

(7.00) (0.71) (3.10) (4.93) (2.30)

∆intermediary distress −0.26 −0.21 −0.36∗∗ 0.13 0.34

(−1.30) (−0.84) (−2.05) (1.26) (0.88)

∆inventory −0.08 −0.08 −0.19 −0.03 −0.25

(−0.56) (−0.93) (−0.97) (−0.59) (−1.44)

∆TED spread −0.05 −0.08 0.22 0.13 −0.13

(−0.30) (−0.41) (1.00) (1.01) (−0.43)

∆INDPRO −0.43∗∗ −0.21 0.20 −0.01 0.65∗∗

(−2.00) (−1.38) (1.21) (−0.07) (1.98)

INFL −0.22 −0.07 −0.38∗∗ −0.11∗ −0.32

(−1.53) (−0.83) (−2.03) (−1.87) (−1.32)

∆bond illiquidity −0.57∗∗∗ −0.80∗∗∗ −0.72∗∗∗ −0.03 0.21

(−2.60) (−2.90) (−2.76) (−0.19) (0.42)

∆VIX −0.42∗∗ −0.55∗∗∗ −0.69∗∗ 0.08 0.23

(−2.48) (−3.56) (−2.46) (0.95) (0.53)

Adj. R2 24.6 38.6 27.7 6.94 5.26
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increase, the MOMs factor returns decrease. Finally, TERM is positively exposed

to industrial production. When industrial production falls, TERM returns are

negative. Thus, this factor appears to be a proxy for macroeconomic risk.

Thus, the main drivers of three of the five most important factors are

illiquidity and volatility. However, changes in macroeconomic conditions and

intermediary frictions also play a key role for part of the factors.

3.7 Conclusion

To the best of our knowledge, we are the first to comprehensively examine a

large set of the most prominent corporate bond factors. We pool factors that

originate from different previous studies. First, we establish whether the factors

systematically move corporate bond prices. For those that do, we adopt a Bayesian

marginal likelihood-based approach proposed by Barillas & Shanken (2018) and

Chib et al. (2020). In this second step, we simultaneously compare all 1,024

possible models that can be formed as subsets of these factors.

The main finding that emerges from our analysis is that the best factor model

for corporate bond returns is based on the combination of carry, duration, stock

momentum, and term structure factors. The result indicates that only a small

subset of the 23 considered factors really matters for corporate bond pricing. For

example, we find that the prominent recent factors of Bai et al. (2019) among

many others do not systematically move prices. Among those that do, the bond

market, bond volatility, long-term reversal, bond momentum, uncertainty, and

volatility risk seem to be redundant factors.

The prominent existing factor models suggested in the corporate bond

literature deliver significantly smaller squared Sharpe ratios than the winning

model and fail to explain its noncommon factors. Further analysis shows that the

winning model from the Bayesian model scan overall explains reasonably well the

time-series and cross-sectional variation of corporate bond returns (represented

by various test assets). Among the best-performing existing models are the Israel
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et al. (2018) and Kelly et al. (2023) models, which share many factors with the

winning model.

Our study can help academics and practitioners separate useful factors from

redundant ones. Based on our search from the expanding list of bond factors, we

build an “optimal” corporate bond factor model. The findings in this chapter thus

have important practical implications. The winning factor model can be used as

a benchmark model for future research, for investors in corporate bond markets

to implement factor-investing strategies, and to evaluate performance.
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B Appendix

B.1 Variable Definitions and Factor Construction

Variable Definitions

• Bond illiquidity (illiq) (Bao, Pan, & Wang 2011) is constructed to extract

the transitory component from the bond price. Specifically, let ∆pi,t,d =

pi,t,d−pi,t,d−1 be the log price change for bond i on day d of month t. Then,

the final illiquidity measure uses the daily returns of bond i during month t

to calculate illiqi,t = −Covt(∆pi,t,d,∆pi,t,d+1). Under the assumption that

the fundamental value of a bond follows a random walk, this measure only

depends on the transitory component of the price. The higher the value of

illiqi,t the more illiquid is a bond.

• Bond volatility (vol) (Bai et al. 2019) is the bond’s volatility over the

past 24 months.

• Credit rating (cr) (Bai et al. 2019) is measured via the credit ratings

provided by rating agencies. Bond-level rating information is from the

Mergent FISD historical ratings. All ratings are assigned a number to

facilitate the analysis. A larger number indicates higher credit risk, or lower

credit rating. Investment-grade bonds have ratings from 1 (refers to AAA)

to 10 (BBB-). Non-investment-grade bonds have ratings starting from 11

(BB+).

• Carry (cry) (Israel et al. 2018) is measured using the option-adjusted

spread (OAS). It is the fixed difference between a bond’s (option-adjusted)

yield for which the discounted expected payments match the market price

and the corresponding Treasury yield.

• Downside risk (dr) (Bai et al. 2019) is proxied by the 5% VaR, which

is the second-lowest monthly return observation over the past 36 months,
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then multiplied by −1 for the ease of interpretation.

• Duration (dur) (Israel et al. 2018) is the derivative of the value of the

bond with respect to the credit spread, divided by the current bond price.

• Economic uncertainty beta (βJLNUNC) (Bali et al. 2017a, 2021b) is

estimated from monthly rolling regressions of excess bond returns on the

economic uncertainty index over a 36-month window, while controlling for

the bond market portfolio return (MKTb) for each bond and each month

of our sample. We use the Jurado, Ludvigson, & Ng (2015) 1-month-ahead

economic uncertainty index from Sydney Ludvigson’s website.

• Policy uncertainty beta (βEPU
UNC, βEPUtax

UNC ) (Tao et al. 2022) is estimated

from monthly rolling regressions of excess bond returns on a policy

uncertainty index over a 36-month window, while controlling for MKTs,

SMB, HML, DEF, and TERM. We use the economic policy uncertainty

index (βEPU
UNC) of Baker, Bloom, & Davis (2016) as well as the tax policy

uncertainty subindex, as proposed by Lee (2022) (βEPUtax
UNC ). We download

both from https://www.policyuncertainty.com.

• Short-term reversal, bond momentum, and long-term reversal

(str, momb, ltr) (Jostova et al. 2013; Bali et al. 2017b, 2021a; Bai

et al. 2019) are measures based on the bonds’ past returns. The short-term

reversal of a bond i for month t is its return during the previous month.

Bond momentum is the past 6-month cumulative return, while skipping the

most recent month. Long-term reversal is the past 36-month cumulative

return.

• Spread to D2D (spr_d2d) (Correia, Richardson, & Tuna 2012; Kelly

et al. 2023) is the option-adjusted spread (see Carry) divided by one minus

the cumulative density function of the Shumway (2001) distance-to-default

measure.
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• Stock momentum (moms) (Gebhardt et al. 2005a) is the past 6-month

cumulative stock return, while skipping the most recent month.

• Value-at-risk (VaR) (Bai et al. 2019) is the second-lowest corporate bond

excess return during the previous 36 months (minimum 24 months).

• Volatility beta (βVIX) (Chung et al. 2019) is estimated from the monthly

rolling regressions of excess bond returns on the change in the volatility

index (∆V IX) and its first lag over a 60-month window, while controlling

for MKTs, SMB, HML, DEF, and TERM. βV IX is the sum of of the

sensitivities toward the ∆V IX and its first lag, which captures the response

and lagged response, respectively, to aggregate volatility shocks. The V IX

data are from the Chicago Board Options Exchange (CBOE).

Factor Construction

• Bond market factor (MKTb) is computed as the value-weighted (using

the bonds’ amount outstanding) average return of all corporate bonds in

the sample minus the 1-month Treasury-bill rate.

• Bond momentum factor (MOMb) (Bali et al. 2017b; Jostova et al.

2013) is the difference between the average returns of the high-bond-

momentum portfolios and the low-bond-momentum portfolios across the

rating quintile portfolios. We form the value-weighted bivariate portfolios

by independently sorting bonds into five portfolios based on their credit

ratings, and five portfolios based on their bond momentum.

• Bond volatility factor (BVL) (Kelly et al. 2023) is the difference

between the average returns of the high-bond-volatility portfolios and the

low-bond-volatility portfolios across the rating quintile portfolios. We form

the value-weighted bivariate portfolios by independently sorting bonds into

five portfolios based on their credit ratings, and five portfolios based on

their bond volatility.
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• Carry factor (CRY) (Israel et al. 2018; Kelly et al. 2023) is the difference

between the average returns of the high-carry portfolios and the low-carry

portfolios across the rating quintile portfolios. We form the value-weighted

bivariate portfolios by independently sorting bonds into five portfolios based

on their credit ratings, and five portfolios based on their carry.

• Credit risk factor (CRF) (Bai et al. 2019) is the average of the credit risk

factors based on the bivariate sorts with downside risk, illiquidity, and short-

term reversal (CRFdr, CRFilliq, and CRFstr). In each case, the CRF factor

is the difference between the average returns of the low-rating portfolios

and the high-rating portfolios across the quintile portfolios based on the

respective other characteristics. We take the MKTb, CRF, DRF, and LRF

factors directly from Bai et al. (2019).

• Duration factor (DUR) (Israel et al. 2018; Kelly et al. 2023) is the

difference between the average returns of the high-duration portfolios and

the low-duration portfolios across the rating quintile portfolios. We form

the value-weighted bivariate portfolios by independently sorting bonds into

five portfolios based on their credit ratings, and five portfolios based on

their duration.

• Default factor (DEF) (Fama & French 1993) is the difference between the

return on a market portfolio of long-term corporate bonds (the composite

portfolio on the corporate bond module of Ibbotson Associates) and the

long-term government bond return. The data for DEF and TERM are from

Amit Goyal’s webpage.

• Downside risk factor (DRF) (Bai et al. 2019) is the difference between

the average returns of the high-VaR portfolios and the low-VaR portfolios

across the rating quintile portfolios.

• Liquidity risk factor (LRF) (Bai et al. 2019) is the difference between

the average returns of the high-illiquidity portfolios and the low-illiquidity

portfolios across the rating quintile portfolios.
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• Long-term reversal factor (LTR) (Bali et al. 2017b, 2021a) is

the difference between the average returns of the low-long-term-reversal

portfolios and the high-long-term-reversal portfolios across the rating

quintile portfolios. We form the value-weighted bivariate portfolios by

independently sorting bonds into five portfolios based on their credit

ratings, and five portfolios based on their long-term reversal.

• Short-term reversal factor (STR) (Bai et al. 2019) is the difference

between the average returns of the short-term-loser portfolios and the short-

term-winner portfolios across the rating quintile portfolios. We form the

value-weighted bivariate portfolios by independently sorting bonds into five

portfolios based on their credit ratings, and five portfolios based on their

short-term reversal.

• Stock momentum factor (MOMs) (Israel et al. 2018) is the difference

between the average returns of the high-stock-momentum portfolios and

the low-stock-momentum portfolios across the rating quintile portfolios.

We form the value-weighted bivariate portfolios by independently sorting

bonds into five portfolios based on their credit ratings, and five portfolios

based on their stock momentum.

• Term factor (TERM) (Fama & French 1993) is the difference between

the monthly long-term government bond return (from Ibbotson Associates)

and the 1-month Treasury-bill rate.

• Uncertainty risk factors (UNC, EPU, & EPUtax) (Bali et al.

2017a, 2021b; Tao et al. 2022; Lee 2022) is the difference between the

average returns of the high-βUNC portfolios and the low-βUNC portfolios

across the rating quintile portfolios. We form the value-weighted bivariate

portfolios by independently sorting bonds into five portfolios based on

their credit ratings, and five portfolios based on their uncertainty beta

(βUNC) estimates. For UNC, we use βJLNUNC , for EPU βEPU
UNC , and for EPUtax

βEPUtax
UNC .
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• Value factor (VAL) (Kelly et al. 2023) is the difference between

the average returns of the high spread-to-D2D portfolios and the low

spread-to-D2D portfolios across the rating quintile portfolios. We form the

value-weighted bivariate portfolios by independently sorting bonds into five

portfolios based on their credit ratings, and five portfolios based on their

spread to D2D.

• Volatility risk factor (VOL) (Chung et al. 2019) is the difference between

the average returns of the high-βV IX portfolios and the low-βV IX portfolios

across the rating quintile portfolios. We form the value-weighted bivariate

portfolios by independently sorting bonds into five portfolios based on their

credit ratings, and five portfolios based on their uncertainty beta (βV IX)

estimates.

• Equity factors (Fama & French 2015; Bektić et al. 2019). In addition to

the corporate bond factors above, we also consider the five factors of Fama

& French (2015). These include the stock market (MKTs), size (SMB),

value (HML), profitability (RMW), and investment (CMA) factors. We

take the factors from Kenneth French’s data library.22

B.2 Model Selection Method Implementation Details

The first term on the RHS of Equation (3.4) is

− (K − Lj)Lj

2
log 2− T̃Lj

2
log π − Lj

2
log (T̃ kj + 1)

− (T̃ + Lj −K)

2
log |ψj |+ log ΓLj

(
T̃ + Lj −K

2

)
.

22Bektić et al. (2019) show that investment and profitability factors based on corporate
bond data have some explanatory power for corporate bond returns. When using these
instead of the Fama & French (2015) equity factors, the results are similar. Both factors
are eliminated by the first-step identification protocol.
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The second term on the RHS of Equation (3.4) is

(K − Lj)Lj

2
log 2− (K − Lj)(T̃ − Lj)

2
log π

− (K − Lj)

2
log |W ∗

j | −
T̃

2
log |ψ∗

j |+ log ΓK−Lj

(
T̃

2

)
,

where T̃ = T − nt and

W ∗
j =

T∑
t=nt+1

f̃j,tf̃
′
j,t,

ψj =
T∑

t=nt+1

(f̃j,t − ˆ̃αj)(f̃j,t − ˆ̃αj)
′ +

T̃

T̃ kj + 1

(
ˆ̃αj − α̃j0

)(
ˆ̃αj − α̃j0

)′
ψ∗
j =

T∑
t=nt+1

(f∗j,t − B̂∗
j,f f̃j,t)(f

∗
j,t − B̂∗

j,f f̃j,t)
′.

Γd(.) denotes the d-dimensional multivariate gamma function. All other variables

are as previously defined. Hats on the parameters indicate that they are the

estimates obtained by linear regressions of Equations (3.2) and (3.3).

Following the recommendation of Chib et al. (2020), we use this model along

with the model-specific prior α̃j |Mj ∼ N (α̃j0, kjΣj) with

α̃j0 = n−1
t

nt∑
t=1

f̃j,t,

where nt = tr × T is the size of the training sample, which we set to tr = 10%

of the data, as in Chib et al. (2020). The model-specific multiplier kj can be

computed as

kj =
1− tr

tr
× L−1

j sum(diag(Vj0)/diag(Σ̂j0)),

where Vj0 is the negative inverse Hessian over α̃j and Σ̂j0 the estimate of the

covariance matrix Σj in the training sample.
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Chapter 4

Factor Pricing Across Asset

Classes∗

4.1 Introduction

Well-diversified investors should construct their portfolios from as broad a range

of assets as possible. However, most academic studies typically examine different

markets in isolation, developing asset-class-specific factor models for stocks,

bonds, commodities, and the like. Only a few recent studies examine anomalies

and other phenomena jointly across asset classes (e.g., Asness, Moskowitz, &

Pedersen, 2013; Koijen et al., 2018). Under the law of one price and free portfolio

formation, however, Cochrane (2009) shows that theoretically there should be a

single stochastic discount factor that prices assets of all classes. Therefore, from

both a theoretical and a practical perspective, it is worthwhile to search for a

handful of factors that span the Markowitz (1952) mean-variance-efficient frontier

and capture the returns of all assets.

However, to the best of our knowledge, important questions related to this

endeavor have not yet been fully resolved, for example: To what extent can

∗This chapter is based on the Working Paper “Factor Pricing Across Asset Classes”
authored by Thuy Duong Dang, Fabian Hollstein and Marcel Prokopczuk, 2023.
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the factors of different asset classes also price the assets of others? What is

the degree of integration between the different asset classes? What does an

optimal (empirical) stochastic discount factor across all asset classes look like?

What is an appropriate benchmark model for portfolios of global securities across

asset classes? The objectives of this chapter are therefore twofold. First, we

comprehensively examine the prominent traded factors proposed in the asset

pricing literature for various individual asset classes, and investigate the extent

of market integration based on their explanatory power across other asset classes.

Second, we attempt to identify an integrated empirical model based on a sparse

number of risk factors that spans and explains returns across multiple asset classes.

To capture the widest possible range of investment opportunities, we

consider a broad set of factors across seven major asset classes: U.S. equities,

international equities, corporate bonds, commodities, currencies, equity indices,

and government bonds. In total, we use 77 well-known empirical factors that

typically enjoy consensus support from both academics and practitioners.

The first major objective of this chapter is to examine the degree of market

integration. We do this through the lens of the pricing power of factor models

from one asset class for others. As a first simple step, we show that among the

market factors of the different asset classes, at least two are necessary to capture

the risk premia of the others.

More importantly, we examine the pricing power of the best models of

each individual asset class for other asset classes. To do this, we first have to

identify the best models in each asset class. Rather than relying solely on existing

models, we also combine the existing factors together to create new optimal

models. Thus, for each individual asset class, we first identify viable risk factors

among the candidates by subjecting them to the necessary condition of the factor

identification protocol proposed by Pukthuanthong et al. (2019) (PRS). Then, we

scan for the best model among the surviving factors by applying the Bayesian

marginal-likelihood factor model selection algorithm developed by Barillas &

Shanken (2018) and Chib et al. (2020) (BS–CZZ).
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We find that factor models that specialize in one asset class typically have

difficulty pricing the factors from other asset classes. Thus, we reject perfect

integration. There appear to be multiple underlying systematic risk drivers across

asset classes and markets. However, we also detect some cross-market linkages.

These findings further motivate us to pursue the second main objective of

this study, which is to find an optimal integrated factor model across all asset

classes. To avoid creating high-dimensional factor models, we focus on the best

factors for each asset class when building the combined model by again using the

BS–CZZ method. The optimal model consists of a total of eight factors, including

the U.S. equity market, the size, management, and quality-minus-junk factors

for international equities, the carry and equity momentum factors for corporate

bonds, the currency momentum factor, and the equity index carry factor. Factors

from the major asset classes (equities and corporate bonds) prove to be the most

important. Furthermore, not all asset classes need to be included in the optimal

model: commodity and government bond factors are completely absent from the

top model and a currency factor is only included in one of the top three models.

Thus, the fact that not all asset classes are needed suggests the presence of some

degree of cross-market linkages.

Having constructed an optimal integrated model, the natural next step is to

investigate its performance. Specifically, we analyze its superiority over existing

models and its explanatory power for a comprehensive list of prominent factors

and a large battery of test portfolios across the seven major asset classes. To

begin, we conduct pairwise comparisons of the relative performance of the optimal

unified factor model and several prominent existing models using the Barillas et al.

(2020) test for equality of squared Sharpe ratios. We find that the top integrated

factor model achieves a substantially higher squared Sharpe ratio than all the

existing single- and multi-asset-class models we consider. Its Sharpe ratio also far

exceeds those of all the optimal single-asset-class models we identify. All of these

differences are highly statistically and economically significant. Furthermore, we

show that the performance differences also persist in an out-of-sample Sharpe ratio
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analysis. Thus, the optimal integrated model clearly dominates all single-asset-

class models. The findings indicate that a multi-asset, multi-factor investment

approach provides substantial diversification benefits and significantly enhances

the investment opportunity set available to investors.

We continue the examination of model performance by performing spanning

tests of all remaining factors across asset classes on the top integrated model to

identify explicit cross-market linkages. Overall, this model is able to explain an

extensive list of prominent existing factors from multiple asset classes. While we

reject perfect integration overall, we clearly detect some cross-market-linkages, in

that the factors of one market are typically also exposed to some extent to the

factors in the top integrated model from other asset classes.

Finally, we examine the explanatory power of the top integrated model on

a broad set of test portfolios across asset classes. We compare this model to the

existing models for each asset class, based on several ubiquitous performance

measures. The optimal integrated model generally produces low Gibbons et al.

(1989) GRS statistics and small numbers of significant alphas. At the same

time, it can deliver time-series R2s that are comparatively high, and average

absolute alphas that are comparatively low, on a par with many existing

asset-class-specific models. These results suggest that the integrated model has

competitive explanatory power for the returns of each individual asset class.

Our main contribution is to provide an integrated view of asset pricing.

Moving beyond the convention of studying individual asset classes separately, we

uncover an optimal factor model that can span the multi-asset return space. Our

findings have important implications for both academics and practitioners. Our

proposed model can be a benchmark for future research in pricing securities across

different asset classes, and a useful guide for investors to exploit factor-based

investing through a multi-asset, multi-factor lens.

A few previous studies link risk factors in one asset class to returns in other

asset classes. These typically focus on the relationships between only two asset

classes. Even for stocks and bonds, which are contingent claims on the value of
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the same underlying assets, the exact degree of integration is still a matter of

debate (e.g., Choi & Kim, 2018; Kelly et al., 2023). Other papers also examine

further empirical linkages between markets, usually U.S. equities and others, such

as currencies (e.g., Karolyi & Wu, 2021; Fan, Londono, & Xiao, 2022), sovereign

bonds (e.g., Borri & Verdelhan, 2011), or commodities (e.g., Bakshi, Gao, & Rossi,

2019). Links between currency and fixed income markets may result from hedging

activities of intermediaries (e.g., Korsaye, Trojani, & Vedolin, 2023).

However, most of the asset pricing literature has been devoted to discovering

new factors to explain different asset classes in isolation. Only a few previous

studies suggest that there is some common structure among asset pricing factors

in different markets. For example, factors such as value and momentum (Asness

et al., 2013), carry (Koijen et al., 2018), betting-against-beta (Frazzini & Pedersen,

2014), quality-minus-junk (Asness, Frazzini, & Pedersen, 2019), and time-series

momentum (Moskowitz, Ooi, & Pedersen, 2012) have been shown to work across

multiple asset classes.

Our work contributes to the small but growing literature on asset pricing

across asset classes. Two important studies in this area are Asness et al. (2013) and

Cooper, Mitrache, & Priestley (2022). The former introduce a simple global three-

factor model consisting of a global market factor plus value and momentum to

explain the returns of their 48 value-and-momentum-everywhere (VME) portfolios

across different markets and asset classes. Cooper et al. (2022) study the pricing

performance of a global five-macroeconomic-factor model for, among others, the

48 VME portfolios.1

Our research approach allows us to analyze market integration across asset

classes much more directly than in previous studies. In particular, a broad

consideration of a wide range of factors is important to comprehensively analyze

the extent and limits of cross-market linkages. Moreover, previous studies that

focus on a few factors or fixed models are unlikely to have come close to identifying

1He et al. (2017) also study an intermediary asset pricing factor across different asset
classes. However, Gospodinov & Robotti (2021) argue that the intermediary factor does
not provide incremental information to the market factor.
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optimal factor models for multi-asset, multi-factor investors.

The remainder of this chapter is organized as follows. Section 4.2 describes

the data. Sections 4.3 and 4.4 analyze market integration across asset classes. In

Section 4.5, we generate and analyze an optimal integrated factor model across

asset classes. Finally, Section 4.6 provides concluding remarks. The appendix to

this chapter contains a robustness check and additional descriptions of the data

and methods used in this chapter.

4.2 Data

4.2.1 Candidate Factors

We consider a total of 77 factor candidates from seven major asset classes,

including U.S. equities, international equities (global ex-U.S.), corporate bonds,

currencies, commodities, government bonds, and global equity indices.2 Their

common sample period available for analysis is from August 2006 to December

2019.3 Note that our sample period is largely out-of-sample or post-publication for

many of the factors. Thus, our results are likely to provide a realistic assessment

of the risk and return that investors can achieve with these factors going forward.

In Table 4.1, we summarize the list of the candidate factors proposed in

the specialized literature for each of the asset classes we consider in our analysis.

We include a total of 21 U.S. equity factors, including those of Fama & French

(1993, 2018), Pástor & Stambaugh (2003), Asness & Frazzini (2013), Frazzini &

Pedersen (2014), Hou et al. (2015); Hou, Mo, Xue, & Zhang (2021), Stambaugh

& Yuan (2017), Asness et al. (2019), and Daniel et al. (2020). We also include a

2Factor and portfolio data are taken directly from the authors’ websites. Detailed
links to the web sources are in Table C.1 of the appendix to this chapter . We calculate
a small number of factors ourselves that are not directly available. Information on these
is also given in the same table.

3These starting and ending dates of the sample period are necessary to have as broad
coverage as possible across asset classes. In the appendix to this chapter, we also consider
a longer sample period, while excluding some important asset classes with shorter time
periods. The results are qualitatively similar.
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4.2. DATA

total of 13 international equity factors from Hanauer (2020) and Jensen, Kelly, &

Pedersen (2022). Our sample also includes 18 corporate bond factors from Fama

& French (1993), Bali et al. (2017b, 2021b), Bai et al. (2019), Chung et al. (2019),

Lee (2022), Tao et al. (2022), and Kelly et al. (2023). In addition, we have five

commodity factors from Moskowitz et al. (2012) and Ilmanen, Israel, Moskowitz,

Thapar, & Lee (2021), eight foreign exchange factors from Lustig, Roussanov, &

Verdelhan (2011), Moskowitz et al. (2012), Verdelhan (2018), and Ilmanen et al.

(2021), six equity index factors and six government bond factors, both also from

Moskowitz et al. (2012) and Ilmanen et al. (2021). Thus, there are at least five

candidate factors for each asset type.4

Table C.2 of the appendix to this chapter provides the summary statistics of

the monthly returns of all candidate factors. Consistent with McLean & Pontiff

(2016), we find that many of the U.S. equity factors do not yield a statistically

significant average return over our sample period. Performance is stronger for

other asset classes, particularly international equities, corporate bonds, and

government bonds. Across asset classes, commodity factors appear to be the most

volatile. Among asset classes, time-series momentum factors tend to have the

highest volatilities.

Figure C.2 of the appendix to this chapter shows that there are significant

correlations between different factors within and across asset classes. In particular,

the highest correlations, exceeding 0.8, are among the following factor sets

within asset classes: {SMB_useq, ME_useq, SMB_useqsy}, and {CMA_useq,

IA_useq} for U.S. equities, {RMW_inteq, ROE_inteq} for international

equities, and {MKT_cb, VOL_cb, DUR_cb} for corporate bonds. However,

there are also high correlations between the factors across asset classes for

the sets {MKT_useq, MKT_inteq, MKT_eqi}, {MOM_useq, MOM_inteq,

MOM_EW}, and {TERM_cb, MKT_govtb}. It is therefore likely that these

factors are exposed to similar sources of economic risk and are not all that different

4We do not include the intermediary factor of He et al. (2017) because Gospodinov
& Robotti (2021) argue that it carries essentially the same information as the market
factor. For our sample period, we also find that the intermediary factor can be spanned
by the U.S. equity market factor, leaving an alpha that is insignificant at the 5% level.
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4.2. DATA

(Gospodinov & Robotti, 2021). Therefore, when constructing optimal models, we

consider only those that include at most one of the factors in these sets.

4.2.2 Existing Models

In addition to the individual factors, we also consider a list of prominent existing

factor models of all asset classes for comparison, as detailed in Table 4.2. In the

spirit of the Capital Asset Pricing Model (CAPM), we consider a single-factor

model of the corresponding market factor for each asset class. All models for

international equities are in the spirit of the models proposed for the U.S. equities,

but their factors are constructed from stocks in markets other than the U.S.

Some models are augmented versions of the corresponding models. The number

of factors included in a model specialized for one asset class typically ranges from

one to six. Most of the factor models include a market factor.

4.2.3 Test Assets

Part of the model selection and the asset pricing tests are also based on test assets.

Thus, for each asset class, we also obtain portfolios that capture the cross-sectional

heterogeneity in these markets. For U.S. equities, we use 207 characteristic long-

short portfolios from Chen & Zimmermann (2021) and 30 industry portfolios from

Kenneth French’s library. For global equities (excluding the U.S.), we use 153

characteristic long-short portfolios of Jensen et al. (2022) and 125 double-sorted

portfolios based on different pairs of characteristics, derived from developed and

emerging markets from Kenneth French’s library.

For corporate bonds, as in Chapter 3, we use the double-sorted portfolios

on size and the other 23 bond characteristics from the Kelly & Pruitt (2022)

dataset, 25 size-maturity and 25 rating-maturity portfolios, and 12 industry

portfolios. For commodities, we consider a list of 23 commodities, using data

from the Commodity Research Bureau (CRB). For each commodity, we use the

nearest-to-maturity futures contracts. We roll over the contracts at the end of the
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CHAPTER 4. FACTOR PRICING ACROSS ASSET CLASSES

Table 4.2: List of Existing Models for Different Asset Classes

This table lists the prominent existing factor models specialized for each of the seven

major asset classes, as well as a global factor model. For each asset class, there is a

single-factor model of the corresponding market factor in the spirit of the CAPM. All

models for international equities are in the spirit of the models proposed for U.S. equities.

Some models are augmented versions of the corresponding models.

Authors Model Factors

U.S. Equities
CAPM_useq MKT_useq

Fama & French (1993) FF3_useq MKT_useq, SMB_useq, HML_useq
Carhart (1997) C4_useq MKT_useq, SMB_useq, HML_useq, MOM_useq
Fama & French (2015) FF5_useq MKT_useq, SMB_useq, HML_useq, RMW_useq, CMA_useq
Fama & French (2018) FF6_useq MKT_useq, SMB_useq, HML_useq, RMW_useq, CMA_useq, MOM_useq
Hou et al. (2015) HXZ4_useq MKT_useq, ME_useq, IA_useq, ROE_useq
Hou et al. (2021) HXZ5_useq MKT_useq, ME_useq, IA_useq, ROE_useq, EG_useq
Daniel et al. (2020) DHS_useq MKT_useq, PEAD_useq, FIN_useq
Stambaugh & Yuan (2017) SY_useq MKT_useq, SMB_useqsy, MGMT_useq, PERF_useq

International Equities
CAPM_inteq MKT_inteq
FF3_inteq MKT_inteq, SMB_inteq, HML_inteq
C4_inteq MKT_inteq, SMB_inteq, HML_inteq, MOM_inteq
FF5_inteq MKT_inteq, SMB_inteq, HML_inteq, RMW_inteq, CMA_inteq
FF6_inteq MKT_inteq, SMB_inteq, HML_inteq, RMW_inteq, CMA_inteq, MOM_inteq
HXZ4_inteq MKT_inteq, SMB_inteq, CMA_inteq, ROE_inteq
SY_inteq MKT_inteq, SMB_inteq, MGMT_inteq, PERF_inteq

Corporate Bonds
CAPM_cb MKT_cb

Fama & French (1993) FF3_cb MKT_cb, TERM_cb, DEF_cb
Bai et al. (2019) BBW MKT_cb, DRF_cb, CRF_cb, LRF_cb
Bali et al. (2017b) BSW MKT_cb, STR_cb, MOM_cb, LTR_cb
Israel et al. (2018) IRP Carry_cb, Value_cb, DUR_cb, MOM_cb, MOM_cbeq
Kelly et al. (2023) KPP MKT_cb, Carry_cb, VAL_cb, DUR_cb, VOL_cb

aug. FF3_cb MKT_cb, TERM_cb, DEF_cb, LRF_cb, MOM_cb
Fama & French (1993) FF5_cb MKT_useq, SMB_useq, HML_useq, TERM_cb, DEF_cb

Commodities
CAPM_cm MKT_cm

Bakshi et al. (2019) BGR_cm MKT_cm, MOM_cm, Carry_cm
Ilmanen et al. (2021) AQR_cm MKT_cm, Value_cm, MOM_cm, Carry_cm

Currencies
CAPM_fx MKT_fx

Ilmanen et al. (2021) AQR_fx Value_fxaqr, MOM_fxaqr, Carry_fxaqr
Lustig et al. (2011) LRV2011 MKT_fx, HML_fx
Verdelhan (2018) Verdelhan2018 Carry_fx, Dollar_fx

Equity Indices
CAPM_eqi MKT_eqi

Ilmanen et al. (2021) AQR_eqi MKT_eqi, Value_eqi, MOM_eqi, Carry_eqi, Defensive_eqi

Government Bonds
CAPM_govtb MKT_govtb

Ilmanen et al. (2021) AQR_govtb MKT_govtb, Value_govtb, MOM_govtb, Carry_govtb, Defensive_govtb

Across Asset Classes
Asness et al. (2013) AMP_across MKT_global, VAL_EW, MOM_EW
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month that is two months before expiration. We also add six value and momentum

commodity portfolios from Asness et al. (2013) to the pool of commodity test

assets. For currencies, we combine two sets of currency portfolios to arrive at

a total of twelve portfolios. The first set of six currency portfolios is sorted on

the interest rate from Lustig et al. (2011). The second set contains three sorted

portfolios (low, medium, and high) for each value and momentum from Asness

et al. (2013).

For global government bonds, we use returns on 23 developed and emerging

market government bond indices from Refinitiv Datastream, as in Zaremba &

Czapkiewicz (2017). Similarly, we use returns on 43 global equity indices from

Refinitiv Datastream. We also include 6 value and momentum portfolios for each

of these two asset classes from Asness et al. (2013).

4.3 Market Integration at the Aggregate

Level

We begin with a simple analysis of asset class integration, based only on the

respective market factors. The empirical asset pricing literature centers largely on

the U.S. stock market. Thus, we examine the extent to which U.S. stock market

excess returns can explain market excess returns in other asset classes. We present

the results of spanning regressions of these market factors on the U.S. stock market

factor in Panel A of Table 4.3. If the market factors of other asset classes have

significant exposures to the U.S. stock market, it suggests that the stock market

can explain (time-series) variation in these returns, and that both are driven, to

some extent, by similar economic forces. However, the more important part of the

spanning regressions is the alpha. If the market factors of other asset classes have

significant positive alphas relative to the U.S. stock market, this would suggest

that an additional factor is needed to explain their average return. On the other

hand, if a significant average excess return turns into an insignificant alpha, it

suggests that the U.S. stock market spans the market factor of the other asset
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class.

First, we find that all asset class market factors have significant exposures to

the U.S. stock market. Quite naturally, the exposures are largest for international

equities and equity indices, where the U.S. stock market alone can explain 71.2%

and 78.6% of the variation, respectively. For other markets, however, both the

slope coefficients and the R2s are lower. The U.S. stock market can explain

36.1%, and 26.1% of the variation in the returns of the foreign exchange, and

commodity market returns, respectively. Finally, the stock market explains only

10.9% and 8.01% of the variation in corporate and government bond market

returns, respectively.5

The corporate and government bond market factors are the most interesting

for this analysis because, unlike most others, they generate significant positive

average excess returns over our sample period. Indeed, we find that these two also

generate significant positive alphas relative to the U.S. stock market factor. Thus,

the equity market alone is not sufficient to span the full set of market factors,

suggesting that there are multiple underlying systematic risk drivers across asset

classes and markets.

Next, we add another market factor: that of government bonds.6 We present

the results in Panel B of Table 4.3. Indeed, the combination of the two market

factors can span the monthly market returns of the five remaining asset classes.

So there is some preliminary evidence of integration: while one factor alone is not

enough, just two different market factors can explain the market factors across

asset classes quite well.

5These results are consistent with the correlations between the market factors, as
shown in Figure C.2 of the appendix to this chapter. There are also relatively high
and positive correlations between the foreign exchange market and international equities
(almost 80%), as well as between currencies and commodities (more than 70%). The
government bond market, on the other hand, has quite low and in most cases negative
correlations with the remaining asset classes, except for a moderate correlation with the
corporate bond market. The corporate bond market is moderately correlated with the
other six markets (correlations between 26% and 46%).

6We do not do this entirely randomly. The two-factor model with equity and
government bond market factors is also the one selected from the candidate set of different
market factors by the BS–CZZ model scan approach. We leave the details of this approach
for later in the chapter and simply use this two-factor model to get some initial insights.
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Table 4.3: Spanning Regressions with Market Factors of
Different Asset Classes

This table reports the results of spanning regressions of the market factors of the other
asset classes on the U.S. equity market factor (Panel A) and a combination of the U.S.
equity and government bond market factors (Panel B). We present the intercept from the
spanning regressions (α) as well as the loadings of the excluded factors on the respective
model factors from August 2003 to December 2019. The t-statistics in parentheses are
based on robust Newey & West (1987) standard errors with four lags. GRS reports the
results of the Gibbons et al. (1989) test of the null hypothesis that all alphas are jointly
zero. Below the GRS test statistics in brackets are the corresponding p-values. ∗, ∗∗, and
∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.

Panel A:
α MKT_useq R2

MKT_inteq −0.35 0.98∗∗∗ 71.2

(−1.36) (15.8)

MKT_cb 0.31∗∗∗ 0.11∗∗∗ 10.9

(2.67) (3.34)

MKT_govtb 0.39∗∗∗ −0.09∗∗∗ 8.01

(3.91) (−3.36)

MKT_eqi −0.19 0.85∗∗∗ 78.6

(−1.12) (16.2)

MKT_cm −0.51 0.53∗∗∗ 26.1

(−1.38) (4.68)

MKT_fx −0.17 0.26∗∗∗ 36.1

(−1.31) (7.41)

GRS 3.62∗∗∗

[0.00]

Panel B:
α MKT_useq MKT_govtb R2

MKT_inteq −0.29 0.97∗∗∗ −0.13 71.3

(−1.04) (14.9) (−0.64)

MKT_cb 0.08 0.16∗∗∗ 0.58∗∗∗ 40.2

(0.82) (5.46) (6.42)

MKT_eqi −0.17 0.84∗∗∗ −0.05 78.6

(−0.88) (15.2) (−0.35)

MKT_cm −0.25 0.48∗∗∗ −0.65∗∗∗ 29.5

(−0.67) (3.87) (−2.79)

MKT_fx −0.18 0.27∗∗∗ 0.02 36.1

(−1.30) (6.85) (0.18)

GRS 1.42

[0.22]
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However, this simple broad market analysis is unlikely to provide the full

picture. It has been widely documented that the market factors are not sufficient

to price even their own asset classes. Therefore, in the next section, we conduct

a more comprehensive analysis using a large collection of other empirical factors

across major asset classes.

4.4 A Second Look at Market Integration

with Asset-Class-Specific Optimal Mod-

els

4.4.1 Factor Identification Results

Before we go any further, though, we need to isolate the viable risk factors of

the different asset classes. To do this, we first subject all factors to the factor

identification protocol of Pukthuanthong et al. (2019). The key point of this

analysis is that for a factor candidate to be considered a genuine risk factor,

it must be significantly associated with the return covariance matrix of its asset

class. After eliminating non-viable factors, we set out to select optimal factor

models that best represent each asset class. Chapter 3 use a similar two-step

approach for corporate bond factors.

For the factor identification step, for each asset class, we extract the

first ten principal components from the universe of test portfolios using the

method of Connor & Korajczyk (1988). The set of test assets should be big

enough to accurately capture the cross-sectional heterogeneity within each asset

class. Therefore, we use the largest possible sets of test assets for each asset

class, as described in Section 4.2.3. To account for possible non-stationarity,

we split our sample in two and run the analysis separately for each sub-period

(Pukthuanthong et al. 2019). Next, we compute the canonical correlations between

the candidate factors and these ten principal components. Finally, we regress each
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of the canonical variates on a constant and the set of candidate factors. As in

Pukthuanthong et al. (2019), for an eligible factor we require that the average

of the absolute t-statistics associated with the significant canonical correlations

exceeds 1.96 and the average number of significant t-statistics over the two periods

is more than 25% of the number of canonical variates (Pukthuanthong et al.,

2019).

In Panel A of Table 4.4, we summarize the results of factor candidates that

pass the necessary condition of the factor identification for each asset class. Table

3.3 of the appendix to this chapter shows the detailed results. As one might expect,

almost all market factors pass the necessary condition to be considered as a risk

factor. Only for the equity indices does the market factor fail. Furthermore, value,

betting-against-beta, quality-minus-junk, and carry factors are often selected as

viable risk factors in multiple asset classes.

Any factors that do not pass this initial test appear not to move prices in their

respective asset classes, and can be discarded as viable risk factors. Therefore, in

the following steps, we will only consider candidate factors that pass this factor

identification protocol.

4.4.2 Asset-Class-Specific Model Selection Results

Among the factors that pass the necessary condition of the first-step factor

identification protocol, for each asset class, we next aim to find the factor

combination that can best explain the returns in its own asset class. That is,

we perform the second model selection step using the approach of Barillas &

Shanken (2018) and Chib et al. (2020) to identify the best set of factors for each

asset class. We describe the approach in detail in Section B.2 of the appendix to

this chapter. The best set of factors or top model is identified as the one with the

highest posterior model probability.

Panel B of Table 4.4 summarizes the results for each asset class. Detailed

results are in Table C.4 of the appendix to this chapter. Although market factors

are considered viable risk factors for almost all asset classes, they do not seem to
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be crucial for explaining the returns of corporate bonds, commodities, currencies,

and equity indices. For U.S. equities, the overall top model selected consists of

the market and the quality-minus-junk factor.7 For international equities, a four-

factor model is selected with the market and size, management, and quality-minus-

junk factors. For corporate bonds, consistent with Chapter 3, the optimal model

includes the term-structure, carry, duration, and equity momentum factors. For

commodities, the optimal factor model includes a value factor and a carry factor.

The best currency factor model includes only one momentum factor, the best

equity index model includes only one carry factor, and the best government bond

model includes only one market factor. Thus, both carry and quality-minus-junk

factors appear to be important across asset classes, consistent with Koijen et al.

(2018) and Asness et al. (2019).

4.4.3 Implications for Market Integration

If markets are fully integrated, factor models for one asset class should be able to

explain the returns of factors from other asset classes. Having selected the optimal

factor model for each asset class, we next examine the ability of factor models

specialized for one asset class to price the other asset classes. For this analysis,

we use all factors from the different asset classes that can be considered as viable

risk factors based on the first-step screening. We perform spanning regressions of

these factors on the leading existing models and the best set of factors selected for

each asset class. Table 4.5 shows the significance levels of the alphas from these

spanning regressions.

Typically, the asset-class-specific models do a relatively good job of capturing

other factors of their own asset class. For example, the optimal selected models

leave no significant alphas for U.S. and international equities, commodities,

currencies, equity indices, and government bonds. Only for corporate bonds do
7These results differ from those of Barillas & Shanken (2018). There are three main

reasons for the difference. First, our sample period is very different from theirs (1972–
2015). Second, they do not include the quality-minus-junk factor. Third, their results are
difficult to interpret because Chib et al. (2020) show that the prior used in the original
Barillas & Shanken (2018) method is unsound for model comparisons.
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two factors have weakly significant alphas. Thus, reassuringly, the model selection

within asset classes seems to work quite well.

More interesting, however, is how the models perform for factors in other

asset classes. Again, the story is different. Typically, the models fail to explain

most of the factors in other asset classes that have significant average returns. For

example, the equity factor models (both the optimal selected model and the Fama

& French, 2015 model) already fail to price almost all international equity factors.

This finding is consistent with the results of Hollstein (2022), who shows that local

factors explain anomaly returns far better than global factors. The situation is

not much better for other asset classes. For corporate bonds, commodities, and

government bonds, both U.S. equity factor models also leave significant alphas.

The results for the models of other asset classes are similar. It is interesting

to note that the best international equity factor models do a little better at

explaining U.S. equity factors than the other way around. However, they also

fail for many corporate bond factors, one commodity factor, and equity index

or government bond factors. The corporate bond, commodity, currency, equity

index, and government bond factor models also perform rather poorly overall in

explaining each other’s factors.

However, there are also cases where factors with significant excess returns can

be explained by models from other asset classes. For example, international equity

and corporate bond factor models can explain the U.S. equity betting-against-beta

factor. International equity and government bond factor models can explain the

term-structure factor. Many models can explain the government bond carry factor,

and government bond factor models, in turn, do comparatively well in explaining

international equity and corporate bond factors.

Therefore, we clearly reject perfect integration between asset classes. There is

strong evidence of multiple underlying systematic drivers across asset classes and

markets. On the other hand, there appear to be some interdependencies across

asset classes. Taken together, these results call for an integrated factor model

across asset classes.
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4.5 A Unified Model Across Asset Classes

4.5.1 Optimal Model Selection

To build an optimal integrated model that can characterize returns across asset

classes, we pool all the factors in the best models from the seven asset classes

together and perform the Bayesian model selection among them. We report the

results for the top three models in Table 4.6.

Panel A reports the model selection results. Consistent with the results of

the previous section, we find that the top models contain factors from different

asset classes. Only commodity factors are completely absent from the top three

models. Furthermore, a currency or government bond factor only makes it into

one of the top three models. All other asset classes are represented in each of the

top models. The most influential asset classes appear to be international equities

and corporate bonds, with two to three factors in each of the top three models.

The most important single factors seem to be MKT_useq, SMB_inteq,

MGMT_inteq, QMJ_inteq, Carry_cb, MOM_cbeq, and Carry_eqi. These seven

factors are included in each of the three top models. The overall best model is an

eight-factor model that also includes the MOM_fxaqr factor. The second-best

model according to the posterior model probability contains the seven most

important single factors plus DUR_cb and MKT_govtb, while the third-best

model consists only of these.

Panel B shows the cumulative posterior probabilities of each of the factors

selected to best represent their respective asset classes. We find that the

factors MKT_useq, SMB_inteq, MGMT_inteq, QMJ_inteq, and Carry_cb have

cumulative posterior probabilities close to 100%. Thus, these factors should be

included in any decent integrated pricing model across asset classes. Among

the remaining top factors, MOM_cbeq has a cumulative posterior probability

of 87.50% and Carry_eqi has one of 63.89%. The additional factor in the top

model, MOM_fxaqr, has a posterior probability of 49.48%. The factors that
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CHAPTER 4. FACTOR PRICING ACROSS ASSET CLASSES

appear in the second-best model have cumulative posterior probabilities of 51.69%

(DUR_cb) and 33.46% (MKT_govtb). The other factors that do not make it into

any of the top models have cumulative posterior probabilities ranging from 0.03%

(MKT_inteq) to 43.40% (QMJ_useq). Thus, while the posterior probabilities

of the individual top models may not be overwhelmingly large, the cumulative

posterior probabilities of the factors clearly separate the wheat from the chaff.

Having established which are the best factor models across asset classes, it

is natural to ask how well they perform. In what follows, we thus continue our

empirical analysis by examining the pricing performance of the top models. First,

we compare their Sharpe ratios with those of several existing models. Then, in

order to gain insights from different angles, we examine the explanatory power

of the optimal integrated model using spanning tests and a large battery of test

portfolios across asset classes. These tests also provide further insight into the

extent of cross-market linkages.

4.5.2 Model Sharpe Ratios

First, we analyze the mean-variance frontiers achievable by the models. Then,

we perform pairwise tests of equality of squared Sharpe ratios following Barillas

et al. (2020) to analyze whether the selected top models outperform other factor

models. The latter method allows us to make reliable inferences when comparing

relative model performance as measured by squared Sharpe ratio improvements.

Figure 4.1 visualizes the mean-variance frontiers of different models. We show

existing representatives of each asset class as well as the top integrated model

across all asset classes. The efficient frontier of the top integrated model is the

furthest to the northwest, suggesting that investors can improve their optimal

portfolios by implementing multi-asset, multi-style (factor) strategies. In other

words, factors from other asset classes can expand the investment opportunity

set even for multi-style, single-asset-class investors by adding variance hedges and

diversification. This finding is consistent with and supports the model selection

results.
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4.5. A UNIFIED MODEL ACROSS ASSET CLASSES

Figure 4.1: Efficient Frontiers

This figure plots the efficient frontiers and the tangency portfolios (red dots) for

the representative models from each asset class: FF5_useq (U.S. equities), FF5_inteq

(international equities, excluding the U.S.), IRP_cb (corporate bonds), AQR_cm

(commodities), AQR_fx (currencies), AQR_eqi (equity indices), and AQR_govtb

(government bond indices). In addition, we also plot the optimal integrated model based

on eight selected factors across asset classes though the two-step approach {MKT_useq

SMB_inteq MGMT_inteq QMJ_inteq Carry_eqi Carry_cb MOM_cbeq MOM_fxaqr}

as a multi-asset, multi-factor investment strategy. To construct the efficient frontier, we

require that all weights are positive and sum to one. The analysis is performed over the

sample period from August 2006 to December 2019.
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CHAPTER 4. FACTOR PRICING ACROSS ASSET CLASSES

Table 4.7 reports the differences between the sample squared Sharpe ratios

(column model minus row model) of different model pairs, including the best

existing models (in terms of their full-sample Sharpe ratio, see Table 4.8) and

the top generated models from each asset class, the Asness et al. (2013) (AMP)

global model, and the top three integrated models selected from the model scan.

The estimated model squared Sharpe ratios are modified to be unbiased in small

samples. The associated p-values are shown in brackets.

There are some differences in the squared Sharpe ratios across asset classes.

For example, the squared Sharpe ratio differences are significantly negative

when comparing rows (1) to (6) and columns (7) to (14). Thus, investors in

U.S. equities, international equities (ex-U.S.), and corporate bonds obtain a

better unconditional risk–return tradeoff than investors limited to commodities,

currencies, equity indices, and government bonds.

The most important results, however, relate to the comparison of the

integrated models across asset classes with those that operate only in the

individual asset classes. The three last columns of Table 4.7 clearly show

that the top three models of the model selection approach dominate all other

existing models across asset classes, producing higher Sharpe ratios. All of these

Sharpe ratio differences are highly statistically significant, as indicated by the

corresponding p-values, which are virtually zero in all cases. However, by including

an additional factor, there is a slight improvement in the squared Sharpe ratios

of the second top model over the first.

We also show the full-sample Sharpe ratios of the models as well as the in-

and out-of-sample Sharpe ratios for two different sample splitting schemes using

the first half or two-thirds of the sample to determine the weights in the tangency

portfolio, as in Barillas & Shanken (2018). We report the results of the top model

and existing models of each asset class, as well as the top models across asset

classes and the AMP global three-factor model in Table 4.8.

We find that the two-step selection approach generally does a pretty good

job of selecting the best factors and models for each individual asset class. The
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CHAPTER 4. FACTOR PRICING ACROSS ASSET CLASSES

Table 4.8: Out-of-Sample Sharpe Ratios

This table shows the in- and out-of-sample performance of the existing factor models
(see the list in Table 4.2) and the winning models from the model scan (see Panel B of
Table 4.4 and Panel A of Table 4.6) within the same asset class and across all asset classes.
The first column shows the full-sample monthly Sharpe ratio of the tangency portfolios
implied by the models. The remainder of the table shows the results for out-of-sample
tests where the initial estimation period for the factor weights in the tangency portfolio is
half the sample period (T/2) or two-thirds the sample period (2T/3). In each case, EST
shows the in-sample Sharpe ratio of the estimation period, PERF shows the in-sample
Sharpe ratio of the remaining period, and PERFw shows the actual out-of-sample Sharpe
ratio based on the weights from the first in-sample estimation period.

Model Sample SR
T/2 2T/3

EST PERF PERFw EST PERF PERFw

winner_useq 0.418 0.346 0.488 0.486 0.385 0.481 0.481
CAPM_useq 0.182 0.104 0.310 0.310 0.152 0.261 0.261
FF3_useq 0.240 0.186 0.358 0.215 0.227 0.335 0.226
C4_useq 0.240 0.188 0.380 0.205 0.227 0.342 0.226
FF5_useq 0.360 0.487 0.365 0.174 0.389 0.361 0.285
FF6_useq 0.360 0.507 0.389 0.140 0.392 0.377 0.272
HXZ4_useq 0.293 0.246 0.441 0.193 0.252 0.420 0.341
HXZ5_useq 0.428 0.381 0.525 0.437 0.397 0.554 0.477
DHS_useq 0.313 0.255 0.442 0.298 0.264 0.432 0.393
SY_useq 0.368 0.344 0.432 0.366 0.341 0.471 0.404
winner_inteq 0.675 0.789 0.644 0.542 0.834 0.604 0.365
CAPM_inteq 0.084 0.074 0.108 0.108 0.098 0.048 0.048
FF3_inteq 0.216 0.213 0.225 0.214 0.282 0.086 0.081
C4_inteq 0.336 0.340 0.352 0.322 0.405 0.247 0.183
FF5_inteq 0.650 0.816 0.547 0.461 0.831 0.496 0.306
FF6_inteq 0.652 0.820 0.590 0.442 0.831 0.506 0.306
HXZ4_inteq 0.684 0.841 0.575 0.512 0.835 0.553 0.389
SY_inteq 0.552 0.561 0.586 0.526 0.651 0.485 0.332
winner_cb 0.756 0.977 0.819 0.503 0.811 0.881 0.615
CAPM_cb 0.288 0.312 0.271 0.271 0.273 0.356 0.356
FF3_cb 0.343 0.422 0.303 0.237 0.360 0.371 0.305
augFF3_cb 0.434 0.542 0.377 0.300 0.488 0.399 0.310
FF5_cb 0.309 0.320 0.396 0.223 0.324 0.412 0.243
BBW 0.401 0.469 0.351 0.325 0.428 0.444 0.347
BSW 0.434 0.676 0.347 0.153 0.541 0.388 0.157
IRP 0.738 0.922 0.814 0.448 0.782 0.932 0.568
KPP 0.634 0.927 0.693 0.360 0.767 0.767 0.379
winner_cm 0.273 0.291 0.321 0.187 0.249 0.442 0.262
CAPM_cm 0.021 0.030 0.120 -0.120 0.001 0.095 0.095
BGR_cm 0.135 0.209 0.213 0.027 0.140 0.270 0.073
AQR4_cm 0.277 0.328 0.441 0.169 0.265 0.556 0.222
winner_fx 0.060 0.027 0.112 0.112 0.026 0.165 0.165
CAPM_fx 0.019 0.104 0.117 -0.117 0.032 0.020 -0.020
AQR_fx 0.200 0.192 0.265 0.212 0.162 0.381 0.346
LRV2011 0.138 0.147 0.177 0.090 0.135 0.144 0.144
Verdelhan2018 0.149 0.175 0.245 0.077 0.135 0.191 0.175
winner_eqi 0.124 0.107 0.463 -0.463 0.005 0.466 -0.466
CAPM_eqi 0.115 0.043 0.248 0.248 0.092 0.188 0.188
AQR_eqi 0.242 0.209 0.556 -0.050 0.220 0.523 0.127
winner_govtb 0.242 0.246 0.240 0.240 0.230 0.281 0.281
CAPM_govtb 0.242 0.246 0.240 0.240 0.230 0.281 0.281
AQR_govtb 0.300 0.265 0.403 0.310 0.320 0.447 0.151
winner1_across 1.053 1.268 1.059 0.817 1.232 1.219 0.750
winner2_across 1.095 1.333 1.171 0.837 1.248 1.251 0.801
winner3_across 1.030 1.236 1.016 0.801 1.192 1.117 0.736
AMP_across 0.128 0.140 0.194 0.068 0.159 0.160 0.036
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4.5. A UNIFIED MODEL ACROSS ASSET CLASSES

top models within an asset class generally produce in-sample and out-of-sample

Sharpe ratios that are among the highest in their asset class. Note that the Sharpe

ratios are not always higher than those of existing models, because the existing

models may include factors that perform well, but have been eliminated as non-

viable risk factors in the first step of our selection scheme.8 Importantly, the top

models for each asset class typically achieve superior performance while containing

fewer or the same number of factors as the existing models.

Most importantly, the top integrated models across all asset classes are

clearly superior to all others. Not only do they have higher in-sample Sharpe

ratios, but they also have higher out-of-sample Sharpe ratios than all the top and

existing models in each asset class. For example, the top model from U.S. equities

has an out-of-sample Sharpe ratio of 0.486 for the second half of the sample period.

The top models for international equities and corporate bonds perform similarly,

with out-of-sample Sharpe ratios of 0.542 and 0.503, respectively. For all other

asset classes, the out-of-sample Sharpe ratios are also considerably lower. The top

three top models across asset classes, on the other hand, achieve out-of-sample

Sharpe ratios that are at least 48% higher, all exceeding 0.8. The top models across

asset classes also clearly outperform the only existing integrated competitor, the

AMP global factor model.

4.5.3 Spanning Tests

In this section, we perform spanning tests to answer the following questions: How

well does the top integrated model explain other factors across different asset

classes? Which of the factors from which asset classes are most important? Is there

any further evidence of cross-market linkages among the factors? Can factors from

one asset class explain time-series variation in factors from other asset classes?

8This is the case for U.S. equities, for example. The HXZ5_useq model performs
slightly better than the top model for U.S. equities based on the in-sample Sharpe ratio.
However, all of the model’s factors are eliminated by the factor protocol step because they
are not sufficiently related to the covariance matrix of U.S. equity returns. For example
the EG_useq factor, which has a t-statistic of the mean return of 2.58, is included in the
HXZ5_useq model, but is not eligible for the top U.S. equity model.
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Specifically, we regress all the factors from all asset classes that are not selected

on the top integrated model.

We present the results in Table 4.9. In Panel A shows the results for U.S.

equity factors. These generally load most strongly on MKT_useq, MGMT_inteq,

and QMJ_inteq. Thus, cross-market linkages appear to be strongest within the

equity asset class across regions. However, some of the equity factors also load on

the corporate bond, currency, and equity index factors in the top model. Almost

all alphas of U.S. equity factors not included in the integrated model are not

statistically significant. Only the alphas of ROE_useq, EG_useq, and QMJ_useq

are significant at the 5% level. The GRS test fails to reject the null hypothesis

that the alphas of the U.S. equity factors not included in the top unified model

are jointly zero.

Panel B reports the results for international equities (excluding the U.S.).

The U.S. stock market factor and the three international equity factors appear

to be important for this asset class. All but one of the excluded international

equity factors are significantly related to QMJ_inteq. There are few significant

loadings on the other asset class factors after controlling for the effects of U.S.

and international equity factors. The alphas of HML_inteq, HMLm_inteq, and

iMOM_inteq are statistically significant. Consequently, the GRS test also rejects

that all alphas are jointly zero. However, recalling from the previous section of the

factor protocol, these factors are not materially related to the covariance matrix

of international equity returns, and thus cannot be considered viable risk factors.

The results for the next major asset class, corporate bonds, are in Panel

C. The factors also load mainly on those of their own asset class as well as on

MKT_useq. Only two out of 17 factors have significant alphas at the 5% level.

Among them, STR_cb fails the necessary condition of the PKR factor protocol.

In addition, the GRS test can not reject the null hypothesis that the alphas for

all excluded corporate bond factors are jointly zero.

We now turn to the explanatory power of the top integrated model for the

four remaining asset classes. The results are reported in Panels D to G. Although
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4.5. A UNIFIED MODEL ACROSS ASSET CLASSES

Table 4.9: Spanning Regressions

This table reports the results of spanning regressions of the factors of each asset class
that are not selected on the top model across asset classes from the model scanning
procedure. We present the intercept from the spanning regressions (α) as well as the
loadings of the excluded factors on the winning model factors from August 2006 to
December 2019. The t-statistics are based on robust Newey & West (1987) standard
errors with four lags. R2 is the coefficient of determination of the simple regressions.
GRS reports the results of the Gibbons et al. (1989) test of the null hypothesis that all
alphas are jointly zero for each asset class. The GRS test statistics are shown on the
bottom of each panel, along with the corresponding p-values in brackets. ∗, ∗∗, and ∗∗∗

indicate significance at the 10%, 5%, and 1% levels, respectively.

Panel A: U.S. Equities
α MKT_useq SMB_inteq MGMT_inteq QMJ_inteq Carry_cb MOM_cbeq MOMfx_aqr Carry_eqi R2

SMB_useq −0.22 0.24∗∗∗ 0.28∗∗∗ −0.02 0.00 −0.03 −0.03 −0.01 −0.14 20.3

(−0.94) (3.85) (2.67) (−0.11) (0.03) (−0.38) (−0.12) (−0.17) (−1.56)

HML_useq 0.19 0.08 −0.07 0.54∗∗∗ −0.59∗∗∗ −0.27∗∗ −0.49 −0.09 −0.06 38.1

(0.74) (1.24) (−0.54) (3.32) (−4.53) (−2.60) (−1.32) (−1.35) (−0.73)

RMW_useq 0.21 −0.12∗∗∗ −0.21∗∗ −0.04 0.17∗∗ 0.08∗ 0.08 0.07 −0.11∗ 27.6

(1.47) (−3.48) (−2.41) (−0.47) (1.98) (1.71) (0.55) (1.51) (−1.82)

CMA_useq 0.10 −0.05 −0.04 0.33∗∗∗ −0.20∗ −0.06 0.14 0.08 −0.04 17.9

(0.59) (−1.17) (−0.44) (3.25) (−1.94) (−0.92) (0.81) (1.54) (−0.93)

MOM_useq −0.33 0.08 0.28 0.14 1.38∗∗∗ −0.55∗∗∗ 0.48 0.46∗∗∗ −0.07 50.1

(−0.75) (0.58) (1.30) (0.41) (3.74) (−2.87) (1.08) (3.01) (−0.46)

STR_useq 0.24 0.23∗∗ 0.12 0.16 −0.38∗ −0.13 0.03 0.23∗ 0.11 27.2

(0.66) (2.38) (0.84) (0.53) (−1.76) (−1.05) (0.09) (1.75) (1.07)

LTR_useq −0.27 0.15∗∗ 0.12 0.59∗∗∗ −0.39∗∗∗ −0.09 −0.07 −0.11 −0.02 30.2

(−1.10) (2.19) (0.93) (2.73) (−2.89) (−0.65) (−0.19) (−1.24) (−0.20)

ME_useq −0.10 0.25∗∗∗ 0.28∗∗∗ 0.04 −0.05 −0.09 −0.19 −0.02 −0.12 23.8

(−0.42) (4.17) (2.85) (0.24) (−0.35) (−1.08) (−0.90) (−0.27) (−1.30)

IA_useq 0.13 −0.04 −0.06 0.31∗∗∗ −0.26∗∗ −0.08 0.07 0.07 −0.05 17.6

(0.75) (−0.95) (−0.57) (3.11) (−2.21) (−1.39) (0.43) (1.40) (−0.81)

ROE_useq 0.44∗∗ −0.10∗∗ −0.19∗ 0.09 0.43∗∗∗ −0.30∗∗∗ −0.08 0.16∗∗ −0.05 48.0

(2.41) (−2.06) (−1.70) (0.70) (2.84) (−4.09) (−0.38) (2.34) (−0.79)

EG_useq 0.37∗∗ −0.12∗∗ −0.17∗ −0.05 0.25∗∗∗ −0.02 0.15 −0.13∗∗ −0.11∗∗ 35.9

(2.43) (−2.34) (−1.93) (−0.59) (2.68) (−0.22) (1.00) (−2.12) (−2.23)

PEAD_useq 0.10 0.04 −0.08 −0.15 0.50∗∗∗ −0.21∗∗∗ 0.28 −0.02 −0.06 36.2

(0.49) (0.74) (−0.87) (−1.04) (4.48) (−3.34) (1.36) (−0.28) (−0.85)

FIN_useq 0.46 −0.22∗∗∗ −0.33∗ 0.49∗∗ −0.11 −0.13 0.27 −0.04 −0.19∗∗ 31.2

(1.55) (−3.70) (−1.79) (2.51) (−0.64) (−1.65) (1.06) (−0.48) (−2.13)

LIQ_useq 0.22 0.06 0.04 −0.98∗∗∗ −0.08 0.00 −0.05 0.12 0.17 19.5

(0.69) (0.78) (0.22) (−3.15) (−0.46) (0.00) (−0.16) (0.97) (1.43)

HMLm_useq 0.27 −0.02 −0.15 0.24 −1.16∗∗∗ 0.28∗∗ −0.72∗∗ −0.19∗∗ −0.03 55.1

(0.82) (−0.26) (−0.78) (1.00) (−4.11) (2.31) (−2.01) (−2.33) (−0.22)

BAB_useq 0.03 0.05 0.45∗∗∗ −0.21 0.36∗ 0.05 0.44 0.09 0.07 17.4

(0.12) (0.67) (3.14) (−0.61) (1.81) (0.30) (1.18) (0.81) (0.70)

QMJ_useq 0.34∗∗ −0.19∗∗∗ −0.19∗ 0.19∗ 0.46∗∗∗ −0.14∗ 0.40∗∗ −0.03 −0.15∗∗ 61.5

(2.35) (−4.70) (−1.93) (1.78) (4.83) (−1.76) (2.12) (−0.49) (−2.52)

SMB_useqsy −0.04 0.23∗∗∗ 0.19∗ −0.00 −0.03 −0.05 −0.01 −0.01 −0.08 22.0

(−0.17) (4.24) (1.91) (−0.01) (−0.27) (−0.55) (−0.08) (−0.16) (−0.98)

MGMT_useq 0.23 0.02 −0.16∗ 0.86∗∗∗ −0.04 −0.27∗∗∗ −0.09 −0.01 −0.04 45.5

(1.36) (0.57) (−1.67) (6.56) (−0.33) (−4.65) (−0.41) (−0.26) (−0.67)

PERF_useq 0.50 −0.33∗∗∗ −0.29 −0.73∗∗∗ 0.94∗∗∗ −0.14 1.22∗∗∗ 0.25∗∗∗ −0.09 58.5

(1.65) (−3.62) (−1.57) (−2.81) (4.12) (−1.17) (4.04) (2.98) (−0.72)

GRS 1.47

[0.11]

continued on the next page
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Table 4.9: Spanning Regressions (continued)

Panel B: International Equities

α MKT_useq SMB_inteq MGMT_inteq QMJ_inteq Carry_cb MOM_cbeq MOMfx_aqr Carry_eqi R2

MKT_inteq 0.12 0.68∗∗∗ 0.02 −0.54∗∗∗ −0.70∗∗∗ 0.30∗∗ 0.04 0.13 0.21∗∗ 80.4

(0.41) (10.2) (0.15) (−2.72) (−5.38) (2.36) (0.15) (1.38) (2.23)

HML_inteq 0.46∗∗∗ −0.09∗∗∗ −0.35∗∗∗ 0.25∗∗∗ −0.50∗∗∗ −0.02 0.14 0.05 −0.08 46.7

(3.88) (−3.71) (−4.39) (2.73) (−8.46) (−0.53) (1.09) (1.21) (−1.50)

HMLm_inteq 0.54∗∗∗ −0.12∗∗∗ −0.45∗∗∗ 0.09 −0.80∗∗∗ 0.09 0.25∗ −0.07 −0.06 57.0

(3.72) (−3.31) (−3.76) (0.73) (−10.4) (1.44) (1.86) (−1.10) (−0.90)

RMW_inteq 0.04 0.07∗∗∗ −0.19∗∗ −0.06 0.38∗∗∗ 0.00 0.15∗ −0.01 −0.01 49.6

(0.44) (3.17) (−2.33) (−0.97) (6.42) (0.00) (1.78) (−0.33) (−0.46)

ROE_inteq 0.03 0.06∗∗ −0.21∗∗∗ −0.11 0.39∗∗∗ 0.01 0.10 −0.06 0.01 46.3

(0.26) (2.49) (−2.71) (−1.28) (4.63) (0.11) (0.75) (−1.48) (0.30)

CMA_inteq 0.07 −0.08∗∗∗ 0.11∗∗ 0.61∗∗∗ 0.02 −0.00 0.12 0.03 −0.06 58.4

(0.80) (−2.84) (2.13) (5.98) (0.29) (−0.04) (1.11) (0.58) (−1.44)

MOM_inteq 0.20 0.06 0.22∗ 0.25 0.87∗∗∗ −0.25∗ 0.01 0.34∗∗∗ 0.09 47.6

(0.75) (0.85) (1.69) (1.22) (4.46) (−1.95) (0.02) (2.86) (1.01)

iMOM_inteq 0.34∗∗∗ −0.01 0.05 0.03 0.18∗∗∗ −0.03 0.04 0.09∗ −0.01 14.6

(2.89) (−0.23) (0.64) (0.22) (2.73) (−0.64) (0.24) (1.90) (−0.13)

PERF_inteq 0.07 0.05∗ −0.07 0.11 0.73∗∗∗ −0.06 0.09 −0.03 0.02 63.1

(0.49) (1.81) (−1.06) (1.28) (8.35) (−1.14) (0.70) (−0.44) (0.64)

BAB_inteq −0.09 −0.20∗∗∗ 0.13 0.62∗∗∗ 1.00∗∗∗ −0.07 0.04 −0.01 0.00 81.1

(−0.48) (−5.38) (1.21) (4.77) (10.8) (−1.37) (0.25) (−0.10) (0.05)

GRS 4.42∗∗∗

[0.00]

Panel C: Corporate Bonds
α MKT_useq SMB_inteq MGMT_inteq QMJ_inteq Carry_cb MOM_cbeq MOMfx_aqr Carry_eqi R2

MKT_cb −0.11 0.05 0.05 −0.03 0.08 0.42∗∗∗ 0.20 0.07 0.07∗ 50.6

(−1.06) (1.17) (0.75) (−0.27) (1.37) (6.29) (0.87) (1.09) (1.96)

TERM_cb −0.18 −0.05 0.09 0.19 0.60∗∗∗ 0.22 0.66 −0.05 0.05 19.8

(−0.57) (−0.34) (0.58) (0.67) (3.27) (0.76) (0.86) (−0.32) (0.46)

DEF_cb −0.25 0.12∗∗∗ −0.03 −0.04 −0.12 0.42∗∗∗ −0.31∗ 0.18∗∗ 0.01 52.0

(−1.53) (2.71) (−0.30) (−0.32) (−1.29) (4.64) (−1.71) (2.00) (0.13)

DRF_cb 0.05 0.11∗ −0.02 0.21 0.03 0.43∗∗ 0.20 −0.23∗ −0.01 20.8

(0.17) (1.66) (−0.16) (1.01) (0.13) (2.45) (0.56) (−1.91) (−0.16)

LRF_cb 0.12 −0.01 0.15∗ −0.02 0.01 0.39∗∗∗ −0.19 −0.09 0.08 44.9

(1.08) (−0.51) (1.84) (−0.31) (0.11) (3.70) (−1.17) (−1.37) (1.61)

CRF_cb 0.19 0.14∗∗∗ 0.16 −0.12 −0.26∗∗∗ 0.09 0.44∗ −0.11 0.02 29.7

(1.14) (2.74) (1.34) (−0.77) (−3.14) (1.38) (1.92) (−1.09) (0.30)

Value_cb −0.01 0.02 0.03 0.06 0.06 0.54∗∗∗ 0.65∗∗∗ 0.03 0.03 60.8

(−0.11) (0.91) (0.53) (0.83) (0.96) (6.93) (4.00) (0.69) (0.96)

DUR_cb −0.44∗∗ 0.15 −0.05 −0.07 0.09 0.77∗∗∗ 0.67 0.14 0.08 50.6

(−2.21) (1.47) (−0.47) (−0.36) (0.65) (3.79) (1.30) (1.40) (1.20)

VOL_cb −0.31∗ 0.16∗∗ −0.04 −0.03 0.09 0.69∗∗∗ 0.34 0.12 0.07 58.6

(−1.95) (2.00) (−0.47) (−0.18) (0.78) (4.22) (0.83) (1.42) (1.31)

STR_cb 0.34∗∗ −0.07 0.04 0.06 −0.01 0.04 0.05 0.10∗ 0.02 6.78

(2.36) (−1.50) (0.73) (0.55) (−0.14) (0.36) (0.20) (1.97) (0.38)

MOM_cb −0.17 0.04 −0.02 −0.13 −0.05 −0.30∗∗ 0.58∗∗ −0.07 0.05 26.9

(−1.08) (1.07) (−0.19) (−1.30) (−0.74) (−2.23) (2.20) (−0.79) (0.99)

LTR_cb 0.13 0.01 0.21∗ 0.16 −0.11 −0.00 −0.47∗∗ 0.03 −0.10∗ 13.6

(0.71) (0.21) (1.97) (1.25) (−1.33) (−0.02) (−2.58) (0.23) (−1.75)

VIX_cb 0.08 −0.03 0.03 −0.14∗∗ −0.12∗∗ 0.10 0.22 −0.01 −0.00 22.4

(1.25) (−1.38) (0.73) (−2.26) (−2.35) (1.52) (1.31) (−0.38) (−0.11)

UNC_cb 0.06 0.04 −0.11 −0.21∗∗ −0.14 −0.04 0.39∗ −0.08 0.05 15.7

(0.42) (0.91) (−1.45) (−2.21) (−1.59) (−0.37) (1.68) (−1.54) (1.31)

EPU_cb 0.08 0.05∗∗ −0.09∗ −0.04 −0.06 0.02 0.05 0.01 0.01 19.0

(0.86) (2.04) (−1.81) (−0.67) (−0.93) (0.29) (0.32) (0.37) (0.31)

EPUtax_cb 0.07 0.03∗ −0.09∗∗ −0.11 −0.04 −0.01 0.01 −0.02 0.01 13.5

(1.11) (1.72) (−2.32) (−1.54) (−1.18) (−0.22) (0.11) (−0.40) (0.49)

GRS 1.46

[0.13]

continued on the next page
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Table 4.9: Spanning Regressions (continued)

Panel D: Commodities
α MKT_useq SMB_inteq MGMT_inteq QMJ_inteq Carry_cb MOM_cbeq MOMfx_aqr Carry_eqi R2

MKT_cm 0.65∗ 0.25∗∗ 0.02 −1.27∗∗∗ −0.65∗∗∗ −0.12 −0.25 0.22∗ 0.47∗∗∗ 46.2

(1.68) (2.35) (0.13) (−4.84) (−2.94) (−0.78) (−0.83) (1.83) (3.33)

Value_cm 0.77 −0.20∗∗ −0.39∗ 0.57∗ −0.01 0.44∗∗ −0.71 0.18 −0.30 11.5

(1.61) (−2.12) (−1.79) (1.80) (−0.03) (2.09) (−1.40) (1.11) (−1.39)

MOM_cm −0.51 0.33∗∗∗ 0.28 −0.42 0.34 −0.23 0.98∗∗ 0.37∗∗ −0.33∗ 17.5

(−0.89) (3.10) (1.58) (−1.54) (1.34) (−1.40) (2.03) (1.99) (−1.79)

Carry_cm 0.22 0.13 −0.00 −0.32 −0.02 0.02 0.74∗ 0.03 −0.09 4.61

(0.51) (1.25) (−0.02) (−1.48) (−0.12) (0.09) (1.76) (0.24) (−0.73)

TSMOM_cm −0.09 0.14 0.60∗∗∗ −0.39 0.64∗∗ −0.23 0.12 0.60∗∗∗ −0.12 21.3

(−0.19) (1.19) (2.80) (−1.22) (2.57) (−1.21) (0.24) (3.39) (−0.54)

GRS 1.87

[0.10]

Panel E: Currencies
α MKT_useq SMB_inteq MGMT_inteq QMJ_inteq Carry_cb MOM_cbeq MOMfx_aqr Carry_eqi R2

MKT_fx 0.12 0.15∗∗∗ −0.09 −0.25∗∗∗ −0.27∗∗∗ 0.08 −0.03 0.03 0.20∗∗∗ 47.2

(0.77) (3.34) (−1.10) (−2.74) (−3.74) (0.95) (−0.15) (0.49) (3.76)

HML_fx 0.46∗ 0.15∗∗∗ −0.15∗ −0.27∗∗ −0.30∗∗∗ −0.05 0.23 0.12 0.11∗ 29.2

(1.70) (3.04) (−1.72) (−2.30) (−2.72) (−0.48) (1.27) (1.47) (1.75)

Carry_fx 0.15 −0.17∗∗∗ 0.13 0.27∗∗ 0.30∗∗∗ 0.08 −0.22 −0.13 −0.12∗ 30.1

(0.60) (−3.35) (1.43) (2.25) (2.66) (0.77) (−1.24) (−1.51) (−1.86)

Dollar_fx −0.04 −0.15∗∗∗ 0.11 0.27∗∗∗ 0.28∗∗∗ −0.06 0.04 −0.03 −0.21∗∗∗ 47.3

(−0.27) (−3.24) (1.24) (2.88) (3.74) (−0.71) (0.19) (−0.55) (−3.84)

Value_fxaqr 0.41∗∗ −0.05 −0.16∗∗ 0.11 −0.05 −0.03 −0.27∗ −0.11 −0.11∗ 13.0

(2.47) (−1.32) (−2.35) (0.85) (−0.54) (−0.40) (−1.66) (−1.00) (−1.85)

Carry_fxaqr 0.27 0.28∗∗∗ −0.02 −0.23 −0.32∗∗∗ −0.09 0.25 0.19 0.17∗∗ 47.2

(1.09) (5.62) (−0.19) (−1.43) (−2.97) (−0.84) (1.12) (1.25) (2.35)

TSMOM_fx 0.83∗∗ −0.28∗∗ 0.05 −0.11 0.32 0.12 −0.83 1.12∗∗∗ −0.05 26.1

(2.10) (−2.39) (0.21) (−0.34) (0.94) (0.49) (−0.98) (5.05) (−0.25)

GRS 2.65∗∗

[0.03]

Panel F: Equity Indices
α MKT_useq SMB_inteq MGMT_inteq QMJ_inteq Carry_cb MOM_cbeq MOMfx_aqr Carry_eqi R2

MKT_eqi 0.22 0.63∗∗∗ −0.23∗∗ −0.55∗∗∗ −0.52∗∗∗ 0.17∗∗ 0.14 0.04 0.03 83.9

(1.20) (12.1) (−2.59) (−4.00) (−6.62) (2.46) (0.80) (0.56) (0.35)

Value_eqi 0.03 −0.13∗∗∗ −0.25∗∗∗ −0.04 −0.43∗∗∗ 0.20∗∗ 0.19 −0.16∗ 0.12 18.5

(0.16) (−2.76) (−2.89) (−0.27) (−4.03) (2.15) (1.07) (−1.77) (1.43)

MOM_cbeqi 0.03 0.04 0.11 −0.01 0.55∗∗∗ −0.13 −0.04 0.18∗ −0.09 22.5

(0.14) (0.70) (0.80) (−0.07) (4.44) (−1.11) (−0.15) (1.84) (−0.77)

Defensive_eqi −0.18 0.13∗∗ 0.06 0.43∗∗∗ 0.46∗∗∗ −0.03 −0.00 0.05 −0.06 15.6

(−0.82) (2.31) (0.42) (2.78) (3.82) (−0.31) (−0.02) (0.60) (−0.51)

TSMOM_cbeqi −0.18 0.21 −0.01 1.09 0.40 0.13 0.57 0.49 −0.52 7.34

(−0.21) (0.84) (−0.03) (1.62) (0.92) (0.39) (0.57) (1.61) (−1.65)

GRS 0.38

[0.86]

Panel G: Government Bonds
α MKT_useq SMB_inteq MGMT_inteq QMJ_inteq Carry_cb MOM_cbeq MOMfx_aqr Carry_eqi R2

MKT_govtb 0.04 −0.03 0.02 0.12 0.20∗∗∗ 0.13 0.26 −0.05 0.06 18.2

(0.25) (−0.68) (0.32) (1.09) (2.65) (1.33) (1.04) (−0.85) (1.16)

Value_govtb 0.13 −0.03 −0.12∗∗ 0.02 −0.25∗∗∗ 0.07 0.14∗ −0.05 0.03 16.6

(1.14) (−1.27) (−2.03) (0.27) (−4.29) (1.58) (1.68) (−1.27) (0.66)

MOM_govtb −0.07 0.04 0.02 0.10 0.25∗∗∗ −0.00 −0.00 0.19∗∗∗ −0.13∗∗∗ 20.1

(−0.58) (1.39) (0.30) (1.63) (3.51) (−0.06) (−0.04) (4.07) (−2.74)

Carry_govtb 0.19∗ 0.00 −0.04 −0.05 −0.17∗∗ 0.04 0.15∗ −0.06 0.05 9.48

(1.75) (0.01) (−0.84) (−0.57) (−2.15) (0.83) (1.88) (−1.64) (0.82)

Defensive_govtb 0.17∗∗ 0.03 −0.05 −0.00 −0.12∗∗ −0.04 −0.10 −0.01 0.05 14.8

(2.31) (1.08) (−1.10) (−0.04) (−2.10) (−1.10) (−0.68) (−0.25) (1.33)

TSMOM_govtb 0.19 −0.12 −0.25 −0.06 1.57∗∗∗ 0.42 0.98 0.43 0.04 22.4

(0.25) (−0.54) (−0.58) (−0.11) (3.77) (1.11) (1.01) (1.42) (0.13)

GRS 0.62

[0.72]
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the optimal integrated model does not include any commodity factors, it can

explain them quite well. They load on all the factors in the top model. None of

the alphas are significant at the 5% level and the GRS test does not reject its null

hypothesis. For currency returns, MKT_useq, QMJ_inteq, and Carry_eqi seem

to be important, as many currency factors load on them. The currency factors

have little to no exposure to the two corporate bond factors and, interestingly,

only TSMOM_fx has a significant loading on the only currency factor included

in the benchmark model (MOM_fxaqr). The GRS test rejects the null hypothesis

that all alphas from the regressions of the currency factors on the optimal model

are jointly zero. However, this is mainly because the model cannot explain the

Value_fxaqr and TSMOM_fx factors, both of which do not satisfy the necessary

condition of being viable risk factors.

Similar to the international equities, the factors of the equity indices load

mainly on the three international equity factors and the U.S. market factor. All

individual alphas of the equity index factors are not significantly different from

zero. Interestingly, all sovereign bond factors load significantly on QMJ_inteq,

while they seem to be unrelated to the U.S. stock market and the two corporate

bond factors. The GRS tests for both equity indices and government bonds fail

to reject the null that all factor alphas are jointly zero.

Overall, an integrated model consisting of eight factors from five different

asset classes can explain the majority of the remaining prominent existing factors

from seven major asset classes (only eleven out of 77 factors have significant alphas

with t >= 1.96; the GRS tests of five out of seven asset classes cannot reject

the null that the corresponding alphas are jointly zero). Not surprisingly, many

factors have exposures to the U.S stock market. Consistent with the results based

on the cumulative posterior probabilities, we find that among the factors that are

selected in the optimal unified model, MKT_useq, SMB_inteq, MGMT_inteq,

QMJ_inteq, and Carry_cb play important roles in explaining many factors across

asset classes. The evidence on integration is again split. On the one hand, the

factors in the top model of an asset class generally explain the variation in other
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factors in the same asset class best. However, there are some notable cross-market

linkages, suggesting that the integrated model may perform as well as or better

than the asset-class-specific models, even when it comes to pricing different assets

in that class.

4.5.4 Model Performance with Test Assets

Next, we thus turn to an left-hand-side (LHS) approach and examine the empirical

performance of different factor models based on test assets for the different

asset classes. Following Lewellen et al. (2010), we use a wide range of test

portfolios that are not simply directly related to the risk characteristics used to

construct these factors. In particular, we use the following sets of test portfolios

for the different asset classes: the thirteen aggregated theme anomaly long-short

portfolios of Jensen et al. (2022) (JKP) for U.S. equities and international equities,

29 long-short characteristic portfolios for corporate bonds as in Chapter 3, 23

individual commodities, 23 government bonds, 43 equity indices, and 48 global

value and momentum portfolios across asset classes and markets.

Table 4.10 summarizes the results. In general, the top integrated factor model

generates low GRS statistics and a small number of significant alphas at the 5%

level. In particular, the GRS test does not reject the null hypothesis that all

the alphas of the test asset portfolios are jointly zero for the U.S. equity test

portfolios, commodities, equity indices, and global bond government bonds. It

can also capture a reasonable amount of time-series variation in returns across

asset classes, yielding time-series R2s that are comparably large to those of many

existing asset-class-specific models. Finally, also the average absolute alphas are

comparatively low.

Finally, we directly compare this top model to another integrated factor

model: the AMP global three-factor model (consisting of a global market factor

and cross-asset-class value and momentum factors) in explaining the 48 high,

medium, and low VME value and momentum portfolios across asset classes. While

17 of the 48 portfolios have significant alphas with respect to the AMP global

177



CHAPTER 4. FACTOR PRICING ACROSS ASSET CLASSES

Table 4.10: Time-Series Asset Pricing Tests with Test Assets

This table reports the results of time-series asset pricing tests of the existing pricing

models, as well as the asset-class specialized and integrated winning models from the

model scan (see Table 4.2, Panel B of Table 4.4, and Panel A of Table 4.6). In Panels

A through F, we examine the models’ performance on asset class specific test portfolios.

Finally, in Panel G, we report the results for the global models across all asset classes.

GRS reports the results for the Gibbons et al. (1989) test of the null hypothesis that all

alphas for a model are jointly zero, with the corresponding p-value in brackets. A|αi| is

the average absolute alpha of the test portfolios. #sig αi reports how many test portfolios

have significant alphas at the 5% level. We use Newey & West (1987) standard errors

with four lags. A|αi|
A|ri| is the ratio of average absolute alpha to average absolute portfolio

return. Aα2
i

Ar2i
is the ratio of the corresponding squares. As2(αi)

Aα2
i

is the ratio of the average

squared standard error of the alphas to the average squared alpha. A(R2) is the average

adjusted R2 of the regressions (in percentage points). SH2(f) is the squared Sharpe ratio

of the optimal portfolio from the model factors, and SH2(α) is the squared Sharpe ratio

achievable with the alphas of the test assets. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% levels, respectively.

GRS [p-value] A|αi| #sig αi
A|αi|
A|ri|

Aα2
i

Ar2i

As2(αi)
Aα2

i
A(R2) SH2(f) SH2(α)

Panel A: U.S. Equities - 13 JKP anomaly theme portfolios
winner_useq 2.35∗∗∗ [0.01] 0.10 2 0.83 0.61 1.06 0.21 0.17 0.22

winner_across 1.57 [0.11] 0.10 1 0.87 0.62 1.44 0.33 1.10 0.27

AMP_across 2.85∗∗∗ [0.00] 0.13 2 1.04 1.22 0.33 0.30 0.02 0.23

CAPM_useq 3.82∗∗∗ [0.00] 0.20 5 1.69 2.73 0.21 0.13 0.03 0.32

FF3_useq 3.41∗∗∗ [0.00] 0.15 4 1.26 1.48 0.30 0.38 0.06 0.29

C4_useq 3.38∗∗∗ [0.00] 0.15 3 1.22 1.40 0.21 0.47 0.06 0.29

FF5_useq 2.51∗∗∗ [0.01] 0.11 3 0.94 0.74 0.51 0.45 0.13 0.23

FF6_useq 2.50∗∗∗ [0.01] 0.11 5 0.91 0.71 0.33 0.53 0.13 0.23

HXZ4_useq 3.56∗∗∗ [0.00] 0.13 5 1.09 1.09 0.40 0.39 0.09 0.31

HXZ5_useq 2.62∗∗∗ [0.00] 0.11 4 0.88 0.62 0.61 0.40 0.18 0.25

DHS_useq 3.44∗∗∗ [0.00] 0.17 6 1.41 1.71 0.26 0.32 0.10 0.30

SY_useq 2.48∗∗∗ [0.01] 0.11 2 0.93 0.68 0.55 0.49 0.13 0.23

Panel B: International Equities - 13 JKP anomaly theme portfolios
winner_inteq 3.09∗∗∗ [0.00] 0.11 7 0.75 0.73 0.40 0.50 0.45 0.20

winner_across 3.96∗∗∗ [0.00] 0.10 5 0.65 0.52 0.44 0.52 1.10 0.38

AMP_across 18.6∗∗∗ [0.00] 0.16 9 1.07 1.21 0.13 0.34 0.02 0.98

CAPM_inteq 6.07∗∗∗ [0.00] 0.18 8 1.17 1.46 0.14 0.15 0.01 0.32

FF3_inteq 10.5∗∗∗ [0.00] 0.19 8 1.23 1.94 0.08 0.38 0.05 0.49

C4_inteq 15.8∗∗∗ [0.00] 0.14 8 0.96 1.13 0.09 0.51 0.11 0.91

FF5_inteq 2.56∗∗ [0.02] 0.09 4 0.62 0.47 0.67 0.46 0.42 0.16

FF6_inteq 1.81∗ [0.08] 0.10 7 0.65 0.46 0.21 0.58 0.42 0.13

HXZ4_inteq 1.67 [0.11] 0.09 3 0.61 0.43 1.00 0.37 0.47 0.13

SY_inteq 11.8∗∗∗ [0.00] 0.14 7 0.91 0.86 0.24 0.46 0.30 0.80

continued on the next page
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Table 4.10: Time-Series Asset Pricing Tests with Test Assets (continued)

GRS [p-value] A|αi| #sig αi
A|αi|
A|ri|

Aα2
i

Ar2i

As2(αi)
Aα2

i
A(R2) SH2(f) SH2(α)

Panel C: Corporate Bonds - 29 LS characteristic portfolios

winner_cb 3.76∗∗∗ [0.00] 0.09 7 0.41 0.17 0.29 0.55 0.57 0.52

winner_across 2.35∗∗∗ [0.01] 0.11 3 0.50 0.30 0.44 0.44 1.10 0.47

AMP_across 6.25∗∗∗ [0.00] 0.18 11 0.87 0.77 0.14 0.18 0.02 0.65

CAPM_cb 5.65∗∗∗ [0.00] 0.12 4 0.56 0.35 0.24 0.21 0.08 0.53

FF3_cb 5.91∗∗∗ [0.00] 0.10 5 0.48 0.32 0.24 0.34 0.12 0.53

augFF3_cb 6.30∗∗∗ [0.00] 0.11 9 0.53 0.29 0.19 0.40 0.19 0.66

FF5_cb 6.75∗∗∗ [0.00] 0.11 4 0.53 0.42 0.22 0.35 0.10 0.59

BBW 4.71∗∗∗ [0.00] 0.13 8 0.59 0.29 0.24 0.31 0.16 0.48

BSW 4.46∗∗∗ [0.00] 0.10 4 0.47 0.26 0.31 0.27 0.19 0.46

IRP 5.27∗∗∗ [0.00] 0.07 6 0.32 0.09 0.57 0.57 0.54 0.59

KPP 4.13∗∗∗ [0.00] 0.08 4 0.36 0.11 0.46 0.56 0.40 0.38

Panel D: Commodities

winner_commodity 1.63∗∗ [0.04] 0.55 2 1.07 0.92 0.81 0.03 0.07 0.35

winner_across 1.36 [0.13] 0.87 4 1.69 1.97 0.63 0.14 1.10 0.58

AMP_across 2.04∗∗∗ [0.00] 0.59 2 1.15 1.09 0.55 0.10 0.02 0.42

CAPM_cm 1.91∗∗∗ [0.01] 0.52 5 1.01 1.00 0.45 0.28 0.00 0.38

BGR_cm 1.80∗∗ [0.02] 0.50 4 0.98 0.92 0.50 0.30 0.02 0.37

AQR4_cm 1.60∗∗ [0.04] 0.51 5 1.00 0.84 0.57 0.30 0.08 0.35

Panel E: Equity Indices

winner_eqindices 0.85 [0.73] 0.43 0 1.15 1.25 1.39 0.01 0.02 0.32

winner_across 1.04 [0.43] 0.50 5 1.33 2.28 0.65 0.54 1.10 0.81

AMP_across 0.93 [0.61] 0.28 3 0.75 0.62 1.21 0.57 0.02 0.34

CAPM_eqi 0.96 [0.55] 0.33 7 0.89 0.88 0.90 0.51 0.01 0.37

AQR_eqi 0.81 [0.79] 0.26 1 0.69 0.51 1.54 0.53 0.06 0.32

Panel F: Government Bonds

winner_govtb 0.50 [0.93] 0.14 0 0.51 0.37 2.31 0.08 0.06 0.05

winner_across 0.50 [0.94] 0.16 0 0.60 0.49 2.26 0.20 1.10 0.11

AMP_across 1.05 [0.41] 0.16 1 0.59 0.39 1.61 0.22 0.02 0.11

CAPM_govtb 0.50 [0.93] 0.14 0 0.51 0.37 2.31 0.08 0.06 0.05

AQR_govtb 0.47 [0.95] 0.08 0 0.30 0.13 6.52 0.19 0.09 0.05

Panel G: Global 48 VME portfolios

winner_across 1.35 [0.11] 0.29 5 0.73 0.68 0.46 0.59 1.10 0.98

AMP_across 6.01∗∗∗ [0.00] 0.23 17 0.58 0.36 0.43 0.61 0.02 2.02
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model, only five do so with respect to the top integrated model. The GRS test

favors the top integrated model over the AMP global model, as it fails to the null

hypothesis that the alphas are all jointly zero.

Figure 4.2 plots the actual sample average returns of the 48 VME portfolios

across asset classes against their predicted expected returns. On the left are the

fitted expected returns from the AMP global three-factor model, while on the

right are those from the top integrated model. In addition, we plot the 45-degree

line through the origin to highlight the magnitude of the pricing errors. If a model

works well, then these dots representing the test assets should line up well along

the 45-degree line (i.e., data and model are in agreement). For the AMP global

model, we see that the dots in the left graph are mostly clustered along the x-axis

dimension and spread out along the y-axis dimension. On the other hand, for

the top unified model, the dots are spread out along both dimensions, with a

fairly good alignment (with some dispersion) along the 45-degree line. Thus, the

top integrated model across asset classes can explain the returns of these test

portfolios across asset classes quite well.

Taking all the evidence from both the right-hand-side (RHS) and LHS tests

together, we find that an integrated model that includes factors from different

asset classes performs quite well. The integrated factor model should definitely

be used as a benchmark to evaluate multi-asset-class strategies. However, it can

also be used for single-asset classes, where it performs on a par with the best

specialized models. The fact that factors also help to explain returns across asset

classes underscores the notion that asset classes are not entirely disintegrated.

4.6 Conclusion

Our study is motivated by the proliferation of factors across asset classes. However,

different asset classes are typically analyzed in isolation. Little is known about the

cross-market linkages of these factors. Therefore, we analyze market integration

from a multi-asset, multi-factor perspective. We find that the different asset classes
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CHAPTER 4. FACTOR PRICING ACROSS ASSET CLASSES

are far from fully integrated: models for one asset class typically fail to explain

factors from other asset classes. Thus, there are multiple systematic drivers of

returns across asset classes.

There are also some cross-market linkages, though. We thus distill and

analyze a unified factor model that can describe returns across asset classes. Of

the 77 factors across the seven different asset classes, the U.S. stock market, the

size, management and quality factors of international equities, and the corporate

bond carry factor appear to be the most important components of an optimal

unified model. An integrated model consisting of these five factors, plus the

corporate bond equity momentum factor, the currency momentum factor, and

the equity index carry factor, performs quite well across asset classes. It achieves

high in-sample and out-of-sample Sharpe ratios. Finally, the top integrated model

subsumes a long list of factors and performs well in pricing assets across different

asset classes.
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C Appendix

C.1 Robustness Check with a Longer Sample Period

In this section, we test the robustness of the main results using a longer

sample period starting in 1991, but excluding corporate bonds. The optimal inte-

grated factor set includes MKT_useq, QMJ_useq, SMB_inteq, MGMT_inteq,

QMJ_inteq, MKT_govtb, Value_cm, Carry_cm. Consistent with the main

analysis, we find that the same factors from U.S. and international equities

make it into the integrated model. Not surprisingly, without corporate bonds,

a government bond factor (MKT_govtb) is required in the optimal model.

Interestingly, the optimal model also includes commodity factors for the longer

sample period.

As can be seen in Figure C.1 for the longer sample excluding corporate

bonds, the efficient frontier of the chosen combination of factors from the scanning

approach is furthest to the northwest compared to those of the leading existing

models in each asset class. The optimal combination of factors from multiple asset

classes provides better investment opportunities than just the multiple styles from

single asset classes.
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CHAPTER 4. FACTOR PRICING ACROSS ASSET CLASSES

Figure C.1: Efficient Frontiers - A Longer Sample Period

This figure plots the efficient frontiers and the tangency portfolios (red dots) for

the representative models from each asset class: FF5_useq (U.S. equities), FF5_inteq

(international equities, excluding the U.S.), AQR_cm (commodities), AQR_fx (cur-

rencies), AQR_eqi (equity indices), and AQR_govtb (government bond indices). In

addition, it also plots the optimal integrated model based on eight selected factors

across asset classes though the two-step approach {MKT_useq, QMJ_useq, SMB_inteq,

MGMT_inteq, QMJ_inteq, MKT_govtb, Value_cm, Carry_cm} as a multi-asset,

multi-factor investment strategy. To construct the efficient frontier, we require that all

weights are positive and sum to one. The analysis is performed over the sample period

from January 1991.
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C.2 Model Selection Method Implementation Details

In this section, we describe the Bayesian marginal-likelihood-based model

comparison approach introduced by Barillas & Shanken (2018) and revisited by

Chib et al. (2020). This method allows a simultaneous comparison of all possible

models based on subsets of the factor space under investigation. We compute their

log marginal likelihoods to perform the prior–posterior update. The final model

ranking is based on the posterior probabilities.

More specifically, for a set of K (traded) potential risk factors, there are

generally J = 2K − 1 possible factor combinations. The model space is thus

M = {M1,M2, ...,MJ}. Mj is a possible model defined by the vector of included

factors f̃j and the vector of excluded factors f∗j .

Each factor model has a Lj×1 vector of included factors f̃j and a (K−Lj)×1

vector of excluded factors f∗j . The data generating process of model j is thus given

by

f̃j,t = α̃j + ϵ̃j,t, (C.1)

and

f∗j,t = B∗
j,f f̃j,t + ϵ∗j,t. (C.2)

α̃j is a Lj × 1 parameter vector, and ϵ̃j,t is a multivariate normally distributed

residual vector. B∗
j,f is a (K−Lj)×Lj parameter matrix. ϵ∗j,t is also a multivariate

normally distributed residual vector. A special case is when all factors are included

in fj .

The log marginal likelihood of a model Mj (j ̸= J) with y given the sample

data of the factors over T time periods in closed form is

log m̃(y|Mj) = log m̃(f̃ |Mj) + log m̃(f∗|Mj). (C.3)

The first term on the RHS of Equation (C.3) is

− (K − Lj)Lj

2
log 2− T̃Lj

2
log π − Lj

2
log (T̃ kj + 1)

− (T̃ + Lj −K)

2
log |ψj |+ log ΓLj

(
T̃ + Lj −K

2

)
.
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The second term on the RHS of Equation (C.3) is

(K − Lj)Lj

2
log 2− (K − Lj)(T̃ − Lj)

2
log π

− (K − Lj)

2
log |W ∗

j | −
T̃

2
log |ψ∗

j |+ log ΓK−Lj

(
T̃

2

)
,

where T̃ = T − nt and

W ∗
j =

T∑
t=nt+1

f̃j,tf̃
′
j,t,

ψj =
T∑

t=nt+1

(f̃j,t − ˆ̃αj)(f̃j,t − ˆ̃αj)
′ +

T̃

T̃ kj + 1

(
ˆ̃αj − α̃j0

)(
ˆ̃αj − α̃j0

)′
ψ∗
j =

T∑
t=nt+1

(f∗j,t − B̂∗
j,f f̃j,t)(f

∗
j,t − B̂∗

j,f f̃j,t)
′.

Γd(.) denotes the d-dimensional multivariate gamma function. All other variables

are as previously defined. Hats on the parameters indicate that they are the

estimates obtained by linear regressions of equations (C.1) and (C.2).

Following the recommendation of Chib et al. (2020), we use this model along

with the model-specific prior α̃j |Mj ∼ N (α̃j0, kjΣj) with

α̃j0 = n−1
t

nt∑
t=1

f̃j,t,

where nt = tr × T is the size of the training sample, which we set to tr = 10%

of the data, as in Chib et al. (2020). The model-specific multiplier kj can be

calculated as

kj =
1− tr

tr
× L−1

j sum(diag(Vj0)/diag(Σ̂j0)),

where Vj0 is the negative inverse Hessian over α̃j and Σ̂j0 the estimate of the

covariance matrix Σj in the training sample.

The end-product of the scanning process is a ranking of models

{M1∗,M2∗, ...,MJ∗} (C.4)

by

m̃(y|M1∗) > m̃(y|M2∗) > ... > m̃(y|MJ∗). (C.5)
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M1∗ denotes the winning model, identified as the model with the highest posterior

probability. The remaining terms in the posterior probability calculation can be

summarized by just a normalization constant. Thus, the ranking of the posterior

probabilities is equivalent to the ranking of the marginal likelihoods m̃(y|Mj).
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CHAPTER 4. FACTOR PRICING ACROSS ASSET CLASSES

C.3 Additional Figures and Tables

Figure C.2: The Correlation Matrix of Monthly Factor Returns

This figure shows the correlation matrix for our set of candidate factors from seven

different asset classes (see the list in Table 4.1) for their common sample period from

August 2006 to December 2019.
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CHAPTER 4. FACTOR PRICING ACROSS ASSET CLASSES

Table C.2: Summary Statistics of the Factors

This table shows the descriptive statistics of the factors used in this chapter. The
factors come from seven major asset classes (see the list in Table 4.1). We present
the summary statistics of the factors for their common sample period from August
2006 to December 2019. The t-statistics (in parentheses) are based on Newey & West
(1987) standard errors with four lags. In addition to the (monthly) mean return, we
also present the median, standard deviation (SD), skewness, and kurtosis of the monthly
factor returns.

Mean (t-statistic) Median SD Skew Kurt

U.S. Equities
MKT_useq 0.78∗∗ (2.08) 1.36 4.28 −0.77 4.66

SMB_useq 0.02 (0.13) 0.18 2.37 0.30 3.05

HML_useq −0.25 (−1.14) −0.41 2.65 0.16 5.03

RMW_useq 0.25∗ (1.91) 0.27 1.56 0.11 3.28

CMA_useq 0.01 (0.10) 0.00 1.46 0.30 2.68

MOM_useq 0.03 (0.07) 0.22 4.65 −2.57 20.5

STR_useq 0.12 (0.55) −0.06 2.99 −0.02 5.99

LTR_useq −0.26 (−1.17) −0.36 2.54 0.17 3.04

ME_useq 0.04 (0.25) 0.20 2.40 0.21 3.04

IA_useq −0.01 (−0.11) −0.18 1.54 0.20 2.57

ROE_useq 0.24 (1.16) 0.47 2.23 −1.60 12.6

EG_useq 0.41∗∗ (2.58) 0.27 1.80 −0.11 5.33

PEAD_useq 0.19 (1.16) 0.21 2.09 −0.25 5.64

FIN_useq 0.28 (1.30) −0.02 2.82 0.55 3.85

LIQ_useq −0.07 (−0.24) 0.14 3.46 −0.46 4.90

HMLm_useq −0.13 (−0.40) −0.52 3.71 2.48 19.3

BAB_useq 0.40∗ (1.76) 0.55 2.64 −0.17 7.01

QMJ_useq 0.42∗ (1.73) 0.29 2.49 0.24 4.53

SMB_useqsy 0.14 (0.86) 0.15 2.16 0.25 3.01

MGMT_useq 0.14 (0.81) 0.04 2.05 0.03 4.33

PERF_useq 0.59 (1.42) 0.39 4.69 −0.43 5.97

International Equities
MKT_inteq 0.42 (0.88) 0.65 4.96 −0.78 5.75

SMB_inteq 0.20 (1.43) 0.24 1.52 0.38 4.94

HML_inteq 0.17 (1.40) 0.17 1.45 −0.02 2.93

HMLm_inteq 0.16 (1.01) −0.11 1.87 0.62 5.20

RMW_inteq 0.26∗∗∗ (3.08) 0.17 1.10 −0.05 4.11

ROE_inteq 0.23∗∗ (2.25) 0.10 1.19 0.18 3.68

CMA_inteq 0.23 (1.64) 0.19 1.25 0.78 8.88

MOM_inteq 0.46∗ (1.69) 0.74 2.71 −2.34 16.6

iMOM_inteq 0.41∗∗∗ (4.00) 0.52 1.16 −0.13 3.65

MGMT_inteq 0.25∗∗ (2.07) 0.06 1.29 0.97 5.34

PERF_inteq 0.43∗∗∗ (2.82) 0.53 1.75 −0.85 6.01

BAB_inteq 0.36 (1.30) 0.38 3.03 −0.21 5.08

QMJ_inteq 0.48∗∗∗ (2.75) 0.53 1.92 −0.32 5.35

continued on the next page
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Table C.2: Summary Statistics of the Factors (continued)

Mean (t-statistic) Median SD Skew Kurt

Corporate Bonds
MKT_cb 0.39∗∗∗ (3.31) 0.41 1.36 0.15 10.5

TERM_cb 0.50∗∗ (2.02) 0.23 3.27 0.47 5.35

DEF_cb 0.07 (0.44) 0.07 2.19 −0.47 6.65

DRF_cb 0.69∗∗∗ (2.90) 0.59 2.36 0.87 8.06

LRF_cb 0.47∗∗∗ (2.78) 0.28 1.39 3.81 29.5

CRF_cb 0.38∗ (1.86) 0.26 1.91 −0.32 7.96

Carry_cb 0.97∗∗∗ (4.86) 1.00 2.12 0.97 7.11

Value_cb 0.71∗∗∗ (5.82) 0.81 1.37 −0.33 5.79

DUR_cb 0.55∗∗ (2.46) 0.60 2.66 −0.00 7.72

VOL_cb 0.55∗∗∗ (2.85) 0.57 2.32 0.38 7.55

STR_cb 0.35∗∗∗ (2.74) 0.41 1.33 0.45 6.64

MOM_cb −0.36∗∗ (−2.40) −0.19 1.65 −2.92 20.5

MOM_cbeq 0.22∗∗∗ (3.78) 0.14 0.84 −0.05 8.61

LTR_cb 0.07 (0.46) −0.09 1.73 1.80 12.6

VIX_cb 0.12 (1.64) 0.06 0.71 2.18 16.2

UNC_cb −0.01 (−0.12) 0.03 1.20 −1.46 11.9

EPU_cb 0.09 (1.14) 0.13 0.84 −1.14 8.43

EPUtax_cb 0.02 (0.24) 0.05 0.65 −1.60 11.0

Commodities
MKT_cm −0.09 (−0.22) 0.20 4.47 −0.58 6.20

Value_cm 0.98∗∗ (2.60) 1.10 4.79 −0.02 3.32

MOM_cm −0.11 (−0.29) 0.50 4.71 −0.60 3.49

Carry_cm 0.43 (1.51) 0.29 4.08 −0.52 4.39

TSMOM_cm 0.11 (0.29) 0.25 4.60 −0.20 5.25

Currencies
MKT_fx 0.03 (0.22) 0.19 1.88 −0.42 4.32

HML_fx 0.30 (1.65) 0.41 2.23 −0.52 3.44

Carry_fx 0.33∗ (1.82) 0.28 2.26 0.69 3.91

Dollar_fx 0.07 (0.43) −0.08 1.90 0.59 4.53

Value_fxaqr 0.29∗∗ (2.30) 0.08 1.62 0.34 4.23

MOM_fxaqr −0.13 (−0.95) −0.02 2.12 −0.41 3.34

Carry_fxaqr 0.19 (0.85) 0.35 2.52 −0.41 5.28

TSMOM_fx 0.55 (1.35) 0.52 5.20 0.75 6.00

Equity Indices
MKT_eqi 0.47 (1.18) 1.09 4.09 −0.97 5.81

Value_eqi −0.11 (−0.76) −0.01 2.02 −0.20 3.07

MOM_eqi 0.22 (1.33) 0.06 2.36 0.27 2.77

Carry_eqi −0.24 (−1.53) −0.24 1.96 0.53 3.83

Defensive_eqi 0.24 (1.54) 0.11 1.98 0.10 3.31

TSMOM_eqi 0.77 (1.24) 0.70 7.07 0.01 3.29

Government Bonds
MKT_govtb 0.32∗∗∗ (3.06) 0.36 1.32 0.06 3.13

Value_govtb 0.06 (0.69) 0.04 1.13 −0.69 7.41

MOM_govtb 0.12 (1.19) 0.09 1.33 0.58 5.42

Carry_govtb 0.15∗ (1.73) 0.15 1.15 −1.17 11.6

Defensive_govtb 0.05 (0.76) 0.14 0.88 −0.81 4.85

TSMOM_govtb 1.35∗∗ (2.14) 0.52 7.67 0.55 3.82
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C. APPENDIX

Table C.4: Detailed Model Scan Results

This table summarizes the main results of the model scan algorithm. For each asset

class, we examine all possible asset pricing models that can be formed, subject to the

restrictions on factor correlations. The model scan applies the BS–CZZ approach to all

candidate factors that survive the first step of factor identification. Finally, we identify

the optimal factor model across asset classes from the pool of factors in the best models

for each asset class. We report the log marginal likelihoods (log m̃(y|Mj)), posterior

probabilities (Pr(Mj |y)), and ratios of posterior to prior probabilities (Pr(Mj |y)
Pr(Mj)

) of the

top models. We report the top three models in each asset class.

Risk Factors log m̃(y|Mj) Pr(Mj|y) Pr(Mj |y)
Pr(Mj)

A. U.S. Equities

MKT_useq, QMJ_useq 1, 591.56 57.3 17.8

MKT_useq, BAB_useq, QMJ_useq 1, 590.55 20.9 6.47

MKT_useq, SMB_useq, QMJ_useq 1, 589.51 7.37 2.28

B. International Equities

MKT_inteq, SMB_inteq, MGMT_inteq, QMJ_inteq 2, 739.61 54.8 69.6

MKT_inteq, SMB_inteq, MOM_inteq, MGMT_inteq, QMJ_inteq 2, 738.39 20.1 15.9

MKT_inteq, SMB_inteq, CMA_inteq, MGMT_inteq, QMJ_inteq 2, 737.29 6.65 5.25

C. Corporate Bonds

TERM_cb, Carry_cb, DUR_cb, MOM_cbeq 4, 833.81 15.6 160

Carry_cb, MOM_cbeq 4, 832.98 6.82 69.7

DEF_uscb, Carry_cb, MOM_cbeq 4, 832.73 5.32 54.5

D. Commodities

Value_cm, Carry_cm 968.838 40.0 6.00

Value_cm 968.614 32.0 4.80

Value_cm, Carry_cm, TSMOM_cm 966.917 5.86 0.88

E. Currencies

MOMfx_aqr 1, 074.92 34.3 2.40

Carryfx_aqr 1, 074.73 28.4 1.99

MKT_fx 1, 074.63 25.6 1.79

F. Equity Indices

Carry_eqi 724.408 67.3 2.02

Defensive_eqi 723.341 23.2 0.69

Carry_eqi, Defensive_eqi 722.451 9.52 0.29

G. Government Bonds

MKT_govtb 849.844 82.4 2.47

MKT_govtb, Carry_govtb 848.157 15.3 0.46

Carry_govtb 846.281 2.34 0.07

continued on the next page

195



CHAPTER 4. FACTOR PRICING ACROSS ASSET CLASSES

Ta
bl

e
C

.4
:D

et
ai

le
d

M
od

el
Sc

an
R

es
ul

t
(c

on
ti

nu
ed

)

R
is

k
Fa

ct
or

s
lo
g
m̃

(y
|M

j
)

P
r
(M

j
|y
)
P
r
(
M

j
|y

)

P
r
(
M

j
)

H
.
T
op

m
od

el
s

ac
ro

ss
as

se
t

cl
as

se
s

M
K

T
_

us
eq

,S
M

B
_

in
te

q,
M

G
M

T
_

in
te

q,
Q

M
J_

in
te

q,
C

ar
ry

_
cb

,M
O

M
_

cb
eq

,M
O

M
fx

_
aq

r,
C

ar
ry

_
eq

i
5,
4
0
6
.3
1

3.
8
2

70
5

M
K

T
_

us
eq

,S
M

B
_

in
te

q,
M

G
M

T
_

in
te

q,
Q

M
J_

in
te

q,
C

ar
ry

_
cb

,D
U

R
_

cb
,M

O
M

_
cb

eq
,C

ar
ry

_
eq

i,
M

K
T

_
go

vt
b

5,
4
06
.2
5

3.
5
8

66
0

M
K

T
_

us
eq

,S
M

B
_

in
te

q,
M

G
M

T
_

in
te

q,
Q

M
J_

in
te

q,
C

ar
ry

_
cb

,M
O

M
_

cb
eq

,C
ar

ry
_

eq
i

5,
4
05
.9
1

2.
5
6

4
7
1

196



Chapter 5

Conclusion and Further

Research

5.1 Summary and Conclusion

This dissertation investigates the use of factor models to measure performance by

investors in corporate bond markets, systematically examines proposed factors in

the corporate bond literature to identify an optimal factor model for corporate

bond returns, and finally provides a comprehensive analysis of factor pricing and

market integration across asset classes.

Chapter 2 comprehensively investigates how corporate bond mutual fund

investors measure performance by analyzing the relation between mutual fund

flows and different performance measures. Specifically, we run a horse race among

different performance measures, ranging from the simple raw return and the

Sharpe ratio to alphas estimated by using single and different multi-factor models.

Our empirical analysis reveals that the Sharpe ratio explains the net flows into

actively managed U.S. corporate bond mutual funds better than any of these

alternatives. Morningstar ratings appear to explain an even larger share of investor

fund flows, but the Sharpe ratio has important explanatory power within the

Morningstar ratings groups. It thus seems that most investors do not use any
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factor model at all. We point out the potential harmful consequences caused by

such investors’ reliance of the Sharpe ratio and Morningstar ratings as primary

performance measures.

Chapter 3 systematically examines a large set of the most prominent

corporate bond factors in the literature to separate useful factors from redundant

ones. First, we check whether the factors systematically move corporate bond

prices. We find that many prominent recent factors, such as those of Bai et al.

(2019), fail this first screening test for viable factors. In the second step, we adopt

a Bayesian marginal likelihood-based approach proposed by Barillas & Shanken

(2018) and Chib et al. (2020) to simultaneously compare all possible models

that can be formed as subsets of the factors that pass the first step. The main

finding that emerges from our analysis is that the best factor model for corporate

bond returns is based on the combination of carry, duration, stock momentum,

and term structure factors. The result indicates that only a small subset of the

23 considered factors really matters for corporate bond pricing. We show the

outperformance of the optimal model from the Bayesian model scan relative to

the prominent existing factor models. Further analysis shows the winning model

overall explains reasonably well the time-series and cross-sectional variation of

corporate bond returns (represented by various test assets). This model can be

used as a benchmark model for future research, for investors in corporate bond

markets to implement factor-investing strategies, and to evaluate performance.

Chapter 4 studies factor pricing across asset classes and examines market

integration from a multi-asset, multi-factor perspective, moving beyond the

convention of analyzing different asset classes separately. We find that single-

asset-class-specialized models typically fail to explain factors from other asset

classes, indicating that the different asset classes are far from perfectly integrated.

However, there are also some cross-market linkages. We thus uncover and analyze

an integrated factor model that can effectively explain returns across asset classes

and provide a useful benchmark for multi-asset, multi-factor investing. Of the

77 factors across the seven different asset classes, the U.S. stock market, the
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size, management and quality factors of international equities, and the corporate

bond carry factor appear to be the most important components of an optimal

unified model. An integrated model consisting of these five factors, plus the

corporate bond equity momentum factor, the currency momentum factor, and

the equity index carry factor, has reasonably good performance across asset

classes. It achieves higher in-sample and out-of-sample Sharpe ratios than any

existing models that specialize in one asset class. Finally, the top integrated model

subsumes a long list of factors and performs well in pricing assets across different

asset classes.

5.2 Suggestions for Further Research

This section suggests several potentially interesting research avenues that are not

yet explored within the scope of the three studies in this dissertation and left for

future work.

Over the past 20 years, academic research, and the environmental and social

trend toward “responsible” investing in financial markets have had a significant

influence on the investment strategies and tastes of investors. Factor investing

and more quantitative approaches have been widely adopted. A growing number

of large institutional investors have declared to make environmental, social,

and governance (ESG) performance an important objective in their investment

decision-making process.

Given the growing interest of investors into ESG financial products, the

investigation in Chapter 2 can be extended to the case of investors engaging

in ESG. How do they evaluate and trade off financial and non-financial

performance when making investment decisions in bond markets? In particular,

which performance measures do they currently use and which should they

use? Future work on these questions could yield helpful insights, as to date

the lack of consistency and comparability of ESG ratings from different rating

providers creates a barrier for the proper integration of sustainability concerns into

199



CHAPTER 5. CONCLUSION AND FURTHER RESEARCH

investment decisions, as well as for the accuracy of the performance assessment in

both financial and sustainable aspects of funds engaging in ESG. On the one hand,

asset managers’ decisions on security selection and weighting could be driven not

only by the ESG score inputs but also by the choice of rating provider. On the

other hand, this issue makes it difficult and confusing for investors to distinguish

between outperformers and laggards. Relying on a misleading metric to judge

the sustainability of a financial product may lead to negative consequences on

financial returns, without actually improving the sustainability of the portfolio.

The existing literature reports widely mixed empirical evidence and a lot

of disagreement among views across academics and practitioners about the

relationship between ESG and asset returns, and whether ESG enhances or

harms financial performance. Using the research setup and methods in Chapters

3 and 4, one can check whether ESG factors add incremental information to

explain the cross-section of corporate bond returns, as well as returns across asset

classes and markets, or they can be subsumed by other existing factors (such as

quality factors, credit risk, tail risk). Such an analysis could provide further useful

evidence in this debate, and may establish some common ground to explain the

inconclusiveness of existing findings.

Academic studies on asset pricing factors are generally criticized for ignoring

real-world concerns, such as transaction costs and trading frictions. Therefore,

how best to translate academic factors into realistic factor-based investing

strategies across asset classes and markets is a pivotal and practical question.

A comprehensive study and comparison of the impact of real-world investment

constraints and transaction costs on the implementability and performance of

academic factors across asset classes in practice may carry useful implications for

the optimal choices related to implementation design and portfolio optimization

(such as rebalancing frequency, portfolio sorting, weighting scheme). Investigating

how well asset pricing models explain the cross-section of returns taking

transaction costs into account could provide different perspectives on the

practicality and robustness about model performance. For example, a recent study
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by Detzel, Novy-Marx, & Velikov (2023) highlights the effect of omitting trading

costs when assessing factor models for U.S. stocks. Examining this issue beyond

equities for other asset classes such as bonds, currencies and commodities, etc.

and in the context of asset allocation across asset classes and markets would be

useful to provide a comprehensive insight.

201



References

Adrian, T., Etula, E., & Muir, T. (2014). Financial intermediaries and the cross-

section of asset returns. Journal of Finance, 69 (6), 2557–2596. [cited on p. 133]

Agarwal, V., Green, T. C., & Ren, H. (2018). Alpha or beta in the eye of the

beholder: What drives hedge fund flows? Journal of Financial Economics,

127 (3), 417–434. [cited on p. 14, 15, 32]

Ahmed, S., Bu, Z., & Tsvetanov, D. (2019). Best of the best: A comparison of

factor models. Journal of Financial and Quantitative Analysis, 54 (4), 1713–

1758. [cited on p. 99]

Ambastha, M., Dor, A. B., Dynkin, L., Hyman, J., & Konstantinovsky, V. (2010).

Empirical duration of corporate bonds and credit market segmentation. Journal

of Fixed Income, 20 (1), 5–27. [cited on p. 32]

Aragon, G. O., Li, L., & Qian, J. (2019). The use of credit default swaps by bond

mutual funds: Liquidity provision and counterparty risk. Journal of Financial

Economics, 131 (1), 168–185. [cited on p. 53]

Artavanis, N. T., Eksi, A., & Kadlec, G. B. (2019). Downside risk and mutual

fund flows. Tulane University Working Paper . [cited on p. 39]

Asness, C., & Frazzini, A. (2013). The devil in HML’s details. Journal of Portfolio

Management , 39 (4), 49–68. [cited on p. 150, 152, 189]

202



REFERENCES

Asness, C. S., Frazzini, A., & Pedersen, L. H. (2019). Quality minus junk. Review

of Accounting Studies, 24 (1), 34–112. [cited on p. 149, 150, 152, 161, 189]

Asness, C. S., Moskowitz, T. J., & Pedersen, L. H. (2013). Value and momentum

everywhere. Journal of Finance, 68 (3), 929–985. [cited on p. 145, 149, 154,

155, 168, 181]

Bai, J., Bali, T. G., & Wen, Q. (2019). Common risk factors in the cross-section

of corporate bond returns. Journal of Financial Economics, 131 (3), 619–642.

[cited on p. 14, 20, 21, 51, 84, 94, 95, 98, 99, 103, 108, 110, 129, 136, 138, 139,

140, 141, 142, 151, 152, 154, 189, 198]

Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy

uncertainty. Quarterly Journal of Economics, 131 (4), 1593–1636. [cited on

p. 139]

Bakshi, G., Gao, X., & Rossi, A. G. (2019). Understanding the sources of risk

underlying the cross section of commodity returns. Management Science, 65 (2),

619–641. [cited on p. 149, 154]

Bali, T. G., Brown, S. J., & Tang, Y. (2017a). Is economic uncertainty priced

in the cross-section of stock returns? Journal of Financial Economics, 126 (3),

471–489. [cited on p. 94, 139, 142]

Bali, T. G., Subrahmanyam, A., & Wen, Q. (2017b). Return-based factors for

corporate bonds. UCLA Working Paper . [cited on p. 94, 98, 99, 103, 139, 140,

142, 151, 152, 154]

Bali, T. G., Subrahmanyam, A., & Wen, Q. (2021a). Long-term reversals in the

corporate bond market. Journal of Financial Economics, 139 (2), 656–677.

[cited on p. 94, 98, 108, 139, 142]

Bali, T. G., Subrahmanyam, A., & Wen, Q. (2021b). The macroeconomic

uncertainty premium in the corporate bond market. Journal of Financial and

Quantitative Analysis, 56 (5), 1653–1678. [cited on p. 94, 98, 139, 142, 151, 152]

203



REFERENCES

Bao, J., Pan, J., & Wang, J. (2011). The illiquidity of corporate bonds. Journal

of Finance, 66 (3), 911–946. [cited on p. 138]

Barber, B. M., Huang, X., & Odean, T. (2016). Which factors matter to investors?

Evidence from mutual fund flows. Review of Financial Studies, 29 (10), 2600–

2642. [cited on p. 3, 11, 14, 15, 24, 26, 27, 39, 44, 50, 54]

Barillas, F., Kan, R., Robotti, C., & Shanken, J. (2020). Model comparison

with Sharpe ratios. Journal of Financial and Quantitative Analysis, 55 (6),

1840–1874. [cited on p. 96, 106, 107, 118, 147, 166]

Barillas, F., & Shanken, J. (2017). Which alpha? Review of Financial Studies,

30 (4), 1316–1338. [cited on p. 99]

Barillas, F., & Shanken, J. (2018). Comparing asset pricing models. Journal of

Finance, 73 (2), 715–754. [cited on p. 5, 95, 100, 104, 113, 117, 120, 136, 146,

159, 161, 168, 185, 198]

Bekaert, G., & De Santis, R. A. (2021). Risk and return in international corporate

bond markets. Journal of International Financial Markets, Institutions and

Money , 72 , 101338. [cited on p. 12, 18, 19, 29, 33, 38, 61, 63, 66, 69, 71, 73,

76, 77, 79, 81, 83, 85, 87, 89, 91, 126]

Bektić, D., Wenzler, J.-S., Wegener, M., Schiereck, D., & Spielmann, T. (2019).

Extending Fama–French factors to corporate bond markets. Journal of

Portfolio Management , 45 (3), 141–158. [cited on p. 95, 98, 143]

Ben-David, I., Li, J., Rossi, A., & Song, Y. (2022). What do mutual fund investors

really care about? The Review of Financial Studies, 35 (4), 1723–1774. [cited

on p. 12, 13, 14, 15, 27, 39, 46, 47, 48, 54]

Ben-Rephael, A., Choi, J., & Goldstein, I. (2021). Mutual fund flows and

fluctuations in credit and business cycles. Journal of Financial Economics,

139 (1), 84–108. [cited on p. 30]

204



REFERENCES

Berk, J. B., & Van Binsbergen, J. H. (2015). Measuring skill in the mutual fund

industry. Journal of Financial Economics, 118 (1), 1–20. [cited on p. 18]

Berk, J. B., & Van Binsbergen, J. H. (2016). Assessing asset pricing models using

revealed preference. Journal of Financial Economics, 119 (1), 1–23. [cited on

p. xi, 3, 11, 14, 15, 39, 40, 75]

Blocher, J., & Molyboga, M. (2017). The revealed preference of sophisticated

investors. European Financial Management , 23 (5), 839–872. [cited on p. 14,

15]

Bollen, N. P., & Pool, V. K. (2008). Conditional return smoothing in the hedge

fund industry. Journal of Financial and Quantitative Analysis, 43 (2), 267–298.

[cited on p. 16]

Bollen, N. P., & Pool, V. K. (2009). Do hedge fund managers misreport returns?

Evidence from the pooled distribution. Journal of Finance, 64 (5), 2257–2288.

[cited on p. 15, 16]

Borri, N., & Verdelhan, A. (2011). Sovereign risk premia. MIT Working Paper .

[cited on p. 149]

Boudoukh, J., Richardson, M., Subrahmanyam, M., & Whitelaw, R. F. (2002).

Stale prices and strategies for trading mutual funds. Financial Analysts

Journal , 58 (4), 53–71. [cited on p. 58]

Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2011). Robust inference with

multiway clustering. Journal of Business & Economic Statistics, 29 (2), 238–

249. [cited on p. 27]

Carhart, M. M. (1997). On persistence in mutual fund performance. Journal of

Finance, 52 (1), 57–82. [cited on p. 6, 154]

Chalmers, J., Edelen, R., & Kadlec, G. (2001). On the perils of security pricing

by financial intermediaries: The wildcard option in transacting mutual fund

shares. Journal of Finance, 56 (6), 2209–2236. [cited on p. 58]

205



REFERENCES

Chen, A. Y., & Zimmermann, T. (2021). Open source cross-sectional asset pricing.

Critical Finance Review, Forthcoming . [cited on p. 153, 189]

Chen, Q., Goldstein, I., & Jiang, W. (2010a). Payoff complementarities and

financial fragility: Evidence from mutual fund outflows. Journal of Financial

Economics, 97 (2), 239–262. [cited on p. 17, 31, 36]

Chen, Y., Ferson, W., & Peters, H. (2010b). Measuring the timing ability and

performance of bond mutual funds. Journal of Financial Economics, 98 (1),

72–89. [cited on p. 57]

Chen, Y., & Qin, N. (2016). The behavior of investor flows in corporate bond

mutual funds. Management Science, 63 (5), 1365–1381. [cited on p. 17, 32, 36]

Chen, Z., Lookman, A. A., Schürhoff, N., & Seppi, D. J. (2014). Rating-based

investment practices and bond market segmentation. Review of Asset Pricing

Studies, 4 (2), 162–205. [cited on p. 32]

Chib, S., & Zeng, X. (2020). Which factors are risk factors in asset pricing?

A model scan framework. Journal of Business & Economic Statistics, 38 (4),

771–783. [cited on p. 105]

Chib, S., Zeng, X., & Zhao, L. (2020). On comparing asset pricing models. Journal

of Finance, 75 (1), 551–577. [cited on p. 5, 95, 104, 113, 117, 136, 144, 146, 159,

161, 185, 186, 198]

Choi, J., Hoseinzade, S., Shin, S. S., & Tehranian, H. (2020). Corporate bond

mutual funds and asset fire sales. Journal of Financial Economics, 138 (2),

432–457. [cited on p. 36]

Choi, J., & Kim, Y. (2018). Anomalies and market (dis) integration. Journal of

Monetary Economics, 100 , 16–34. [cited on p. 4, 97, 125, 149]

Choi, J., Kronlund, M., & Oh, J. Y. J. (2021). Sitting bucks: Stale pricing in fixed

income funds. Journal of Financial Economics, Forthcoming . [cited on p. 15,

23, 58]

206



REFERENCES

Chordia, T., Goyal, A., Nozowa, Y., Subrahmanyam, A., & Tong, Q. (2017).

Are capital market anomalies common to equity and corporate bond markets?

Journal of Financial and Quantitative Analysis, 52 (4), 1301. [cited on p. 4, 97,

125]

Chung, K. H., Wang, J., & Wu, C. (2019). Volatility and the cross-section of

corporate bond returns. Journal of Financial Economics, 133 (2), 397–417.

[cited on p. 51, 84, 94, 98, 140, 143, 151, 152]

Cici, G., Gibson, S., & Merrick Jr, J. J. (2011). Missing the marks? Dispersion

in corporate bond valuations across mutual funds. Journal of Financial

Economics, 101 (1), 206–226. [cited on p. 15, 55, 57]

Cochrane, J. (2009). Asset pricing: Revised edition. Princeton University Press.

[cited on p. 6, 145]

Cochrane, J. H. (2005). Asset Pricing . Princeton, NJ: Princeton University Press.

[cited on p. 133]

Cochrane, J. H. (2011). Presidential address: Discount rates. Journal of Finance,

66 (4), 1047–1108. [cited on p. 6]

Connor, G., & Korajczyk, R. A. (1988). Risk and return in an equilibrium APT:

Application of a new test methodology. Journal of Financial Economics, 21 (2),

255–289. [cited on p. 103, 158]

Cooper, I., Mitrache, A., & Priestley, R. (2022). A global macroeconomic risk

model for value, momentum, and other asset classes. Journal of Financial and

Quantitative Analysis, 57 (1), 1–30. [cited on p. 149]

Correia, M., Richardson, S., & Tuna, İ. (2012). Value investing in credit markets.

Review of Accounting Studies, 17 (3), 572–609. [cited on p. 139]

Daniel, K., Hirshleifer, D., & Sun, L. (2020). Short-and long-horizon behavioral

factors. Review of Financial Studies, 33 (4), 1673–1736. [cited on p. 100, 150,

152, 154, 189]

207



REFERENCES

Del Guercio, D., & Tkac, P. A. (2002). The determinants of the flow of funds of

managed portfolios: Mutual funds vs. pension funds. Journal of Financial and

Quantitative Analysis, 37 (4), 523–557. [cited on p. 31]

Del Guercio, D., & Tkac, P. A. (2008). Star power: The effect of Monrningstar

ratings on mutual fund flow. Journal of Financial and Quantitative Analysis,

43 (4), 907–936. [cited on p. 17, 26, 27]

Detzel, A., Novy-Marx, R., & Velikov, M. (2023). Model comparison with

transaction costs. Journal of Finance. [cited on p. 201]

Dick-Nielsen, J., Feldhütter, P., & Lando, D. (2012). Corporate bond liquidity

before and after the onset of the subprime crisis. Journal of Financial

Economics, 103 (3), 471–492. [cited on p. 133]

Elton, E. J., & Gruber, M. J. (2013). Mutual funds. In Handbook of the Economics

of Finance, vol. 2, (pp. 1011–1061). Elsevier. [cited on p. 18]

Elton, E. J., Gruber, M. J., Agrawal, D., & Mann, C. (2001). Explaining the

rate spread on corporate bonds. Journal of Finance, 56 (1), 247–277. [cited on

p. 19]

Elton, E. J., Gruber, M. J., & Blake, C. R. (1995). Fundamental economic

variables, expected returns, and bond fund performance. Journal of Finance,

50 (4), 1229–1256. [cited on p. 12, 15, 19, 29, 33, 38, 61, 63, 66, 69, 71, 73, 74,

75, 76, 77, 79, 81, 83, 85, 87, 89, 91]

Evans, R. B. (2010). Mutual fund incubation. Journal of Finance, 65 (4), 1581–

1611. [cited on p. 18]

Evans, R. B., & Fahlenbrach, R. (2012). Institutional investors and mutual fund

governance: Evidence from retail–institutional fund twins. Review of Financial

Studies, 25 (12), 3530–3571. [cited on p. 31]

208



REFERENCES

Evans, R. B., & Sun, Y. (2021). Models or stars: The role of asset pricing models

and heuristics in investor risk adjustment. Review of Financial Studies, 34 (1),

67–107. [cited on p. 27, 46]

Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on

stocks and bonds. Journal of Financial Economics, 33 (1), 3–56. [cited on p. 2,

6, 12, 19, 46, 48, 51, 54, 84, 94, 98, 103, 108, 113, 141, 142, 150, 151, 152, 154]

Fama, E. F., & French, K. R. (1997). Industry costs of equity. Journal of Financial

Economics, 43 (2), 153–193. [cited on p. 127, 129, 131]

Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal

of Financial Economics, 116 (1), 1–22. [cited on p. 2, 6, 29, 33, 38, 52, 61, 63,

66, 69, 71, 73, 76, 77, 79, 81, 83, 84, 85, 87, 89, 91, 95, 98, 99, 110, 143, 154,

163]

Fama, E. F., & French, K. R. (2018). Choosing factors. Journal of Financial

Economics, 128 (2), 234–252. [cited on p. 98, 99, 150, 152, 154]

Fama, E. F., & MacBeth, J. D. (1973). Risk, return, and equilibrium: Empirical

tests. Journal of Political Economy , 81 (3), 607–636. [cited on p. 14, 27, 47,

48, 49, 76]

Fan, Z., Londono, J. M., & Xiao, X. (2022). Equity tail risk and currency risk

premiums. Journal of Financial Economics, 143 (1), 484–503. [cited on p. 149]

Feng, G., Giglio, S., & Xiu, D. (2020). Taming the factor zoo: A test of new

factors. Journal of Finance, 75 (3), 1327–1370. [cited on p. 100]

Frazzini, A., & Pedersen, L. H. (2014). Betting against beta. Journal of Financial

Economics, 111 (1), 1–25. [cited on p. 149, 150, 152, 189]

Friewald, N., & Nagler, F. (2019). Over-the-counter market frictions and yield

spread changes. Journal of Finance, 74 (6), 3217–3257. [cited on p. 133]

Galvani, V., & Li, L. (2020). Outliers and momentum in the corporate bond

market. University of Alberta Working Paper . [cited on p. 108]

209



REFERENCES

Gebhardt, W. R., Hvidkjaer, S., & Swaminathan, B. (2005a). The cross-section of

expected corporate bond returns: Betas or characteristics? Journal of Financial

Economics, 75 (1), 85–114. [cited on p. 19, 108, 116, 140]

Gebhardt, W. R., Hvidkjaer, S., & Swaminathan, B. (2005b). Stock and

bond market interaction: Does momentum spill over? Journal of Financial

Economics, 75 (3), 651–690. [cited on p. 20]

Getmansky, M., Lo, A. W., & Makarov, I. (2004). An econometric model of

serial correlation and illiquidity in hedge fund returns. Journal of Financial

Economics, 74 (3), 529–609. [cited on p. 14, 15, 55, 56, 57]

Gibbons, M. R., Ross, S. A., & Shanken, J. (1989). A test of the efficiency of a

given portfolio. Econometrica, 57 (5), 1121–1152. [cited on p. 96, 123, 124, 127,

148, 157, 173, 178]

Goetzmann, W., Ingersoll, J., Spiegel, M., & Welch, I. (2007). Portfolio

performance manipulation and manipulation-proof performance measures.

Review of Financial Studies, 20 (5), 1503–1546. [cited on p. 14, 18, 55, 56]

Goetzmann, W. N., Ivković, Z., & Rouwenhorst, K. G. (2001). Day trading

international mutual funds: Evidence and policy solutions. Journal of Financial

and Quantitative Analysis, 36 (3), 287–309. [cited on p. 58]

Goldstein, I., Jiang, H., & Ng, D. T. (2017). Investor flows and fragility in

corporate bond funds. Journal of Financial Economics, 126 (3), 592–613. [cited

on p. 13, 17, 18, 36, 52]

Gospodinov, N., & Robotti, C. (2021). Common pricing across asset classes:

Empirical evidence revisited. Journal of Financial Economics, 140 (1), 292–324.

[cited on p. 113, 149, 151, 153]

Green, J., Hand, J. R., & Zhang, X. F. (2017). The characteristics that provide

independent information about average U.S. monthly stock returns. Review of

Financial Studies, 30 (12), 4389–4436. [cited on p. 95]

210



REFERENCES

Greene, J. T., & Hodges, C. W. (2002). The dilution impact of daily fund flows

on open-end mutual funds. Journal of Financial Economics, 65 (1), 131–158.

[cited on p. 58]

Hanauer, M. X. (2020). A comparison of global factor models. TU Munich

Working Paper . [cited on p. 151, 152, 189]

Hansen, L. P., & Jagannathan, R. (1991). Implications of security market data for

models of dynamic economies. Journal of Political Economy , 99 (2), 225–262.

[cited on p. 6]

Harvey, C. R., & Liu, Y. (2021). Lucky factors. Journal of Financial Economics,

141 (2), 413–435. [cited on p. 100]

Harvey, C. R., Liu, Y., & Zhu, H. (2016). ... and the cross-section of expected

returns. Review of Financial Studies, 29 (1), 5–68. [cited on p. 2, 95]

He, Z., Kelly, B., & Manela, A. (2017). Intermediary asset pricing: New evidence

from many asset classes. Journal of Financial Economics, 126 (1), 1–35. [cited

on p. 133, 149, 151]

He, Z., Khorrami, P., & Song, Z. (2022). Commonality in credit spread changes:

Dealer inventory and intermediary distress. Review of Financial Studies,

Forthcoming . [cited on p. 133]

He, Z., & Krishnamurthy, A. (2013). Intermediary asset pricing. American

Economic Review , 103 (2), 732–70. [cited on p. 133]

Hollstein, F. (2022). Local, regional, or global asset pricing? Journal of Financial

and Quantitative Analysis, 57 (1), 291–320. [cited on p. 163]

Hou, K., Mo, H., Xue, C., & Zhang, L. (2019). Which factors? Review of Finance,

23 (1), 1–35. [cited on p. 100]

Hou, K., Mo, H., Xue, C., & Zhang, L. (2021). An augmented q-factor model

with expected growth. Review of Finance, 25 (1), 1–41. [cited on p. 150, 152,

154, 189]

211



REFERENCES

Hou, K., Xue, C., & Zhang, L. (2015). Digesting anomalies: An investment

approach. Review of Financial Studies, 28 (3), 650–705. [cited on p. 52, 84, 99,

150, 152, 154, 189]

Hou, K., Xue, C., & Zhang, L. (2020). Replicating anomalies. Review of Financial

Studies, 33 (5), 2019–2133. [cited on p. 95]

Hu, G. X., Pan, J., & Wang, J. (2013). Noise as information for illiquidity. Journal

of Finance, 68 (6), 2341–2382. [cited on p. 133]

Huang, J. C., Wei, K. D., & Yan, H. (2012). Investor learning and mutual fund

flows. University of Texas Working Paper . [cited on p. 17]

Hwang, S., & Rubesam, A. (2020). Bayesian selection of asset pricing factors

using individual stocks. Journal of Financial Econometrics, 20 (4), 716–761.

[cited on p. 100]

Ilmanen, A., Israel, R., Moskowitz, T. J., Thapar, A. K., & Lee, R. (2021). How do

factor premia vary over time? A century of evidence. Yale University Working

Paper . [cited on p. 151, 152, 154, 189]

Israel, R., Palhares, D., & Richardson, S. A. (2018). Common factors in corporate

bond returns. Journal of Investment Management , 16 (2), 17–46. [cited on p. 94,

95, 96, 98, 103, 108, 136, 138, 139, 141, 142, 154]

James, C., & Karceski, J. (2006). Investor monitoring and differences in mutual

fund performance. Journal of Banking & Finance, 30 (10), 2787–2808. [cited

on p. 32]

Jensen, T. I., Kelly, B. T., & Pedersen, L. H. (2022). Is there a replication crisis

in finance? Journal of Finance, Forthcoming . [cited on p. 151, 152, 153, 177,

189]

Jiang, G. J., & Yuksel, H. Z. (2017). What drives the “smart-money” effect?

Evidence from investors’ money flow to mutual fund classes. Journal of

Empirical Finance, 40 , 39–58. [cited on p. 17]

212



REFERENCES

Jiang, H., Li, D., & Wang, A. (2021). Dynamic liquidity management by corporate

bond mutual funds. Journal of Financial and Quantitative Analysis, 56 (5),

1622–1652. [cited on p. 36]

Jostova, G., Nikolova, S., Philipov, A., & Stahel, C. W. (2013). Momentum in

corporate bond returns. Review of Financial Studies, 26 (7), 1649–1693. [cited

on p. 20, 51, 94, 108, 139, 140]

Jurado, K., Ludvigson, S. C., & Ng, S. (2015). Measuring uncertainty. American

Economic Review , 105 (3), 1177–1216. [cited on p. 139]

Kan, R., Robotti, C., & Shanken, J. (2013). Pricing model performance and the

two-pass cross-sectional regression methodology. Journal of Finance, 68 (6),

2617–2649. [cited on p. 129, 131]

Kan, R., Wang, X., & Zheng, X. (2022). In-sample and out-of-sample Sharpe

ratios of multi-factor asset pricing models. University of Toronto Working

Paper . [cited on p. 120]

Kandel, S., & Stambaugh, R. F. (1995). Portfolio inefficiency and the cross-section

of expected returns. Journal of Finance, 50 (1), 157–184. [cited on p. 130]

Karolyi, G. A., & Wu, Y. (2021). Is currency risk priced in global equity markets?

Review of Finance, 25 (3), 863–902. [cited on p. 149]

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American

Statistical Association, 90 (430), 773–795. [cited on p. 116]

Kelly, B., Palhares, D., & Pruitt, S. (2023). Modeling corporate bond returns.

Journal of Finance, 78 (4), 1967–2008. [cited on p. 94, 96, 98, 103, 108, 126,

137, 139, 140, 141, 143, 149, 151, 152, 154, 189]

Kelly, B. T., & Pruitt, S. (2022). Reconciling TRACE bond returns. Yale Working

Paper . [cited on p. 101, 103, 126, 127, 131, 153, 189]

Kim, S. H. (2021). Do mutual funds manipulate star ratings? Evidence from

portfolio pumping. University of Texas Working Paper . [cited on p. 16]

213



REFERENCES

Koijen, R. S., Moskowitz, T. J., Pedersen, L. H., & Vrugt, E. B. (2018). Carry.

Journal of Financial Economics, 127 (2), 197–225. [cited on p. 117, 145, 149,

161]

Korsaye, S. A., Trojani, F., & Vedolin, A. (2023). The global factor structure

of exchange rates. Journal of Financial Economics, 148 (1), 21–46. [cited on

p. 149]

Kozak, S., Nagel, S., & Santosh, S. (2018). Interpreting factor models. Journal

of Finance, 73 (3), 1183–1223. [cited on p. 6]

Lee, K. (2022). Which uncertainty measures matter for the cross-section of

corporate bond returns? Evidence from the US during 1973–2020. Finance

Research Letters, 48 , 102913. [cited on p. 94, 95, 98, 139, 142, 151, 152]

Lewellen, J., Nagel, S., & Shanken, J. (2010). A skeptical appraisal of asset pricing

tests. Journal of Financial Economics, 96 (2), 175–194. [cited on p. 99, 126,

130, 177]

Lin, H., Wang, J., & Wu, C. (2011). Liquidity risk and expected corporate bond

returns. Journal of Financial Economics, 99 (3), 628–650. [cited on p. 19, 20]

Linnainmaa, J. T., & Roberts, M. R. (2018). The history of the cross-section of

stock returns. Review of Financial Studies, 31 (7), 2606–2649. [cited on p. 95]

Lintner, J. (1965). Security prices, risk, and maximal gains from diversification.

Journal of Finance, 20 (4), 587–615. [cited on p. 1]

Ljung, G. M., & Box, G. E. (1978). On a measure of lack of fit in time series

models. Biometrika, 65 (2), 297–303. [cited on p. 105]

Ludvigson, S. C., & Ng, S. (2009). Macro factors in bond risk premia. Review of

Financial Studies, 22 (12), 5027–5067. [cited on p. 14, 51, 84]

Lustig, H., Roussanov, N., & Verdelhan, A. (2011). Common risk factors in

currency markets. Review of Financial Studies, 24 (11), 3731–3777. [cited on

p. 151, 152, 154, 155, 189]

214



REFERENCES

Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7 (1), 77–91. [cited

on p. 7, 145]

McLean, R. D., & Pontiff, J. (2016). Does academic research destroy stock return

predictability? Journal of Finance, 71 (1), 5–32. [cited on p. 95, 151]

Merton, R. C. (1973). An intertemporal capital asset pricing model. Economet-

rica, 41 (5), 867–887. [cited on p. 2]

Moskowitz, T. J., Ooi, Y. H., & Pedersen, L. H. (2012). Time series momentum.

Journal of Financial Economics, 104 (2), 228–250. [cited on p. 149, 151, 152,

189]

Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, (pp.

768–783). [cited on p. 1]

Newey, W. K., & West, K. D. (1987). A simple, positive semi-definite,

heteroskedasticity and autocorrelation consistent covariance matrix. Econo-

metrica, 55 (3), 703–708. [cited on p. 48, 76, 105, 109, 123, 124, 127, 135, 157,

162, 165, 173, 178, 190]

Novy-Marx, R. (2016). Testing strategies based on multiple signals. University

of Rochester Working Paper . [cited on p. 101]

Pástor, L., & Stambaugh, R. F. (2003). Liquidity risk and expected stock returns.

Journal of Political Economy , 111 (3), 642–685. [cited on p. 20, 150, 152, 189]

Pástor, L., Stambaugh, R. F., & Taylor, L. A. (2015). Scale and skill in active

management. Journal of Financial Economics, 116 (1), 23–45. [cited on p. 18]

Petersen, M. A. (2009). Estimating standard errors in finance panel data sets:

Comparing approaches. Review of Financial Studies, 22 (1), 435–480. [cited on

p. 27]

Pukthuanthong, K., Roll, R., & Subrahmanyam, A. (2019). A protocol for factor

identification. Review of Financial Studies, 32 (4), 1573–1607. [cited on p. 5,

95, 100, 103, 104, 110, 111, 133, 146, 158, 159, 160, 192]

215



REFERENCES

Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of

Economic Theory , 13 (3), 341–360. [cited on p. 2]

Shanken, J. (1992). On the estimation of beta-pricing models. Review of Financial

Studies, 5 (1), 1–33. [cited on p. 129, 131]

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under

conditions of risk. Journal of Finance, 19 (3), 425–442. [cited on p. 1]

Sharpe, W. F. (1998). Morningstar’s risk-adjusted ratings. Financial Analysts

Journal , 54 (4), 21–33. [cited on p. 26]

Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard

model. Journal of Business, 74 (1), 101–124. [cited on p. 139]

Stambaugh, R. F., & Yuan, Y. (2017). Mispricing factors. Review of Financial

Studies, 30 (4), 1270–1315. [cited on p. 52, 84, 99, 150, 152, 154, 189]

Tao, X., Wang, B., Wang, J., & Wu, C. (2022). Economic policy uncertainty and

the cross-section of corporate bond returns. Journal of Fixed Income, 32 (1),

6–44. [cited on p. 94, 95, 98, 139, 142, 151, 152]

Treynor, J. L. (1961). Toward a theory of market value of risky assets. [cited on

p. 1]

Verdelhan, A. (2018). The share of systematic variation in bilateral exchange

rates. Journal of Finance, 73 (1), 375–418. [cited on p. 151, 152, 154, 189]

Welch, I., & Goyal, A. (2008). A comprehensive look at the empirical performance

of equity premium prediction. Review of Financial Studies, 21 (4), 1455–1508.

[cited on p. 95, 189]

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator

and a direct test for heteroskedasticity. Econometrica, 48 (4), 817–838. [cited

on p. 105]

216



REFERENCES

Zaremba, A., & Czapkiewicz, A. (2017). The cross section of international

government bond returns. Economic Modelling , 66 , 171–183. [cited on p. 155]

Zhao, X. (2005). Determinants of flows into retail bond funds. Financial Analysts

Journal , 61 (4), 47–59. [cited on p. 17]

Zitzewitz, E. (2003). Who cares about shareholders? Arbitrage-proofing mutual

funds. Journal of Law, Economics, and Organization, 19 (2), 245–280. [cited

on p. 58]

217


	Contents
	List of Tables
	List of Figures
	Introduction
	How Do Corporate Bond Investors Measure Performance? Evidence from Mutual Fund Flows
	Introduction
	Data and Methodology
	Data
	Empirical Approach
	Descriptive Statistics

	Empirical Results
	Model Horse Race
	Tests on Subsamples of Corporate Bond Fund Share Classes
	Morningstar Ratings
	Response of Investor Flows to Components of Fund Returns

	Robustness
	Fama–MacBeth Regressions
	Quintile Sorts
	Alternative Sharpe Ratio Calculations
	One-Year Horizon for Performance Evaluation
	Alternative Factor Models
	Analysis on the Fund Level
	Controlling for Time-Varying Effects of Morningstar Ratings
	Controlling for Morningstar Fixed-Income Style Box
	Extended Corporate Bond Fund Sample

	Implications
	Concluding Remarks
	Appendix
	The Berk–Van Binsbergen Testing Approach
	Additional Tables


	Which Factors for Corporate Bond Returns?
	Introduction
	Literature Review
	Data and Methodology
	Corporate bond data
	Candidate factors and models
	First step: Factor identification protocol
	Second step: BS-CZZ model comparison procedure
	Model comparison based on squared Sharpe ratios

	Model Selection
	Summary statistics
	Factor identification results
	Model selection results

	Asset Pricing Tests
	Model Sharpe ratios
	Spanning tests
	Time-series tests with test assets
	Cross-sectional asset pricing tests

	Explaining Corporate Bond Factors
	Conclusion
	Appendix
	Variable Definitions and Factor Construction
	Model Selection Method Implementation Details


	Factor Pricing Across Asset Classes
	Introduction
	Data
	Candidate Factors
	Existing Models
	Test Assets

	Market Integration at the Aggregate Level
	A Second Look at Market Integration with Asset-Class-Specific Optimal Models
	Factor Identification Results
	Asset-Class-Specific Model Selection Results
	Implications for Market Integration

	A Unified Model Across Asset Classes
	Optimal Model Selection
	Model Sharpe Ratios
	Spanning Tests
	Model Performance with Test Assets

	Conclusion
	Appendix
	Robustness Check with a Longer Sample Period
	Model Selection Method Implementation Details
	Additional Figures and Tables


	Conclusion and Further Research
	Summary and Conclusion
	Suggestions for Further Research

	References

