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Measuring out quasi-local integrals of motion
from entanglement
Bohan Lu1,4, Christian Bertoni1,4, Steven J. Thomson 1,3✉ & Jens Eisert 1,2✉

Quasi-local integrals of motion are a key concept underpinning the modern understanding of

many-body localisation, a phenomenon in which interactions and disorder come together.

Despite the existence of several numerical ways to compute them—and in the light of the

observation that much of the phenomenology of many properties can be derived from them—

it is not obvious how to directly measure aspects of them in real quantum simulations; in fact,

hard experimental evidence is still missing. In this work, we propose a way to extract the real-

space properties of such quasi-local integrals of motion based on a spatially-resolved

entanglement probe able to distinguish Anderson from many-body localisation from non-

equilibrium dynamics. We complement these findings with a rigorous entanglement bound

and compute the relevant quantities using tensor networks. We demonstrate that the

entanglement gives rise to a well-defined length scale that can be measured in experiments.
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It is widely believed that generic quantum systems isolated
from their environments will evolve under their own dynamics
until they reach an apparent equilibrium state that locally

resembles the expectations of a thermal equilibrium state1,2. This
expectation is seen as a stepping stone to reconcile predictions
from statistical mechanics and those of basic quantum mechanics.
One major exception to this rule is the case of low-dimensional
quantum systems in the presence of random disorder. Non-
interacting quantum systems in one dimension will entirely fail to
thermalise due to any finite concentration of disorder3, and in
recent decades it has been shown that interacting many-body
systems appear to suffer the same fate4,5, leading to the phe-
nomenon now known as many-body localisation (MBL)6–12.
From a theoretical standpoint, MBL is now fairly well understood
in terms of the emergence of an extensive number of conserved
quantities known as (quasi-)local integrals of motion (LIOMs, also
known as localised bits or l-bits) which can prevent many-body
systems from reaching thermal equilibrium7,13. While phenom-
enological models based around the concept of l-bits have seen
great success14,15, and there are several approaches that can map
microscopic models onto effective l-bit models16–26, the l-bits
themselves remain a strictly theoretical construct, inaccessible to
any experimental probes. This is in contrast with the case of
Anderson localised systems, where the exponentially localised l-
bits can be straightforwardly related to the real-space decay of the
single-particle states, which has been experimentally observed27.

In this work, we propose an experimentally feasible approach
to measuring the actual real-space properties of local integrals
of motion in many-body quantum systems using the entan-
glement negativity, a sensitive entanglement monotone that
allows for the recovery of spatially resolved entanglement
information. In this way, we accommodate the above missing
link. Various quantities capturing correlations and entangle-
ment, including the negativity, have been measured in recent
experiments with ultra-cold bosons: ref. 28 has measured single-
site and half chain number and configurational entanglement
for a system subject to a quasi-periodic potential. These can be
seen as a witness detecting the absence of thermalization, but
they do not provide a length scale. The authors have also
measured classical density-density correlations—akin to the
proposal of ref. 29—showing exponentially decaying correla-
tions, but this is a two-point classical measure, in contrast to the
genuine entanglement between two half-regions considered
here. Reference30 has studied a disordered system and has
shown that the entanglement negativity can be directly mea-
sured. In a first experiment, the authors of the latter work
prepared the system in a product state and measured the two-
qubit entanglement of formation as they vary the separation
between the qubits. While this setting is close in spirit to our
approach, they have chosen a two-qubit setting, which is the
only setting in which one can compute this quantity, so that the
diagnostic time scale that allows observation of any spatial
dependence is short. In a second experiment, the preservation
of entanglement has been studied, departing from the approach
taken here. Here, we demonstrate that the negativity itself gives
direct access to a unique length scale that characterises the l-
bits.

Results and discussion
Quasi-local operators. The question of whether many-body
localisation is a well-defined stable phase in the thermodynamic
limit remains unsettled, nevertheless systems showing MBL-like
phenomenology for experimentally accessible times and system
sizes appear to be well described by l-bit models, and their length
scale is physically meaningful regardless of whether this

description keeps holding for very long times and very large
system sizes. Since the goal of the present work is to characterize
the l-bits, we will now give precise definitions of what they are
and the role they play in the dynamics.

Definition 1. (Quasi-local operators). An operator O on the lat-
tice Λ is said to be quasi-local around a region R with localisation
length ξ if for any region X⊂Λ containing R

O� 1

2jX
cj trXc ðOÞ � IXCc

����

����

����

����

2

≤ Oj jj j2 Ke�dðR;XcÞ=ξ ð1Þ

where K > 0 is a universal constant, XC denotes the complement
of X, dðXc;RÞ ¼ minx2Xc;r2Rdðx; rÞ is the length of the shortest
path from X to R, and ∥ ⋅ ∥ is the normalized 2-norm,
Oj jj j2 ¼ trðOOyÞ=trI.
Intuitively, this definition says that most of the support of O is

concentrated in and immediately around the region R, in the
sense that if we truncate O to an operator only supported on a
sphere centered at R, the resulting operator differs from O only by
an error decaying exponentially in the radius of the sphere.
Interestingly, the relatively loose sense of decay in 2-norm seems
crucial, an insight that is often under-appreciated19,31. It is
important to note that this is an abstract definition: it does not
give operational advice on how to find those l-bits. What is more,
even if they exist, they are by no means unique32. There could be
“more local” l-bits than those given that still give rise to a
complete set of l-bits. Either way, as is common, such l-bits serve
as our definition for many-body localisation.

Definition 2. (Many-body localisation). A Hamiltonian

H ¼ ∑
n

j¼1
ωð1Þ
j hj þ ∑

n

j;k¼1
ωð2Þ
j;k hjhk þ ¼ ð2Þ

with real weights fωð1Þ
j g and fωð2Þ

j;k g, is called many-body localised
if it can be written as a sum of mutually commuting ([hj, hk]= 0
for all j, k) quasi-local terms hj, each centred around site j, and if
ωi1;¼ ;in

≤ωe�ji1�inj=κ for some constant κ > 0, where i1 < i2⋯ < in.
In other words, a many-body localized Hamiltonian can be

written as an effective model which is classical, in the sense that
all Hamiltonian terms commute, and quasi-local, in the sense that
the total coupling strength between two sites decays exponentially
with distance.

Premise of the approach. When written in the basis that diag-
onalises the Hamiltonian, as in Eq. (2), these l-bits are strictly
local objects, but in real-space they are quasi-local with expo-
nentially decaying tails. In order to extract properties of l-bits
from experiments, we shall consider the evolution of an arbitrary
initial state under the following Hamiltonian dynamics as

ρðtÞ ¼ e�it Hρeit H ; ð3Þ

for times t ≥ 0. To simplify the notation, we will suppress the time
argument for time t= 0. How can this time evolution be exploited
to measure out real-space properties of the l-bits? Some intuition
can be attained in the situation when the {hj} are strictly local.
The terms that do not overlap do not contribute to the entan-
glement evolution at all. So in the end, it is the overlapping tails
that will lead to entanglement growth.

Model. We will demonstrate our scheme numerically using the
‘standard model’ of MBL, namely the XXZ spin-1/2 chain with
random on-site fields, while it should be clear that the approach
taken would be applicable to any many-body localised model. Its
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Hamiltonian is given by

H ¼ J0 ∑
i
Sxi S

x
iþ1 þ Syi S

y
iþ1 þ ΔSzi S

z
iþ1

� �þ∑
i
hiS

z
i ; ð4Þ

with hi∈ [−d, d]. We shall set J0= 1 as the unit of energy
throughout, with Δ= 1.0 unless otherwise stated, and will use
open boundary conditions. This model has been thoroughly
studied and shown to exhibit a phase with anomalous thermali-
sation properties above a disorder strength of d ≳ 3.79, although
recent work has suggested that the true phase transition in the
thermodynamic limit could be at much larger values of d if it
exists at all33–37.

The characteristic growth in time of the von Neumann
entanglement entropy38,39 (or its correlation-based analogues29)
mentioned above has been shown to be a good indicator of many-
body localisation, able to distinguish it from single-particle
Anderson localisation via the late-time logarithmic growth.
Motivated by this, our aim in this work is to show that other
entanglement measures which provide spatially-resolved infor-
mation can not only distinguish many-body localisation from
Anderson localisation, but can also allow direct quantitative
measurement of the properties of many-body local integrals of
motion.

Diagnostic entanglement quantity. The main quantity of
interest in this work is the logarithmic negativity, a measure of the
entanglement between two subsystems of the spin chain, denoted
A and B, separated by a distance r, which together with C con-
stitutes the entire system (sketched in Fig. 1). It is defined as40–43

EN ðρA;BðtÞÞ :¼ log2ðk ρTA
A;BðtÞk1Þ; ð5Þ

where k Ok1 ¼ trjOj denotes the trace norm, ρA;BðtÞ ¼
trnfA;Bg½ρðtÞ� is the time-dependent quantum state of subsystems A
and B after tracing out all other lattice sites, and the superscript
TA indicates the partial transpose with respect to subsystem A.
This has been shown to be an entanglement monotone mean-
ingfully quantifying entanglement42–44. In the following, we shall
refer to this quantity simply as ‘negativity’. By contrast to the
more commonly studied bi-partite von Neumann or Rènyi
entanglement entropies which consider a single bi-partition
between two connected subsystems, the entanglement negativity
allows for a meaningful spatially resolved measure of mixed-state
entanglement, as the two subsystems can be separated by an
arbitrary distance r≔ dist(A, B), a feature the von Neumann

entropy cannot capture as a pure state entanglement measure.
This measure can also be used to study the entanglement between
subsystems of arbitrary size. However, for conceptual clarity, we
shall mainly consider A and B to cover the entire chain except for
a piece C with ∣C∣= r+ 1 separating A and B, as shown in Fig. 1.
That said, the concept works as well for small regions A and B, as
they are accessible in experiments and are discussed in the rig-
orous bounds. Numerical evidence is shown in Supplementary
Note 5. The negativity has previously been investigated in the
context of ground states of disordered spin chains45, quenches in
random spin chains46, the many-body localisation transition47,
and quench dynamics in the presence of a defect48. For clarity, in
the following, we shall drop the explicit dependence of EN on the
quantum state and instead use the notation EN(r, t) to represent
the negativity associated to two subsystems separated by a dis-
tance r and a time t following a quench from an initial product
state, emphasizing that this is indeed a spatially resolving
entanglement measure.

A heuristic argument for why this quantity is relevant in our
case can be given in the following manner. Reference13 has
shown that the von Neumann entanglement entropy grows in
time following a quench according to Sent / lnðJ0t=_Þ, once the
system enters the late-time equilibration regime. If we wish to
consider the entanglement negativity between two subsystems
separated by a distance r, a reasonable starting assumption is
that the negativity will vary in time according to the same �
lnðtÞ growth but will be exponentially suppressed in magnitude
due to the spatial separation of the two subsystems, leading to
an overall behaviour of EN / expð�r=ξÞ lnðJ0t=_Þ. We shall
show that this ansatz is a good match for the numerical results.
We also wish to emphasise that this logarithmic growth is
characteristic of the interacting system and is entirely absent
from Anderson-localised systems, meaning that the existence of
this length scale is a distinct fingerprint of a many-body
localised system.

Corroborating the reasoning with rigorous bounds. We see that
Hamiltonians that are many-body localised in the sense of
Definition 2 create entanglement at a rate that decays exponen-
tially in the distance r= dist(A, B) between parts A and B,
reflecting the exponential decay of the tails in quasi-local l-bits. In
fact, not only this intuition can be made entirely rigorous, but, at
the cost of slightly weakening the definition of quasi-locality, we
are in the position to state precise upper bounds for the negativity
for all times and distances.

Theorem 1. (Rigorous entanglement bounds). Let ρ be an initial
product state. Let H be a many-body localised Hamiltonian as per
Definition 2 with localisation length ξ < 1=ð4 logð2ÞÞ and
2ð1=κ� logð2ÞÞ> 1=ξ, consider three blocks A,C, B such that C
divides A from B, with ∣C∣= r+ 1. The growth of the negativity of
the state ρ(t)= e−itHρeitH restricted to the regions A, B is bounded as

EN ðr; tÞ≤ minft Oðe�r=ð2ξÞÞ; 8ξ log2ðtÞ � 2rg þ Oð1Þ; ð6Þ
for times t ≥ er/(4ξ), while for t < er/(4ξ),

EN ðr; tÞ≤ t Oðe�r=ð4ξÞÞ: ð7Þ
We hence find a short time behaviour signifying a linear

growth in time, a cross-over regime governed by the correlation
length, and a logarithmic growth for long times. These bounds
—interesting in their own right and complementing and
refining those of ref. 49—are perfectly compatible with the
above numerical assessment. In Supplementary Note 8, we state
details of the proof of the bound that makes extensive use of the
precise form of the tails of the l-bits. Based on our numerical
results, we expect that our assumptions on the localisation

Fig. 1 Division into subsystems and computation of negativity. a A sketch
showing how a one-dimensional spin chain is partitioned into three
subsystems. We are interested in computing the entanglement between
subsystems A and B after subsystem C has been traced out, giving rise to a
spatially-resolved entanglement measure. b Sketch of the initial quantum
state in matrix product operator (MPO) form, made by taking the outer
product of two matrix product state vectors. c Sketch of how the negativity
is computed: the partial transpose of subsystem A corresponds to
`twisting' the MPO legs while tracing out subsystem C corresponds to
contracting the relevant MPO indices.
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length and the definition of quasi-locality can be relaxed
without affecting the result. We also note that the observed
ξ− dependence of the late time decay of the entanglement with
the size of C is not visible in this bound, though we expect that
it can be refined to show this.

Numerical results. We first discuss qualitatively the results for
the growth of the entanglement negativity with time for various
different distances r, as shown in Fig. 2a) for a disorder strength
d= 8.0 (deep in the localised phase), where we find that indeed
the negativity grows logarithmically with time at late times.
Results for further disorder strengths, system sizes, and sub-
system sizes are available in Supplementary Notes 2, 3, 4 and 5.
At short times, the negativity is dominated by diffusive trans-
port on length scales shorter than the localisation length. At
large distances r, the negativity remains close to zero until a
time exponentially large in r, which can be used to define a
‘light cone’ that characterises the spreading of the entanglement
negativity, shown in Fig. 2b. The three lines indicate when the
negativity grows above a threshold ε ∈ {0.0001, 0.001, 0.005},
mapping out an approximately logarithmic light cone. As the
negativity outside of this length cone is exponentially small, in
the following analysis, we restrict ourselves to space-time
coordinates (r, t), which are within the light cone. The existence
of this light cone means that we gain only diminishing returns
by going to larger system sizes: although we are able to separate

the subsystems by a larger value of r, the evolution time
required to obtain meaningful entanglement scales exponen-
tially in r, which incurs a large computational cost for large
systems and quickly becomes prohibitive.

In the late-time logarithmic growth regime, where the
dynamics are dominated by the quasi-local nature of the l-
bits, we extract the value of the negativity at a given time t*

following the quench from an initial Néel state and plot it
versus the subsystem separation r. We show this in Fig. 2c for
several different choices of time t* [indicated by the dashed
lines in Fig. 2a]. The data points form a straight line (on a
logarithmic scale), and at late times the gradient of the line does
not strongly change with the choice of time t*, appearing to
saturate at a fixed value (although the y-axis offset will, of
course, continue to increase in time). Further details are
available in Ref. Under the assumption that the negativity
decays exponentially with distance like EN ðr; t�Þ / expð�r=ξÞ,
we can perform a linear fit to the data shown in Fig. 2c and
extract a well-defined length scale ξ which characterises the
spatial extent of the l-bits. The results are shown in Fig. 3,
where we find that the length scale ξ exhibits monotonic decay
with increasing disorder strength, as expected. Note that no
assumptions are involved other than the exponential decay of
the negativity with distance at some fixed time t*: the resulting
length scale is an emergent property of the many-body system.
This assumption does not hold in the delocalised phase, where
the entanglement does not enter a regime of logarithmic

Fig. 2 Behaviour of entanglement negativity in time and space. Results showing the growth of the negativity EN(r, t) with time for different distances r.
Data is shown for a system size L= 24 and a disorder strength d= 8.0, averaged over Ns= 100 disorder realisations. a The dynamics of EN(r, t) following a
quench from a Néel state, showing the logarithmic growth at late times. The circular markers are the raw data points, while the solid lines are a smoothed
guide to the eye. The error bars indicate the standard error in the mean. We note that these error bars show agreement on average between the various
disorder realizations, but they are not fully statistically independent errors, as would be expected in an experiment where each data point would come from
a different run. b The full dynamics of EN(r, t), reflecting the logarithmic `light cone'. Each circle maps the point where the negativity grows beyond the
corresponding threshold ε and the lines are linear fits. c By extracting the behaviour of ENðr; t�Þ / expð�r=ξÞ at fixed times t* [dashed vertical lines in
a, horizontal lines in b], we can extract a well-defined length scale ξ(t), which depends only weakly on time. The solid lines indicate the fits to the data
points which are used to extract the l-bit length scale, demonstrating convergence at late times.
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growth. We can further compare the length scale extracted from
our procedure with the l-bit decay lengths computed using the
established numerically exact method of ref. 19, using the
definition of quasi-locality from Eq. (1). We find excellent
agreement between the entanglement-based length scale and the
l-bit localisation length obtained independently from this
method, confirming that the length scale probed by the
negativity is the localisation length of the l-bits.

For comparison, we also indicate the corresponding localisa-
tion length of an Anderson localised system, here obtained by
directly diagonalising the Hamiltonian with Δ= 0 (following a
Jordan-Wigner transform into the fermionic representation). We
compute the eigenvectors of the Hamiltonian in the non-
interacting setting, which decay in real space as expð�r=ξÞ50,
average over disorder realisations and extract the localisation
length ξ from a least-squares fit. The length scale extracted from
the TEBD data behaves in a qualitatively similar manner to the
single-particle localisation length but is always larger, confirming
that we are not measuring single-particle properties but are
indeed extracting a genuinely many-body feature of the system.
In the delocalised phase, our assumed form of the negativity is no
longer valid, and as such, the method cannot extract a reliable
length scale.

We also note that the entanglement negativity is not the only
entanglement measure which may be used in this way: any
spatially-resolved entanglement probe should behave similarly. In
Supplementary Note 6, we demonstrate that the mutual
information also gives consistent results.

Conclusion
In this work, we have outlined an experimentally feasible pro-
cedure for measuring local integrals of motion based on their
contribution to the slow growth of the negativity at long times
following a quench from an arbitrary initial state. We have
demonstrated that the length scale which we obtain from this
procedure, which characterises the l-bits, is in good agreement
with that obtained using other theoretical methods in the litera-
ture. The crucial advantage is that our scheme is experimentally
tractable, unlike other purely theoretical/numerical methods,
which cannot be verified in real experiments. It would be extre-
mely interesting to apply this method to other scenarios where
many-body localisation is believed to exist, such as in disorder-
free systems and two-dimensional models, in order to see if well-

defined length scales based on the spreading of entanglement may
still be extracted in these situations. This work paves the way for
the application of spatially-resolved entanglement probes to
phenomena in quantum simulation beyond many-body localisa-
tion, where such methods may be able to provide valuable insight
into emergent length scales associated with other types of quasi-
particles.

Methods
We compute the negativity using time-dependent matrix pro-
duct state simulations – an instance of a tensor network
method51—implemented in the Quimb package52 using the
time-evolving block decimation (TEBD) algorithm to perform
the evolution53,54, with the system initially prepared in a Néel
state. We use system size L= 24 with a maximum bond
dimension of χ= 192. We perform the time evolution using a
maximum time step dt= 0.05, at each step discarding singular
values smaller than ϵ= 10−10. We have checked that the results
are well-converged. Detailed benchmarks are shown in Sup-
plementary Note 1. Our TEBD results are compared against l-
bit length scales obtained using exact diagonalisation, following
ref. 19.

The negativity can be computed straightforwardly from a
matrix product state (MPS) representation55. The state vector can
be turned into a matrix product operator (MPO) (sketched in
Fig. 1) representing the quantum state by considering vectors and
dual vectors represented as MPS. The partial transpose can be
computed by ‘twisting’ the legs of the MPO tensors, while the
partial trace over subsystem C can be performed by contracting
the free indices of the MPO tensors in this subsystem. At long
times, the negativity should saturate at a value controlled by the
size of the subsystems, and at any time t < ts (where ts is the
saturation time), the negativity should satisfy the hierarchy
EN(r1, t) < EN(r2, t) for any two distances r1 > r2.

Data availability
The full data for this work is available at ref. 56.

Code availability
The full code for this work is available at ref. 57.
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