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Abstract

This thesis is devoted to slope limiting and machine learning techniques to ap-
proximate the solution to steady-state convection-diffusion-reaction problems. In
the convection-dominated regime, the solution to those problems usually possesses
layers which are small regions where the gradient is steep. It is well known from the
literature that it is challenging for many classical numerical methods to approximate
the solution in those regions, and often the solution is polluted by unphysical values,
so-called spurious oscillations.

In the first step, the model problem is derived and investigated under which
conditions a unique weak solution exists. Afterwards, symmetric, incomplete, and
non-symmetric interior penalty Galerkin methods are introduced to approximate
the exact solution in the pure diffusion, convection-reaction, and the complete case
numerically. A-priori error estimates are provided and verified numerically.

As the first main topic, several slope-limiting techniques from the literature are
presented, and various novel methods are proposed. These post-processing techniques
aim to automatically detect regions where the discrete solution has unphysical values
and approximate the solution locally by a lower degree polynomial. This thesis’s first
major contribution is that two novel methods can reduce the spurious oscillations
significantly and better than the previously known methods while preserving the mass
locally, as seen in two benchmark problems with two different diffusion coefficients.

The second focus is showing how to incorporate techniques from machine learning
into the framework of classical finite element methods. Hence, another significant
contribution of this thesis is the construction of a machine learning-based slope limiter.
It is trained with data from a lower-order DG method from a particular problem
and applied to a higher-order DG method for the same and a different problem. It
reduces the oscillations significantly compared to the standard DG method but is
slightly worse than the classical limiters.

The third main contribution is related to physics-informed neural networks (PINNs)
to approximate the solution to the model problem. Various ways to incorporate
the Dirichlet boundary data, several loss functionals that are novel in the context
of PINNs, and variational PINNs are presented for convection-diffusion-reaction
problems. They are tested and compared numerically. The novel loss functionals
improve the error compared to the vanilla PINN approach. It is observed that the
approximations are free of oscillations and can cope with interior layers but have
problems capturing boundary layers.
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1. Introduction
[Science] works. Planes fly. Cars drive. Computers compute. If you
base medicine on science, you cure people; if you base the design of
planes on science, they fly; if you base the design of rockets on science,
they reach the moon. It works.

(Prof. em. Richard Dawkins)

A vast variety of problems in physics, chemistry, and engineering sciences are de-
scribed in terms of initial-boundary value problems whose solutions describe observed
phenomena. For instance, Maxwell’s equations are fundamental to describe classical
electromagnetism, elasticity equations model the deformation of a given object under
external forces, and the Navier–Stokes equations describe the motion of viscous fluids.
Some of those problems are even so important that they are part of the famous
Millennium Prize Problems for which one million U.S. dollars are rewarded for the
solution to one of them [Ins23b; Ins23a].

This thesis focuses on another fundamental type of initial-boundary value problem:
so-called convection-diffusion-reaction problems. To illustrate these problems, imagine
a river flowing from one point to another. Unfortunately, a ship was damaged in
the middle of the river, so it sank and now constantly leaks a chemical it carried.
The chemical flows into the water, but how does it spread in the river? What is
the concentration at a given point? The solution to convection-diffusion-reaction
problems exactly gives answers to these questions.

Simply speaking, they describe how a scalar quantity inside a flowing medium is
distributed in a given region. The quantity of interest can be, for instance, a species
concentration like a chemical, a pollutant or biomass, or energy in the form of heat
[JKN18; Eva10, p. 313]. In other words, both mass and heat transfer can be described.
In light of the above-mentioned example of a ship from which a chemical flows into a
river, the chemical concentration might be the modeled quantity. After the chemical
enters the river, it does not stay at its initial position but is distributed in the water
based on certain physical processes. As the name suggests, three are incorporated
into convection-diffusion-reaction problems. First of all, the chemical is transported
downstream by the flow of the water. This effect is called convection [RST08, p. 1].
Nevertheless, even if there was no river flow, it would spread in the water due to
what is called diffusion. Whenever there are concentration differences of a quantity,
it moves to regions with lower concentrations until the differences are leveled out
[SJ02, section 1.2]. Lastly, this chemical may react with other particles and form
other compounds. At the same time, it is also possible that other reactions may form
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1. Introduction

(a) Reaction of chemical in sol-
vent.

(b) Mixing milk and coffee. (c) Air pollution.

Figure 1.1.: Example processes that might be described by convection-diffusion-
reaction problems. In (a), the reaction of a chemical in a moving solvent is
illustrated. Mixing milk and coffee is shown in (b), where possibly no reaction
occurs. In (c), air pollution that stems from industry is depicted. From left to
right, the images are taken from [Pica; Picb; Picc].

the chemical again. Both effects affect the concentration of the quantity of interest,
which is reflected by the so-called reaction term.

The previously mentioned ship example is a simple one. However, these problems
are also widely applied in practice: Among others, they are used to model atmospheric
pollution in the form of, e.g., denser-than-air gases [Lan78; Erm92] or radioactive
tracers [Lee+16; Lee+18], and parts of marine ecosystems like the distribution
of phytoplankton biomass [FN15, section 5.3]. While in the context of financial
mathematics, they are called the Black-Scholes model, which models the price of an
option and is rewarded with the Nobel Prize in Economics [SJ15], they are referred
to as drift-diffusion models that describe the distribution of charge carrier densities
when simulating semiconductor devices [Pip17, section 50.3.1]. Moreover, they are
applied to model chemical tubular reactors [Alh07], groundwater pollution [Ata18,
section 3.5], and the vertical ocean heat balance in ocean models [Hub+15; Hoc+21].
In particular, the last example indicates the importance of these problems since ocean
heat uptake has been responsible for more than 90% of global earth warming since
the 1970s [Fox+21; Lev+12]. Figure 1.1 illustrates possible further examples that
might be modeled with convection-diffusion-reaction problems.

Most of the examples mentioned above model the time evolution of a particular
quantity. However, from a mathematical point of view, the solutions’ most important
characteristic features can already be observed in the so-called stationary state. In
this state, the concentration no longer changes with time; in some sense, the system
has reached an equilibrium. Furthermore, the stationary problems are often easier
to analyze than the time-dependent problem and often serve as a first step towards
analyzing the time-dependent case. As a consequence, this work focuses on stationary
convection-diffusion-reaction problems.

Mathematically speaking, stationary convection-diffusion-reaction equations can be
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1.1. Motivation

described as follows: Find a smooth enough unknown mass or energy concentration u
such that

−ε∆u+ b · ∇u+ cu = f

holds in a domain of interest Ω, where ε > 0 is the strength of the diffusion, b models
the convection field, and c and f describe the reaction term and sources or sinks,
respectively.

In practical applications, the convection is often orders of magnitude stronger than
the diffusion [JKN18; Mor19, p. 1]. In this so-called convection-dominated regime,
convection-diffusion-reaction problems can be seen as singularly perturbed problems
[RST08, p. 2]. The solution to such problems typically possesses so-called layers
[RST08, p. 2; Mor19, p. 1], which are parts of the solution where it rapidly changes.
How fast the solution changes, i.e., the width of these layers, depends on the strength
of the diffusion ε. Depending on whether they are exponential or characteristical
layers, the width is of order O(ε) or O(

√
ε), respectively, if the equations are scaled

such that the convection field b is of order O(1) in a suitable norm [JKN18].
Finding the exact solution u to these problems is usually possible only in simple

toy problems, but it is unlikely to happen in practice. Therefore, approximations to
the solution are constructed based on numerical methods. Popular classical examples
of such methods are so-called finite difference methods, finite element methods, and
finite volume methods, but there also exist modern approaches like virtual element
methods and hybrid high-order methods; see, e.g., [Bra07, sections I.3, II.4; RST08,
sections I.2.1, I.2.2; EGH00, section 3.9; Bei+13; Bei+16; DT18; DEL16].

In most of those methods, the solution is approximated by a linear combination
of a finite number of ansatz functions. They are defined on a given mesh, which is
a decomposition of the domain Ω into small subregions. It can be proven for many
problems that the discrete solution of the methods mentioned above converges towards
the exact solution as the mesh becomes finer. However, the approximation quality
might be low if too few ansatz functions are used. Unfortunately, using an arbitrary
amount of cells is impossible in practice because more ansatz functions lead to higher
computational costs, energy consumption, and computing time. Therefore, methods
that produce acceptable quality solutions on computationally feasible meshes are
sought.

1.1. Motivation
In the case of convection-dominated convection-diffusion-reaction problems, it is
challenging for many widespread methods to compute an accurate approximation
in the region of layers. Finite difference and many classical finite element methods,
such as the popular streamline upwind Petrov–Galerkin (SUPG) or the discontinuous
Galerkin method produce unphysical results; see, e.g., [JK07; Aug+11; JKN18]. In
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1. Introduction

regions of layers, the solution is polluted by over- and undershoots, so-called spurious
oscillations, which result in, e.g., negative concentrations or higher amounts of energy
than what is physically allowed. The reason is that the width of the layers is much
smaller than the mesh width, which is why the layers cannot be adequately resolved
[JKN18].

On the other hand, there also exist discrete methods that are provably free of
spurious oscillations, e.g., the exponentially fitted Voronoi box finite volume method
[Aug+11] and algebraic flux-corrected (AFC) methods [BJK16; Bar+18a]. However,
the finite volume method tends to smear out the layers considerably, and only second-
order convergence in the discrete L2-norm has been observed [Aug+11; FLL11].
On the contrary, AFC methods are known to produce non-smeared layers without
oscillations, but they require solving a system of non-linear equations and might be,
therefore, computationally expensive [BJK16; Bar+18a]. Furthermore, there are, as
of June 2023, only AFC methods with lowest-order continuous finite elements that
have been applied successfully, which limits the order of convergence of such methods
[BJK16; Jha20, p. 44]. In general, all available and reasonably accurate finite element
methods that satisfy a global maximum principle are based on linear finite elements
and optimal convergence rates which can be observed in some situations could not
be proved so far, cf. [BJK23]. To summarize, there does not exist yet the optimal
numerical method for convection-dominated convection-diffusion-reaction problems.

Nevertheless, what are the requirements of such a discrete method? In a nutshell,
the optimal numerical method should

1. converge fast towards the exact solution as the mesh becomes finer,

2. be flexible with respect to the used mesh,

3. produce solutions with sharp layers, and

4. compute physically reasonable solutions free of spurious oscillations.

The first requirement is vital since a low-order approximation might be admissible
in the presence of layers, but in smooth regions, it should approximate the solution as
accurately as possible on the computationally feasible meshes. Therefore, the method
should be of higher order.

Regarding the second requirement, polygonal meshes, compared to classical simpli-
cial, quadrilateral, and hexahedral meshes allow for a more straightforward decom-
position of the domain, have efficient refinement and coarsening strategies, and are
more robust with respect to distortion and torsion of the mesh [Dro+21; BLV17].
Therefore, a method that can be used with more general or even without meshes
might be advantageous in practice. Note that the first two requirements are vital
not only for convection-diffusion-reaction problems but are desirable in general for
numerical methods.
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The third and the last property are related to the quality of the approximation
of the solution to convection-dominated convection-diffusion-reaction problems. A
solution with spurious oscillations or with smeared layers might not correspond to
reality, but since these methods are used in critical practical applications, they should
be able to compute physically consistent and reasonably accurate solutions.

Particular candidates for such a method are so-called discontinuous Galerkin (DG)
methods, which are considered in the present work. Even though they were already
invented in 1973 by Reed and Hill in [RH73], they gained much attention in the last
decades; see, e.g., the monographs [CKS00; Kan07; Riv08; DE12; DF15]. Introduced
for the neutron transport equation, they have been successfully applied to a huge
variety of problems, e.g., boundary-layer equations for incompressible steady fluid
flows, compressible Navier–Stokes equations [DE12, p. VI], linear elasticity, porous
media flow [Riv08, part III], magneto-hydrodynamics and Hamilton–Jacobi equations
[Coc03]. For a historical overview and more applications, the reader may be referred
to [CKS00, part I; CS01; DE12, pp. V–VI].

In contrast to continuous finite element methods, the basis functions used in DG
methods are, as the name suggests, discontinuous over element boundaries. This
makes them, in particular, appealing for problems with discontinuous solutions, such
as transport problems, but continuity can also be enforced by, e.g., interior penalty
methods if needed. They can be seen as a generalization of finite volume methods
to arbitrary higher polynomial degrees [CKS00, p. 4]. Therefore, in light of the
above-mentioned requirements, DG methods can be constructed to converge with an
arbitrarily high order of convergence. Of course, this happens in practice only if the
exact solution is smooth enough.

Furthermore, they can be used on general polyhedral meshes and, in particular,
also allow hanging nodes [DE12, section 1.4.1; CKS00, p. 5]. Moreover, they allow
refinements of both the mesh and the polynomial degree, i.e., DG methods are
particularly suited for hp-adaptivity [HSS02; Ant+16; CKS00, p. 5]. For convection-
dominated convection-diffusion-reaction problems, they are also known to produce
sharp layers [Aug+11]. However, at the same time, they are unfortunately also known
to produce a significant amount of spurious oscillations [Aug+11]. To summarize, DG
methods are good candidates for approximating the solution to convection-dominated
convection-diffusion-reaction problems, but their spurious oscillations have to be
reduced to be more useful in practice.

Adjusting the widely known symmetric, non-symmetric, and incomplete interior
penalty Galerkin methods to produce significantly fewer spurious oscillations is one of
the significant contributions of this work. To this end, so-called slope limiters are used
to automatically detect regions where the numerical solution is unphysical, followed
by a local solution adjustment in the corresponding cells. The advantages of these
limiters are that they are easy to implement, they are computationally cheap, and in
contrast to just clipping the extrema, they preserve the mass locally. Several slope
limiters from the literature, generalizations, and novel approaches are presented and
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extensively tested on two commonly used benchmark problems. As seen in this thesis,
the best of these methods can reduce the oscillations significantly, and in many test
cases, they can reduce the oscillations as much as possible while preserving the mass.
However, none of them can remove the unphysical values completely.

Another major contribution of this work is to combine techniques from the field
of deep learning with the ideas of the aforementioned slope limiters for convection-
dominated convection-diffusion-reaction problems. Deep learning techniques are a
particular method from the broader field of machine learning, whose algorithms are
implemented in a way that they can “learn” rules from a given data set by minimizing
a given cost functional, even if these rules are never explicitly implemented [GBC16,
pp. 1–2]. The first ideas in the direction of what is nowadays called deep learning
emerged in the second half of the last century. However, it took several years and
rediscoveries to understand its full potential. For a historical overview, the readers may
be referred to [Sch15; WR17]. In particular, in the last two decades, these methods
have made a breakthrough, and nowadays, many applications cannot be imagined
without them; see, e.g., [GBC16; Sar21; HH19] for examples and state-of-the-art
techniques.

Roughly speaking, due to the famous universal approximation theorem with deep
learning methods, it is possible to approximate a vast variety of mappings, e.g.,
the translation of sentences from one language into another, the mapping from an
image to what is depicted on it, and also many mathematical functions. A particular
type of deep learning architecture are the so-called neural networks. Based on the
approximation property, the second main contribution of this thesis is the construction
of a neural network-based slope limiter that, as its classical counterparts, predicts
where spurious oscillations occur and corrects the solution locally.

Moreover, as a consequence of the universal approximation theorem, it is also
possible to use neural networks to approximate the unknown solution to initial-
boundary value problems (IBVPs) directly, even if only the problems are given. These
so-called physics-informed neural networks (PINNs) can therefore be seen as another
numerical method and, in this sense, as an alternative to classical ones. However, in
contrast to classical methods, PINNs are, by construction, also able to easily cope
with inverse problems and incorporate already observed data of the solution [Kar+21].
They were already introduced in 1994 in [DP94], but they had their breakthrough
only after their recent rediscovery in a series of papers of the group by Karniadakis
beginning with [RPK19]; see also [Cai+21; Cuo+22; Kar+21] for an overview about
PINNs.

In a nutshell, PINNs are neural networks that are trained to represent the solution to
given IBVPs by approximately satisfying the governing equations and their boundary
conditions [Kar+21]. In their standard formulation, they are mesh-free and hence,
in light of the above-mentioned requirements, are highly flexible with respect to the
geometry of the problem. Theoretically, PINNs can approximate the unknown solution
to an IBVP with arbitrary precision, but the accuracy depends on stochastic processes.
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Therefore, it is usually proven that PINNs can approximate the solution but not
how long it takes to reach a given precision. Since very few publications investigate
PINNs for convection-dominated convection-diffusion-reaction problems, the third
major contribution of this thesis is to develop, compare, and evaluate the quality of
the solution of several known and novel variants of PINNs for these problems.

1.2. Outline
The structure of this thesis is as follows:

Chapter 2 is devoted to the primary type of boundary value problem tackled in this
work, i.e., to convection-diffusion-reaction problems. In section 2.1, after the problems
are derived, it is investigated under which conditions a unique weak solution exists.
Section 2.2 then focuses on discontinuous Galerkin methods for such problems. The
widely used symmetric, non-symmetric, and incomplete penalty Galerkin methods
are introduced for the pure diffusion case, followed by an upwind DG discretization
of convection-reaction problems. Afterwards, these methods are combined for the
complete convection-diffusion-reaction problem. These methods are not only derived,
but proofs are also given with respect to the convergence rates of these problems.
Last but not least, this chapter closes with a two- and three-dimensional numerical
example to verify the implementation and a summary; see sections 2.3 and 2.4.

In chapter 3, slope limiters for DG methods are treated. It is heavily inspired by and
mainly based on the results already published in [FJ21; FJ22]. Several slope-limiting
techniques from the literature, as well as generalized and novel versions, are presented
in sections 3.1 to 3.3, and it is shown that they all preserve the mass locally. Moreover,
in section 3.4, numerical studies with these slope limiters for two benchmark examples
are presented. To this end, two measures are defined that rate the quality of the
limited solution with respect to spurious oscillations, and two different diffusion
coefficients and two types of meshes are used. The chapter ends with a summary in
section 3.5.

Chapter 4 serves as the bridge between slope limiters and deep learning techniques.
Its results are mainly also available as a preprint; see [FHJ22]. It starts in section 4.1
with an introduction to multilayer perceptron models, a particular type of neural
network. Here the basic structure of multilayer perceptrons is shown, followed by
an explanation of how these networks are trained. Afterwards, with section 4.2,
follows a section about how data is generated with which the neural networks can be
trained. It is explained how a vast amount of data can be created that needs to be
reduced and divided into subsets. This is followed by section 4.3, in which the first
numerical experiments are conducted. After specifying the setup of the networks and
the measures to rank the performance, the networks are trained on the data set. The
best networks are then applied to the DG solution to two benchmark problems in
section 4.4. Finally, a summary of this chapter is given in section 4.5.
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In chapter 5 PINNs for convection-diffusion-reaction problems are investigated.
To begin with, in section 5.1, the basic ideas and the classical loss functional of
PINNs are derived. Furthermore, a simple numerical example is shown to verify the
implementation. It is followed by section 5.2, where several modifications of classical
PINNs from the literature and new ideas are presented. These methods are then
tested in section 5.3 for another two benchmark problems. Afterwards, the results
are summarized in section 5.4.

The thesis finally closes in chapter 6 with a summary of what is treated in this
work and gives ideas about possible paths for future research.

Throughout this thesis, standard notations are used. This includes the usual
function spaces L2(Ω), W k,p(Ω), Hk(Ω), etc., and their respective norms; cf. [BS02].
A norm of a space X is denoted by ‖ · ‖X , a seminorm by | · |X , the inner product in
L2(Ω) by (·, ·), and for a vector x ∈ Rd its Euclidean norm is denoted by |x|.
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2. Convection-diffusion-reaction problems
This chapter mainly serves as an introduction to convection-diffusion-reaction problems
as described in the previous chapter, and discontinuous Galerkin methods for these
problems. To this end, in section 2.1, the problems are derived from scratch, and the
existence of a unique solution to these problems is discussed. Section 2.2 follows with
a presentation of discontinuous Galerkin methods for these problems. The commonly
used symmetric, incomplete and non-symmetric penalty Galerkin methods are derived,
and the error between the exact and the discrete solution is estimated in various
norms. The findings are mainly based on the monographs [Riv08; DE12; Kan07;
DF15]. This chapter proceeds in section 2.3 with numerical experiments to verify the
implementation and ends with a summary in section 2.4.

2.1. Model problem
First, in this section, the statement of convection-diffusion-reaction problems is derived.
Second, it is investigated under which conditions a unique solution to these problems
exists.

2.1.1. Derivation of convection-diffusion-reaction problems
The presentation in this section is essentially based on [SJ02, section 2.1] and [Jha20,
section 2.1].

The starting point for deriving the convection-diffusion-reaction problems is the
following question: How does a quantity of interest spread in a flowing medium
in a certain region of interest? To this end, let the region be a bounded domain
Ω ⊂ Rd, d = 2, 3, Γ := ∂Ω its boundary, and assume that u : Ω× (0, T ] → R is the
concentration of the quantity of interest that shall be observed in the time interval

ω

∂ω

ffl

ffl

Figure 2.1.: Arbitrary control volume ω and flux ffl across its boundary ∂ω.
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(0, T ], 0 < T ∈ R. The evolution in time of the quantity is based on the physical
observation that, in any fixed sub-domain ω ⊂ Ω, the rate of change of the quantity
equals the flux of the quantity across the boundary ∂ω plus the total amount that is
produced or destroyed in ω; see also figure 2.1 for an illustration. Translating this
into mathematics leads to

∂

∂t

∫
ω

u dx = −
∫
∂ω

ffl(u) · n ds+
∫
ω

S(u) dx,

where ffl : Ω× (0, T ] → Rd is the flux function depending on u, S : Ω× (0, T ] denotes
sources or sinks which might also depend on u, n is the outer unit normal vector to
the respective boundary, x ∈ Ω denotes the space variable, t ∈ (0, T ] the time variable
and s a (d− 1)-dimensional space variable. For the sake of brevity, the dependence on
space and time is not explicitly mentioned. Assuming the functions and the boundary
to be smooth enough, Gauss’ divergence theorem A.2 and a change of differentiation
with respect to time and integration with respect to space lead to∫

ω

∂u

∂t
dx+

∫
ω

div (ffl(u)) dx =

∫
ω

S(u) dx.

Since ω was chosen arbitrarily, for any (x, t) ∈ (Ω× R+), it has to hold that

∂u

∂t
+ div (ffl(u)) = S(u). (2.1)

The statement of this equation is basically what was already mentioned above: The
rate of change of u is balanced by the flux and the source terms.

The next step is to specify the flux term. It can be assumed that diffusion and
convection are linearly independent [SJ02, p. 24]. This makes sense since the diffusion
models a movement due to concentration differences which is independent of the
movement due to the underlying fluid. Therefore, these two movements can simply
be added, which leads to

ffl(u) = ffl;ε(u) + ffl;b(u),

where ffl;ε denotes the flux due to the diffusion and ffl;b the flux due to the convection.
Modeling the diffusion by Fick’s law1 and the convection by the convective transport2

leads to

ffl;ε(u) := −ε∇u,
ffl;b(u) := bu,

(2.2)

1See, e.g., [SJ02, equation (1.15)].
2See, e.g., [SJ02, equation (2.3)].
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where 0 ≤ ε ∈ R for the sake of simplicity is assumed to be a constant diffusion coef-
ficient and b : Ω× (0, T ] → Rd models the convection field of the fluid. Substituting
equation (2.2) into equation (2.1) leads to

∂u

∂t
− ε∆u+ b · ∇u+ div (b)u = S(u). (2.3)

The last process to be incorporated is chemical reactions, i.e., production or
depletion of the quantity of interest. To be precise, it is already incorporated, as it
can be seen as a part of the source term. This is why the source term can be split
into S(u) = f − R(u), where R : Ω × (0, T ] → R models the reaction process and
f : Ω × (0, T ] → R the remaining sources or sinks. For the sake of simplicity, the
reaction term is set to

R(u) := ĉu,

where ĉ : Ω× (0, T ] → R is the reaction function. Plugging this into equation (2.3)
and defining c := div (b) + ĉ finally leads to

∂u

∂t
− ε∆u+ b · ∇u+ cu = f,

which is also referred to as evolutionary convection-diffusion-reaction equation.
This work focuses on the steady-state convection-diffusion-reaction problems, i.e.,

the case where ∂u/∂t = 0. Equipping the steady-state convection-diffusion-reaction
equations with appropriate boundary conditions leads to the following model problem
tackled in this work.

Problem 2.1 (Strong form of the convection-diffusion-reaction problem). Find a
sufficiently smooth solution u : Ω → R such that

−ε∆u+ b · ∇u+ cu = f in Ω, (2.4a)
u = gD along ΓD, (2.4b)

ε∇u · n = gN along ΓN, (2.4c)

where Ω ⊂ Rd, d = 2, 3, is a bounded domain with a polyhedral Lipschitz boundary
Γ := ∂Ω, Γ = ΓD ∪ΓN and ΓD ∩ΓN = ∅, and n is the outward unit normal vector to Γ.
The parameter ε ∈ R, ε > 0, is the constant diffusion coefficient, b ∈ [Lip(Ω)]d models
the convection field that is assumed to be Lipschitz continuous in each component,
c ∈ L∞(Ω) is the reaction function, and f ∈ L2(Ω) describes sources and sinks. While
the boundary conditions along the Dirichlet boundary ΓD are given by gD ∈ H1/2(ΓD),
the Neumann boundary conditions gN ∈ H−1/2(ΓN) prescribe the derivative of the
solution in the normal direction along the Neumann boundary ΓN. In accordance with
physics, Dirichlet boundary conditions have to be dictated at the inflow boundary,
i.e., Γ− := {x ∈ Γ : b(x) · n < 0 } ⊂ ΓD.
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2. Convection-diffusion-reaction problems

Multiplying equation (2.4a) with an appropriate test function, integration by parts,
and using the Neumann boundary condition (2.4c) leads to the variational formulation
for the convection-diffusion-reaction problem.

Problem 2.2 (Variational form of the convection-diffusion-reaction problem). Under
the assumptions of problem 2.1, find u ∈ H1

D,gD
(Ω) such that

(ε∇u,∇v) + (b · ∇u+ cu, v) = (f, v) + (gN, v)ΓN , for any v ∈ H1
D,0, (2.5)

where (·, ·) is the standard L2-scalar product in Ω, (v, w)ΓN :=
∫
ΓN
vw ds, and

H1
D,g(Ω) :=

{
v ∈ H1(Ω) : v|ΓD = g in the sense of traces

}
.

A solution to equation (2.5) is called weak solution to problem 2.1; see, e.g., [Eva10,
section 6.1.2] for an introduction to the notion of weak solutions.

After defining the problem, it needs to be investigated under which conditions a
unique weak solution exists. This is the purpose of the following section.

2.1.2. Uniqueness of the solution
To comply with the notation of the Lax–Milgram lemma A.5 that is used below, the
notation

(V, ‖ · ‖V ) :=
(
H1

D,0(Ω), ‖ · ‖H1

)
,

a(v, w) := (ε∇v,∇w) + (b · ∇v + cv, w) (v, w ∈ H1(Ω)),

F (v) := (f, v) + (gN, v)ΓN (v ∈ H1(Ω)),

is introduced.
The following theorem states conditions under which a unique weak solution to the

convection-diffusion-reaction problem 2.1 exists.

Theorem 2.3. If the assumptions on the domain and the data of problem 2.1 and

c− 1

2
∇ · b ≥ 0, |ΓD| > 0

hold, where |ΓD| is the (d− 1)-dimensional measure of ΓD, then there exists a unique
u ∈ H1

D,gD
(Ω) such that equation (2.5) holds for any v ∈ H1

D,0(Ω). In other words,
there exists a unique weak solution to the convection-diffusion-reaction problem 2.1.

Proof. Due to the assumptions on the boundary, there exists a linear and continuous
extension operator EΓD : H1/2(ΓD) → H1(Ω) [Wil19, theorem 4.2.4]. Therefore, let
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2.1. Model problem

egD := EΓD(gD). Since EΓD is continuous, it is also bounded, and it follows that
‖egD‖V ≤ CEΓD

‖gD‖H1/2(ΓD) with some real number 0 < CEΓD
<∞.

Using the Lax–Milgram lemma A.5, it can be proven that there exists a unique
ũ ∈ V such that

a(ũ, v) = F (v)− a(egD , v), for any v ∈ V, (2.6)

which is done in the following.
It is well known that (V, ‖ · ‖V ) is a Hilbert space. Since integrals are linear

operators, a(·, ·) is a bilinear mapping, and the right-hand side F (·)− a(egD , ·) is a
linear functional on V .

Moreover, it holds ‖b‖[L∞(Ω)]d < ∞, since b ∈ [Lip(Ω)]d [BS02, p. 30]. Due to
this, the other regularity assumptions on the data, Hölder’s inequality A.3 and the
definition of ‖ · ‖V it holds, for any v, w ∈ V ,

|a(v, w)| ≤ ε‖∇v‖L2(Ω)‖∇w‖L2(Ω) + ‖b‖[L∞(Ω)]d‖∇v‖L2(Ω)‖w‖L2(Ω)

+ ‖c‖L∞(Ω)‖v‖L2(Ω)‖w‖L2(Ω)

≤ α‖v‖V ‖w‖V ,

where α :=
(
ε+ ‖b‖[L∞(Ω)]d + ‖c‖L∞(Ω)

)
, which is why the bilinear form is continuous.

Due to integration by parts A.1 it holds, for any v ∈ V ,∫
Ω

b · ∇v v dx = −1

2

∫
Ω

div (b) v2 dx+
1

2

∫
∂Ω

b · n v2 dx ≥ −1

2

∫
Ω

div (b) v2 dx,

where in the last step it is used that v = 0 along ΓD and, since Γ− ⊂ ΓD, it is b ·n ≥ 0
along ΓN. From this estimate and the assumptions it follows∫

Ω

(b · ∇v + cv) v dx ≥
∫
Ω

(
c− 1

2
div (b)

)
v2 dx ≥ 0.

Together with Friedrichs’ inequality A.4 it can be concluded

a(v, v) ≥ ε‖∇v‖2L2(Ω) ≥ β‖v‖2V ,

where β := ε/(1 + C2
Fr), which shows that a(·, ·) is V -elliptic.

Last but not least, due to Cauchy’s and Hölder’s inequality A.3, the boundedness of
a(·, ·), the boundedness of the extension operator, the continuity of the trace operator,
and the regularity of the data it holds, for any v ∈ V ,

|F (v)− a(egD , v)| ≤ |(f, v)|+ |(gN, v)ΓN|+ |a(egD , v)| ≤ C‖v‖V

with a real number C :=
(
‖f‖L2(Ω) + CtrΓN

‖gN‖H−1/2(ΓN) + αCEΓD
‖gD‖H1/2(ΓD)

)
<∞,

where CtrΓN
is the continuity constant of the trace operator onto ΓN. This means the

right-hand side of equation (2.6) is bounded.
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2. Convection-diffusion-reaction problems

Hence, the assumptions of the Lax–Milgram lemma A.5 are satisfied, and it follows
that the problem with a homogeneous Dirichlet boundary condition (2.6) admits a
unique solution.

To conclude the proof, u := ũ + egD is defined. By construction, it holds that
u ∈ H1

D,g(Ω) and that u satisfies equation (2.5) for any v ∈ V .

Unfortunately, it is usually very difficult or even impossible to compute the weak
solution in practice. Therefore, discrete algorithms are designed to compute an
approximation. The construction of such an algorithm and the quality of the resulting
approximation is addressed in the following sections.

2.2. Discontinuous Galerkin methods for
convection-diffusion-reaction problems

Several discretization techniques exist for approximating the solution to convection-
diffusion-reaction problems, e.g., finite difference, finite volume, and finite element
methods. For an overview of these methods in the context of these problems, see
the monograph by Roos, Stynes, and Tobiska [RST08, parts I–III]. Besides the
popular classical continuous finite element methods (CG) and their stabilized variants,
discontinuous Galerkin (DG) methods drew attention in the last decades, see, e.g.,
the monographs [CKS00; Kan07; Riv08; DE12; DF15] and the references therein,
even though the original technique was introduced by Reed and Hill [RH73] in 1973.
For the sake of brevity, the reader may be referred to [CKS00, part I] and [DE12,
preface] for an overview of the history and evolution of DG methods, not necessarily
but also in the context of convection-diffusion-reaction problems.

In contrast to classical methods of a Lagrangian type that yield a continuous
approximation, the fundamental idea of DG methods is, as the name suggests, to
use discontinuous approximations. In the context of convection-diffusion-reaction
problems, the DG methods are, therefore, non-conforming methods. Their idea and
definition offer some advantages but, as so often, also some drawbacks.

On the one hand, DG methods facilitate so-called hp-refinements, i.e., local re-
finement of the mesh or the polynomial degree, which is more complicated for CG
methods. On the other hand, in DG methods, many degrees of freedom couple leading
to a comparatively dense stiffness matrix, and hence efficient solvers become an issue.
Moreover, in DG methods, it is unnecessary to use a conforming grid closure step
when performing adaptive refinements as long as the number of hanging nodes is
bounded. This makes mesh refinements easier and saves computational resources,
which can be helpful, especially in three dimensions.

These advantages come at the price of a more involved implementation and the
challenge of choosing suitable parameters. The main reason for that is that DG meth-
ods for convection-diffusion-reaction problems try to approximate often a continuous

14



2.2. DG methods for convection-diffusion-reaction problems

solution with piecewise continuous functions, and hence care has to be taken at points
of discontinuities.

The first step when describing discrete methods, whether CG or DG, is to decompose
the domain Ω into a finite number of subsets. Therefore, assumptions concerning the
so-called mesh are made in what follows.

Mesh notation and assumptions
Let T be a decomposition of Ω into simplices or quadrilaterals, resp. hexahedrons,
such that Ω =

⋃
K∈T K. The decomposition is called mesh or triangulation and shall

be admissible in the usual sense of Ciarlet; see [Cia02, pp. 38, 51]. This means that

• each K ∈ T is closed and its interior
◦
K is non-empty,

• for each pair K1, K2 ∈ T it holds
◦
K1 ∩

◦
K2 = ∅ and

• any (d− 1)-dimensional facet of any K ∈ T is either a subset of the boundary Γ
or a facet of another mesh cell.

The measure of a mesh cell K ∈ T is denoted by |K|, its diameter by hK , and
the radius of the largest ball contained in K by %K . That being said, Th denotes a
triangulation with a given mesh size h := maxK∈T hK .

Families of decompositions { Th }h∈H, where H is a countable set of positive real
numbers having 0 as their only accumulation point, are supposed to be regular in the
sense of Ciarlet, i.e.,

sup
h∈H

max
K∈Th

hK
%K

<∞,

and constructed such that each open (d− 1)-dimensional facet of a mesh cell lying on
Γ is either contained in ΓD or ΓN.

For each mesh cell K ∈ Th, the set of its facets E ⊂ ∂K is denoted by Eh(K).
The set of all facets of the triangulation is then called Eh :=

⋃
K∈Th Eh(K). This

set is further divided into boundary facets ∂Eh := {E ∈ Eh : E ⊂ ∂Ω } and the
remaining interior facets E I

h, i.e., it holds Eh = E I
h ∪ ∂Eh. Concerning the different

boundary conditions, the boundary facets are divided into Dirichlet boundary facets
ED
h := {E ∈ ∂Eh : E ⊂ ΓD } and inflow boundary facets E−

h {E ∈ ∂Eh : E ⊂ Γ− },
and the notation E ID

h := E I
h ∪ ED

h is used. Since the family of decompositions is
regular, there exists a constant C > 0 such that, for all Th and all K ∈ Th, it holds
hE ≤ hK ≤ ChE, where hE is the diameter of the facet E of K [DE12, lemma 1.42].

Two adjacent mesh cells Ki, Kj ∈ Th are called neighbors along a facet E ∈ Eh if
E = Ki ∩Kj. The outer unit normal vector on ∂K of a cell K is denoted by nK .
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2. Convection-diffusion-reaction problems

T0

T1

E
nE

Figure 2.2.: Unit normal vector of an edge E = T0∩T1. Idea taken from [DE12, figure
1.4].

Using an arbitrary but fixed numbering of the cells K0, K1, . . . , the unit normal vector
nE on a facet E ∈ Eh is defined as

nE :=

{
nK , if E ∈ ∂Eh ∩ Eh(K) for a K ∈ Th,

nKi
, if Ki and Kj are neighbors along facet E and i < j.

In figure 2.2, the unit normal vector is depicted for two triangular cells.

Continuous and discrete spaces
Let Th be a triangulation of the domain Ω. Discontinuous Galerkin methods seek
their approximate solution in a discrete subspace of the broken Sobolev space

Hs(Th) := { v ∈ L2(Ω) : v|K ∈ Hs(K), for any K ∈ Th }, s ≥ 0,

which equipped with its usual norm and semi norm

‖v‖2Hs(Th) :=
∑
K∈Th

‖v‖2Hs(K), |v|2Hs(Th) :=
∑
K∈Th

|v|2Hs(K),

is also a Hilbert space.
Analogously, the broken gradient ∇h : H1(Th) → [L2(Ω)]d can be introduced, which,

for any v ∈ H1(Th) and any K ∈ Th, is defined as (∇hv) |K := ∇ (v|K). Note that
Hs(Th) and ∇h can be seen as generalizations of Hs(Ω) and ∇, resp., in the sense
that Hs(Ω) ⊂ Hs(Th) and, for any v ∈ H1(Ω), it is ∇hv = ∇v in [L2(Ω)]d [DE12,
lemma 1.22]. In the following, the index h at the broken gradient might be dropped
if a certain cell is fixed.

The definition of Hs(Th) implies that a function v ∈ Hs(Th) might be discontinuous
over interior cell interfaces. Indeed, v|E along a facet E ∈ Eh is not even well defined.
Therefore, the sign-dependent jump JvKE of a function v ∈ Hs(Th) along facet E is
introduced, which is defined as

JvKE :=

{
v|∂Ki

− v|∂Kj
, if Ki and Kj are neighbors along facet E and i < j,

v|∂K , if E ∈ ∂Eh ∩ Eh(K) for a K ∈ Th,
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2.2. DG methods for convection-diffusion-reaction problems

v|T0

v|T1

〈v〉E
JvKE

T0 T1
E

Figure 2.3.: Illustration of the jump and the average in one dimension. Idea taken
from [DE12, figure 1.3].

and the average 〈v〉E along E by

〈v〉E :=

{
1
2

(
v|∂Ki

+ v|∂Kj

)
, if Ki and Kj are neighbors along facet E and i < j,

v|∂K , if E ∈ ∂Eh ∩ Eh(K) for a K ∈ Th.

In figure 2.3, both the jump and the average are illustrated in the one-dimensional
case. For both, the index E is often omitted if no confusion about different facets can
arise.

Furthermore, it holds, for any v ∈ H1(Th), that v ∈ H1(Ω) if and only if JvKE = 0
for all E ∈ E I

h [DE12, lemma 1.23].
Last but not least, a discrete function space is needed in which an approximation is

sought. Let Pp(K) be the space of polynomials of at most degree p ∈ N on simplicial
mesh cells K and Qp(K) the space of tensor products of polynomials of at most
degree p on quadrilateral, resp., hexahedral, mesh cells. The discrete space V p

h in
which an approximation is sought is defined as

V p
h := { v ∈ L2(Ω) : v|K ∈ Rp(K), for any K ∈ Th } ⊂ Hs(Th),

where R is either P on simplices or Q on quadrilaterals, resp., hexahedrals. It is
V p
h ⊂ Hs(Th), but V p

h 6⊂ Hs(Ω), and its functions might also be discontinuous over
cell interfaces.

2.2.1. Discontinuous Galerkin formulation for diffusion problems
To obtain a DG formulation for the full convection-diffusion-reaction problem 2.1, the
problem is split into a pure diffusion problem and a convection-reaction problem.

For the derivation below, it is assumed that u ∈ H1
D,gD

(Ω) ∩H2(Ω) for the exact
solution u of equation (2.5), from which it follows that

JuKE = 0, for any E ∈ Eh, (2.7a)
J∇uKE · n = 0, for any E ∈ E I

h, (2.7b)
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2. Convection-diffusion-reaction problems

as proven in [DE12, lemma 4.3]. Note that, as stated by Rivière [Riv08, p. 29] and Di
Pietro and Ern [DE12, p. 121], it is also sufficient to assume that u ∈ H1

D,gD
(Ω) ∩Hs(Ω)

for some s > 3/2.
In the pure diffusive case, i.e., b ≡ 0, c ≡ 0, the convection-diffusion-reaction

equation (2.4a) is multiplied with a test function v ∈ H1(Th) and integrated over Ω.
Using integration by parts A.1 piecewise on each cell K ∈ Th leads to∑

K∈Th

ε

(∫
K

∇u · ∇v dx−
∫
∂K

∇u · nKv ds
)

=

∫
Ω

fv dx. (2.8)

The integrals along the boundaries can be transformed to∑
K∈Th

ε

∫
∂K

∇u · nKv ds =
∑

E∈∂Eh

ε

∫
E

∇u · nEv ds+
∑
E∈EI

h

ε

∫
E

J∇uvK · nE ds,

where nKj
= −nKi

for neighboring cells Ki and Kj , i ≤ j, and the definition of jumps
along facets is utilized. With the Neumann boundary condition, equation (2.4c), and

J∇uvK = J∇uK 〈v〉+ 〈∇u〉 JvK

the integrals can be further manipulated to arrive at∑
K∈Th

ε

∫
∂K

∇u · nKv ds =
∑
E∈ED

h

ε

∫
E

∇u · nEv ds+
∫
ΓN

gNv ds

+
∑
E∈EI

h

ε

∫
E

J∇uK · nE 〈v〉+ 〈∇u〉 · nE JvK ds.

Due to the assumptions on the regularity of the exact solution u, equation (2.7b) and
the definition of the jumps and averages can be used to deduce∑

K∈Th

ε

∫
∂K

∇u · nKv ds =
∑

E∈EID
h

ε

∫
E

〈∇u〉 · nE JvK ds+
∫
ΓN

gNv ds.

Plugging this in equation (2.8) and rearranging a bit yields∑
K∈Th

ε

∫
K

∇u · ∇v dx−
∑

E∈EID
h

ε

∫
E

〈∇u〉 · nE JvK ds =
∫
Ω

fv dx+

∫
ΓN

gNv ds. (2.9)

Since the bilinear form a defined in section 2.1.2 is symmetric for b = 0, c = 0, one
can hope for some sort of symmetry in the discrete formulation as well. To this end,
for κ ∈ {−1, 0, 1 }, the terms

−
∑

E∈EID
h

εκ

∫
E

〈∇v〉 · nE JuK ds+
∑
E∈ED

h

εκ

∫
E

∇v · nEgD ds = 0 (2.10)
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2.2. DG methods for convection-diffusion-reaction problems

are added to equation (2.9), which are 0 due to the Dirichlet boundary condition
(2.4b) and equation (2.7a). In the case κ = 1, the discrete bilinear form will indeed
be symmetric. The choice κ = 0 leaves it the same, and it will be non-symmetric for
κ = −1.

Moreover, as shown below, the jumps along interfaces and the boundary must be
penalized to achieve discrete coercivity. Following the ideas of Kanschat [Kan07], the
equation∑

E∈EI
h

σE
hE

∫
E

JuK JvK ds+
∑
E∈ED

h

2σE
hE

∫
E

JuK JvK ds =
∑
E∈ED

h

2σE
hE

∫
E

gDv ds (2.11)

is considered, where, for any facet E ∈ Th, σE ∈ R is a constant, user-dependent
value, and once more, equation (2.4b) as well as equation (2.7a) are utilized.

Finally, adding equations (2.10) and (2.11) to equation (2.9) leads to the bilinear
form aε : H1(Th) × H1(Th) → R and the functional Fε : H1(Th) → R, which, for
v, w ∈ H1(Th), are defined as

aε(v, w) :=
∑
K∈Th

ε

∫
K

∇v · ∇w dx−
∑

E∈EID
h

ε

∫
E

〈∇v〉 · nE JwK + κ 〈∇w〉 · nE JvK ds

+
∑
E∈EI

h

σE
hE

∫
E

JvK JwK ds+
∑
E∈ED

h

2σE
hE

∫
E

JvK JwK ds, (2.12)

Fε(v) :=

∫
Ω

fv dx+

∫
ΓN

gNv ds−
∑
E∈ED

h

εκ

∫
E

∇v · nEgD ds

+
∑
E∈ED

h

2σE
hE

∫
E

gDv ds.
(2.13)

Note that even though during the construction u ∈ H1
D,gD

(Ω) ∩H2(Ω) is assumed,
the bilinear form is still well defined for any u ∈ H1(Th).
Remark 2.4 (SIPG, IIPG, NIPG). If the parameter κ is chosen to equal one, aε is
symmetric and called symmetric interior penalty Galerkin (SIPG) bilinear form. In
the case κ = 0, it is denoted as incomplete interior penalty Galerkin (IIPG) bilinear
form. Lastly, if κ = −1, it is often referred to as non-symmetric interior penalty
Galerkin (NIPG) bilinear form.

Finally, it is mentionable that the choice of the user-dependent penalty parameter σE
depends on the choice of κ and the polynomial degree and is discussed below.

To conclude, in the case of pure diffusion, the discontinuous Galerkin formulation
reads as follows.
Problem 2.5 (DG formulation for pure diffusion problems). For given κ ∈ {−1, 0, 1 }
and σE ∈ R for any E ∈ Th, find uh ∈ V p

h such that

aε(uh, vh) = Fε(vh), for any vh ∈ V p
h , (2.14)

19



2. Convection-diffusion-reaction problems

where aε and Fε are defined in equations (2.12) and (2.13).

Remark 2.6 (Consistency and Galerkin orthogonality). By construction, it is clear
that aε is consistent for any fixed κ ∈ {−1, 0, 1 } and given σE ∈ R for all E ∈ Th, in
the sense that, for the exact solution u ∈ H1

D,gD
(Ω) ∩H2(Ω) and all vh ∈ V p

h , it is

aε(u, vh) = Fε(vh).

Or in other words, assuming that there exists a uh ∈ V p
h such that equation (2.14)

holds true for all vh ∈ V p
h , the so-called Galerkin orthogonality is satisfied, i.e.,

aε(u− uh, vh) = 0, for any vh ∈ V p
h .

Unique existence of a discrete solution

In this section, it is investigated under which conditions problem 2.5 is well defined
in the sense that it has a unique solution. To this extent, a discrete version of the
Lax–Milgram lemma, corollary A.6, is employed for which a discrete norm and discrete
coercivity of the bilinear form are needed.

Definition 2.7 (Energy norm in the diffusive case). Assume σE > 0 for all E ∈ Eh.
Let |||·|||ε : H1(Th) → R be defined, for any v ∈ H1(Th), as

|||v|||2ε :=
∑
K∈Th

ε‖∇v‖2L2(K) +
∑
E∈EI

h

σE
hE

‖ JvK ‖2L2(E) +
∑
E∈ED

h

2σE
hE

‖ JvK ‖2L2(E).

This norm is called energy norm.

Indeed, |||·|||ε is a norm on V p
h , if σE > 0 for all E ∈ Eh, which follows directly from

‖ · ‖L2(K) and ‖ · ‖L2(E) being norms on K and E, respectively.
The following lemma states conditions under which aε(·, ·) is coercive with respect

to |||·|||ε, i.e., it exists a positive constant βh ∈ R such that aε(vh, vh) ≥ βh|||vh|||2ε, for
any vh ∈ V p

h .

Lemma 2.8. Let n0 be the maximal number of facets an element K ∈ Th can have, i.e.,
three for triangles, four for quadrilaterals and tetrahedrons and six for hexahedrons,
and Ctr be the constant from the trace inequality3. If one of the conditions

• κ = 1 and σE ≥ 2εC2
trn0 for all E ∈ Th,

• κ = 0 and σE ≥ εC2
trn0 for all E ∈ Th,

3See, e.g., [Riv08, equation 2.1]
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• κ = −1 and σE > 0 for all E ∈ Th

hold, then the discrete bilinear form aε given in equation (2.12) is coercive with respect
to |||·|||ε.

Proof. The discrete coercivity in the non-symmetric case, i.e., κ = −1 follows directly
from the definition of aε. The other two assertions can be proven using Cauchy–
Schwarz’, the trace, and Young’s inequality; see [Riv08, section 2.7.1].

With the discrete coercivity, it follows quickly that problem 2.5 possesses a unique
solution.

Theorem 2.9. Let σE be such that aε is coercive with respect to |||·|||ε, cf. lemma 2.8.
Then, the discrete problem 2.5 has a unique solution.

Proof. In light of corollary A.6 it is Vh = V p
h , ‖ · ‖h = |||·|||ε, ah = aε and Fh = Fε. By

definition, V p
h is a Hilbert space, and due to the linearity of integrals, the functional Fε

is linear. With the given coercivity of aε corollary A.6 can be applied, and the assertion
of this theorem follows.

Convergence analysis

Since both problem 2.1 and problem 2.5 have a unique (weak) solution, it can be
asked how large the error between these functions is. This question is tackled in this
section.

First, error estimates with respect to the energy norm |||·|||ε can be proven.

Theorem 2.10 (Error estimates in the energy norm). Let u be the weak solution
to problem 2.1 and uh be the solution to problem 2.5. If u ∈ H1

D,gD
(Ω) ∩ Hp+1(Ω),

the penalty parameters are chosen as in lemma 2.8, and the Dirichlet data gD is a
continuous piecewise polynomial of at most degree p, then it holds

|||u− uh|||ε ≤ Chp|u|Hp+1(Th),

where 0 < C ∈ R is a constant independent of the mesh width h.

Proof. See [Riv08, theorem 2.13].

Remark 2.11. With similar but slightly different conditions for the penalty terms
σE the same result can be proven without the assumption that gD is a continuous
piecewise polynomial of at most degree p; see, e.g., [DF15, theorem 2.44] for the SIPG,
IIPG and NIPG, and [Kan07, theorem 2.2.10] as well as [DE12, corollary 4.18] for
the SIPG method.

Next, the error with respect to the L2-norm can be estimated.
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Theorem 2.12 (Error estimates in the L2-norm). If the assumptions of theorem 2.10
are satisfied and elliptic regularity4 holds true for the model problem, then it holds

‖u− uh‖L2(Ω) ≤ Chp+1‖u‖Hp+1(Th) (SIPG),
‖u− uh‖L2(Ω) ≤ Chp‖u‖Hp+1(Th) (IIPG, NIPG),

where again 0 < C ∈ R is a constant independent of the mesh width h.

Proof. See, e.g., [Riv08, theorem 2.14] and [DE12, corollary 4.26].

Hence, the DG method converges with optimal order in the energy norm and the
L2-norm in the SIPG case and suboptimally in the L2-norm in the IIPG and NIPG
cases. On the one hand, optimal error estimates in the L2-norm for all variants can
be proven if the so-called superpenalization is used [Riv08, theorem 2.14]. On the
other hand, this may lead to more computational costs [DF15, remark 2.51].
Remark 2.13 (Optimal order for IIPG and NIPG for odd degrees). Numerically, it
can be observed that on uniform meshes the IIPG and NIPG method show optimal
converge rates for odd degrees and suboptimal rates for even degrees, i.e.,

‖u− uh‖L2(Ω) ≤ C‖u‖Hp+1(Th)


hp+1, if κ = 1 (SIPG) ,
hp+1, if p odd, κ = 0 (IIPG) or κ = −1 (NIPG) ,
hp, if p even, κ = 0 (IIPG) or κ = −1 (NIPG)

can be observed [Riv08, p. 49]. The theoretical reason for this is still not found. On
general meshes, examples can be constructed where these methods produce suboptimal
rates even for odd polynomial degrees, showing that the estimates in theorem 2.35
are sharp [Riv08, p. 49].

2.2.2. Discontinuous Galerkin formulation for convection-reaction
problems

In this section a DG formulation for the convective-reactive part of problem (2.4) is
derived, i.e., ε ≡ 0 and b 6= 0 a.e. in Ω are assumed. The problem then reads as
follows.

Problem 2.14 (Strong form of the convection-reaction problem). Let the assumptions
on the domain and the coefficient functions from problem 2.1 hold. Furthermore,
assume that there exists a µ0 ∈ R, µ0 > 0 such that

c− 1

2
div b ≥ µ0

4See, e.g., [DE12, definition 4.24] for a definition of elliptic regularity.
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a.e. in Ω, and it is gD ∈
{
v is measurable on ∂Ω :

∫
∂Ω

|b · n|v2 ds <∞
}

after gD
is extended by 0 to ∂Ω.

Find a smooth enough u such that

b · ∇u+ cu = f in Ω, (2.15a)
u = gD along Γ−, (2.15b)

The problem can be recast in the following weak formulation, cf. [DE12, sections
2.1.4, 2.1.6] for the derivation.

Problem 2.15 (Variational form of the convection-reaction problem). Under the
assumptions of problem 2.14, find a u ∈ V := { v ∈ L2(Ω) : b · ∇v ∈ L2(Ω) } such
that, for any, v ∈ V , it holds∑

K∈Th

∫
K

(b · ∇u+ cu) v dx−
∫
Γ−

b · nuv ds =
∫
Ω

fv dx−
∫
Γ−

b · ngDv ds.

Unique existence of a solution to problem 2.15 does not follow from its weak
counterpart, problem 2.2, directly. Nevertheless, it can be proven.

Theorem 2.16 (Weak solution to problem 2.14). It exists a unique solution to
problem 2.15, i.e., problem 2.14 has a unique weak solution.

Proof. See [DE12, theorem 2.12].

The next step is to obtain a DG discretization of problem 2.14. To this extent, it
is assumed that the exact solution is in V ∩H1(Th).

To start the derivation, equation (2.15a) is multiplied with a test function v ∈ H1(Th)
and integrated over the domain leading to∑

K∈Th

∫
K

(b · ∇u+ cu) v dx =

∫
Ω

fv dx.

To incorporate information about the inflow boundary condition (2.15b) the equality∫
Γ−

b · nuv ds =
∫
Γ−

b · ngDv ds

is subtracted yielding∑
K∈Th

∫
K

(b · ∇u+ cu) v dx−
∫
Γ−

b · nuv ds =
∫
Ω

fv dx−
∫
Γ−

b · ngDv ds.
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2. Convection-diffusion-reaction problems

To achieve coercivity of the bilinear form the term∑
E∈EI

h

∫
E

b · nE JuK 〈v〉 ds = 0

is subtracted that vanishes, since for u ∈ V ∩ H1(Th) it holds Jb · nuK = 0 [DE12,
lemma 2.14].

At this point, the method would converge, however, only suboptimal; see, e.g.,
[DE12, corollary 2.24]. Therefore, the method is stabilized by adding∑

E∈EI
h

η

2

∫
E

|b · nE| JuK JvK ds = 0,

with some η ≥ 0, which again vanishes due to Jb · nuK = 0. Especially interesting are
the choices η = 1 and η = 0, resp., which in context of finite volume schemes lead to
so-called upwind fluxes and centered fluxes; see, e.g., [BMS04; DE12, sections 2.2.3,
2.3.4]. However, letting η be a user-dependent parameter gives the user more freedom
since, in principle, other values than zero and one might be useful as well [BMS04].

Adding the aforementioned equations leads to the discontinuous Galerkin formula-
tion for the convection-reaction problem.

Problem 2.17 (DG formulation for convection-reaction problems). For a given η ≥ 0,
find uh ∈ V p

h such that

abc(uh, vh) = Fbc(vh), for any vh ∈ V p
h , (2.16)

where abc : H1(Th) × H1(Th) → R and Fbc : H1(Th) → R are, for v, w ∈ H1(Th),
defined as

abc(v, w) :=
∑
K∈Th

∫
K

(b · ∇v + cv)w dx−
∫
Γ−

b · nvw ds

−
∑
E∈EI

h

∫
E

b · nE JvK 〈w〉 ds+
∑
E∈EI

h

η

2

∫
E

|b · nE| JvK JwK ds

Fbc(v) :=

∫
Ω

fv dx−
∫
Γ−

b · ngDv ds.

Remark 2.18 (Consistency and Galerkin orthogonality). As for the pure diffusive
case, the problem is consistent under the assumption that the exact solution u is in
V ∩H1(Th). That is, assuming there is a uh ∈ V p

h that satisfies equation (2.16) for
every vh ∈ V p

h , the Galerkin orthogonality

abc(u− uh, vh) = 0 for every vh ∈ V p
h

holds.
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2.2. DG methods for convection-diffusion-reaction problems

Unique existence of a discrete solution

As in section 2.2.1, after the discrete problem 2.17 is defined, it has to be verified that
it is well posed, i.e., that it exists a (unique) solution to the problem.

To this end, the following norm is defined.

Definition 2.19 (Energy norm in the convection-reaction case). For any v ∈ H1(Th),
let |||·|||bc : H1(Th) → R be defined as

|||v|||2bc := µ0‖v‖2L2(Ω) +

∫
∂Ω

1

2
|b · n|v2 ds+

∑
E∈EI

h

η

2

∫
E

|b · nE| JvK2 ds,

where µ0 is given in problem 2.14 and η ≥ 0. This norm is also called energy norm.

It holds that abc is coercive with respect to this norm, as the following lemma
states.

Lemma 2.20. Let η ≥ 0. It holds, for any vh ∈ V p
h ,

abc(vh, vh) ≥ C|||vh|||2bc,

where C ∈ R is a positive constant.

Proof. See [DE12, lemma 2.27, remark 2.19].

Based on the coercivity, it can be proven that problem 2.17 has a unique solution.

Theorem 2.21. Let η ≥ 0. Then, it holds that the discrete problem 2.17 has a unique
solution.

Proof. This follows from lemma 2.20 and again the discrete version of the Lax–Milgram
lemma, corollary A.6, with (Vh, ‖ · ‖h) = (V p

h , |||·|||bc), ah = abc and Fh = Fbc.

Convergence analysis

As before, after it is proven that the discrete problem 2.17 has a unique solution, the
difference between the exact weak solution and the discrete solution can be examined.

Theorem 2.22 (Error estimates in the energy norm). Let u be the weak solution to
problem 2.14 and uh be the solution to problem 2.17. If u ∈ V ∩Hp+1(Ω) and η = 1,
then it holds

|||u− uh|||bc ≤ Chp+1/2‖u‖Hp+1(Th),

where 0 < C ∈ R is a constant independent of the mesh width h.

Proof. See [DE12, corollary 2.32].
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2. Convection-diffusion-reaction problems

Remark 2.23. In the previous theorem the upwind bilinear form, i.e., η = 1, is used. If
the non-stabilized version, i.e., η = 0, is used, then the convergence rate deteriorates
to hp [DE12, corollary 2.24].

Remark 2.24. As proven, e.g., in [DE12, section 2.3.3], if the mesh is fine enough,
η = 1 and the problem is not reaction-dominated, then it is also possible to obtain
the same convergence rates in a stronger energy norm |||·|||bc,∗ that is defined, for
v ∈ H1(Th), as

|||v|||2bc,∗ := |||v|||2bc +
∑
K∈Th

hK
‖b‖[L∞(Ω)]d

‖b · ∇v‖2L2(K).

In other words, the upwind DG method controls the streamline derivative even without
another special stabilization term.

Theorem 2.25 (Error estimates in the L2-norm). Under the assumptions of theo-
rem 2.22 it holds that

‖u− uh‖L2(Ω) ≤ Chp+1/2‖u‖Hp+1(Th),

where 0 < C ≤ ∞ is independent of h.

Proof. See, e.g., [Kan07, corollary 1.4.14].

Remark 2.26. The previous theorem states that the convergence rate in the L2-norm
is suboptimal by a factor of 1/2. Unfortunately, this estimate is sharp, as shown by
Peterson [Pet91]. However, if b is constant, the mesh consists of rectangles only, and
the solution is in W p+2,2(Ω)∩W p+1,∞(Ω), then optimal error estimates can be proven
[Kan07, theorem 1.4.16].

2.2.3. Discontinuous Galerkin formulation for the full problem
At this point, the individual parts of the problem are examined. This section brings
it all together to formulate and investigate a DG formulation for the full convection-
diffusion-reaction problem 2.2.

Combining the discretizations of sections 2.2.1 and 2.2.2 results in the discontinuous
Galerkin formulation for the convection-diffusion-reaction problem 2.1:

Problem 2.27 (DG formulation for convection-diffusion-reaction problems). Let
κ ∈ { 1, 0,−1 } and σE ∈ R for all E ∈ Th, and η ≥ 0 be given. Find uh ∈ V p

h such
that

ah(uh, vh) = Fh(vh), for any vh ∈ V p
h , (2.17)
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2.2. DG methods for convection-diffusion-reaction problems

where the bilinear and linear form ah : H1(Th)×H1(Th) → R and Fh : H1(Th) → R,
for every v, w ∈ H1(Th), are given by

ah(v, w) :=
∑
K∈Th

ε

∫
K

∇v · ∇w + (b · ∇v + cv)w dx

−
∑

E∈EID
h

ε

∫
E

〈∇v〉 · nE JwK + κ 〈∇w〉 · nE JvK ds

+
∑
E∈EI

h

σE
hE

∫
E

JvK JwK ds+
∑
E∈ED

h

2σE
hE

∫
E

JvK JwK ds−
∫
Γ−

b · nvw ds

−
∑
E∈EI

h

∫
E

b · nE JvK 〈w〉 ds+
∑
E∈EI

h

η

2

∫
E

|b · nE| JvK JwK ds,

Fh(v) :=

∫
Ω

fv dx+

∫
ΓN

gNv ds−
∑
E∈ED

h

εκ

∫
E

∇v · nEgD ds+
∑
E∈ED

h

2σE
hE

∫
E

gDv ds

−
∫
Γ−

b · ngDv ds.

A direct consequence of the previous sections is that the method is consistent.
Remark 2.28 (Consistency and Galerkin orthogonality). Assume that the exact solution
u is in H1

D,gD
(Ω) ∩H2(Th). As before, the problem is consistent, and assuming there

is a uh ∈ V p
h that satisfies equation (2.17) for every vh ∈ V p

h , it holds the Galerkin
orthogonality

ah(u− uh, vh) = 0, for any vh ∈ V p
h .

Unique existence of a discrete solution

The unique existence of a solution to problem 2.27 follows from the unique existence
of solutions to problem 2.5 and problem 2.17. To this end, an energy norm is defined
that is the sum of the contributions of the energy norms of the individual problems.

Definition 2.29 (Energy norm in the convection-diffusion-reaction case). For any
v ∈ H1(Th), let |||·|||h : H1(Th) → R be defined as

|||v|||2h := |||v|||2ε + |||v|||2bc,

where |||v|||ε and |||v|||bc are defined in definitions 2.7 and 2.19, respectively. This norm
is once more called energy norm.
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2. Convection-diffusion-reaction problems

The map |||·|||h is a norm on V p
h , which follows from |||v|||ε and |||v|||bc being norms,

if σE > 0 for all E ∈ Eh, c− div (b)/2 ≥ µ0 > 0 and η ≥ 0.
From this definition, it follows that ah is coercive with respect to the energy norm,

i.e., there exists a βh > 0 such that ah (vh, vh) ≥ βh|||vh|||2h, for any vh ∈ V p
h .

Lemma 2.30. Let n0 be the maximal number of facets an element K ∈ Th can have,
and Ctr be the constant from the trace inequality5. If η ≥ 0, and one of the conditions

• κ = 1 and σE ≥ 2εC2
trn0 for all E ∈ Th,

• κ = 0 and σE ≥ εC2
trn0 for all E ∈ Th,

• κ = −1 and σE > 0 for all E ∈ Th

hold, then the discrete bilinear form ah given in problem 2.27 is coercive with respect
to |||·|||h.

Proof. This is a direct consequence of lemmas 2.8 and 2.20 and the definitions of ah
and |||·|||h.

Therefore, it follows that problem 2.27 has a unique discrete solution.

Theorem 2.31. Let η ≥ 0 and σE be such that ah is coercive with respect to |||·|||h,
cf. lemma 2.30. Then, it holds that the discrete problem 2.27 has a unique solution.

Proof. This follows from lemma 2.30 and corollary A.6 with (Vh, ‖ · ‖h) = (V p
h , |||·|||h).

Convergence analysis

Since it is now proven that the continuous problem 2.2 has a unique weak solution u
and the discrete problem 2.27 has a unique discrete solution uh, in this section it is
investigated how large the error u− uh is.

Theorem 2.32 (Error estimates in the energy norm). Let u be the weak solution to
problem 2.1 and uh be the solution to problem 2.27. If u ∈ H1

D,gD
(Ω) ∩Hp+1(Ω), the

penalty parameters are chosen as in lemma 2.30, the Dirichlet data gD is a continuous
piecewise polynomial of at most degree p and η = 1, then it holds

|||u− uh|||h ≤
(
Cε + Cbch

1/2
)
hp‖u‖Hp+1(Th),

where Cε ∈ R and Cbc ∈ R are positive constants independent of the mesh width h,
but dependent on the data ε, b and c, respectively.

5See, e.g., [Riv08, equation 2.1].
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2.2. DG methods for convection-diffusion-reaction problems

Proof. The proof follows the ideas of the proof of theorem 4.61 in [DE12] and is
sketched in the following.

Di Pietro and Ern have shown in lemmas 4.52 and 2.30 the so-called boundedness
on orthogonal subscales for the bilinear forms aε and abc, which is also the basis of
their proofs of the convergence rates of the individual subproblems. By adapting
these lemmas to the norms and methods used in this work, and combining them,
the boundedness on orthogonal subscales of ah can be shown, i.e., it exists a Cbnd
independent of h and the data such that for any wh ∈ Vh it holds

|ah(u− πhu,wh)| ≤ Cbnd|||u− πhu|||h;∗|||wh|||h,

where πh is the L2-orthogonal projection operator onto Vh, and, for any v ∈ H1(Th),

|||v|||2h;∗ := |||v|||2h +
∑
K∈Th

hKε‖∇v|K · nK‖2L2(∂K) +
∑
K∈Th

‖b‖[L∞(Ω)]d‖v|K‖2L2(∂K).

Analogously to the proof of theorem 2.31 in [DE12], by deploying the boundedness
on orthogonal subscales, the discrete coercivity and the Galerkin orthogonality of the
bilinear form, and a triangle inequality it can be concluded that

|||u− uh|||h ≤ C|||u− πhu|||h;∗

with some 0 ≤ C ∈ R independent of h.
The assertion finally follows from the approximation properties of πh as stated in

lemmas 1.58 and 1.59 in [DE12].

Example 2.33 (Examples for Cε and Cbc). In the literature some explicit dependen-
cies of Cε and Cbc with respect to the parameters of the convection-diffusion-reaction
problem 2.1 are given:

1. Kanschat [Kan07, theorem 5.1.7] has proven in a different norm that, if κ = 1
and c ≥ 0 is constant, then it is

Cε ∝
√
ε, Cbc ∝

(√
‖b‖[L∞(Ω)]d +

√
ch1/2

)
.

2. Again in the SIPG case (κ = 1), Di Pietro and Ern [DE12, equation (4.82)] have
proven for a slightly different method and in a slightly different norm that

Cε ∝
√
ε, Cbc ∝

(√
‖b‖[L∞(Ω)]d +

√
max

(
‖c‖L∞(Ω), Lb

)
h1/2

)
,

where Lb is the Lipschitz constant for b.
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2. Convection-diffusion-reaction problems

3. In the NIPG case (κ = −1), Houston, Schwab, and Süli [HSS02] have proven in
a slightly different norm that

Cε ∝
√
ε, Cbc ∝

(√
‖b‖[L∞(Ω)]d + C(div (b), c, µ)‖µ‖L∞(Ω)h

1/2
)
,

where µ2 := c− div (b)/2 ≥ 0, and C(div (b), c, µ) ∈ R is a positive constant
that depends on div (b), c and µ.

Note that none of the above-mentioned constants deteriorate if ε→ 0, i.e., also the
constant in the previous error estimate does not deteriorate as ε tends to zero.

Remark 2.34. The previous theorem shows that if the diffusion is dominant, the
energy error converges with order p. On the other hand, in the convection-dominated
case, an error reduction order of p+ 1/2 can be expected.

Last but not least, the error in the L2-norm can be estimated.

Theorem 2.35 (Error estimates in the L2-norm). Under the assumptions of theo-
rem 2.32, it holds

‖u− uh‖L2(Ω) ≤
1

√
µ0

(
Cε + Cbch

1/2
)
hp‖u‖Hp+1(Th),

where µ0 is given in problem 2.14, and Cε ∈ R and Cbc ∈ R are given in theorem 2.32.

Proof. Using the definitions of |||·|||bc and |||·|||h such as theorem 2.32 it follows

‖u− uh‖2L2(Ω) =
1

µ0

(
µ0‖u− uh‖2L2(Ω)

)
≤ 1

µ0

(
|||u− uh|||2bc

)
≤ 1

µ0

(
|||u− uh|||2h

)
≤ 1

µ0

((
Cε + Cbch

1/2
)
hp‖u‖Hp+1(Th)

)2
.

Applying the square root on both sides concludes the proof.

Remark 2.36. The previous theorem shows that the L2-error converges suboptimally
by a factor of 1 in the diffusion-dominated case and of 1/2 in the convection-dominated
case. However, it is important to mention that this is only a lower bound, and the
convergence rates might be better in practice. Especially in the diffusion-dominated
case, the convergence rate described in theorem 2.12 and remark 2.13 can often be
seen in practice.

2.3. Numerical studies
To verify the implementation and the theoretical results of the previous sections, the
DG method (2.17) is tested in this section on examples with known solutions.

For the experiments, the in-house research software ParMooN is used [Gan+16;
Wil+17]. The sparse direct solver UMFPACK is utilized to solve the occurring linear
systems of equations [Dav04].
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Ω

b

ΓD

ΓN

(a) Domain with Dirichlet and
Neumann boundaries and direc-
tion of convection field.

0.00
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0.75

1.00

(b) Exact solution u(x, y) = sin(πx) sin(πy).

Figure 2.4.: Domain, direction of convection field and exact solution to example 2.37.
Lines with ticks indicate Dirichlet boundary ΓD and lines without ticks indicate
Neumann boundary ΓN.

2.3.1. A two-dimensional problem
To begin with, the following two-dimensional example is investigated.

Example 2.37 (Sine Laplace problem in 2D). This problem is stated in the unit
square Ω := (0, 1)2 with b := (1, 2)T and c := 3. The right edge connecting (1, 0) and
(1, 1) is set as the Neumann boundary, while on the remaining boundary, Dirichlet
conditions are prescribed; see also figure 2.4a. The right-hand side f and the boundary
conditions are chosen such that

u(x, y) := sin(πx) sin(πy)

is the exact solution which is depicted in figure 2.4b.

To gain insight into convergence orders of the SIPG, IIPG, and the NIPG discretiza-
tion in the diffusion-dominated and the convection-dominated regime, the diffusion
constant is chosen to be ε = 1 and ε = 10−8. While the upwind discretization is
utilized for all
κ ∈ { 1, 0,−1 }, i.e., η = 1 in (2.17), the choice of the penalty parameter σE differs

between the flavors of the DG discretization. Following lemma 2.30, [Riv08, equation
(2.8)] and [HSS02], the penalty parameters are chosen to be

σE =


εn0(p+ 1)(p+ 2), if κ = +1 (SIPG),
εn0(p+ 1)(p+ 2)/2, if κ = 0 (IIPG),
εp2, if κ = −1 (NIPG)
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2. Convection-diffusion-reaction problems

(a) Triangular grid. (b) Quadrilateral grid.

Figure 2.5.: Initial grids for example 2.37.

for all E ∈ Eh, where n0 is the number of edges of a cell, i.e., three for a triangular and
four for a quadrilateral mesh. The polynomial degrees p = 1, 2, 3, 4 are investigated.
The computations are performed on standard triangulations of the unit square; see
figure 2.5.

The results for ε = 1 on the triangular grid for all polynomial degrees and all
κ ∈ { 1, 0,−1 } are shown in figure 2.6. For the SIPG discretization, the L2-error
converges optimally with a rate of p+ 1 with respect to h for all polynomial degrees.
This is better than what is proven in theorem 2.35 but in accordance with remark 2.36.
Only for p = 3, the rates decrease slightly between the second to last and the
last refinement step, possibly due to round-off errors. For the IIPG and NIPG
discretization, it can be observed that the methods with even polynomial degrees
converge with a rate of p+ 1 and with odd degrees with a rate of p with respect to h,
which is better than proven but is in accordance with remark 2.13, hence supporting
remark 2.36.

The convergence rates of the energy norm for all polynomial degrees and the SIPG,
the IIPG, and the NIPG method are optimal and in accordance with the theory, cf.
theorem 2.32.

In figure 2.7, the convergence rates of all methods and polynomial degrees for
ε = 10−8 on the quadrilateral grid can be found. While for all methods and all
polynomial degrees, the L2-error converges with order p+ 1, the energy error shows a
rate of p+0.5. The first rate is faster than proven in theorem 2.35, but in accordance
with remark 2.36. The convergence rates in the energy norm are expected since the
experiment is conducted in the convection-dominated regime, cf. remark 2.34.

2.3.2. A three-dimensional problem
In this section, a three-dimensional problem is solved, which can be seen as an
extension of the previous problem.

Example 2.38 (Sine Laplace problem in 3D). Let Ω := (0, 1)3 be the unit cube,
b := (1, 2, 3)T , and c := 3. Dirichlet boundary conditions are prescribed everywhere,
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Figure 2.6.: Convergence rates for different discretizations for example 2.37 with ε = 1
on the triangular grid. Top row: κ = +1 (SIPG), middle row: κ = 0 (IIPG),
bottom row: κ = −1 (NIPG). Left: L2(Ω)-norm, right: energy norm.

i.e., ΓD := ∂Ω. The right-hand side f and the boundary conditions are chosen in
accordance with the exact solution that is set to

u(x, y, z) := sin(πx) sin(πy) sin(πz).
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Figure 2.7.: Convergence rates for different discretizations for example 2.37 with
ε = 10−8 on the quadrilateral grid. Top row: κ = +1 (SIPG), middle row: κ = 0
(IIPG), bottom row: κ = −1 (NIPG). Left: L2(Ω)-norm, right: energy norm.

The computations take place on the grids depicted in figure 2.8. As before, the
diffusion coefficient is set to be either ε = 1 or ε = 10−8, and the SIPG, IIPG, and
NIPG methods are tested. Furthermore, the upwind discretization is used, i.e., η = 1,
and the penalty parameter is in accordance with lemma 2.30, [Riv08, equation (2.9)]
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and [HSS02] set to

σE =


2εn0(p+ 1)(p+ 3)/3, if κ = +1 (SIPG),
εn0(p+ 1)(p+ 3)/3, if κ = 0 (IIPG),
εp2, if κ = −1 (NIPG)

for all E ∈ Eh, where n0 is four for the tetrahedral grid and six for the hexahedral
grid. The polynomial degrees p = 1, 2, 3 are used on the tetrahedral grids, whereas
p = 1, 2 is investigated on the hexahedral grids.

Figure 2.9 shows the convergence history for ε = 1 on the tetrahedral grid for all
flavors of the DG method and various polynomial degrees. It can be seen that the
L2-error converges with an order of p+ 1 for all polynomial degrees in the case κ = 1.
For the IIPG and SIPG, only the even polynomial degrees converge with a rate of
p + 1 and the odd degrees with a rate of p with respect to h. This is better than
expected from theorem 2.35 but is in accordance with remark 2.36. Furthermore, it
can be noted that the tested iterative solvers in ParMooN cannot solve the resulting
linear system of equations, which might be due to the condition number of the system.
Solving this problem on finer meshes needs to be addressed in the future.

In the energy norm, the convergence rate is exactly p, which is in accordance with
theorem 2.32.

The results for ε = 10−8 computed on the hexahedral grid are depicted in figure 2.10.
As before, in the L2-norm the error for all κ and all p converge with optimal order of
p+ 1, which is better than proven in theorem 2.35. However, this is in accordance
with the two-dimensional results.

As before, the error in the error norm decreases with a rate of p + 1/2 for all κ
as expected from theorem 2.32 since the experiment is conducted in the convection-
dominated regime.

(a) Tetrahedral grid. (b) Hexahedral grid.

Figure 2.8.: Initial grids for example 2.38.
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Figure 2.9.: Convergence rates for different discretizations for example 2.38 with ε = 1
on the tetrahedral grid. Top row: κ = +1 (SIPG), middle row: κ = 0 (IIPG),
bottom row: κ = −1 (NIPG). Left: L2(Ω)-norm, right: energy norm.
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Figure 2.10.: Convergence rates for different discretizations for example 2.38 with
ε = 10−8 on the hexahedral grid. Top row: κ = +1 (SIPG), middle row: κ = 0
(IIPG), bottom row: κ = −1 (NIPG). Left: L2(Ω)-norm, right: energy norm.

37



2. Convection-diffusion-reaction problems

2.4. Summary
In this chapter, convection-diffusion-reaction problems and their discontinuous Galer-
kin discretization have been introduced.

In section 2.1, the model problems have been derived. The derivation is mainly
based on the observation that the rate of change in a sub-domain equals the flux of the
quantity across the boundary plus the total amount that is destroyed or created in the
domain. Afterwards, the notion of weak solutions to these problems was introduced,
and it was investigated under which conditions a unique weak solution exists. The
proof is based on the famous Lax–Milgram lemma.

Section 2.2 has derived the discontinuous Galerkin discretization of convection-
diffusion-reaction problems. To this end, the problem was split into pure diffusion and
convection-reaction cases. It was also investigated under which conditions a unique
discrete solution exists, and it was estimated how large the error between the exact
and the discrete solution is in the L2-norm and suitable energy norms in terms of the
mesh width h.

Last but not least, numerical results have been presented in section 2.3 to verify
the implementation and the theory. In both the two-dimensional and the three-
dimensional test cases, the convergence rates have been observed to be at least what
is expected from the theory. Therefore, this indicates that the implementation is
correct and the choices of the penalty parameters are useful.
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3. On reducing spurious oscillations using
slope limiters

In the previous chapter, it is proven that the discrete solution of the discontinuous
Galerkin method converges asymptotically towards the weak solution as the mesh
width becomes smaller. However, only meshes up to a certain mesh width can be
used in practice due to physical limitations such as time, money, and memory. On
these computationally feasible meshes, both continuous Galerkin and discontinuous
Galerkin methods lead to suitable approximations of the solution to convection-
diffusion-reaction problems in the case of “moderate” diffusion constants, i.e., if the
diffusion is about as strong as the convection. However, from a practical point of
view, often convection-dominated problems with rather “small” diffusion constants
relative to the convection are of interest for which it is computationally challenging
to compute appropriate approximations [JKN18; JJ20; FJ21].

In the convection-dominated regime that is mathematically characterized by
ε� L ‖b‖[L∞(Ω)]d with a characteristic length scale L, so-called layers in the so-
lution may occur that have to be captured correctly by numerical methods [JKN18].
These layers are small subregions where the solution obtains a steep gradient. Unfor-
tunately, in many cases, these layers cannot be resolved correctly on computationally
feasible meshes since the size of the layers is much smaller than the mesh width. For
many numerical methods, this leads to so-called spurious oscillations, i.e., physi-
cally unreasonable values such as negative concentrations, that pollute the solution
globally [JKN18; FJ21]. Figure 3.1 shows exemplary such unphysical values for
a convection-dominated problem that is given on the unit square with ΓD = ∂Ω,
ε = 10−6, b = (2, 3)T , c = 2, and where the right-hand side of the problem and the
boundary conditions are chosen such that

16x(1− x)y(1− y)

(
1

2
+

arctan
(
2ε−1/2 (0.252 − (x− 0.5)2 − (y − 0.5)2)

)
π

)

is the exact solution; see also [JKS11, example 5.1] for another description of the
problem.

To counteract these spurious oscillations, often stabilizing methods are used; see,
e.g., [RST08, section III.3] for an overview and [Bar+18b] for a modern approach. In
the context of continuous Galerkin methods, the streamline upwind Petrov–Galerkin
(SUPG) method or spurious oscillations at layers diminishing (SOLD) methods are
widely used to solve such problems; see, e.g., [RST08, section III.3.2.1] and [JK07;
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−0.19
0.00
0.20
0.40
0.60
0.80

1.10

Figure 3.1.: Discontinuous Galerkin solution with finite elements of degree p = 4 to a
convection dominated convection-diffusion-reaction problem. In equation (2.17),
the parameter κ = 1, η = 1 and σE = 9 · 10−5 for all E ∈ Eh are used, and the
computation is performed on the mesh that originates from refining the mesh given
in figure 2.5a six times. Spurious oscillations pollute the solution that should lie
between 1.00 and 0.00.

JK08]. These methods add artificial diffusion terms, and in doing so, they can reduce
the spurious oscillations significantly compared to plain continuous Galerkin methods.
On the other hand, a significant drawback of these methods is that they depend on
parameters for which, at most asymptotic bounds are known and which influence the
quality of the discrete solution [JK07; Aug+11]. Some attempts have been made to
find optimal parameters a-posteriori [JKS11; JK13; KLS19; JKW23], but choosing
optimal parameters a-priori is still an open problem.

It is also possible to use SUPG-like stabilization schemes based on discontinuous
Galerkin methods as mentioned in [AM09, remark 3.1]. However, the DG method con-
trols the streamline derivative without introducing another term; see also remark 2.24.

This work instead focuses on a post-processing technique to reduce spurious oscil-
lations in the discrete solution. One advantage of these techniques is that they do
not require solving a global linear or non-linear problem and therefore are compu-
tationally cheap. This is in contrast to many SOLD methods, which often require
many iterations to solve a non-linear problem; see, e.g., [JK07]. Moreover, the
proposed post-processing techniques allow for an arbitrary polynomial degree in
the approximation. This comes in handy since, away from layers, more accurate
approximations can be obtained with higher polynomial degrees, and hence these
polynomials are favorable compared to a lowest-order discretization. However, a lower
polynomial degree is usually a good choice in the vicinity of layers. The latter is
because Sobolev norms of the analytic solution at layers scale with an inverse power
of the diffusion coefficient. Lower polynomial degrees require Sobolev norms of lower
degrees, and therefore, the influence of the inverse power on the error is smaller than
for higher-order approximations [FJ21].

The basic idea behind the considered post-processing techniques is that in the
vicinity of layers, the discrete solution gets replaced by a lower-order approximation

40



3.1. Utilizing linear reconstructions across facets of mesh cells

using thereby so-called slope limiters. Changing the polynomial degree of the discrete
solution locally can be easily done with DG methods since the degrees of freedom
in a single cell are independent of the degrees of freedom of the neighboring cells.
This is in contrast to many other discretization techniques, e.g., continuous Galerkin
methods, where neighboring cells share degrees of freedom, and hence such an easy
replacement of the polynomial degree in a single cell is not possible.

To change the solution locally, a solution for a given polynomial degree must be
computed first. Second, regions have to be detected where nonphysical behavior
occurs. And third, the polynomial degree for the solution in these cells can be reduced.
Therefore, the strategy for the post-processing techniques can be summarized in the
following steps:

1. Mark the cells where spurious oscillations in the solution occur.

2. Approximate the solution on the marked cells by a lower degree polynomial
using slope limiters.

In sections 3.1 to 3.3, some already known approaches are presented that follow
the above-mentioned steps as well as further generalizations and modifications of
these methods. They are mainly presented for the two-dimensional case since a
three-dimensional extension is generally straightforward. However, the extension to
three dimensions is shortly addressed at the end of the respective sections. Last but
not least, it is notable that all methods share the property that they preserve the
mass cell wise. This is in contrast to the naive idea of just clipping the solution locally
where it exceeds the theoretical bounds. This is also explicitly mentioned for each
method presented below.

This chapter is based on [FJ21; FJ22]. The methods presented in this work are the
same, but different values for the penalty parameters σE are used for the numerical
studies.

The structure is as follows: In sections 3.1 to 3.3, seven different slope limiting
techniques are presented. They differ mainly in the way the cells are marked, and
they replace the solution with a piecewise affine or constant function. In section 3.4,
the methods are tested numerically based on two classical benchmark problems. This
chapter closes with a summary in section 3.5.

3.1. Utilizing linear reconstructions across facets of
mesh cells

3.1.1. Original method
This approach was introduced by Cockburn and Shu [CS98] and described again by
Rivière [Riv08, section 4.3.2]. Originally, the method was proposed for triangular
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bK′
2

m0
m1

m2 K

K ′
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Figure 3.2.: A triangle K with its three edge midpoints mi, i = 0, 1, 2, its three neigh-
bors K ′

i, i = 0, 1, 2, and the barycenters bK∗ of the triangles, K∗ ∈ {K,K ′
0, K

′
1, K

′
2 }.

Figure taken and adapted from [FJ21].

grids, but as described below, it also works with quadrilateral meshes. It is based on
the assumption that spurious oscillations in the discrete solutions only arise if they
are present in its linear part, i.e., the L2-projection of uh into the space of piecewise
linear functions [CS98; Riv08]. The verification of this assumption is still an open
question.

To describe the procedure, some notation has to be fixed. Let K ∈ Th be an
interior triangular mesh cell with neighbors K ′

0, K
′
1, K

′
2 where the numbering follows

the local edge or face numbering. The midpoints of the facets of K are denoted
by mi, i = 0, 1, 2, and the barycenter of the triangles is labeled with bK′ where
K ′ ∈ {K,K ′

0, K
′
1, K

′
2 }; see also figure 3.2 for a visualization.

After fixing the notation, the two previously mentioned steps of this post-processing
approach can be described. To check whether the cell K has to be marked, the cell
wise integral means uh,K∗ :=

∫
K∗ uh dx/|K∗|, K∗ ∈ {K,K ′

0, K
′
1, K

′
2 }, of uh have to be

computed. The algorithm then marks the cell K if, for at least one edge E ∈ Eh(K),
it holds that uh|K evaluated at the edge midpoint is not between the cell averages of
the two adjacent cells, i.e., if for at least one i = 0, 1, 2,

uh|K(mi) 6∈
[
min

(
uh,K , uh,K′

i

)
− tol,max

(
uh,K , uh,K′

i

)
+ tol

]
,

where tol is set to 10−11. The tolerance tol is introduced from a practical point of view
to avoid marking cells due to numerical round-off errors. Note that in the original
method, this tolerance is not proposed.

For each marked cell, three affine functions Lj : K → R, j = 0, 1, 2, are computed.
The functions can be written as Lj(x, y) := aj0 + aj1x + aj2y, j = 1, 2, 3, and are
determined by

Lj(bK) = uh,K , Lj(bK′
j+1

) = uh,K′
j+1
, Lj(bK′

j+2
) = uh,K′

j+2
,

where K ′
3 := K ′

0 and K ′
4 := K ′

1. These affine functions can be ordered afterwards by
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decreasing Euclidean norm √(
aj1
)2

+
(
aj2
)2

of their affine coefficients, i.e., loosely speaking by the steepness of their gradients.
Concerning this ordering, it can be successively checked whether the affine functions

fulfill the marking criterion, i.e., if Lj(mi) is between uh,K and uh,K′
i

plus the tolerance
for all i = 0, 1, 2. If this is the case for the current affine function, then uh is
approximated locally by Lj, i.e., locally uh gets replaced by Lj, and the other affine
functions are discarded. If none of the affine functions satisfy this criterion, uh gets
replaced by its integral mean uh,K .
Remark 3.1 (Local preservation of the mass). If the solution is replaced by its integral
mean, the mass is preserved by definition. In the case that the solution is replaced by
some Lj, j = 1, 2, 3, it holds by the midpoint quadrature rule

1

|K|

∫
K

Lj(x) dx = Lj(bK)

since Lj is an affine function. Moreover, since by construction Lj(bK) = uh,K , also in
this case, the integral mean is preserved.
Remark 3.2. It can be noted that even though this method was defined on triangles,
it can also be applied to quadrilateral meshes. Both during the marking and the
reconstruction, just a fourth edge has to be considered, e.g., during the reconstruction,
four candidates are computed for each pair of consecutive edges, and then the best
one is chosen.
Remark 3.3 (Extension to three dimensions). In three dimensions, the marking crite-
rion works as in two dimensions. Four candidates are constructed during the recon-
struction, i.e., one for each face. They are given by Lj(x, y, z) := aj0 + aj1x+ aj2y + aj3z,
j = 1, 2, 3, 4, and their coefficients are computed using

Lj(bK) = uh,K , Lj(bK′
j+1

) = uh,K′
j+1
, Lj(bK′

j+2
) = uh,K′

j+2
, Lj(bK′

j+3
) = uh,K′

j+3
,

where K ′
4 := K ′

0 and K ′
5 := K ′

1 and K ′
6 := K ′

2. As in the two-dimensional case, the
functions are sorted in descending order according to the Euclidean norm√(

aj1
)2

+
(
aj2
)2

+
(
aj3
)2

of their affine coefficients and it is proceeded as before.

3.1.2. Modified method
The algorithm presented above has three drawbacks:
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K0

K2

K3K1

Figure 3.3.: Triangulation of the domain conv{ (−1, 1), (1,−1), (1, 1) }. A red-
refinement of the domain generates the triangles.

1. It may reduce overshoots while simultaneously introducing undershoots or vice
versa.

Example 3.4. Let Ω := conv{ (−1, 1), (1,−1), (1, 1) } be red-refined into four
triangles of equal size as depicted in figure 3.3. If on this domain the function
uh is defined as

uh|K0
:= 1− x− y, uh|K1

:= uh|K2
:= 0, uh|K3

:= 1,

then the previously described algorithm replaces uh|K0 by x+ y − 1/3. It can
be seen that the original function has values in [0, 1], whereas the minimum of
the modified function is −1/3. Hence, the reconstruction decreased the global
minimum in this example and introduced an undershoot.
This can happen not only for simple examples but also in practice, as it can be
seen in the numerical experiments performed in section 3.4; see, e.g., figure 3.7.

2. Evaluating the function at the edge midpoint does not help if the oscillations
happen near a vertex.

Example 3.5. Let the domain be given as in example 3.4 and let uh be defined
as

uh|K0
:= −7 + 20x+ 20y − 12x2 − 12xy − 12y2,

uh|K1
:= uh|K2

:= 0, uh|K3
:= 1.

On the one hand, calculations show uh,K0 = 1/3, uh(0, 1/2) = uh(1/2, 0) = 0
and uh(1/2, 1/2) = 1. On the other hand, on K0, the function takes values in
[−7, 4/3] and should be limited.

3. The algorithm relies on neighbors and hence is a-priori only defined for interior
cells.
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∂Ω
bK

bK′
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K ′
0

m0

Figure 3.4.: Virtual triangle reflected at the boundary edge which in this example is
locally the first edge. Figure taken and adapted from [FJ21].

To counteract the problem described in item 1, it might be better always to replace
the function by its integral mean. With this strategy, the extrema are strictly clipped,
but at the price that the order of approximation is more reduced. However, since the
idea is to reduce the order in the vicinity of layers anyway, it is a fair trade-off.

Regarding item 2, evaluating the function at the edge midpoint can be seen as an
integration rule for polynomials of degree one. In this view and to detect oscillations
at other points along the boundary, it could be better to check whether the integral
mean of uh along and edge lies between the cell averages of the adjacent cells plus
the tolerance. In light of example 3.5, using the integral mean along the edges, the
function uh on K0 would have been limited, since it holds

∫
E1
uh ds =

∫
E2
uh ds = −1.

To apply the algorithm also on boundary cells, and thus counteract item 3, the
following approach can be used: For every boundary edge Ei a virtual triangle K ′

i is
constructed by reflecting the original triangle along edge Ei, cf. figure 3.4. Then on
this reflected triangle, the virtual solution uh|K′

i
is defined as the continuation of uh|K

from K to K ′
i which is well defined since uh|K is a polynomial. Having this virtual

cell(s) at hand, the algorithm can be applied as before, i.e., for marking the cell.
Remark 3.6 (Local preservation of the mass). Since, in the modified case, the solution
is replaced by its integral mean, the mass is preserved.
Remark 3.7. This modification can also be applied on quadrilateral grids in the same
manner as described in remark 3.2.

Remark 3.8 (Extension to three dimensions). The three-dimensional case works as
the two-dimensional case.

3.2. Utilizing weighted mean derivatives
3.2.1. Original method
Initially, this approach was introduced by Cockburn and Shu [CS98] for axis-parallel
rectangular grids and again revisited by Rivière [Riv08, section 4.3.2]. This method
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can be generalized to quadrilaterals being the image of a reference cell under affine
transformation, which is also presented here.

The idea of the generalization stems from mapped finite elements, i.e., the basis
functions and nodal functionals of a finite element are defined on a reference cell K̂,
and the functions and functionals on the physical cell K are given by a reference
transformation FK : K̂ → K; see figure 3.5. Hence, it seems natural to base the slope-
limiting approach on the reference cell and the transformation. Here, K̂ := [−1, 1]2 is
used as reference cell. In what follows, the reference transformation is furthermore
assumed to be affine.

On K, the functions

ψ(x, y) :=
F−1
K,1(x, y)

2
, ξ(x, y) :=

F−1
K,2(x, y)

2
(3.1)

are defined, where F−1
K,1 and F−1

K,2 are the first and second component of the inverse of
the reference transformation FK , respectively. Note that for axis-parallel rectangles,
both functions differ by a factor of 1/2 from their respective definitions in [CS98] and
equal their definitions in [Riv08, section 4.3.2].

Moreover, the functionals

NK,0(vh) :=
1

|K|

∫
K

vh dx,

NK,1(vh) := C1

∫
K̂

vh(FK(x̂, ŷ))x̂ dx̂,

NK,2(vh) := C2

∫
K̂

vh(FK(x̂, ŷ))ŷ dx̂

are defined, where the normalizing constants C1 and C2 are determined by the
condition NK̂,1(ψ) = NK̂,2(ξ) = 1.

Locally on K, the function uh can be expanded by

uh(x, y)|K = a0,K + a1,Kψ(x, y) + a2,Kξ(x, y) + higher-order terms,

where the coefficients are given by

a0,K = NK,0(uh), a1,K = NK,1(uh), a2,K = NK,2(uh).

By the definition of NK,0, it is clear that a0,K is the integral mean over cell K.
On axis-parallel rectangular grids, the coefficients a1,K and a2,K can be seen as a
collection of the linear parts of uh in x- and y-direction, respectively. This corresponds
to the linear parts in FK(1, 0)- and FK(0, 1)-direction for affine rectangular grids.

A different point of view can be achieved by clipping the higher-order terms.
Denoting the resulting affine function by ũh and the matrix of the affine transformation
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Figure 3.5.: Reference domain K̂ = [−1, 1]2 for section 3.2 and reference transformation
FK to physical cell K. The edges in the physical cell are given as images of the
corresponding reference edges under FK .

by BK , it holds

∇ũh =
B−1

K

2

(
a1,K
a2,K

)
,

and hence the coefficients can be thought of providing information on a weighted
mean derivative of uh in K [FJ21].

It is furthermore noteworthy that neither basis functions of the higher-order terms
have to be defined nor coefficients have to be computed.

With these coefficients at hand, it can be decided whether slope limiting must be
applied on the cell K or not. To this end, it is assumed that Êl := (−1, 1)(−1,−1),
Êb := (−1,−1)(1,−1), Êr := (1,−1)(1, 1), and Êt := (1, 1)(−1, 1) are the left, bottom,
right, and top edge of the reference cell, respectively. Let Kl be the neighbor of K
across El := FK(Êl), and use analog notations for Kb, Kr and Kt; see also figure 3.5.

Using two user-dependent constants Mlim ≥ 0 and γ ≥ 0, the adjusted coefficients

a1,K :=

{
a1,K , if |a1,K | ≤Mlim,

minmod (a1,K , γ(a0,Kr − a0,K), γ(a0,K − a0,Kl
)) , else,

a2,K :=

{
a2,K , if |a2,K | ≤Mlim,

minmod (a2,K , γ(a0,Kt − a0,K), γ(a0,K − a0,Kb
)) , else,

have to be computed. The minmod function is thereby given by

minmod(a0, a1, a2) :=

{
s mini=0,1,2 |ai|, if s := sign(a0) = sign(a1) = sign(a2),
0, else.

In the case of boundary cells, the minmod function is applied without missing entries.
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The cell K is then marked if a1,K 6= a1,K or a2,K 6= a2,K .
For all marked cells, the higher-order terms are clipped, and the adjusted coefficients

are used, i.e., uh is approximated by

uh(x, y)|K = a0,K + a1,Kψ(x, y) + a2,Kξ(x, y).

Remark 3.9 (Local preservation of the mass). Following the above-mentioned algo-
rithm the solution gets replaced by some a0,K + a1,Kψ(x, y) + a2,Kξ(x, y), with some
coefficients a0,K , a1,K and a2,K , and ψ and ξ defined in equation (3.1). Then by
construction it holds

1

|K|

∫
K

a0,K + a1,Kψ(x, y) + a2,Kξ(x, y) dx = a0,K ,

since
∫
K
ψ(x, y) dx/|K| = NK,0(ψ) = 0 and

∫
K
ξ(x, y) dx/|K| = NK,0(ξ) = 0. And

by definition, it is a0,K = uh,K , which is why the mass is preserved.
Remark 3.10 (Extension to three dimensions). In three dimensions, the function

η(x, y, z) :=
F−1
K,3(x, y, z)

2

has to be introduced that is based on the third component of the inverse of the
reference transform. Furthermore, the corresponding functional

NK,3(vh) := C3

∫
K̂

vh(FK(x̂, ŷ, ẑ))ẑ dx̂

can be defined where C3 is determined by NK̂,3(η) = 1. The expansion of the solution
gets another linear term a3,Kη(x, y, z) added with a3,K := NK,3(uh). In addition, also
a third adjusted coefficient

a3,K :=

{
a3,K , if |a3,K | ≤Mlim,

minmod
(
a3,K , γ(a0,Kf

− a0,K), γ(a0,K − a0,Kba
)
)
, else,

is computed for the neighbors in the third direction Kf , Kba. Afterwards, the algorithm
can be followed as in the two-dimensional case.

3.2.2. Modified method
As before, replacing the function on marked cells by the integral mean, i.e., by a0,K
could be better. If the function is replaced by its integral mean, the slope is reduced
as much as possible, and therefore chances are higher that the spurious oscillations
are leveled out.
Remark 3.11 (Local preservation of the mass). The mass is preserved since the solution
is replaced by its integral mean.
Remark 3.12 (Extension to three dimensions). As in the two-dimensional case, the
solution gets replaced by its cell integral mean.
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3.3. Utilizing evaluations of jumps across facets

3.3. Utilizing evaluations of jumps across facets

3.3.1. Original method
This method can be traced back to Dolejší, Feistauer, and Schwab [DFS02], who
introduced the method and further analyzed it in [DFS03]. It uses information about
the jumps of uh along facets to detect spurious oscillations and replaces the function
locally with a constant approximation if needed.

The indicator to mark cells is based on observations from numerical studies for
lowest-order DG methods, i.e., with polynomial degree p = 1. In regions where the
solution is smooth, it holds

∑
E∈Eh(K)∩EI

h

∫
E

JuhK
2

h5K
ds ≈

∑
E∈Eh(K)∩EI

h

∫
E

O(h2K)
2

h5K
ds ≈ O(1),

whereas in the vicinity of layers

∑
E∈Eh(K)∩EI

h

∫
E

JuhK
2

hK
ds ≈

∑
E∈Eh(K)∩EI

h

∫
E

O(1)2

hK
ds ≈ O(1)

holds true.
Dolejší, Feistauer, and Schwab [DFS03] hence deduce that, for any α ∈ (1, 5), the

quantity

∑
E∈Eh(K)∩EI

h

∫
E

JuhK
2

hαK
ds (3.2)

may serve as a smoothness indicator, and in particular, they proposed to use α = 5/2.
Precisely, they mark all the cells where it holds

∑
E∈Eh(K)∩EI

h

∫
E

JuhK
2

hK |K|3/4
ds ≥ 1, (3.3)

which corresponds to α = 5/2 since on two-dimensional shape-regular grids it is
|K| ≈ h2K .

After the cells are marked, the solution is approximated on that cells by replacing
it by its integral mean uh,K .

It can be noted that this method uses the asymptotic behavior of the solution, and
therefore, care has to be taken when the denominator is large, i.e., if hK |K|3/4 > 1 or
even hK |K|3/4 � 1. Hence, this method should only be used on small cells since for
large cells, equation (3.3) might not be satisfied even if the jump is large.
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3. On reducing spurious oscillations using slope limiters

Remark 3.13. Note that this method works independently of the geometry, i.e., for
triangular as well as for quadrilateral grids.

Remark 3.14 (Local preservation of the mass). The mass is preserved since the solution
is replaced by its integral mean.

Remark 3.15 (Extension to three dimensions). In three dimensions α might be chosen
to lie between 1 and 6. Besides that, equation (3.2) can be used without changes.

3.3.2. Modified method
The authors’ choice of α = 5/2 is based on their experience and experiments, but in
general other choices are valid as well. For instance, increasing α would lead to more
cells being marked, and decreasing α would result in marking fewer cells. Instead of
choosing a different value, a slightly different approach is conducted here, which is
inspired by equation (3.2).

If the discrete solution has a non-smooth behavior across just one facet aligned
with a layer, the original indicator equation (3.3) might not detect the cell correctly.
Examining individual facets might be better in this case, and if the facets of a cell
are of much different size. In the latter, small facets might have too little impact on
the original indicator.

Having this in mind and inspired by equation (3.2), the ansatz

∫
E

JuhK
2 ds = C0Lu

2
0

(
hE
L

)αE

=⇒ αE =
ln
(

1
C0Lu2

0

∫
E

JuhK
2 ds

)
ln
(
hE

L

)
as an indicator is chosen, where C0 ∈ R, C0 > 0, is a constant, L ∈ R, L > hE, is
the characteristic length scale of the problem and u0 ∈ R, u0 6= 0, is a characteristic
scale of the solution. The quantity αE is computed for each facet, and for a cell K,
αK := min {αE : E ∈ Eh(K)} is deduced.

The cell K is then marked if αK ≤ αref with some reference αref ∈ R. As before,
the solution on the marked cells is approximated by its integral mean.

Possible choices for L are 3/2 times the longest facet in the initial triangulation or
an adaptively chosen value of 3/2 times the longest facet of the current mesh. The
parameter u0 has to be adapted to the problem and might be chosen as the largest
expected value of the solution if this is known analytically. Lastly, the constant C0

can be used to fine-tune the limiter and has to be adapted to the problem.
In contrast to the original approach, the modified method is well defined in the

case that hE ≥ 1 if L is chosen appropriately. Furthermore, the method is scaling
invariant, and αE is dimensionless as expected from an exponent.

Remark 3.16 (Local preservation of the mass). The mass is preserved since the solution
is replaced by its integral mean.
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Remark 3.17 (Extension to three dimensions). In three dimensions the ansatz

∫
E

JuhK
2 ds = C0L

2u20

(
hE
L

)αE

=⇒ αE =
ln
(

1
C0L2u2

0

∫
E

JuhK
2 ds

)
ln
(
hE

L

)
might be chosen.

3.3.3. Derived method
Marking cells in both previously mentioned methods is essentially based on the
magnitude of the square of the integral of the jump of the discrete solution along an
edge E, which is nothing else than ‖ JuhK ‖2L2(E). Hence, with r ∈ [1,∞], another idea
is to assess the Lr(E)-norm of the jump directly. For each interior facet

βE :=
‖ JuhK ‖Lr(E)

|E| 1r

can be computed, and a cell is marked if maxE∈Eh(K) βE ≥ βref for some user-chosen
βref ∈ R. The solution is then approximated again by its integral mean.

This approach also has the advantage of being scaling-invariant, being easily
computed, and working on simplicial, quadrilateral, and tetrahedral grids, respectively.
A drawback might be that it is a-priori not clear how to choose βref, which can be
adapted to the problem. The arithmetic mean value of all βE may be a possible choice.
In [FJ22], different values for βref are investigated, namely increasing and decreasing
the value by twice the standard deviation of all βE. However, the difference in the
results is small, which indicates that the arithmetic mean itself is already a proper
choice.
Remark 3.18 (Local preservation of the mass). The mass is preserved since the solution
is replaced by its integral mean.
Remark 3.19 (Extension to three dimensions). In three dimensions, the same can be
done as in two dimensions.

3.4. Numerical studies
In this section, the previously described limiters are tested for different standard
benchmark problems to investigate how much they can reduce spurious oscillations
compared to the standard Galerkin method (2.17). The experiments are conducted
with the software package ParMooN [Wil+17]. In the following experiments, the SIPG
discretization of the diffusive term and the upwind discretization of the convective
term in (2.17) are deployed, i.e., κ = 1 and η = 1 are used. Inspired by [Riv08,
equation (2.8), p. 39], the last parameter is chosen to be σ = εn0(p+1)(p+2), where
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3. On reducing spurious oscillations using slope limiters

n0 is the number of facets of the cell. Several polynomial degrees are used namely
p = 1, 2, 3, 4. Note that in contrast to [FJ21; FJ22] a different penalty parameter is
chosen, which is why the results are slightly different.

On the one hand, the post-processing techniques can be compared to the unmodified
DG method to evaluate how much the oscillations decrease. On the other hand, it
is also helpful to compare the algorithms with an optimal one, i.e., a method that
reduces the over- and undershoots and the measures given below as much as possible
while it preserves at the same time the mass cell wise. This method is obtained by
locally replacing the solution with its integral mean in every cell.

In the numerical studied the following methods are tested:

• Galerkin: DG method (2.17) without post-processing,

• Optimal: DG method (2.17) where the solution is cell wise replaced by its
integral mean in every cell,

• LinTriaReco: Post-processing on triangular grids using locally linear approxima-
tions based on reconstructions along facets; see section 3.1.1,

• ConstTriaReco: Post-processing on triangular grids using locally constant ap-
proximations based on reconstructions along facets; see section 3.1.2,

• LinQuadReco: Linear reconstruction on quadrilateral grids following LinTria-
Reco; see remark 3.2,

• ConstQuadReco: Constant reconstruction on quadrilateral grids following Const-
TriaReco; see remark 3.7,

• LinQuadDeriv: Post-processing on quadrilateral grids using locally linear ap-
proximations based on a mean derivative, Mlim = 0, γ = 1; see section 3.2.1,

• ConstQuadDeriv: Post-processing on quadrilateral grids using locally constant
approximations based on a mean derivative, Mlim = 0, γ = 1; see section 3.2.2,

• ConstJump: Post-processing on any type of grid using locally constant approxi-
mations based on evaluating the jump across facets, α = 2.5; see section 3.3.1,

• ConstJumpMod: Modification of ConstJump, αref = 4, C0 = 1; see section 3.3.2,

• ConstJumpNorm: Post-processing on any type of grid using locally constant
approximations based on a norm of the jump along facets, r = ∞, βref chosen to
be the arithmetic mean of all βE; see section 3.3.3. To prevent limiting smooth
solutions, if βref ≤ 10−13, then ConstJumpNorm is set to leave the solution
unchanged.
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3.4. Numerical studies

The choice of the parameters in LinQuadDeriv, ConstQuadDeriv, and ConstJump
are guided by the literature; see [Riv08; DFS02]. Below, the results r = ∞ in Const-
JumpNorm are depicted. The r = 1 and r = 2 results show only minor differences
compared to r = ∞. Therefore, for the sake of brevity, they are not shown. To
approximate the L∞(E)-norm, the function is evaluated at the vertices of the edge E
and at the quadrature points of the Gauss–Legendre quadrature rule of degree 2r on
this edge.

Two measures are defined to assess the limiters’ capability to reduce spurious
oscillations. The first quantity

oscmax(uh) := max
(x,y)∈Ω

uh(x, y)− umax + umin − min
(x,y)∈Ω

uh(x, y) (3.4)

compares the global maximum and minimum of the discrete solution uh with the
maximum umax and minimum umin of the continuous solution to investigate maximal
oscillations. This measure can be negative since the boundary conditions are only
imposed weekly. In order to take more than two values into account,

oscmean(uh) :=
1

|Th|
∑
K∈Th

[
max

{
0, max

(x,y)∈K
uh(x, y)− umax

}
+ max

{
0, umin − min

(x,y)∈K
uh(x, y)

}] (3.5)

is defined to assess the mean oscillations. It has the advantage of distinguishing
between solutions with a few but large oscillations and one with many oscillations
that are close to the largest oscillation. To compute oscmax and oscmean, the discrete
solution uh is evaluated at certain points, which are the points of the local nodal
functionals defining the continuous Pp/Qp elements of the same order.

Ω
b

ΓD

(a) Domain.

0.00

0.20

0.40

0.60

0.80

1.00

(b) Sketch of the solution.

Figure 3.6.: Domain for and sketch of solution to example 3.21 for ε = 10−8. Lines
with ticks indicate the Dirichlet boundary ΓD. The solution is computed with
a non-linear algebraic flux-corrected (AFC) scheme using a Kuzmin limiter; see
[Bar+18b].
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3. On reducing spurious oscillations using slope limiters

Remark 3.20. It needs to be mentioned that even the optimal method Optimal might
have values of oscmax and oscmean that are not identically zero. This is the case if the
original DG method computes a solution where the oscillations are so strong that
even the integral mean is above or below umax and umin, respectively.

3.4.1. Application to the discrete solution to the HMM example
Example 3.21 (Convection skew to the mesh). This example is based on a standard
benchmark problem first proposed by Hughes, Mallet, and Mizukami [HMM86]. The
problem is designed for the unit square, i.e., Ω := (0, 1)2. The convection field is given
by b := (cos(−π/3), sin(−π/3))T and c := f := 0. The problem is augmented with
Dirichlet boundary conditions on ΓD := ∂Ω that are prescribed by

gD :=

{
1, if (y = 1 ∧ x > 0) or (x = 0 ∧ y > 0.75),

0, else.

The domain and the convection field are also depicted in figure 3.6a.

The solution has values in [0, 1] and possesses several layers: An interior layer in
the direction of the convection starting at the jump of the boundary condition and
two boundary layers at the outflow boundary; see figure 3.6b for a visualization of the
solution. In contrast to the original problem, the discontinuity point of the boundary
condition is shifted from (0, 0.7) to (0, 0.75) to ensure that the discontinuity point
is at a vertex of the meshes used in this work. This is especially important for DG
methods since the smoothness of the solution might be very low in mesh cells with a
discontinuity along an edge but not at the vertices [FJ21].

The limiters are tested for ε = 10−4 and ε = 10−8 on triangular and quadrilateral
meshes starting from the initial grids shown in figure 2.5.

The results of oscmax and oscmean for ε = 10−4 on the triangular grid are shown in
figures 3.7 and 3.8, respectively. It can be seen that even though no method reduces
the maximal spurious oscillations completely, ConstJump, ConstJumpNorm, and
ConstJumpMod decrease the oscillations significantly compared to Galerkin, of which
ConstJump behaves worse than ConstJumpNorm and ConstJumpMod, especially on
coarser grids. The finer the mesh becomes, both ConstJumpMod and ConstJumpNorm
approach the optimal method, which means that they detect the largest occurring
over- and undershoot. The smaller the polynomial degree, the earlier they detect
these cells. LinTriaReco does not significantly reduce oscmax compared to Galerkin
and may worsen the situation, as seen for P2. ConstTriaReco also significantly reduces
the oscillations compared to Galerkin, especially on coarser meshes where it is optimal
for p = 2. However, the finer the grid becomes, the less it reduces the oscillations.

In figure 3.8, it can be observed that the mean oscillations oscmean decrease for all
polynomial degrees the finer the mesh becomes. This behavior can be expected since
the total number of mesh cells scales quadratically, whereas the number of cells in
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Figure 3.7.: Results of oscmax for example 3.21 with ε = 10−4 on the triangular mesh.
Methods that are not visible have values outside the range of the plot. The results
of LinTriaReco might hide the results of Galerkin.
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Figure 3.8.: Results of oscmean for example 3.21 with ε = 10−4 on the triangular mesh.
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Figure 3.9.: Results of oscmax for example 3.21 with ε = 10−4 on the quadrilateral
mesh. Methods that are not visible have values outside the range of the plot. The
results of Galerkin, LinTriaReco, LinQuadDeriv, and ConstQuadDeriv might lie on
each other.
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Figure 3.10.: Results of oscmean for example 3.21 with ε = 10−4 on the quadrilateral
mesh. The results of Galerkin, LinQuadDeriv and ConstQuadDeriv might lie on
top of each other.
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Figure 3.11.: Results of oscmax for example 3.21 with ε = 10−8 on the triangular mesh.
The results of LinTriaReco or ConstTriaReco hide the ones of Galerkin and the
results of ConstJumpMod might be hidden by the ones of ConstJumpNorm.

the vicinity of the layer, which should be marked, scales linearly. All methods reduce
the mean oscillations oscmean compared to Galerkin, and ConstJumpMod and Const-
JumpNorm are again among the best ones. Both almost equal the optimal method
on the finest meshes, which indicates that they can detect almost all oscillations.
Also, ConstJump shows a significant reduction but is not as good as ConstJumpMod
and ConstJumpNorm. Furthermore, ConstTriaReco reduces the mean oscillations
on coarser levels the most for p = 2, 3, 4 and is also optimal for P2 and P4 on the
coarsest level.

Last but not least, it can be noted that the trends are in agreement with [FJ21].
Figures 3.9 and 3.10 show the results for ε = 10−4 using the quadrilateral grid. As

before, ConstJumpMod and ConstJumpNorm significantly reduce oscmax compared
to Galerkin, and again both are optimal on the finest meshes. ConstQuadReco and
ConstJump also improve the situation, and ConstJump even works almost as well
as ConstJumpNorm on the finest meshes. LinQuadDeriv and ConstQuadDeriv can
also reduce the maximal oscillations, and ConstQuadDeriv is even optimal on coarser
meshes for p = 3, 4 and the finest mesh for p = 2, 4. Finally, LinQuadReco does not
improve the situation, and the latter makes it even worse for Q4.

As for the triangular case, the mean measure oscmean becomes smaller for all methods
as the mesh becomes finer; see figure 3.10. The methods reducing the oscillations the
most are ConstQuadReco, ConstJumpMod, ConstJumpNorm, and ConstQuadDeriv
and LinQuadDeriv except for the finest level for Q3. They are almost optimal on the
finest meshes for p = 1, 3 but far away for p = 4. It is concluded that they, on the
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Figure 3.12.: Results of oscmean for example 3.21 with ε = 10−8 on the triangular
mesh.

one hand, detect the largest oscillations but, on the other hand, miss to find many
oscillations. LinQuadReco makes almost no improvements compared to Galerkin, and
ConstJump is somewhat between LinTriaReco and ConstJumpNorm.

This also corresponds to the findings in [FJ21] except that in that paper, LinQuad-
Deriv and ConstQuadDeriv worked worse.

In figures 3.11 and 3.12 the results of oscmax and oscmean, resp., for ε = 10−8 on
triangular grids are shown. As for the larger diffusion constant, ConstJumpMod
and ConstJumpNorm reduce oscmax the most compared to Galerkin, of which the
latter one works better on coarser grids. It is even optimal for almost all degrees and
refinement levels. The limiter ConstJump improves the values of maximal oscillations
as well as ConstTriaReco except for P4. LinTriaReco is no improvement compared to
Galerkin (P1) or even increases oscmax (P2, P3, P4). Concerning oscmean depicted in
figure 3.12, ConstJumpMod and ConstJumpNorm work the best, and the reduction
in the mean compared to Galerkin is even optimal on the finest meshes. On coarser
grids, ConstJumpNorm is better than ConstJumpMod. ConstTriaReco also improves
oscmean and an coarser grids better than ConstJumpMod. Both LinTriaReco and
ConstJump improve the mean oscillations only slightly. The trends of these findings
agree with the results in [FJ21].

Figures 3.13 and 3.14 show the results of oscmax and oscmean for ε = 10−8 on the
quadrilateral grid. Unfortunately, LinQuadDeriv and ConstQuadDeriv do not reduce
the maximal oscillations compared to Galerkin for Q1. However, the higher the
polynomial degree, the better they work, and ConstQuadDeriv is even optimal for
Q4 and on coarser meshes for Q3. The method LinQuadReco sometimes improves
the values, but it increases the values on finer grids for Q3 and Q4. ConstJump
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Figure 3.13.: Results of oscmax for example 3.21 with ε = 10−8 on the quadrilateral
mesh. The results of ConstQuadDeriv lie above the ones of LinQuadReco, Galerkin,
ConstJump and LinQuadDeriv.
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Figure 3.14.: Results of oscmean for example 3.21 with ε = 10−8 on the quadrilateral
mesh. The results of ConstQuadDeriv lie above the ones of Galerkin, ConstJump
and LinQuadDeriv.
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(b) Q4 solution with ConstJumpNorm.

Figure 3.15.: Limited solutions to example 3.21 on the fourth level for ε = 10−8. The
solutions are projected to piecewise linear or bilinear functions by the visualization
software.

reduces the oscillations if the grid is fine enough but does not help much if the grid
is coarse. ConstQuadReco also reduces the maximal oscillations, but it shows a
constant behavior after a few refinements. On the other hand, ConstJumpMod and
ConstJumpNorm show the best results with an optimal reduction if the mesh is fine
enough. On coarser grids, ConstJumpNorm is again better than ConstJumpMod
and even optimal. Those methods are also the best ones with respect to oscmean,
both approaching Optimal the finer the mesh becomes, as seen in figure 3.14. Only
ConstQuadReco on coarser grids is slightly better for p = 2, 3, 4. LinQuadDeriv and
ConstQuadDeriv also show a reduction compared to Galerkin, especially the higher
the polynomial degree is. For Q3 and Q4, ConstQuadDeriv is optimal on almost all
levels. ConstJump shows almost no reduction compared to Galerkin. Lust but not
least, LinQuadReco reduces the mean oscillations moderately compared to Galerkin.
The results are similar to the one obtained in [FJ21; FJ22].

In figure 3.15, two selected numerical solutions of approaches that lead to good
results are shown. Since the boundary conditions are imposed weakly, the boundary
layers at the outflow boundary are absent. In the left solution that is limited with
ConstJumpMod, some under- and overshoots remain because the corresponding cells
are not marked. All cells in the layer are correctly marked in the right solution gained
by applying ConstJumpNorm. As a result, almost no over- and undershoots are
present.
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(b) Sketch of the solution.

Figure 3.16.: Domain for and sketch of the solution for ε = 10−8 to example 3.22.
Lines with ticks indicate the Dirichlet boundary ΓD, and lines without ticks indicate
the Neumann boundary ΓN. The solution is computed with a non-linear algebraic
flux-corrected (AFC) scheme using a Kuzmin limiter; see [Bar+18b]

3.4.2. Application to the discrete solution to the Hemker example
This example takes values in [0, 1] which can also be seen in a sketch of the solution;
see figure 3.16b. Again ε = 10−4 and ε = 10−8 are chosen, and the computations take
place on a mesh where the initial grid can be seen in figure 3.17.

Example 3.22 (Hemker problem). The second benchmark problem defined first by
Hemker [Hem96] is stated in Ω := {(−3, 9)× (−3, 3)} \ {(x, y) : x2 + y2 ≤ 1}, with
the coefficients b := (1, 0)T and c := f := 0. The problem is augmented with Dirichlet
boundary conditions with gD := 0 at x = −3, with gD := 1 at the circular boundary
given by x ∈ [−1, 1] and y2 = 1− x2. Homogeneous Neumann boundary conditions
are prescribed on all other boundaries; see figure 3.16a.

This example models the transport of a quantity, e.g., temperature, through a
channel. The quantity of interest flows in the direction of the convection field starting
at the circle and spreads out due to diffusion.

In figures 3.18 and 3.19 the results for ε = 10−4 are shown. The best results are
achieved with ConstJumpMod and ConstJumpNorm, which lead to almost equal

Figure 3.17.: Initial grid for example 3.22.
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Figure 3.18.: Results of oscmax for example 3.22 with ε = 10−4. Methods that are not
visible have values outside the range of the plot. The results of ConstJumpNorm
lie above the ones of ConstJumpMod.
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Figure 3.19.: Results of oscmean for example 3.22 with ε = 10−4.
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Figure 3.20.: Results of oscmax for example 3.22 with ε = 10−8. Methods that are not
visible have values outside the range of the plot. The results of ConstJump might
lie above the ones of Galerkin and ConstTriaReco.

values. They are also optimal on the finest meshes, and for P4, almost all oscillations
are removed. LinTriaReco for all degrees shows almost no improvement at all. The
methods ConstTriaReco and ConstJump are better than Galerkin but far from optimal.
For the second quantity of interest oscmean, again ConstJumpMod and ConstJump-
Norm reduce the oscillations the most, followed by ConstTriaReco, which in turn is
better on coarser grids. Only on the finest grid, ConstJumpMod and ConstJumpNorm
come close to the optimal reduction of oscillations. The other methods also reduce
the mean values as expected but much less than the best ones.

For ε = 10−8 the results are shown in figures 3.20 and 3.21. Concerning oscmax,
ConstJump does not improve the values compared to Galerkin, and LinTriaReco
again increases the maximal oscillations. ConstTriaReco also slightly decreases oscmax
for odd degrees and notably reduces the oscillations for even degrees on coarser grids.
The best methods are ConstJumpMod and ConstJumpNorm, where ConstJumpMod
is slightly better than ConstJumpNorm on medium fine grids. They both are optimal
on the finest grids and ConstJumpMod is also already optimal on coarser grids for odd
degrees. Also for oscmean the method ConstJump does reduce the mean oscillations
only slightly (P1) or almost not at all (P2, P3,P4). The methods LinTriaReco and
ConstTriaReco improve the values but not as much as ConstJumpMod and Const-
JumpNorm, which in fact, are again the best methods. They are on the finest meshes,
also optimal for p = 1, 2 and almost optimal for p = 3, 4. Similar results are also
obtained in [FJ21; FJ22].

In figure 3.22, two limited solutions are depicted. It can be observed that in the
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Figure 3.21.: Results of oscmean for example 3.22 with ε = 10−8.
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(a) P3 solution with ConstTriaReco.
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Figure 3.22.: Limited solutions to example 3.22 on the third level for ε = 10−8. The
solutions are projected to piecewise linear functions by the visualization software.
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3.5. Summary

solution that is limited with ConstTriaReco, some cells in the layer close to the circle
are not marked, which is why the solution still possesses a notable amount of over-
and undershoots. This is not the case for the solution limited with ConstJumpNorm
as seen on the right of figure 3.22.

3.5. Summary
In this chapter, several post-processing techniques from the literature and novel
methods were presented and numerically investigated. Coming from the plain DG
solution, these methods first mark cells that detect spurious oscillations and change
the solution on the marked cells to an affine or constant approximation. These
methods are computationally cheap, and they all share the property of preserving the
mass locally, as shown above, which clearly distinguishes them from just clipping the
extrema.

The methods were tested on two benchmark problems for different diffusion coef-
ficients, meshes, and polynomial degrees. Two measures, oscmax and oscmean, were
introduced to evaluate the methods’ performance. It can be noted that the above-
described methods that use an affine reconstruction worked worse in most cases than
methods with piecewise constant approximations. The former methods were able
to reduce the oscillations in the mean, but at the price that they sometimes even
increased the maximal oscillations. In many experiments, even the best methods could
not remove the oscillations altogether, but they reduced the oscillations significantly.
This is because the oscillations in the plain DG method were so strong that even the
integral mean is too large or too small, resp., leading to positive values of oscmax and
oscmean. Usually among the best and often the best methods were ConstJumpMod
and ConstJumpNorm, two novel methods. Other methods might have produced better
results for a particular setting but were worse in many other configurations. However,
all methods might be improved if the parameters they rely on are optimized for the
problem. Especially on the finest meshes, ConstJumpMod and ConstJumpNorm were
able to detect all relevant cells, i.e., they reduced the oscillations as much as possible
while preserving the integral mean. In this way, they were optimal, and improvements
for such post-processing methods are only possible on coarser meshes.

As mentioned above, some methods might be improved if their parameters are
optimized with respect to the problem. However, since even the optimal reference
method still shows over- and undershoots, reducing these oscillations in the plain DG
method might be more beneficial before further improving the slope limiters. One
option in that direction would be to optimize the plain solution with respect to the
stabilization parameter σE in the same light as it was done, e.g., in [JKS11; JK13;
KLS19; JKW23].
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4. Deep neural networks as spurious
oscillations detector

Within the last two decades, deep learning techniques in general and neural networks
especially started to reveal their full potential. They are frequently used in many
scientific fields as well as in businesses, and a world without them is nowadays hard
to imagine; see, e.g., [GBC16; Sar21; HH19] for applications and state-of-the-art
techniques. Due to their ability to be universal function approximators [HSW89;
Cyb89; GBC16, chapter 6.4.1], they can approximate highly non-linear mappings or
even mappings without a known representation.

Their ability to approximate unknown mappings can also be exploited in the
context of numerical methods for initial-boundary value problems, and there exist
already many papers that do so; see, for instance, [Jos+21; MLR21; SC21; BFM19;
vWR21; Kar+21]. In this chapter, a way is drawn to combine neural networks with
ideas of the slope limiters introduced in the previous chapter. Similar ideas have
already been presented in [RH18; RH19; Liu+19; VA18; AH20; Mor+20; Bec+20].
However, these publications deal with discretization schemes for hyperbolic (systems
of) equations, mainly Euler’s Gas equations. Therefore, the goal of this chapter is to
extend these results to convection-dominated convection-diffusion-reaction problems,
i.e., the construction of a neural network-based slope limiter for these problems.

Let us shortly recall the essential ingredients of classical slope limiters: In the first
step, they mark cells where the solution might show spurious oscillations. Afterwards,
the solution is changed locally on these cells. However, marking cells is not unique
to slope limiters. For instance, in adaptive refinement strategies, cells have to be
selected where the error of the discrete solution to the exact solution is large, and in
parameter-dependent methods like SUPG or DG methods, parameters for every cell
need to be chosen. Therefore, many applications would benefit from a black box that,
given some features of the solution, predicts a particular output, e.g., whether a cell
is marked or not or how to choose a particular parameter. Hence, what is presented
and the understanding gained in this chapter has to be viewed in a broader field of
use cases.

This chapter is structured as follows: In section 4.1 the basic ideas of a particular
type of neural network are explained including their construction and how they are
trained to approximate a particular mapping. Afterwards, section 4.2 deals with how
the data set is constructed with which in section 4.3 multilayer perceptron models
are trained. Their quality is measured, and the best is applied to the solution to
the HMM and the Hemker example in section 4.4. This chapter finally ends with a
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summary given in section 4.5.
This chapter’s primary results and content are also published in the preprint

[FHJ22]. Only in the numerical examples, a slightly different set-up is used compared
to that reference.

4.1. Basics of multilayer perceptron models
Deep neural networks are a machine learning technique to approximate a possibly
unknown mapping f : X → Y, where X ⊂ Rn, Y ⊂ Rm and n,m ∈ N [GBC16,
pp. 1–8]. There exist different types of neural networks, e.g., convolutional neural
networks, recurrent neural networks, or generative adversarial networks, to name just
a few. However, in the following so-called multilayer perceptrons (MLPs) are used
and hence introduced, cf., e.g., [HH19; GBC16, chapter 6] for different presentations.

4.1.1. Structure of multilayer perceptron models
MLPs consist of ` ∈ N so-called layers, which itself are build from ni ∈ N, i =
1, 2, . . . , `, nodes. They are also often referred to as neurons, and each represents
a scalar value. The ith layer takes some input and returns some output ŷ[i] ∈ Rni .
The first layer, the so-called input layer, is special since it only represents the input
x ∈ Rn, i.e., n1 := n, and ŷ[1] := x. All subsequent layers take as input the
output ŷ[i−1] ∈ Rni−1 , i = 2, 3, . . . , `, of the previous layer and perform the following
computations to return the current output ŷ[i]. The jth node, j = 1, 2, . . . , ni, in the
ith layer returns the jth component ŷ[i]j of the current layer of ŷ[i] by

ŷ
[i]
j

(
ŷ[i−1]

)
:= σ

[i]
j

(
ni−1∑
k=1

w
[i]
j,k ŷ

[i−1]
k + b

[i]
j

)
∈ R, (4.1)

where w[i]
j,k ∈ R are called weights, b[i]j ∈ R is the jth component of the so-called

bias and σ
[i]
j : R → R is a non-linear mapping called activation function. While all

intermediate layers, i.e., layers where i = 2, 3, . . . , ` − 1, are called hidden layers,
the last layer is referred to as the output layer and has, therefore, n` = m nodes.
Furthermore, the output of the last layer ŷ[`] may be denoted by ŷ. Equation (4.1)
can be more compactly written in matrix form as

ŷ[i]
(
ŷ[i−1]

)
= σ[i]

(
W [i]ŷ[i−1] + b[i]

)
∈ Rni (i = 2, 3, . . . , `) ,

where W [i] ∈ Rni×ni−1 collects all weights, b[i] ∈ Rni is the bias vector, and σ[i] :
Rni → Rni is the component wise defined activation function.
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Figure 4.1.: Representation of a multilayer perceptron that maps from R2 to R2 with
two hidden layers of size 4 and 3, respectively. The value in the nodes is computed
by equation (4.1), and the arrows indicate which quantities of the previous layer
are used to compute the value in the respective node.

Altogether, given an input x ∈ Rn an MLP returns an output ŷ given by

ŷ(x) = ŷ[`]
(
ŷ[`−1]

(
. . . ŷ[2] (x) . . .

))
= σ[`]

(
W [`]σ[`−1]

(
W [`−1] . . .σ[2]

(
W [2]x+ b[2]

)
. . .+ b[`−1]

)
+ b[`]

)
.

MLPs can be parametrized by their so-called architecture, i.e., their respective
number of hidden layers, nodes per layer, activation functions, weights, and biases.
While the latter two are often referred to as parameters, the former are called
hyperparameters.

Figure 4.1 shows a typical representation of a multilayer perceptron with ` = 4
layers (input, output, and two hidden layers) and n1 = 2, n2 = 4, n3 = 3, n4 = 2
nodes per layer. Examples of activation functions are the commonly used exponential
linear unit (ELU) function, the hyperbolic tangent tanh, and the sigmoid function.
They are given by

ELU(x) :=

{
ex − 1, if x < 0,

x, else,
(4.2a)

tanh(x) := ex − e−x

ex + e−x
, (4.2b)

sigmoid(x) := 1

1 + e−x
, (4.2c)

and are depicted in figure 4.2.
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Figure 4.2.: Different non-linear activation functions given in equations (4.2a) to (4.2c).

4.1.2. Training process

To reach the goal that an MLP with given hyperparameters approximates an unknown
function, the parameters have to be adapted correspondingly. This is done in a process
called training. There exist different training strategies, e.g., supervised, unsupervised
and reinforcement learning; see also [GBC16, pp. 103–104]. In the following, the
supervised training technique is introduced. To approximate the unknown function
f : X → Y a finite data set D ⊂ X × Y is needed. This set is made up from
pairs (xi,yi) ∈ D, i ∈ N, of features xi and labels yi := f(xi). Let p denote the
parameters of an MLP, i.e., the collection of all weights and biases. In the training
process, the parameters are adapted or rather optimized to minimize a given loss
functional L that maps a concrete choice of parameters to a real number. For instance,
if Y = { 0, 1 } a typical loss functional is the so-called binary cross-entropy loss given
by

L(p;D) := − 1

N

N∑
i=1

yi log (ŷi) + (1− yi) log (1− ŷi) , (4.3)

where N denotes the number of examples in the data set D, yi is the ith label in the
data set and ŷi the output of the MLP for the corresponding feature xi. Note that
the loss functional also depends on the chosen data set. The parameters are then
updated iteratively by some optimization routine. In the case of gradient descent,
they are updated in each step by

p → p− η∇pL(p;D),

where 0 < η ∈ R is a positive step width that is often referred to as learning rate, and
∇p denotes the partial derivatives with respect to the parameters.
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4.2. On the data set
The data set is crucial for training an MLP because the parameters are chosen such
that the MLP fits the data as well as possible. In this chapter, MLPs are created,
which try to mimic the behavior of the post-processing techniques from chapter 3. It
is advantageous to rewrite the techniques to obtain a better description of the data
used to train the MLPs. Refining the steps on page 41, the post-processing techniques
consist of

1. marking suspicious cells by

a) computing (cell wise) features of the solution,

b) based on the features deciding whether to mark a cell or not, and

2. replacing the solution locally on all marked cells.

To this extent, the function Fl : V
p
h × Th → Rnl that maps locally a discrete function

to nl ∈ N features, and a decision-maker function Ml : Rnl → { 0, 1 } can be defined,
which encode items 1a and 1b, respectively. The post-processing techniques then can
be rewritten as mappings l : V p

h → V p
h that are cell wise defined on a cell K ∈ Th as

l(uh)|K :=

{
uh|K , if Ml (Fl (uh, K)) = 0,

Πl,K (uh) , else,

where uh ∈ V p
h , and Πl,K : V p

h → Rp is a local reconstruction function.
The different post-processing techniques from chapter 3 can now be recast by

defining the corresponding mappings. Since in this chapter only LinTriaReco, Const-
TriaReco, ConstJumpMod, and ConstJumpNorm are used, they are recalled in the
following. However, for the other methods, the definition of corresponding mappings
would be possible as well.

LinTriaReco To reformulate LinTriaReco, let the notation be as in section 3.1.1, and
tol ∈ R be a positive tolerance. The feature mapping FLTR(uh, K) of LinTriaReco is
given by

FLTR(uh, K) := {uh,K′
0
, uh|K(m0), uh,K′

1
, uh|K(m1), uh,K′

2
, uh|K(m2), uh,K , tol }

(4.4)

and it is nLTR = 8.
Let [a, b; tol] := [min (a, b)− tol,max (a, b) + tol], a, b ∈ R, be a closed interval.
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The decision-maker function MLTR can then be defined as

MLTR(FLTR(uh, K)) :=



1, if Eh(K) ∩ ∂Eh = ∅ ∧(
uh|K(m0) /∈

[
uh,K′

0
, uh,K ; tol

]
∨

uh|K(m1) /∈
[
uh,K′

1
, uh,K ; tol

]
∨

uh|K(m2) /∈
[
uh,K′

2
, uh,K ; tol

])
,

0, else.

(4.5)

For the sake of brevity, the reconstruction procedure is not recapitulated; see
section 3.1.1 for details.

ConstTriaReco Recasting ConstTriaReco from section 3.1.2 works as follows: The
feature mapping is defined as

FCTR(uh, K) := {uh,K′
0
, uE0

h,K , uh,K′
1
, uE1

h,K , uh,K′
2
, uE2

h,K , uh,K , tol }, (4.6)

where uEi
h,K :=

∫
Ei
uh|K ds/|Ei| is the integral mean along edge Ei ∈ Eh(K), i = 0, 1, 2.

It follows that nCTR = 8.
The corresponding decision-maker function is given by

MCTR(FCTR(uh, K)) :=



1, if uE0
h,K /∈

[
uh,K′

0
, uh,K ; tol

]
∨

uE1
h,K /∈

[
uh,K′

1
, uh,K ; tol

]
∨

uE2
h,K /∈

[
uh,K′

2
, uh,K ; tol

]
,

0, else.

(4.7)

To reconstruct the solution, ΠCTR,K(uh) := uh,K is used; see also section 3.1.2.

ConstJumpMod This post-processing technique from section 3.3.2 has as feature
mapping

FCJM(uh, K) := {αE0 , αE1 , αE2 , αref }, (4.8)

where Ei ∈ Eh(K), i = 0, 1, 2. Hence, it follows that nCJM = 4.
The decision-maker function for ConstJumpMod is given by

MCJM(FCJM(uh, K)) :=

{
1, if mini=0,1,2 αEi

< αref,

0, else.
(4.9)

By the definition of αEi
, they may be of infinite value, which is problematic from an

implementational point of view. To circumvent this, these values can be changed to
αref without modifying the outcome of MCJM.

The solution on the marked cells is then approximated by ΠCJM,K(uh) := uh,K , i.e.,
by its integral mean.
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(a) Regular grid. (b) Irregular grid.

Figure 4.3.: Initial meshes for creating the data set described in section 4.2.1.

ConstJumpNorm To rewrite the method from section 3.3.3, the decision-maker
function

FCJN(uh, K) := { βE0 , βE1 , βE2 , βref }, (4.10)

where Ei ∈ Eh(K), i = 0, 1, 2, can be defined which implies nCJN = 4.
The decision whether to mark a cell or not is based on

MCJN(FCJN(uh, K)) :=

{
1, if maxi=0,1,2 βEi

≥ βref,

0, else
(4.11)

and the solution is replaced by ΠCJN,K(uh) := uh,K .

4.2.1. Generating the data set
The concrete idea is to approximate the decision-maker functions MLTR, MCTR,
MCJM and MCJN by MLPs. Therefore, data is needed consisting of pairs of features
of the respective post-processing technique and the corresponding label 0 or 1, i.e.,
the output of the respective decision-maker functions.

To generate the data, the discrete solution to the HMM example given in exam-
ple 3.21 is computed on a series of uniformly refined meshes starting with the initial
meshes depicted in figure 4.3. Note that the solution to this problem has the property
that it is piecewise constant in most parts of the domain. This is also true for the
second benchmark problem defined in example 3.22, but in general, this is not the
case for the solutions to convection-diffusion-reaction problems. On each refinement
level, after the discrete solution has been calculated, the features of LinTriaReco,
ConstTriaReco, ConstJumpMod, and ConstJumpNorm and the corresponding labels
are stored for every cell. This way, many data can be created fast since the number
of cells scales quadratically in two dimensions when the grid is refined. This path is
possible because the decision-maker functions act only locally.

To create the data, the diffusion coefficient ε = 10−8 is applied, and the solution is
approximated by discontinuous linear finite elements P1. The same parameters as in
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the beginning of section 3.4 are chosen, i.e., κ = η = 1, σ = εn0(p+ 1)(p+ 2) = 18ε,
tol = 10−11, C0 = 1, L = 1.5, u0 = 1, αref = 4, r = ∞ and βref is the arithmetic mean
of all βE.

Rotation invariance of the data

Some of the features that are used in equations (4.4), (4.6), (4.8) and (4.10) are
either related to neighbors of the cell or edges in the cell, which is why the features
depend on the numbering of the neighbors and edges, respectively. To counteract
this dependency, every data point is stored three times, namely for each particular
counterclockwise numbering of the edges.

Magnitude invariance of the data

The features of the data set are tuples consisting of several components. Often
data sets are scaled or normalized component wise but not feature wise to introduce
some sort of magnitude invariance of the data; see, e.g., [AH20] for an example. In
other words, the first component of each feature is scaled independently of the other
components of the same feature but dependently on the first component of all other
features. The same holds for all other components of the features as well. Using this
scaling method, the ratio of the components within each particular feature changes.
Since the decision-maker functions described above compare the magnitude of the
components of each feature with other components of the same feature, inconsistent
data can be introduced if the features are scaled component wise. The data might be
inconsistent in the sense that the stored label does not fit to the feature anymore.
Therefore, in contrast to the previously mentioned reference, the features are not
scaled in this work to prevent this inconsistent state.

4.2.2. Restricting the data set
With the above-mentioned recipe, much data can be generated since every cell yields
three data points. To be precise, the generated data set consists of 4,456,437 data
points that result from refining the regular grid nine times and the irregular one eight
times. Unfortunately, there are many duplicates in the data set. They stem from the
property of the solution being piecewise constant in huge parts of the domain resulting
in equal data points. This might be the case for the data of an individual limiter
but also for all limiters simultaneously. These duplicates are removed to prevent the
MLP from overfitting the duplicates, i.e., learning a pattern characteristic to these
duplicates that do not generalize to unseen data. Therefore, duplicates are removed
depending on the concrete numerical examples described below.

Moreover, it can be observed that even after removing the duplicates, there are
significantly fewer marked cells than not-marked cells. For instance, after removing
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the duplicates for the data of LinTriaReco, 77% of the data points have label 0, and
23% possess label 1. If the whole data set is considered, it can be observed that data
points where all limiters have agreed not to mark a cell are way more common (93.6%)
than points where at least one limiter has marked the cell (6.4%). It is well known
that it can be challenging to train MLPs on heavily unbalanced data sets, resulting
in worse approximations of the underlying function compared to balanced data sets
[Kub21, section 11.2]. To have a better-balanced data set, the set is further restricted.
If a single limiter is learned, the number of data points labeled 0 is reduced to equal
the number of marked cells in the set. If several limiters are treated simultaneously,
the amount of the combination where all limiters do not mark the cell is reduced
to the second most occurring combination of labels. Either way, the removed data
points are chosen randomly with a fixed random seed to guarantee reproducibility.

4.2.3. Splitting the data set

When applying the previous two steps, the data set becomes smaller but still contains
hundreds of thousands of data points. This is useful on the one hand since the more
data points exist, the more likely it is to approximate the function lying behind the
data. On the other hand, the larger the data set, the longer the optimization takes
during the network training. Therefore, the optimal set would consist of as few data
points as possible representing all essential features of the function. The previous
steps are already an attempt in this direction, i.e., to shrink the data set by dropping
data points that bring no new information. Nevertheless, a smaller set might be
helpful to speed up the computation further. Therefore, a subset of 7,500 data points
is randomly chosen to be the so-called training data for the networks.

When MLPs are trained, the networks may fit the training data very well, but they
do not generalize well to unseen data; a process which is called overfitting; see, e.g.,
[GBC16, section 5.3]. One method to prevent overfitting is introducing a so-called
validation set for which another 1,875 data points are chosen. After every training
step during the optimization of the MLPs, the value of the loss functional for the
validation set can be computed. During the beginning of the training, the value of the
loss functional decreases, as well as the value for the training set. However, at some
point, the former value stays constant or even increases while the latter continues to
decrease. At this point, the training can be stopped to prevent overfitting.

Finally, the so-called test set can be introduced that in this work consists of the
validation set and all remaining data points. After the optimization has stopped,
the networks are applied to the test set to measure the overall performance of the
networks.
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4. Deep neural networks as spurious oscillations detector

4.3. Numerical studies on training multilayer
perceptron models

The MLP networks are implemented within the TensorFlow framework [Aba+15;
Dev22], an open-source library for deep learning. To open and deploy trained networks
in ParMooN, CppFlow [Izq22] is used.

For many problems, the optimal architecture of an MLP to approximate the problem
is unknown a-priori. A common way to figure out the architecture is to try various
combinations of hyperparameters. The hyperparameters tested in this chapter are
given in table 4.1, leading to 360 combinations. A particular choice of hidden layers
refers to the number of nodes in the hidden layer, e.g., [96, 48, 28] encodes that the
MLP has three hidden layers with 96, 48, and 28 nodes, respectively. The number of
nodes in the input and output layer is given by the different tasks and is specified
in the examples below. Two different activation functions are tested for the hidden
layers, namely ELU and tanh, given in equations (4.2a) and (4.2b). The activation
function of the output layer is specified in the concrete experiment. While the biases
are initialized with 0, the weights are initialized based on Glorot initialization [GB10].
Fixed random seeds are used to have a deterministic initialization behavior such that
the initial weights are reproducible.

During the optimization of the parameters, the minibatch stochastic gradient
descent [HH19; GBC16, section 8.1.3] and the Adam [KB14] algorithm are used
with TensorFlow’s default values except for the learning rate. In the context of deep
learning, an epoch usually denotes a complete cycle through the whole training data
set. The MLPs are trained for at most 10,000 epochs, but the training is stopped
earlier if the loss of the validation set has not decreased within the last 100 epochs.
Afterwards, the model with the best accuracy is selected.

The numerical experiments strongly follow the experiments in [FHJ22] except
for the chosen hyperparameters. In the present work, different hidden layers and
initialization seeds are used as well as one learning rate less, and the ELU activation
is employed instead of ReLU, cf. [FHJ22, table 1].

4.3.1. Measuring the performance
After the MLPs are trained, their quality has to be assessed. To this extent, the
measures,

accuracy acc :=
tp + tn

tp + fp + tn + fn
,

precision prc :=
tp

tp + fp
,

recall rec :=
tp

tp + fn
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Table 4.1.: Set of hyperparameters used in section 4.3.2. This gives in total 360
combinations of hyperparameters.

hidden layers [96, 48, 28], [55, 55, 55], [96, 48, 28, 14], [45, 45, 45, 45],
[96, 48, 28, 14, 7], [40, 40, 40, 40, 40]

learning rate 0.001, 0.0005, 0.0001, 5 · 10−5, 1 · 10−5

batch size 32, 64, 128
activation ELU, tanh
initialization seed 20, 21

are introduced, where tp stands for the true positive, tn denotes the true negative, fp
are the false positive and fn are the false negative classifications. Accuracy measures
how well a network performs over all classes by computing the ratio of correctly
classified data to all data. The second measure assesses the ratio of correctly positive
classification and all positive classifications. Last but not least, recall investigates the
proportion of positives identified as such.

To reduce spurious oscillations, it is worse not to detect a cell that should be
marked than marking a cell that should not be. Therefore, recall is considered more
important than precision. To combine the above-mentioned measures to a single
rating, rtot is introduced, which is defined as

rtot :=
2

5
acc + 1

5
prc + 2

5
rec. (4.12)

Here, acc, prc and rec are computed based on the above mentioned test set.

4.3.2. Approximating the decision-maker functions
Approximating the functions individually

The first experiment investigates whether it is possible with MLPs to approximate
the decision-maker functions of LinTriaReco, ConstTriaReco, ConstJumpMod, and
ConstJumpNorm from equations (4.5), (4.7), (4.9) and (4.11). To this extent, the
data is preprocessed for each limiter as described in sections 4.2.2 and 4.2.3. The input
layer has the size of the number of features of the respective limiters, i.e., eight for
LinTriaReco and ConstTriaReco and four for ConstJumpMod and ConstJumpNorm.
Since all decision-maker functions map to { 0, 1 }, only a single node is present in the
output layer, and the sigmoid activation function (4.2c) is used in that layer. The
binary cross-entropy loss given in equation (4.3) is applied to optimize the parameters.
After the MLPs are trained, their performance is measured by equation (4.12) based
on the test set.

The results for all configurations are shown in figure 4.4, where each particular
configuration of hyperparameters is assigned a unique number from 0 to 359 to
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Figure 4.4.: Ratings of all configurations of MLPs after being trained to approximate
the decision-maker function of individual limiters. The values of MLP(ConstJump-
Mod) lie behind the ones of MLP(ConstJumpNorm).

distinguish them. The results for the MLPs that approximate the decision-maker
function of LinTriaReco and ConstTriaReco achieve similar total ratings, as well as
the MLPs that approximate ConstJumpMod and ConstJumpNorm. Furthermore,
the former MLPs have a significantly worse total rating than the latter. The MLPs
that approximate LinTriaReco and ConstTriaReco with the best rating have a value
of 0.737 and 0.742, resp., compared to the best ratings of the ones that approximate
ConstJumpMod (0.998) and ConstJumpNorm (0.997); see also table 4.2. In addition,
the mean rating for the latter is significantly higher, and the standard deviation
is about a factor of 45 smaller compared to the standard deviations of the former.
Hence, it can be concluded that the decision-maker functions of ConstJumpMod and
ConstJumpNorm can be approximated better with these configurations than the
ones of LinTriaReco and ConstTriaReco, which is in agreement with the findings in
[FHJ22, section 4.2]. There is a pattern of hyperparameters for which the MLPs can

Table 4.2.: Statistics of total ratings of MLPs that approximate the decision-maker
function of individual limiters. LTR, CTR, CJM and CJN are abbreviations for Lin-
TriaReco, ConstTriaReco, ConstJumpMod and ConstJumpNorm, resp., standard
deviation is abbreviated by std.

rtot MLP(LTR) rtot MLP(CTR) rtot MLP(CJM) rtot MLP(CJN)

max 0.737 0.742 0.998 0.997
mean 0.642 0.654 0.996 0.996
std 0.044 0.046 0.001 0.001
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4.3. Numerical studies on training multilayer perceptron models

Table 4.3.: Pearson correlation coefficients between the hyperparameters and the
total ratings of MLPs that approximate individual limiters. LTR and CTR are
abbreviations for LinTriaReco and ConstTriaReco. Colors indicate the magnitude
of the values.

rtot MLP(LTR) rtot MLP(CTR)

hidden layers 0.112 −0.067

learning rate 0.693 0.598

batch size −0.103 −0.117

activation 0.098 −0.041

initialization seed −0.052 0.035

approximate LinTriaReco and ConstTriaReco better than others. Table 4.3 shows
the Pearson correlation coefficients between the hyperparameters and the ratings of
the MLPs that approximate LinTriaReco and ConstTriaReco. The most significant
impact has the learning rate, where the values indicate that the smaller the learning
is chosen, the worse the results are, which might explain the pattern in figure 4.4.
This effect might be reduced if the MLPs are trained significantly longer than 10, 000
epochs with small learning rates.

Approximating LinTriaReco

This experiment describes overcoming the difficulties approximating the decision-
maker function of LinTriaReco. The idea is to train MLPs to take as input all features
of all limiters and return the label of LinTriaReco. Therefore, the input layer consists
of nLTR + nCTR + nCJM + nCJN = 8 + 8 + 4 + 4 = 24 nodes and the output layer of
a single node. Again the activation function in the output layer is chosen to be the
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Figure 4.5.: Ratings of all configurations of MLPs after being trained to approximate
the mapping from all features of all limiters to the label of LinTriaReco.
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Table 4.4.: Statistics of total ratings of MLPs that approximate the mapping from
all features of all limiters to the label of LinTriaReco. Standard deviation is
abbreviated by std.

rtot MLP(LinTriaReco)

max 0.979
mean 0.977
std 0.001

sigmoid function, and the binary cross-entropy loss given in equation (4.3) is used
during the training. The data that consists of all features of all limiters and the label
of LinTriaReco is preprocessed as described in sections 4.2.2 and 4.2.3 and the total
rating defined in equation (4.12) is used to measure the performance of the trained
MLPs.

Figure 4.5 shows the results for all configurations of hyperparameters for this
experiment. It can be seen that all configurations can predict the label of LinTriaReco
significantly better compared to the previous experiment. In this experiment, the
best MLP possesses a total rating of around 0.979; see also table 4.4. This is 0.242
better than the best result of an MLP that predicts the label of LinTriaReco from
the previous experiment and is comparable to the overall best result. All tested
configurations work almost equally well, as indicated by the large value of the mean
of total ratings (0.977) and the small standard deviation of around 0.001. This is also
in agreement with the results in [FHJ22, section 4.3].

Approximating all decision-maker functions at once

The findings of the previous experiment raise the question of whether it is possible
to approximate the decision-maker functions of all investigated limiters at once. To
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Figure 4.6.: Ratings of all configurations of MLPs after being trained to approximate
the mapping from all features to all labels of the limiters at once.
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Table 4.5.: Statistics of total ratings of MLPs that approximate the mapping from all
features of all limiters to all labels. Standard deviation is abbreviated by std.

rtot

max 0.952
mean 0.937
std 0.007

answer this question, MLPs are trained to approximate a mapping from all features
of all limiters to all labels simultaneously. This problem hence can also be seen as a
multi-label classification task. The size of the input layer is again 24, but in contrast
to this experiment, the number of nodes in the output layer is four, i.e., one for each
limiters’ label. The activation function in the output layer is once more chosen to be
the sigmoid function such that the results of the MLPs lie in [0, 1]4. An average of the
binary cross-entropy loss accounts for four labels being approximated simultaneously.
To be precise,

L(p;D) :=
1

4

4∑
j=1

(
− 1

N

N∑
i=1

yi,j log (ŷi,j) + (1− yi,j) log (1− ŷi,j)

)

is used as loss functional, where N denotes the number of points in the data set
D, yi,j is the jth component of the ith label and ŷi,j is the jth component of the
ith prediction of an MLP. This loss functional is nothing but the average of the
loss functional from equation (4.3) of all predicted labels. The data is prepared as
described in sections 4.2.2 and 4.2.3. The measure in equation (4.12) is used to
evaluate the quality of the MLPs, where accuracy, precision, and recall are evaluated
element wise and not vector wise for the output of the MLPs.

The results of all tested configurations of hyperparameters are depicted in figure 4.6,
which indicates that all configurations achieve a good result. The best MLP possesses
a rating of 0.952, and the mean of all ratings is around 0.937, which is a little less
than the results of the previous experiment; see also table 4.5. There are differences
in the total rating between the configurations as indicated by the standard deviation
of 0.007. This can also be seen in figure 4.6 where there is a small pattern of better
and worse working configurations again. This is once more also in agreement with the
results of [FHJ22, section 4.4]. A possible explanation for the pattern is, as before,
that too small learning rates lead to worse results, as also shown by the large Pearson
correlation coefficient between the learning rate and rtot in table 4.6. This time the
used activation function influences the results moderately as well.
Remark 4.1 (Multi-class approach). It is also possible to reformulate the multi-label
problem as a multi-class problem by assigning every unique label combination a
unique number. This number can be put in a probability vector, i.e., a vector with
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positive values summing up to 1, that gives the probability that the outcome belongs
to a certain label combination. The results of MLPs that are trained to approximate
this multi-class problem achieve comparable total ratings, cf. [FHJ22, section 4.4] for
details.

4.4. Numerical studies on applying a multilayer
perceptron slope limiter

The previous experiments only investigate how well different MLPs can approximate
the data, but they have yet to be applied to a problem in practice. This is done in
the following for the two benchmark problems given in examples 3.21 and 3.22.

To this end, the best MLP of the last experiment is used to mark cells based on
the features of the classical limiters. It has four hidden layers with 45 nodes each
and uses the hyperbolic tangent as activation function. This MLP is trained with a
learning rate of 0.001 based on a batch size of 64. The initial values of the parameters
are based on the initialization seed 20.

The MLP is trained with data that stems from linear discontinuous finite elements.
In this section, it is investigated how the MLP performs if it is applied to the discrete
solution to the HMM problem obtained with discontinuous finite elements of order
p = 1, 2, 3, 4.

4.4.1. Applying a multilayer perceptron limiter to the higher-order
solution to the HMM problem

To mark a cell, the MLP takes the features of the classical limiters as input and
predicts four labels. A cell is marked if at least nmin ∈ { 1, 2, 3, 4 } of the four predicted
labels are true, i.e., larger than 0.5. If a cell is marked, then the solution is locally
replaced by the integral mean ΠMLP,K(uh) := uh,K , since this reconstruction led to

Table 4.6.: Pearson correlation coefficients between the hyperparameters and the total
ratings of MLPs that approximate all decision-maker functions at once. Colors
indicate the magnitude of the values.

rtot

hidden layers −0.022

learning rate 0.760

batch size −0.137

activation 0.236

initialization seed −0.044
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Figure 4.7.: Results for example 3.21 on the regular and irregular grid depicted in
figure 4.3 for P1 finite elements without post-processing and post-processed with
ConstJumpNorm and various versions of the MLP limiter.

the best results in section 3.4. These limiters are denoted in the experiments below
with MLPnmin , where nmin ∈ { 1, 2, 3, 4 }.

Determining the minimum number of predicted marks

The first step determines the minimum number of predicted marks nmin. Generally, it
holds that the smaller nmin, the more cells are marked. More marked cells, on the one
hand, result in less spurious oscillations, but on the other hand, marking too many
cells reduces the order of accuracy of the discrete solution and leads to a computational
overhead. Therefore, the number of predicted marks should be small enough to mark
as many cells as needed but not too small to lose accuracy. To determine a good
value for nmin, the MLP limiter with different choices of nmin is applied to the discrete
P1 solution to the HMM problem, i.e., the same problem from which the training
data stems; see also section 4.2.1. Hence, it can be expected that the MLP predicts
the labels correctly in most cases. The result of the limited solution is compared
to the solution post-processed with ConstJumpMod and ConstJumpNorm, which
are among the best classical limiters for this problem, as seen in section 3.4. The
measures oscmax and oscmean defined in equations (3.4) and (3.5) are used to assess
the quality of the discrete solution.
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Figure 4.8.: Results of measures of the discrete solution to example 3.21 with various
polynomial degrees on the regular grid for various limiters.

The results of the MLP limiter with various choices for nmin are compared with
the solution obtained with the two classical limiters in figure 4.7. It can be seen that
MLP1 and MLP2 produce similar results to the classical limiters, and MLP3 and
MLP4 perform worse. On coarser grids, MLP2 works slightly worse than MLP1, but
after a few refinements, they behave the same. This is the case for both measures and
both types of meshes. Since slightly worse results on coarser grids can be accepted,
MLP2 can be seen as the best choice between fewer oscillations but not too many
marked cells.

Application to the higher-order discrete solution to the HMM problem

After having fixed the minimal number of required marks, the MLP limiter can be
applied to the discrete solutions of higher order. Again, example 3.21 is used with
the same parameters as in section 4.2.1 except for σ = 3ε(p+ 1)(p+ 2) that is chosen
in correspondence with the polynomial degree p = 2, 3, 4.

The results for the measures oscmean and oscmax for both types of grids are depicted
in figures 4.8 and 4.9, respectively. Compared to Galerkin, all limiters significantly
reduce the mean and the maximal occurring oscillations on both meshes. Concerning
oscmean on the regular grid, the MLP limiter works slightly better than ConstJumpMod,
is worse than ConstJumpNorm on coarser grids, and just as good as ConstJumpNorm

84



4.4. Numerical studies on applying a multilayer perceptron slope limiter

10−4

10−3

10−2
P2

os
c m

ea
n(
u
h
) P3 P4

102 103 104 105 106
0

0.1
0.2
0.3
0.4
0.5
0.6

P2

number dof

os
c m

ax
(u

h
)

103 104 105 106 107

P3

number dof
103 104 105 106 107

P4

number dof

Galerkin Optimal ConstJumpMod
ConstJumpNorm MLP2

Figure 4.9.: Results of measures of the discrete solution to example 3.21 with various
polynomial degrees on the irregular grid for various limiters.

on finer grids. The MLP limiter reduces the maximal occurring oscillations on finer
regular grids equally well compared to ConstJumpMod and ConstJumpNorm. On
coarser grids oscmax for the MLP limiter is worse than for ConstJumpMod for P2 and
better than for ConstJumpMod for P3 and P4. Moreover, it is worse than oscmax for
ConstJumpNorm on all levels. Since the MLP limiter is approaching ConstJumpNorm
as the mesh becomes finer, it is clear that it also approaches Optimal. In this sense,
the MLP limiter can be seen as optimal on finer meshes.

For the irregular grid, as seen in figure 4.9, again oscmean and oscmax for the MLP
limiter are the same as for ConstJumpMod and ConstJumpNorm on finer meshes
for all polynomial degrees. Therefore, it can also be considered optimal. The mean
oscillations for the P2 and P3 solution on coarser meshes of the MLP limiter are slightly
worse than those of ConstJumpMod and worse compared to ConstJumpNorm. For
P4, the MLP limiter is better than ConstJumpMod already on medium fine meshes.
The maximal occurring oscillations of the MLP limiter are worse than those of the
classical limiters except for P4 on the medium fine meshes, where it is slightly better
than ConstJumpMod but still significantly better than the pure Galerkin solution.

Altogether, it can be concluded that the MLP limiter behaves on finer grids equally
well compared to its classical companions and is also optimal. Furthermore, it is worse
than the best classical one, ConstJumpNorm, on coarser grids. A possible reason
for this can be the fact that way more training data on finer levels exists than on
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Figure 4.10.: Results of measures of the discrete solution to example 3.22 with various
polynomial degrees and for various limiters.

coarser ones since the number of cells and hence the number of training data scales
quadratically with the refinements. The results are very similar to the findings in
[FHJ22, section 4.6.2].

4.4.2. Applying a multilayer perceptron limiter to the discrete
solution to the Hemker problem

In the previous section, the MLP limiter is applied to higher-order discrete solutions to
the HMM example, i.e., the same example with which the training data was generated.
In this section, the limiter is applied to example 3.22, the Hemker problem, to see how
it behaves in a setting for which it was not trained. However, the Hemker problem
has a similar solution since it is piecewise constant in most parts of the domain and
possesses boundary and interior layers.

The parameters are chosen as in the previous experiment, i.e., κ = η = 1,
σ = 3ε(p+ 1)(p+ 2), where p denotes the polynomial degree, tol = 10−11, C0 = 1,
u0 = 1, αref = 4, r = ∞ and βref is the arithmetic mean of all βE. The only difference
to the previous experiment is that the characteristic length scale of the solution L
is set to 13.5. The problem is solved for p = 1, 2, 3, 4 on a series of meshes starting
from the one in figure 3.17.

86



4.4. Numerical studies on applying a multilayer perceptron slope limiter

−0.03

0.20

0.40

0.60

0.80

1.01

−0.03

0.20

0.40

0.60

0.80

1.01

−0.03

0.20

0.40

0.60

0.80

1.01

(a) ConstJumpNorm.

−0.12
0.00
0.20
0.40
0.60
0.80

1.07

−0.12
0.00
0.20
0.40
0.60
0.80

1.07

−0.12
0.00
0.20
0.40
0.60
0.80

1.07

(b) MLP.

Figure 4.11.: Discrete P4 solution to example 3.22 limited by the ConstJumpNorm
limiter and the MLP limiter on the second finest grid.

The values for oscmean and oscmax for the tested limiters are shown in figure 4.10.
Compared to Galerkin, i.e., the discrete solution without any post-processing, Const-
JumpMod, ConstJumpNorm, and the MLP limiter reduce both the mean and the
maximal oscillations significantly. Concerning the mean oscillations, the MLP limiter
usually works worse than the traditional limiters on coarser grids. For P1, the
difference is minimal, and for P2, the MLP limiter works as well as ConstJumpMod
from the second depicted refinement level. For P3 and P4, the MLP limiter is only
as good as the classical ones on the finest level. However, when it approaches the
classical ones, it is also optimal or almost optimal (P4).

Concerning oscmax, it can be noted that the MLP limiter works as well as Const-
JumpMod and ConstJumpNorm after at most two depicted refinements (P1 and
P2) and only on the finest mesh for P3 and P4, respectively. On coarser meshes for
even polynomial degrees, ConstJumpNorm behaves worse than ConstJumpMod and
achieves worse results on some refinement levels than the MLP limiter. Again, the
MLP limiter is optimal as early as it reaches ConstJumpNorm.

The P4 solutions obtained with ConstJumpNorm and the MLP limiter on the
second finest grid are depicted in figure 4.11. It can be seen that the MLP limiter
does not mark some cells in the interior layer that ConstJumpNorm marks. This
results in larger values of oscmean and oscmax.

To summarize, the MLP limiter is an alternative to classical approaches for the
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Hemker example. However, it usually achieves (slightly) worse results, probably
because the limiter was trained with data from the HMM example. This is also in
agreement with the results in [FHJ22, section 4.7].

4.5. Summary
In this chapter, techniques from deep learning have been used to predict where in
the DG solution spurious oscillations occur. To this end, first, it was explained how
multilayer perceptron models are constructed and trained to approximate a given
mapping. Second, it was shown how data could be created with which MLPs could
be trained to mimic classical limiters. The trained limiter was finally applied to
the discrete solution to two benchmark problems and compared to the best classical
limiters.

Overall, it can be concluded that the MLP limiter is an alternative to classical
limiters. The finer the mesh became, the better the limiter became, likely due to
the higher amount of training data available on finer meshes than on coarser meshes.
To this end, it might be helpful in the future to remove more data points from the
finer meshes to have a more balanced data set. On the finest meshes, it was also
optimal, in the sense that the spurious oscillations are reduced as much as possible
but preserving the mass locally at the same time.

Two advantages of the MLP limiter are that its evaluation is fast and gives the
results of four classical limiters simultaneously. However, it still relies on the features
and user-dependent parameters of the classical limiters. Therefore, to improve this
limiter and exhibit its full potential, other features that represent the solution must
be found. It can be investigated whether it is possible to use the local degrees of
freedom of the solution as features since, together with the basis functions, they are a
complete description of the solution. However, rotation invariance against a different
numbering of the degrees of freedom is a severe challenge in that direction. It also
needs to be ensured that the basis functions of the underlying DG method are not
changed. This makes it less portable to other users compared to more general features
such as, for instance, the integral mean.

Closely related to the choice of features is also the question of the type of neural
network. In this chapter multilayer perceptron models are used, but it is also possible
to use convolutional neural networks as it was done, e.g., in [Bec+20]. These types of
networks are primarily used to classify images. A possible way is to use point values
of the solution on a cell and possibly on its neighbors as grayscale values representing
an image. These can be plugged into a convolutional neural network which might
detect structures like steep gradients or spurious oscillations in the solution.

Another research question, which might be the most important, is how to get the
labels in the training data set. As long as the labels come from the classical limiters,
the best that an MLP limiter can achieve is to be as good as the classical ones. To
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be better, the labels have to be chosen differently. One option is to define a set of
functions on a particular domain with steep gradients and spurious oscillations. These
functions have to be interpolated into a finite element space defined on the same
domain. Then the labels can be deduced from the definition of the function since the
positions of its steep gradients and oscillations are known a-priori.

Furthermore, much improvement is not expected as the MLP limiter was already
optimal on the finest levels. Therefore, it can be suggested to find different ways to
improve classical finite element solutions with the help of deep learning techniques.
One way is to create a neural network that predicts optimal parameters in parameter-
dependent finite element methods like SUPG or SOLD. This could be a valuable way
to support classical finite element methods.
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5. Physics-informed neural networks for
convection-diffusion-reaction problems

The previous chapter indicates that techniques from the field of deep learning can
support classical finite element methods and enhance the solution to convection-
dominated convection-diffusion-reaction problems. However, it is not only possible
to apply these techniques to facilitate classical methods but also to use other deep
learning techniques instead of classical schemes. One popular approach in recent
years is so-called physics-informed neural networks (PINNs).

It is not easy to agree on the very first publication that introduced PINNs, but
one of the first certainly was [DP94] from 1994. However, their full potential got
understood just recently after they got rediscovered in [RPK19] by Raissi, Perdikaris,
and Karniadakis. Since then, many contributions and improvements have been made,
and they got applied to a wide variety of problems; see, e.g., [Kar+21; Cai+21;
Cuo+22] and the references therein for an overview about PINNs and many of their
variations.

As said above, PINNs can be seen as another numerical method to approximate the
solution to initial-boundary and boundary value problems. This should be possible
in principle due to the famous universal approximation theorem. It states that if a
feed-forward multilayer perceptron model, as described in section 4.1.1, with linear
activation function in the output layer and at least one hidden layer with any bounded
non-polynomial activation function possesses enough nodes in the hidden layer, it can
approximate with any desired positive accuracy any Borel measurable function that
maps from one finite-dimensional space to another [GBC16, p. 194]; see also [Pin99]
for an overview. In addition to that, not only the function but also its derivatives
up to order m ∈ N can be approximated if the function is m times continuously
differentiable [Pin99, section 4]. Nowadays, this theorem is extended in the sense that
it also holds if a broader class of activation functions are used that, e.g., includes
also the ReLU function [GBC16, p. 195]. It is noted that deeper neural networks are
usually deployed since they tend to have better generalization properties [GBC16,
pp. 195–197]. However, the existence of such a network that approximates a function
does not necessarily imply that the usual algorithms converge toward such a network.

In a nutshell, the idea is to approximate the solution to (initial-)boundary value
problems with multilayer perceptron models by minimizing a loss functional that
usually contains in some form the residual of the governing equations, the boundary,
and the initial conditions, and potentially also other underlying physical laws or
measured data [Kar+21]. To compute the loss functional so-called collocation points
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are chosen, i.e., points in the domain and on the (space-time-)boundary, at which
the loss functional is calculated. Two of PINNs’ unique selling points are that
they are usually mesh-free and they can be easily adapted to any initial-boundary
value problem, which is why they can cope with various geometries and problems
[Cuo+22]. Moreover, they provide a framework to incorporate also (noisy) data
from measurements flawlessly, and they can be used to solve inverse problems to
discover unknown terms in the governing equations [Kar+21]. Last but not least,
they can become really powerful if the same initial-boundary value problem has to
be solved for different parameters, e.g., different diffusion coefficients in the case
of convection-diffusion-reaction problems. Once a PINN is trained to represent the
solution for various parameters, it can also give the solution for a previously unknown
parameter almost for free. This is in contrast to many classical methods, for which it
is usually challenging to satisfy all these requirements [Kar+21].

However, there are also drawbacks of PINNs. A significant disadvantage is that
there is only very few theory about PINNs and their convergence toward the exact
solution available; see also [Kar+21; Cuo+22] and the references therein. Therefore,
in contrast to classical methods, few guarantees about the approximation quality can
be given. This is not only but also because the training contains stochastic elements,
which is why it cannot be guaranteed to end at a global minimum. Furthermore,
choosing appropriate hyperparameters of the underlying MLPs is still an open problem.
Nowadays, they are usually still determined by (automatic) trial-and-error approaches;
see, e.g., [YS20].

Despite these open problems, PINNs have been successfully applied to many
different problems in various fields, and they usually work well if the solution is
in some sense smooth. However, they struggle to approximate perturbed problems
[Kri+21]. Moreover, when screening the literature, only some publications deal
with PINNs for convection-dominated convection-diffusion-reaction problems with
more than one space dimension. In the reference [KZ20], a variational form of a
loss functional is presented and tested for time-dependent one- and two-dimensional
convection-diffusion-reaction problems with diffusion coefficients between 0.1 and
0.001. The authors test their novel loss functional with several test cases, including
one where the solution has an interior layer. They observe that the trained PINNs
can capture the behavior of the solution reasonably well [KZ20]. He and Tartakovsky
investigate PINNs in the context of time-dependent advection-dispersion problems
in one and two dimensions for moderate Peclet numbers of order O(1), O(10) and
O(100). They observe that the choice of the weights has a significant impact on the
quality of the solution and that the PINN approximation is comparable in accuracy
with the SUPG method [HT21]. The results were extended by the group to the case
of sharply perturbed initial conditions for which they propose to use a normalized
form of the equations and the PINNs, and criteria for how to choose the weights
of the loss functionals [ZHT22]. Gomes, Silva, and Valentin report that PINNs for
two-dimensional convection-diffusion problems can cope with diffusion coefficients
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of around O(10−1) but the quality of the approximation deteriorates drastically for
smaller magnitudes. However, their experiments indicate that PINNs are well suited
to approximate the parametrized solution in terms of varying diffusion coefficients
[GSV22a; GSV22b]. In [ACD23], the authors are inspired by the expansion theory of
singularly perturbed boundary layer problems and construct what they call boundary-
layer PINNs. To this end, two PINNs are generated, one for the boundary layer and
one for the rest of the domain, that are glued together. They test their approximation
on one- and two-dimensional convection-dominated convection-diffusion problems and
observe that it is able to approximate the solution much better than standard PINNs
[ACD23]. However, their approach has twice the computational cost of standard
PINNs, and the boundary layer’s position must be known a-priori. In a preprint of
Wang et al., they observe difficulties for traditional PINNs for convection-dominated
convection-diffusion problems in one, two, and three space dimensions. They present
a way to choose the weight for the interior loss adaptively, and their numerical
results indicate surprisingly that choosing collocations points away from layers works
better than increasing the number of points inside the layer [Wan+23]. Other papers,
including [dWol+21; Hou+22; Saa+22; MBH23; Lag+23], that deal with convection-
diffusion problems usually cover either one-dimensional problems or at most slightly
convection-dominated problems.

This chapter extends the knowledge about PINNs of the aforementioned references
for convection-dominated convection-diffusion-reaction problems. First, different ways
to incorporate the boundary data are treated: a pretraining to approximate the
inflow boundary condition in advance and hard-constraining the Dirichlet boundary
conditions in general. Furthermore, several new loss functionals for PINNs are
proposed and numerically tested. They are mainly based on cost functionals from
[JKS11; JK13; KLS19] that are particularly designed for convection-dominated
convection-diffusion-reaction problems. In addition, a variational form of PINNs from
the literature is presented in the context of convection-diffusion-reaction problems.
All ideas are numerically tested using two benchmark problems defined in [JMT97].

The structure of this chapter is as follows: In section 5.1 the basic ideas of physics-
informed neural networks are presented, and the loss functional used in the vanilla
PINN setting is derived. Section 5.2 presents the various modifications of vanilla
PINNs proposed in this work. These modifications are numerically tested with two
benchmark problems in section 5.3, and finally, section 5.4 summarizes the content of
this chapter

5.1. Basic idea of physics-informed neural networks
To familiarize with physics-informed neural networks, the loss functional used in
vanilla PINNs is derived in the following. Afterwards, PINNs are tested for a problem
with a smooth solution to verify the implementation.
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5.1.1. Derivation of vanilla loss functional
As said in the introduction of this chapter, the idea of PINNs is to use a neural
network to approximate the solution u of an initial-boundary value problem directly
by a multilayer perceptron model. But how can an MLP learn the unknown solution
u? Or in other words, how to choose the parameters p ⊂ Rr, r ∈ N, of a neural
network uN ;p such that

uN ;p ≈ u?

In the following the dependency on p is omitted if no confusion can occur, i.e., only
uN is used to refer to the neural network approximation. The parameters p are
adapted during the training process, i.e., by minimizing a certain loss functional
L : Rr → R that maps a concrete choice of parameters to a real number; see also
section 4.1.2. Alternatively, in mathematical words, given such an L, the goal of the
training is to come as close as possible to the optimal parameters

p∗ ∈ arg min
p∈Rr

L(p).

If the exact solution u were known, then the loss functional L could be chosen, e.g.,
as 1/N

∑N
i=1 (u(xi)− uN (xi))

2, where N is the number of training points xi ∈ Ω.
However, u is not known in general, and if it were, it would be unnecessary to
approximate it. The essence of physics-informed neural networks is choosing a clever
L such that the neural network approximates the unknown u. What is known about
u is that it is the solution to a given (initial-)boundary value problem, in this work,
the convection-diffusion-reaction problem 2.1. Let

Res(v) := −ε∆v + b · ∇v + cv − f

be defined for a sufficiently smooth function v : Ω → R. Under the assumption that
u is the strong solution to problem 2.1, then it holds

‖Res(u)‖2L2(Ω) + ‖u− gD‖2L2(ΓD) + ‖ε∇u · n− gN‖2L2(ΓN) = 0. (5.1)

In this sense u can be understood as the solution to a corresponding least-squares
problem, i.e.,

u ∈ arg min
v∈C2(Ω)∩C(Ω)

(
‖Res(v)‖2L2(Ω) + ‖v − gD‖2L2(ΓD) + ‖ε∇v · n− gN‖2L2(ΓN)

)
.

This serves as an ansatz for the loss functional with which the desired MLP approxi-
mation uN can be optimized. In other words, uN is the MLP such that its parameters
p∗ are given by

p∗ ∈ arg min
p∈Rr

(
‖Res(uN ;p)‖2L2(Ω) + ‖uN ;p − gD‖2L2(ΓD) + ‖ε∇uN ;p · n− gN‖2L2(ΓN)

)
.

(5.2)
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The right-hand side of the previous equation is well defined almost everywhere if the
activation functions σ[i], i = 1, 2, · · · , `, used in all ` layers are twice differentiable
almost everywhere.

The integrals encoded by the norms in the right-hand side of equation (5.2) might
be extremely difficult to compute exactly, so they are approximated by some numerical
quadrature formula. In vanilla PINNs the Monte Carlo integration method1 is used
to approximate these integrals. In principle, other numerical integration techniques,
such as Gauss–Legendre integration, would also be possible. However, Monte Carlo
integration has the advantage that no underlying partition of the domain is needed,
and it does not suffer from an exponential number of evaluations of the integrands. To
this end, NI ∈ N points xi,I ∈ Ω, i = 1, 2, . . . NI, inside the domain Ω, ND ∈ N points
xi,D ∈ ΓD, i = 1, 2, . . . ND, along the boundary ΓD, and NN ∈ N points xi,N ∈ ΓN,
i = 1, 2, . . . NN, along the boundary ΓN are (randomly) chosen. Then, the terms that
appear on the right-hand side of equation (5.2) can be approximated by

‖Res(uN )‖2L2(Ω) ≈
|Ω|
NI

NI∑
i=1

(Res(uN )(xi,I))
2 =: Lst

I , (5.3a)

‖uN − gD‖2L2(ΓD) ≈
|ΓD|
ND

ND∑
i=1

(uN (xi,D)− gD (xi,D))
2 =: Lst

D, (5.3b)

‖ε∇uN · n− gN‖2L2(ΓN) ≈
|ΓN|
NN

NN∑
i=1

(ε∇uN (xi,N) · n (xi,N)− gN (xi,N))
2 =: Lst

N.

(5.3c)

Finally, let αst
I , α

st
D, α

st
N ∈ R be three non-negative weights. Then the loss functional

Lst for vanilla PINNs is given by

Lst := αst
I Lst

I + αst
DLst

D + αst
NLst

N (5.4)

and during the training the parameters of the MLP are optimized such that they
minimize Lst; see also section 4.1.2. In practice, this can be done, e.g., by using a
minibatch stochastic gradient descent method [HH19; GBC16, section 8.1.3], but also
other optimization methods are possible. Last but not least, it can be emphasized
that the measures of the domain and of the boundaries, such as the number of points
that are used in the single contributions defined in equations (5.3a) to (5.3c) are not
hidden in the weights αst

I , α
st
D, α

st
N. However they still contribute to the loss functional

and must not be forgotten in what follows.

5.1.2. Numerical experiment with a smooth known solution
To see how PINNs work in practice and to verify the implementation used in this
section, a PINN approximation for a convection-diffusion-reaction problem is computed

1See, e.g., [RC04, chapter 3.2].

95



5. Physics-informed neural networks for convection-diffusion-reaction problems
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(a) Domain and convection field.
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(b) Exact solution.

Figure 5.1.: Domain, direction of convection field and exact solution to example 5.1.
Lines with ticks indicate Dirichlet boundary ΓD and lines without ticks indicate
Neumann boundary ΓN.

and compared to the exact known solution.
To this end, the following example is defined that is an adapted version of exam-

ple 2.37.

Example 5.1 (Adapted Sine Laplace problem in 2D). Let Ω := (0, 1)2 be the unit
square, ε := 10−8, b := (1, 1)T and c := 1. The right and the top edge of the unit
square are chosen to be the Neumann boundary ΓN , while on the left and the bottom
edge Dirichlet boundary conditions are prescribed; see figure 5.1a. The right-hand
side and the boundary conditions are chosen such that

u(x, y) := sin (2πx) sin (2πy)

is the exact solution which is visualized in figure 5.1b.

Note that this experiment is conducted in the convection-dominated regime since ε
is set to be 10−8.

Implementation aspects

The implementation that is used in this section as well as in section 5.3 is based on
the open-source library TensorFlow [Aba+15; Dev22]. For the optimization step, the
minibatch stochastic gradient descent [HH19; GBC16, section 8.1.3] together with
the Adam algorithm [KB14] is deployed where TensorFlow’s default values are chosen
except for the learning rate that is defined individually for each numerical example.
After the training, the MLP with the smallest loss value during the optimization is
returned as the final approximation. Note that this is not necessarily the MLP after
the last optimization step due to the stochastic gradient descent method.
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Figure 5.2.: Training points and training history for a PINN approximation of the
solution to example 5.1. The loss Lst is the sum of the interior, Dirichlet and
Neumann contributions. The contribution of Lst

N is not shown since it has values
below 10−14.

Results

The solution is approximated by an MLP that consists of an input layer with two
nodes, eight hidden layers with 20 nodes each, and an output layer with a single node.
Except for the last layer where a linear activation function is used, all other activation
functions are chosen as the tanh function given in equation (4.2b). The weights of the
MLP are initialized based on the Glorot initialization [GB10] with random seed 41,
and the initial biases are set to 0. During the training, the MLP seeks to minimize
the loss functional given in equation (5.4), in which the weights αst

I = αst
D = αst

N = 1
are used. The MLP is trained for 7, 500 epochs with a learning rate of 10−4, and
the integrals are approximated using 320 equally distanced boundary points and 512
equally distanced interior points. Half of the boundary points lie on the Dirichlet
boundary and the other half on the Neumann boundary; see also figure 5.2a.

The values of the loss functional and its components during the training process
are depicted in figure 5.2b. The loss term concerning the Neumann boundary is not
shown since its values are always below 10−14 during the training. It can be seen
that over the whole training, the loss decreases. The loss starts to oscillate for higher
numbers of epochs and stops decreasing monotonically due to the minibatch stochastic
gradient descent method used. The final PINN approximation uN and its point wise
error |u− uN | are shown in figure 5.3. It can be seen that the MLP is a reasonable
approximation to the solution, even though the maximum and the minimum are not
perfectly met. Furthermore, it is notable that the Dirichlet boundary conditions
are not satisfied exactly, which stems from the fact that the boundary conditions
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Figure 5.3.: A PINN approximation uN of solution u to example 5.1 and point wise
error |u− uN |.

are part of the loss functional and must be learned during the training. This is in
contrast to continuous Galerkin finite element methods, where the Dirichlet boundary
conditions are usually exactly satisfied. Compared to the exact solution, the PINN
approximation has an L2-error of about ‖u− uN‖L2(Ω) ≈ 0.047 and a H1-semi norm
error of about |u− uN |H1(Ω) ≈ 0.498. However, the approximation probably becomes
more accurate if more training points are chosen, or the MLP is trained for more
epochs since after 7, 500 epochs, the loss is still decreasing.

Altogether, it can be concluded that the implementation seems correct, and PINNs
are, in general, able to approximate the solution to convection-dominated convection-
diffusion-reaction problems. However, it is already known in the literature that they
might terribly fail when it comes to solutions that possess layers [Kri+21; GSV22a].

5.2. Modifications of vanilla physics-informed neural
networks

In this section, several modifications of vanilla PINNs concerning treating Dirichlet
boundary conditions and the interior loss functional are introduced.

5.2.1. Pretraining and hard-constrained physics-informed neural
networks

Boundary conditions are an essential part of the convection-diffusion-reaction problem.
Not only do they affect the well-posedness of the problem, but they also influence
the solution in the interior, especially the inflow part of the boundary conditions.
Therefore, it seems reasonable to emphasize the inflow boundary conditions or to
impose the Dirichlet boundary conditions exactly. In the following, two ideas are
presented on how to achieve this.
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Pretraining of inflow boundary conditions

Since the inflow boundary conditions influence the solution in the interior significantly,
it might be helpful to start the optimization of the MLPs with an initialization that
satisfies the boundary conditions along Γ−. This hopefully serves as a reasonable
guess such that during the actual optimization of the MLP, the chances are higher to
end in a global instead of a local minimum.

Unfortunately, it is almost impossible to prescribe the weights and the biases of
an MLP such that it satisfies the inflow boundary conditions exactly. However, they
can be learned in advance. Therefore, the idea of this section is to add another
optimization loop to the training process before the actual optimization occurs. This
new optimization loop is called pretraining in what follows.

Assume that the Dirichlet training points xi,D are given. For the pretraining
optimization, the subset of points are used that lie on the inflow part of the boundary,
i.e., all points xi,D such that b (xi,D) ·n (xi,D) < 0. During the pretraining, the MLPs
are optimized with respect to minimizing the loss Lpr := LD given the inflow boundary
points, i.e., only the Dirichlet term of the complete loss Lst.

After this pretraining optimization has ended, the actual optimization can start
with an initial guess that satisfies approximately the inflow boundary conditions.

Hard-constrained PINNs

The above-mentioned algorithm still has the property that the Dirichlet boundary
conditions are only approximately satisfied and must be learned during training.
Nevertheless, since this part of the solution is known, why does not the MLP approx-
imation satisfy these values exactly, and why is computing time spent to learn an
a-priori known pattern? In the context of continuous Galerkin finite element methods,
the Dirichlet boundary conditions are usually imposed exactly. Inspired by this, the
idea of hard-constrained PINNs as introduced by Lu et al. [Lu+21] is to satisfy the
Dirichlet boundary conditions exactly by defining

ũN := g̃D + luN (5.5)

to be the modified PINN approximation. Here g̃D : Ω → R is a continuous extension
of the Dirichlet boundary condition gD from ΓD to Ω and l : Ω → R is a function that
satisfies {

l(x) = 0, if x ∈ ΓD,

l(x) > 0, if x ∈ Ω.

By construction it holds ũN |ΓD = gD, i.e., the Dirichlet boundary conditions are
exactly satisfied.
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In simple cases, the function g̃D might be constructed explicitly. Alternatively, it is
also possible to train another MLP g̃D,N by minimizing, e.g.,

1

NI

NI∑
i=1

(g̃D,N (xi,I))
2 +

1

ND

ND∑
i=1

(g̃D,N (xi,D)− gD (xi,I))
2 +

1

NN

NN∑
i=1

(g̃D,N (xi,N))
2 .

While with the help of the first and the last term, the MLP is trained to satisfy
g̃D,N |Ω∪ΓN ≈ 0, the remaining term is present to enforce that g̃D,N |ΓD ≈ gD. Again, if
the boundary ΓD has a simple form, also l might be constructed explicitly. Else, it
might be approximated using splines [Lu+21].

Alternatively, inspired by the proof of theorem 2.3, given such a g̃D, it is also
possible to optimize luN to be the solution to the modified convection-diffusion-
reaction problem with homogeneous Dirichlet boundary conditions: Find a sufficiently
smooth u such that

−ε∆u+ b · ∇u+ cu = f − (−ε∆g̃D + b · ∇g̃D + cg̃D) in Ω,

u = 0 along ΓD,

ε∇u · n = gN − (ε∇g̃D · n) along ΓN.

Since l|ΓD = 0, the MLP approximation luN satisfies the homogeneous Dirichlet
boundary conditions exactly, and after the optimization g̃D + luN can be used as an
approximation to u.

5.2.2. Non-standard loss functionals
In [JKS11; JK13; KLS19], several cost functionals are investigated to optimize the
SUPG solution with respect to the SUPG parameter. It is observed that the cost
functional consisting only of the strong form of the residual works worse than other
tested functionals [JKS11; JK13]. Therefore, another idea is to adapt them to work
within the PINN framework. Moreover, it can be emphasized that all functionals
presented in this section have never been considered in the context of PINNs before
and are numerically investigated in this framework in section 5.3.2 for the first time.

Crosswind loss

The first variant of the loss functional is based on the loss functional proposed by
John, Knobloch, and Savescu [JKS11] in equation (22). Guided by their ideas,

‖Res(uN )‖2L2(Ω) + ‖φ(|b⊥ · ∇uN |)‖L1(Ω)

might serve as an ansatz for the interior part of the loss functional, where the functions

b⊥(x) :=

{
(b2(x),−b1(x))T

|b(x)| , if b(x) 6= 0,

0, else,
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and

φ(x) :=

{√
x, if x ≥ 1,

0.5(5x2 − 3x3), else,

are employed. The integrals can again be approximated by the Monte Carlo integration
method, i.e.,

‖Res(uN )‖2L2(Ω) + ‖φ(|b⊥ · ∇uN |)‖L1(Ω) ≈

Lst
I +

|Ω|
NI

NI∑
i=1

|φ(|b⊥(xi,I) · ∇uN (xi,I)|)| =: Lcw
I .

Finally, the crosswind loss can be defined as

Lcw := αcw
I Lcw

I + αcw
D Lst

D + αcw
N Lst

N, (5.6)

where αcw
I , αcw

D , αcw
N ∈ R are three non-negative weights.

Remark 5.2. John, Knobloch, and Savescu [JKS11] argue that it is important to
exclude cells from the computation of their loss functionals that share an edge with
the Dirichlet boundary, since in those cells the strong residual cannot be reduced
significantly. This also has to be kept in mind in the context of PINNs. Therefore, it
might be advantageous to use only interior points that have a distance to the Dirichlet
boundary of at least C

√
ε, where C ∈ R is a positive factor, e.g., C = 20.

Limited residual loss

The next variant of the loss functional is related to the loss functional I limh of Knobloch,
Lukáš, and Solin [KLS19]. Their functional is based on a triangulation of the domain
since it is proposed for finite element computations. To derive a loss functional for
PINNs, it is assumed that NI ∈ N interior points xi,I ∈ Ω, i = 1, 2, . . . NI, are given.
From these points a Voronoi tessellation2 can be constructed by defining the mesh
cells

Ki := {y ∈ Ω : |y − xi,I| < |y − xj,I| for all j = 1, 2, . . . , NI };

see also figure 5.4. These cells clearly contain xi,I but no other xj,I, j = 1, 2, . . . , NI,
j 6= i. In this sense, every cell Ki can be identified by a corresponding xi,I.

Using this triangulation Th := {Ki : i = 1, 2, . . . , NI }, the quantity∑
Ki∈Th

ψ
(
‖Res(uN )‖2L2(Ki)

)
(5.7)

2See, e.g., [Pip17, chapter 50.6.1].
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Figure 5.4.: Voronoi tessellations of the unit square with respect to five and nine
interior points resulting in five and nine cells, respectively.

may serve as an ansatz for the interior part of the loss functional, where for a fixed
non-negative t0 ∈ R and a given x ∈ R

ψ(x) := ξ

(
x

t0

)
with

ξ(x) :=

{
1
2
x4 − x3 − 1

2
x2 + 2x, if x ≤ 1,

1, else,

is defined, cf. also I limh in [KLS19]. Cell wise the integrals can be approximated by

ψ
(
‖Res(uN )‖2L2(Ki)

)
≈ ψ

(
|Ki| (Res(uN )(xi,I))

2) ≈ ψ

(
|Ω|
NI

(Res(uN )(xi,I))
2

)
,

(5.8)

where in the last step |Ki| ≈ |Ω|/NI is used. The last approximation is exact if the
interior points are equally distanced and becomes worse the more the smallest and
the largest value of the distance between the points and their closest neighbors and
boundaries differ.

Combining equations (5.7) and (5.8), identifying each cell with its corresponding
interior point and using the definition of ψ leads to

NI∑
i=1

ξ

(
|Ω|
NI t0

(Res(uN )(xi,I))
2

)
=: Llr

I .

Finally, let αlr
I , α

lr
D, α

lr
N ∈ R again be three non-negative weights. Then, the limited

residual loss is defined as

Llr := αlr
I Llr

I + αlr
DLst

D + αlr
NLst

N. (5.9)

Remark 5.3. Also Knobloch, Lukáš, and Solin [KLS19] exclude boundary cells from
the computation of the residual. However, with the same argument as in remark 5.2,
it is proposed to use only interior points that are further away from the boundary
than C

√
ε, and, e.g., C = 20.
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5.2. Modifications of vanilla physics-informed neural networks

Limited residual and crosswind loss

Of course, combining the ideas of the limited residual and the crosswind loss is also
possible. Replacing Lst

I by Llr
I in the definition of Lcw

I leads to

NI∑
i=1

ξ

(
|Ω|
NIt0

(Res(uN )(xi,I))
2

)
+

|Ω|
NI

NI∑
i=1

|φ(|b⊥(xi,I) · ∇uN (xi,I)|)| =: Llrcw
I .

Once more, let αlrcw
I , αlrcw

D , αlrcw
N ∈ R again be three non-negative weights. Then,

the limited residual loss with crosswind term can be defined as

Llrcw := αlrcw
I Llrcw

I + αlrcw
D Lst

D + αlrcw
N Lst

N. (5.10)

5.2.3. Variational physics-informed neural networks
The standard PINN formulation of the loss functional and all variants described
in the previous section are based on the strong form of the residual. However, as
seen in section 2.1.2, it can be proven that a unique weak solution exists, whereas
strong solutions only exist under somewhat restrictive regularity assumptions on
the data. Therefore, the notion of weak solutions is generally better suited for
convection-diffusion-reaction problems, and it might be advantageous if PINNs reflect
this.

Several attempts in this direction have already been made in the literature, e.g.,
(hp)-variational physics-informed neural networks [KZK19; KZK21], weak (adversarial)
physics-informed neural networks [DMM22; Zan+20], and the references therein. They
differ significantly in the concrete choice of the test function(s). While in the former
two references, polynomial test functions are used, in the latter two, only a single
MLP-based test function is used, and the problem is reformulated to be a min-max
problem. Using an MLP-based test function in contrast to polynomial ones has the
advantage that no underlying mesh is needed for classical PINNs and that the results
do not depend on a maximal chosen polynomial degree. On the contrary, it has the
disadvantage that the computational costs are proportional to 2nm, where n is the
number of min-max optimizations and m is the number of epochs each network is
trained, i.e., in the worst case, n = m, the costs scale quadratically. Furthermore,
from a numerical point of view, converging towards the approximate solution is more
challenging than in a standard minimization problem because a certain saddle point
of the loss functional must be found [DMM22, section 4.5.2].

In this section, the path of Kharazmi, Zhang, and Karniadakis [KZK21] is followed,
and the hp-variational physics-informed neural network (hp-vPINN) approach is
explained for convection-diffusion-reaction problems.

To this end, let Th be a triangulation of Ω ⊂ Rd, d = 1, 2, 3, into cells K ∈ Th that
are, depending on the dimension, either lines, quadrilaterals or hexahedrons. The
cells are assumed to be the image of an affine or d-linear mapping FK : K̂ → K from
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Figure 5.5.: Set of one-dimensional test functions on the reference cell.

the reference cell K̂ := [−1, 1]d to K. In the spirit of mapped finite elements, the
following quantities are defined on the reference cell and then mapped to the physical
cell.

To start with, let I ∈ N and

Pp(K̂) := { v̂i : i = 0, 1, . . . , I }

be a set of test functions on the reference cell, where, for all i = 0, 1, . . . , I, vi is a
polynomial of degree at most p, v̂i is not constantly zero, and v̂i|∂K̂ = 0. For all
K ∈ Th, the set of local test functions Pp(K) can then be defined as

Pp(K) := { v : K → R : v = v̂ ◦ F−1
K for a v̂ ∈ Pp(K̂) },

where F−1
K is the inverse of the reference transform. These polynomials can be

continuously extended to Ω by defining v|Ω\K := 0 for every v ∈ Pp(K) and all
K ∈ Th. The set of global polynomial test functions Pp(Th) is then defined as

Pp(Th) := { v : Ω → R : v|K ∈ Pp(K) for a K ∈ Th, v|Ω\K = 0 }.

Note that by construction all test functions v ∈ Pp(Th) have a compact support and
satisfy v|ΓD = 0.

Kharazmi, Zhang, and Karniadakis propose to use in one dimension on the reference
cell

Pp([−1, 1]) := {ϕk+1(x)− ϕk−1(x) : k = 1, 2, . . . , p− 1 },

where ϕk is the Legendre polynomial of order k [KZK19; KZK21]. These polynomials
are also depicted in figure 5.5 up to order p = 6. In two dimensions the product space
of Pp([−1, 1]) with itself is considered [KZK19; KZK21], i.e.,

Pp([−1, 1]2) := {ϕk(x)ϕ`(y) : ϕk, ϕ` ∈ Pp([−1, 1]), k, ` = 1, 2, . . . , p− 1 }, (5.11)

which will also be used in section 5.3.3. In principle, instead of equal polynomial
degrees in x and y direction, also different ones can be used.
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5.2. Modifications of vanilla physics-informed neural networks

Given the set of global test functions Pp(Th), the quantity∑
K∈Th

1

|Pp(K)|
∑

v∈Pp(K)

(∫
Ω

Res(uN ) v dx
)2

=

∑
K∈Th

1

|Pp(K)|
∑

v∈Pp(K)

(∫
K

Res(uN ) v dx
)2

(5.12)

serves as ansatz for the interior loss functional. The integrals can then be transformed
to the reference element, which leads to

∑
v∈Pp(K)

(∫
K

Res(uN ) v dx
)2

=

 ∑
v̂∈Pp(K̂)

∫
K̂

Res(uN ) ◦ FK v̂ |det(DFK)| dx̂

2

.

As in the classical PINN setting, after the integrals are transformed, they must
be approximated by a quadrature rule. In contrast to the vanilla PINN approach
Kharazmi, Zhang, and Karniadakis propose to use a Gauss–Lobatto integration rule
with nd, n ∈ N, points for lower-dimensional problems and a Monte Carlo integration
method for higher-dimensional problems [KZK19; KZK21]. Following this idea, a
Gauss–Legendre integration rule with nd weights and points is applied in this work.
Let ωi and x̂i,I, i = 1, 2, . . . , n, be the weights and points of the Gauss–Legendre
integration rule of order n on [−1, 1]. Then, a Gauss–Legendre integration rule in
two dimensions is given by ωi,j := ωiωj and x̂i,j,I := (x̂i,I, x̂j,I), i, j = 1, 2, . . . , n, which
can be used to arrive at∑

v∈Pp(K)

(∫
Ω

Res(uN ) v dx
)2

≈

∑
v̂∈Pp(K̂)

(
n∑

i,j=1

ωi,j Res(uN )(FK(x̂i,j,I)) v̂(x̂i,j,I) |det(DFK(x̂i,j,I))|

)2

.

(5.13)

Combining equations (5.12) and (5.13) finally leads to

LhpvP
I :=∑

K∈Th

1

|Pp(K)|
∑

v̂∈Pp(K̂)

(
n∑

i,j=1

ωi,j Res(uN )(FK(x̂i,j,I)) v̂(x̂i,j,I) |det(DFK(x̂i,j,I))|

)2

that is used as interior loss functional in hp-vPINNs. The derivation works analogously
in three dimensions.

Finally, a weighted sum of the interior loss and the boundary losses is applied to
get the loss functional for hp-vPINNs

LhpvP := αhpvP
I LhpvP

I + αhpvP
D Lst

D + αhpvP
N Lst

N, (5.14)
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Figure 5.6.: Exact solution to example 5.6.

where αhpvP
I , αhpvP

D , αhpvP
N ∈ R as above are three non-negative weights.

Remark 5.4. In [KZK19; KZK21] the authors propose two more variants of LhpvP
I where

they integrate by parts LhpvP
I one and two, resp., times. For their two-dimensional

test problems, the authors report no significant differences between the standard
formulation of LhpvP

I and the one that is integrated by parts once. The last variant is
not tested. In the numerical experiments in section 5.3.3, the loss functional given in
equation (5.14) is used.
Remark 5.5. The difference between hp-vPINNs and vPINNs is that in the latter,
the domain is not decomposed into several cells but rather treated as a single cell, cf.
[KZK19].

The vanilla PINN approach can also be seen as a hp-vPINN version, namely
for a single cell K = Ω and using Dirac delta functions as test functions, i.e.,
vi(x) = δ(x− xi,I), where δ(0) := 1 and δ(x− xi,I) := 0 for all x ∈ Ω \ {xi,I}.

5.3. Numerical studies
In this part, the ideas presented in the previous section are tested numerically on two
benchmark problems. All implementation aspects mentioned on page 96 also hold in
this part of the thesis.

In contrast to the previous chapters, two examples are used that have a known
exact solution. The reason is that with these examples, the error between the PINN
approximations and the exact solution can be measured to assess the quality of the
various modifications of PINNs.

The first example is the same as example 2 of [JMT97, p. 181] and is defined as
follows.

Example 5.6 (Circular internal layer). Let Ω := (0, 1)2 be the unit square, ε := 10−8,
b := (2, 3)T , c := 2, and ΓD := ∂Ω. The right-hand side and the boundary conditions
of the problem are chosen such that

u(x, y) := 16x(1− x)y(1− y)

(
1

2
+

arctan (200(r20 − (x− x0)
2 − (y − y0)

2))

π

)
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Figure 5.7.: Exact solution to example 5.7.

is the exact solution, where r0 := 0.25 and x0 := y0 := 0.5. The exact solution is also
depicted in figure 5.6.

As seen in figure 5.6, the solution to the previous example possesses an interior layer
at the circle with a radius 0.25. To test how well PINNs cope with boundary layer
problems, the following example is defined, which is taken from [JMT97, example 3].
Example 5.7 (Outflow layer). Let Ω := (0, 1)2 be the unit square, ε := 10−8,
b := (2, 3)T , c := 1, and ΓD := ∂Ω. The right-hand side and the boundary conditions
of the problem are chosen such that

u(x, y) := xy2 − y2 exp
(
2(x− 1)

ε

)
− x exp

(
3(y − 1)

ε

)
+ exp

(
2(x− 1) + 3(y − 1)

ε

)
is the exact solution, which is also shown in figure 5.7.

Note that all experiments are conducted in the convection-dominated regime since
in both examples ε = 10−8 and b = (2, 3)T .

The error e := u − uN between the exact solution u and a PINN approximation
uN is measured by |||·||| which is defined as

|||e|||2 := ε‖∇e‖2L2(Ω) + µ0‖e‖2L2(Ω), (5.15)

where ε = 10−8, µ0 := 2 for example 5.6 and µ0 := 1 for example 5.7. To compute an
approximation of the error by numerical quadrature, the unit square is divided into
10, 000 squares of equal size in which each a Gauss–Legendre quadrature rule with
ten points in each coordinate direction is used. This results in 1, 000, 000 quadrature
points and weights in total.

5.3.1. Comparing pretrained and hard-constrained PINNs with
vanilla PINNs

To start off the experiments, the ideas presented in section 5.2.1 are tested on
examples 5.6 and 5.7 and compared to the vanilla PINN approach of section 5.1.1.
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5. Physics-informed neural networks for convection-diffusion-reaction problems

Table 5.1.: Set of hyperparameters used in section 5.3.1. This gives in total 945
combinations of hyperparameters.

nodes in hidden layers 20, 30, 40
activation ELU, tanh, ReLU
learning rate 0.01 · 3−0, 0.01 · 3−1, 0.01 · 3−2, 0.01 · 3−3, 0.01 · 3−4,

0.01 · 3−5, 0.01 · 3−6

initialization seed 42, 43, 44
weight decay λwd 10−1, 10−2, 10−3, 10−4, 10−5

To this end, in each experiment 945 different configurations of MLPs are optimized
whose hyperparameters are given in table 5.1. The hyperparameters are chosen in
correspondence with the practical recommendations from [Ben12]. Since the MLPs
shall approximate a function mapping from a subset of R2 to R, the input layer
consists of two nodes and the output layer of a single node. All networks have seven
hidden layers with the same number of nodes in each layer, i.e., either 20, 30, or 40,
cf. table 5.1. While the values of the weights are initialized in the beginning based
on Glorot initialization [GB10] with the seeds given in table 5.1, the initial biases are
set to zero. In all hidden layers, the same activation function is used, namely either
ELU or tanh depicted in figure 4.2, or the ReLU function defined for a given x ∈ R
as ReLU(x) := max{ 0, x }. Finally, in the output layer, a linear activation function
is applied.

The MLPs are trained for 10, 000 epochs using NI = 4, 096 equally distanced
interior and ND = 512 equally distanced Dirichlet boundary points that are split into
batches of size nbs := 32. During the training, the MLPs are optimized to minimize

Lst +
λwd

2

nbs

(NI +ND)

∑
j

w2
j , (5.16)

where Lst is defined in equation (5.4), λwd is given in table 5.1, and wj are the
components of the weight matrices of the MLPs. The second term is the so-called
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Figure 5.8.: Interior indicator l for the unit square given in equation (5.17).
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Figure 5.9.: Errors |||u− uN ||| after 10, 000 epochs for all tested configurations of
vanilla PINNs (vLst), PINNs with pretraining (pLst) and hard-constrained PINNs
(hLst) that approximate the solution to example 5.6 from section 5.3.1. The PINNs
are trained to minimize the loss given in equation (5.16). The error is averaged
over the seeds of the configurations.

L2-weight decay regularization, also commonly known as ridge regression or Tikhonov
regularization, and is often used in MLP optimizations to counteract overfitting; see
also [Ben12; GBC16, pp. 116–119, 227–230] in general and [DBB23] in the context of
PINNs. Note that this term does not include the biases but only the weights of the
MLP. The factors in front of the individual terms of Lst are set to αst

I = αst
D = 1.

Three methods are tested, namely the vanilla PINNs from section 5.1.1, vanilla
PINNs that are pretrained for 1, 000 epochs on the inflow training points before the
actual optimization takes place as described in section 5.2.1, and hard-constrained
PINNs as also described in section 5.2.1, equation (5.5). Below the superscripts v, p,
and h indicate the usage of vanilla PINNs, pretrained PINNs, and hard-constrained
PINNs, respectively. For the latter, the continuous extension of the boundary condition
g̃D is defined, for (x, y) ∈ Ω, as g̃D(x, y) := 0, and the indicator function l is set to be

l(x, y) :=
(
1− e−κx

) (
1− e−κy

) (
1− e−κ(1−x)

) (
1− e−κ(1−y)

)
, (5.17)

where κ := 30 is a scaling factor. The function l is also visualized in figure 5.8.
After the MLPs are trained for 10, 000 epochs, the error between the MLPs and the

exact solution is measured in terms of the energy norm defined in equation (5.15), and
a mean value of the MLPs over the seeds is computed. The 315 arising configurations
are numbered to be identified. The six best MLPs of each method are then trained
for all three seeds for another 90, 000 epochs, after which again the error is computed
and averaged over the seeds.
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Table 5.2.: Mean and minimal value of errors |||u− uN ||| after 10, 000 epochs of all
vanilla PINNs (vLst), PINNs with pretraining (pLst) and hard-constrained PINNs
(hLst) that approximate the solution to example 5.6 from section 5.3.1. The PINNs
are trained to minimize the loss given in equation (5.16).

|||u− uN ||| vLst |||u− uN ||| pLst |||u− uN ||| hLst

mean 0.2136 0.3065 0.2019
min 0.0136 0.0141 0.0100

Circular interior layer problem

First, the results for MLPs trained to approximate the solution to example 5.6 are
discussed. The errors of the MLPs after 10, 000 epochs for all 315 configurations are
depicted in figure 5.9. The pretrained PINNs seem to show larger errors compared to
the vanilla and the hard-constrained PINNs, of which the latter work slightly better.
This is also supported by the mean and, more importantly, the minimal values of
these methods shown in table 5.2. Note that in this thesis, the minimal value is
considered to be of higher importance than the mean because the best method is the
one that would be used in practice. The trend of the methods also proceeds after the
six best configurations are trained for another 90, 000 epochs. A hard-constrained
PINN shows the smallest overall error (0.0088), the best vanilla PINN has an error of
approximately 0.0094, and the best pretrained PINN owes an error of around 0.0100.

Furthermore, it can be observed that in the first optimization steps in the actual
training loop, the pretrained MLPs “forget” the inflow boundary values they learned
during the pretraining. This is because the interior loss decreases more than the
boundary loss increases. Moreover, after both 10, 000 and 100, 000 epochs, the
pretrained MLPs show a worse mean and minimal error than vanilla PINNs. The
pretrained PINNs may be overfitted to the inflow boundary data, and it takes more

Table 5.3.: Pearson correlation coefficients between the hyperparameters and the
errors |||u− uN ||| after 10, 000 epochs of vanilla PINNs (vLst), PINNs with pretrain-
ing (pLst) and hard-constrained PINNs (hLst) that approximate the solution to
example 5.6 from section 5.3.1. The PINNs are trained to minimize the loss given
in equation (5.16). Colors indicate the magnitude of the values.

|||u− uN ||| vLst |||u− uN ||| pLst |||u− uN ||| hLst

model size 0.009 0.016 0.007

learning rate 0.747 0.484 0.758

weight decay λwd 0.125 0.378 0.083

activation 0.076 0.055 0.113
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Figure 5.10.: Hard-constrained PINN approximation uN of the solution to example 5.6
based on minimizing the loss given in equation (5.16) for 100, 000 epochs and its
point wise error |u− uN | compared with the exact solution u.

minimization steps for the MLPs to counteract this overfitting and to fit the actual
solution compared to vanilla PINNs.

The Pearson correlation coefficients between the hyperparameters and error of all
315 MLPs after 10, 000 epochs for all three methods are given in table 5.3. By far, the
learning rate has the most considerable influence on the result, where a positive value
indicates that the smaller the learning rate, the smaller the error. For the pretrained
PINNs, the weight decay factor also has a significant influence. A smaller weight
decay factor might result in less overfitting during the pretraining, and therefore the
MLPs start the actual training loop with a less overfitted initial guess.

The solution and the point wise error |u− uN | of the hard-constrained PINN with
the configuration that has the smallest error after 100, 000 epochs are depicted in
figure 5.10. The absolute value point wise error is between precisely 0 at the boundary
and at most around 1.68 · 10−2 close to the circle with radius 0.25 where the solution
possesses the interior layer. In total, it can be seen that the PINN approximation
captures the solution appropriately well, as it could also be expected by the norm of
the error. The maximal and minimal values of the approximation also coincide with
those of the exact solution up to two decimal places.

To conclude, for this problem with an interior layer, the hard-constrained PINNs
work the best. Not only do they have the MLP with the smallest error, but they
also need less training effort than the other methods since the boundary data does
not need to be learned, and the Dirichlet boundary data are met exactly. Moreover,
pretraining is not worth the computational effort for this example since the results
are the worst and it needs the most computational resources.

Outflow layer problem

After the problem with the interior layer is treated, in this section, the results for
the problem with the boundary layer at the outflow boundary from example 5.7 are
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Figure 5.11.: Errors |||u− uN ||| after 10, 000 epochs for all tested configurations of
vanilla PINNs (vLst), PINNs with pretraining (pLst) and hard-constrained PINNs
(hLst) that approximate the solution to example 5.7 from section 5.3.1. The PINNs
are trained to minimize the loss given in equation (5.16). The error is averaged
over the seeds of the configurations.

presented.
The errors |||u− uN ||| of all configurations averaged over the seeds for the three

tested methods after 10, 000 epochs are depicted in figure 5.11. For this example, the
hard-constrained PINNs work worse than the vanilla and the pretrained PINNs. This
is also supported by the mean over the errors and the smallest error given in table 5.4.
The average error for hard-constrained PINNs is almost twice as large as the average
value for vanilla PINNs. The vanilla PINN approximation with the smallest error
also has the smallest error compared to the best pretrained and hard-constrained
approximation, and its error is also around half the error of the best hard-constrained
configuration.

This trend stays the same even after the six best configurations are trained for
another 90, 000 epochs. The smallest error shows a vanilla PINN configuration with
a value of approximately 0.0316, followed by a pretrained PINN approximation of

Table 5.4.: Mean and minimal value of errors |||u− uN ||| after 10, 000 epochs of all
vanilla PINNs (vLst), PINNs with pretraining (pLst) and hard-constrained PINNs
(hLst) that approximate the solution to example 5.7 from section 5.3.1. The PINNs
are trained to minimize the loss given in equation (5.16).

|||u− uN ||| vLst |||u− uN ||| pLst |||u− uN ||| hLst

mean 0.2514 0.2658 0.4652
min 0.0444 0.0493 0.1089
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Table 5.5.: Pearson correlation coefficients between the hyperparameters and the
errors |||u− uN ||| after 10, 000 epochs of vanilla PINNs (vLst), PINNs with pretrain-
ing (pLst) and hard-constrained PINNs (hLst) that approximate the solution to
example 5.7 from section 5.3.1. The PINNs are trained to minimize the loss given
in equation (5.16). Colors indicate the magnitude of the values.

|||u− uN ||| vLst |||u− uN ||| pLst |||u− uN ||| hLst

model size 0.060 −0.052 0.092

learning rate 0.404 0.374 0.317

weight decay λwd −0.163 0.137 −0.173

activation −0.048 −0.090 −0.074

approximately 0.0318. The best hard-constrained PINN shows an error of 0.0391.
However, after 100, 000 epochs, the difference between the best of the three methods
decreased compared to the results after 10, 000 epochs. Compared to the errors of the
previous experiment, the smallest minimal error after 100, 000 is around four times
larger. This indicates that PINNs might cope better with interior layers than boundary
layers or problems with outflow boundary layers are more difficult to approximate.

As in the previous experiment, it can be observed that the PINNs that are pretrained
on the inflow boundary data change abruptly in the first optimization step of the
actual optimization loop. The reason is probably the same as before: the interior loss
can be decreased more than the boundary loss increases if the inflow boundary data
are met worse.

To investigate which model parameters have the most significant influence on
the training of the three methods, the Pearson correlation coefficients between the
hyperparameters and the errors are given in table 5.5. As in the previous example,
the learning rate has the largest influence, even if it is for the vanilla and the hard-
constrained PINNs only around half as much as in the previous experiment.

The solution of the best vanilla PINN approximation and the point wise error
|u− uN | compared to the exact solution u to example 5.7 are shown in figures 5.12a
and 5.12b. It can be observed that in the approximation, no outflow layer occurs and
that it does not meet the boundary data at the outflow boundary. This might also
be the reason why the error measured in the |||·|||-norm is larger than in the previous
experiment. The maximal value of the approximation (≈ 0.92) also is smaller than
the largest value of the exact solution (≈ 1.00). This is also in contrast to the previous
experiment, where the minimum and the maximum are better satisfied. A possible
explanation is that the interior loss functional of vanilla PINNs can be decreased
more than the boundary term increases. However, the boundary loss still plays a role
and makes it more difficult for the PINNs to meet the maximum of the solution. The
point wise error is in the majority of the domain usually small, with a smallest value
of order O(10−6). However, the error is obviously larger along the outflow boundary
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Figure 5.12.: Vanilla (top row) and hard-constrained (bottom row) PINN approxi-
mations uN of the solution to example 5.7 based on minimizing the loss given in
equation (5.16) for 100, 000 epochs and their point wise errors |u− uN | compared
to the exact solution u.

at y = 1 or x = 1 and especially at the corner at (1, 1) since the outflow boundary
data is not met at all.

The solution of the best hard-constrained PINN and its point wise error |u− uN |
for the same problem are shown in figures 5.12c and 5.12d for comparison. It is
visible that an outflow boundary layer has formed and that the boundary data are
met exactly due to prescribing them in a hard-constrained manner. Therefore, the
point wise error is smaller and in most parts of the domain of order O(10−2). It is
the largest at the upper part of the outflow layer. This is not surprising when looking
at the solution. The solution is deformed and wiggles the closer it gets to the upper
right corner.

An analog mechanism might also be why hard-constrained PINNs do not work
as well as in the previous experiment. The hard-constrained PINNs seem to have
difficulties introducing the steep gradient in the outflow layer because the outflow
boundary data is fixed and must be satisfied.

To conclude, vanilla PINNs seem to approximate the solution better in the interior
than hard-constrained PINNs. With a longer training time, hard-constrained PINNs
may also catch up with the vanilla ones. As a drawback, a particular feature of the
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solution, namely the outflow boundary layer, is not reconstructed by vanilla PINNs at
all. However, for this example with a boundary layer, at the outflow boundary, vanilla
PINNs work best in terms of the energy error |||·||| at least after 10, 000 and 100, 000
epochs, which is why in the following vanilla PINNs are used for this particular
example.

5.3.2. Non-standard loss functionals
The experiments in this section test which of the loss functionals defined in section 5.2.2
works best and compare them to the vanilla loss functional from section 5.1.1. In
other words, the effect of the four loss functionals Lst, Lcw, Llr, Llrcw on the quality
of the approximation is investigated.

To this end, for each method, 675 MLPs are trained with different configurations of
hyperparameters. The same hyperparameters are chosen as given in table 5.1, except
for the learning rate, of which the largest two learning rates are neglected. Depending
on the experiment, the boundary data is incorporated in either the hard-constrained or
vanilla fashion. The particular choice is mentioned in each experiment and indicated
in the results by either the superscript h or v. As before, to each tested loss functional
an L2-weight decay regularization term is added, i.e.,

L+
λwd

2

nbs

NI +ND

∑
j

w2
j , (5.18)

are used as loss functionals, where L ∈ {Lst,Lcw,Llr,Llrcw }. Below, the losses are
nevertheless denoted by Lst, Lcw, Llr, and Llrcw, but it must be remembered that the
weight decay term is active in all experiments.

The rest of the set-up of the MLPs and the training described in section 5.3.1
stays the same, e.g., the number of layers, training points, and training epochs. The
evaluation also stays the same, i.e., the error is calculated in the |||·|||-norm, and an
average is computed over the seeds resulting in errors of 225 different configurations
for each method.

The loss functionals Llr and Llrcw depend on the parameter t0. The corresponding
loss functionals are denoted by Llr

t0
and Llrcw

t0
, where t0 is chosen to be one of the values

of { 101, 100, 10−1, 10−2, 10−3, 10−4 }. The values of this set follow the suggestions
in [KLS19]. To summarize, together with Lst and Lcw in total 14 different loss
functionals are tested. However, only one value for t0 is shown below for the sake of
brevity, namely for the t0 for which Llr and Llrcw have the smallest minimal energy
error after 100, 000 epochs.

Circular interior layer problem

Again, the experiments start with PINNs approximating the solution to example 5.6
that possesses an interior layer. Since section 5.3.1 shows that for this problem hard-
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Figure 5.13.: Errors |||u− uN ||| after 10, 000 epochs for all tested configurations of
hard-constrained PINNs with various loss functionals given in equation (5.18) that
approximate the solution to example 5.6 from section 5.3.1. The error is averaged
over the seeds of the configurations.

constrained PINNs work the best, also in these experiments, the Dirichlet boundary
data is imposed exactly as indicated by the superscript h.

The results of the vanilla, the crosswind functional, Llr
0.01 and Llrcw

0.1 after 10, 000
epochs for all configurations are depicted in figure 5.13. It looks like that in the mean,
both Llr

0.01 and Llrcw
0.1 work worse than the vanilla and the crosswind losses. This is

also supported by the values presented in table 5.6, where it can be seen that the
mean value of the limited residual and the limited residual with crosswind loss are
around twice as large as the mean value of the vanilla PINNs. However, the smallest
error is obtained by a PINN trained with limited residual loss. The best vanilla PINN
has only a slightly larger error, and the best one trained with the crosswind loss has
an error of almost twice as much as the overall smallest one. The best PINN trained
with the limited residual with crosswind loss has an error between the vanilla and the
crosswind loss.

The results have slightly changed after the six best networks of each method are
trained for another 90, 000 epochs. Still, the loss that produces the smallest minimal

Table 5.6.: Mean and minimal value of errors |||u− uN ||| after 10, 000 epochs of all
hard-constrained PINNs with various loss functionals given in equation (5.18) that
approximate the solution to example 5.6 from section 5.3.1.

|||u− uN ||| hLst |||u− uN ||| hLcw |||u− uN ||| hLlr
0.01 |||u− uN ||| hLlrcw

0.1

mean 0.0940 0.1127 0.1856 0.1706
min 0.0100 0.0176 0.0097 0.0112
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Table 5.7.: Pearson correlation coefficients between the hyperparameters and the
errors |||u− uN ||| after 10, 000 epochs of hard-constrained PINNs with various loss
functionals given in equation (5.18) that approximate the solution to example 5.6
from section 5.3.1. Colors indicate the magnitude of the values.

|||u− uN ||| hLst |||u− uN ||| hLcw |||u− uN ||| hLlr
0.01 |||u− uN ||| hLlrcw

0.1

model size −0.0392 −0.0121 0.0134 0.0080

learning rate 0.3876 0.3217 0.1118 0.0299

weight decay λwd 0.2286 0.2005 −0.0054 0.0045

activation 0.0135 0.0007 −0.0370 −0.0049

error is the limited residual loss (0.00867), but this is only marginally smaller than
the results obtained with the limited residual with crosswind loss (0.00870), which is
the second to best minimal error. The vanilla loss is after 100, 000 in the third place
(0.0092), followed by the crosswind loss (0.0177). Note that the results obtained with
the crosswind loss even got slightly worse compared to the result after 10, 000 epochs.
Furthermore, the energy error of the best MLPs trained with the limited residual and
limited residual with crosswind loss are around 5.7% and 5.4%, resp., smaller than
the best vanilla PINN obtained in the previous section.

The Pearson correlation coefficient between the hyperparameters and the errors
of the methods are given in table 5.7. It can be followed that the standard and the
crosswind loss are most sensitive to the choice of the learning rate and the weight
decay parameter. Both Llr

0.01 and Llrcw
0.1 are not notably sensitive to any particular

hyperparameter which is in agreement with the large mean error. Only the learning
rate has a minor influence on the result of the PINNs trained with Llr

0.01.
The PINN approximation that has the smallest error overall obtained with Llr

0.01

is depicted in figure 5.14 together with its point wise error compared to the exact
solution u to example 5.6. Again, the approximation’s minimal and maximal value
coincides with the ones of the exact solution up to two decimal places. The point wise
error is between 0 at the boundary and around 1.21 ·10−2 obtained at the circle, which
is around 28% smaller than the largest error obtained in section 5.3.1. Moreover, it is
less localized compared to the previous section 5.3.1.

To conclude, both the energy and the largest point wise error for this example
obtained with the limited residual and limited residual with crosswind loss are smaller
than those with the vanilla loss. Moreover, the crosswind loss leads to PINNs with
larger errors and is, therefore, less suited to problems with interior layers.

Outflow layer problem

To evaluate the influence of the loss functionals on the errors of PINNs that approxi-
mate the solution to a problem with a boundary layer, in this section the results for
example 5.7 are presented. As seen in the previous section, vanilla PINNs worked the
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Figure 5.14.: Hard-constrained PINN approximation uN with Llr
0.01 loss of the solution

to example 5.6 after 100, 000 epochs and its point wise error |u− uN | compared to
the exact solution u.

best compared to pretrained and hard-constrained PINNs. Therefore, the Dirichlet
data is not prescribed exactly but learned during the training as indicated by the
superscript v.

The errors of the PINNs for all configurations obtained with Lst, Lcw, Llr
1.0 and

Llrcw
1.0 are shown in figure 5.15. It looks like the errors obtained with Llrcw

1.0 are better
in the mean than those with Llr

1.0, and indeed, this is true as seen in table 5.8. The
PINNs that used the former loss have even the smallest mean error, followed by
the crosswind loss, the vanilla loss, and Llrcw

1.0 . However, the overall smallest error is
obtained by a PINN trained with the limited residual loss, followed by one trained
with the limited residual with crosswind loss.

After the networks are trained for in total 100.000 epochs, the best PINN is one
trained with Llrcw

1.0 (≈ 0.0287). The best PINN trained with Llr
1.0 has an error of

around 0.0308, the best one trained with the vanilla loss an error of around 0.0328,
and finally, the best one trained with the crosswind loss an error of around 0.0358.

Again, the hyperparameter with the largest influence on the error is the learning
rate, as shown in table 5.9, followed by the weight decay parameter. The influence
on the loss functionals, especially on the limited residual and limited residual with
crosswind loss, is more considerable than for the circular interior layer problem. The
other hyperparameters have no significant influence on the errors.

The solution and the error of the best PINN approximation to example 5.7 that is
trained with Llrcw

1.0 is depicted in figure 5.16. As in the previous section, the PINN
does not reach the maximal value of the exact function and has a slightly smaller
minimal value. Furthermore, the boundary layer is not present, so the values at
the outflow boundary are not correct. Consequently, the approximation also has
the largest absolute errors in these regions. The smallest absolute error is of order
O(10−7), which is one order of magnitude than for the best network obtained with
the standard loss functional.
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Figure 5.15.: Errors |||u− uN ||| after 10, 000 epochs for all tested configurations of
vanilla PINNs with various loss functionals given in equation (5.18) that approximate
the solution to example 5.7 from section 5.3.1. The error is averaged over the seeds
of the configurations.

To summarize, the crosswind loss works again the worst, and the PINNs trained
with the limited residual and limited residual with crosswind loss are 12.5% and
around 6% better than those trained with the vanilla loss in the case of the problem
with the boundary layer. If the boundary layer were captured correctly, the results
for those two losses might improve since the influence of ξ is particularly significant
in the boundary layer because the residuum is expected to be large in that region.

5.3.3. Variational physics-informed neural networks
The final two experiments of this chapter investigate how well hp-variational PINNs
presented in section 5.2.3 work for convection-dominated convection-diffusion-reaction
problems.

For this purpose, 675 MLPs with different configurations of hyperparameters are
trained to approximate the solution to examples 5.6 and 5.7, respectively. As in the
previous experiment, the hyperparameters given in table 5.1 are used, except for the

Table 5.8.: Mean and minimal value of errors |||u− uN ||| after 10, 000 epochs of all
vanilla PINNs with various loss functionals given in equation (5.18) that approximate
the solution to example 5.7 from section 5.3.1.

|||u− uN ||| vLst |||u− uN ||| vLcw |||u− uN ||| vLlr
1.0 |||u− uN ||| vLlrcw

1.0

mean 0.2154 0.1881 0.2171 0.1801
min 0.0444 0.0512 0.0312 0.0323
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Table 5.9.: Pearson correlation coefficients between the hyperparameters and the errors
|||u− uN ||| after 10, 000 epochs of vanilla PINNs with various loss functionals given
in equation (5.18) that approximate the solution to example 5.7 from section 5.3.1.
Colors indicate the magnitude of the values.

|||u− uN ||| vLst |||u− uN ||| vLcw |||u− uN ||| vLlr
1.0 |||u− uN ||| vLlrcw

1.0

model size 0.0907 0.0920 0.0740 0.0888

learning rate 0.4299 0.5835 0.4654 0.5295

weight decay λwd −0.1973 −0.0726 −0.1952 −0.0523

activation −0.0241 0.0217 0.0376 −0.0244

learning rate where the first two learning rates are not treated. The variational PINNs
that approximate the solution to example 5.6 are constructed to satisfy the Dirichlet
boundary conditions in a hard-constrained manner since the previous experiments
indicate that for this problem, hard-constrained PINNs work the best. The hp-vPINNs
that approximate the solution to example 5.7 learn the Dirichlet boundary conditions
during the training, as it is also done for vanilla PINNs. In the following, once more,
the superscripts h and v encode that either hard-constrained or vanilla hp-vPINNs
are used.

To be precise, the variational PINNs are optimized to minimize

LhpvP +
λwd

2

nbs

nbs +ND

∑
j

w2
j , (5.19)

where LhpvP is given in equation (5.14) and the weight decay factor λwd is given in
table 5.1. The factors in front of the individual terms of LhpvP are set to αhpvP

I = 1,
αhpvP

D = 1 for example 5.6 and αhpvP
D = 10, 000 for example 5.7. After the first

experiments, it could be observed that for example 5.7 with the choice αhpvP
D = 1 all

MLPs end up with an approximation of the constant 0-function, probably due to the
boundary conditions. A simple trial-and-error search for a single network guided the
concrete choice of the interior weight. In the future, the impact of the choice of the
interior and boundary weights in the loss functionals has to be investigated more
thoroughly.

For the approximation of the integrals in the interior term of the loss functional,
Legendre polynomials of degree at most six in each direction on the reference cell are
used, i.e., P6([−1, 1]2) as defined in equation (5.11). This corresponds exactly to the
one-dimensional basis functions depicted in figure 5.5. The unit square is divided into
64 squares of equal size, which means that in total, 25·64 = 1, 600 global test functions
are deployed. In contrast to [KZK19; KZK21] where a Gauss–Lobatto integration
rule is used, in this work, the interior integrals in the loss functional are approximated
by a Gauss–Legendre quadrature rule with 10× 10 points and weights, i.e., ten per
coordinate direction. This corresponds to, in total, 6, 400 interior collocation points,
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Figure 5.16.: Vanilla PINN approximation uN with Llrcw
1.0 loss of the solution to

example 5.7 after 100, 000 epochs and its point wise error |u− uN | compared with
the exact solution u.

compared to 4, 096 points used in the previous experiments. However, the boundary
integrals are still approximated by 512 equally distanced boundary points as described
at the beginning of section 5.3.1. Furthermore, the rest of the set-up described in
section 5.3.1 stays the same. This includes that for each trained MLP, the error
compared to the exact solution is measured in the |||·|||-norm and is averaged over the
seeds. The six best configurations after 10, 000 epochs are trained for another 90, 000
epochs, and again the error is computed and averaged over the seeds to get the final
result.

Circular interior layer problem

To begin with, the results for example 5.6 are shown. Again in this experiment, the
Dirichlet boundary data is prescribed exactly for all hp-vPINNs as indicated by the
superscript h.

The errors compared to the exact solution for the hard-constrained variational
PINNs for all configurations are shown in figure 5.17. The best variational PINN has
an error of around 0.1270 which is one order of magnitude larger than the best PINNs
based on the strong formulation of the residual tested in section 5.3.2. After another
90, 000 epochs, the error still is with a value of around 0.1166 not significantly smaller
than after 10, 000 epochs, and stays one order of magnitude larger than the best error
in the previous section.

Interestingly, compared to the previous experiments, the learning rate has only a
minor influence on the errors of the hp-vPINNs as shown in table 5.10. It seems that
for variational PINNs the weight decay parameter is most important.

The best approximation and its point wise error compared to the exact solution
can be seen in figure 5.18. Notably, the variational PINN has a larger maximal value
than the exact solution. The approximation is also slightly deformed and looks more
tapered than the exact solution. Consequently, the point wise error is less localized
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Figure 5.17.: Errors |||u− uN ||| after 10, 000 epochs for all tested configurations of
hard-constrained hp-vPINNs that approximate the solution to example 5.6 from
section 5.3.1. The PINNs are trained to minimize LhpvP. The error is averaged
over the seeds of the configurations.

than in the previous experiments. It ranges between 0 at the boundary and around
3.02 · 10−1 at the circle. This is also one order of magnitude larger than the best
results presented in the previous section.

The results of variational PINNs might improve if more test functions, a higher
quadrature rule, or a mesh tailored to the problem are used. However, with the present
set-up of the experiment, the variational PINNs are worse than the PINNs investigated
in the previous section. This might be counterintuitive since the variational formulation
is the canonical one and, in general, the better option compared to the strong form
for convection-diffusion-reaction problems.

Table 5.10.: Pearson correlation coefficients between the hyperparameters and the
errors |||u− uN ||| after 10, 000 epochs of hard-constrained hp-vPINNs that approx-
imate the solution to example 5.6 from section 5.3.1. The PINNs are trained to
minimize the loss given in equation (5.19). Colors indicate the magnitude of the
values.

|||u− uN ||| hLhpvP

model size 0.016

learning rate 0.112

weight decay λwd 0.371

activation 0.018
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Figure 5.18.: Hard-constrained hp-vPINN approximation uN of the solution to exam-
ple 5.6 after 100, 000 epochs and its point wise error |u− uN | compared with the
exact solution u.

Outflow layer problem

Finally, the results of the variational PINNs that approximate the solution to ex-
ample 5.7 that possesses a boundary layer are presented. For this experiment, the
boundary data is again learned with the help of the loss functional and not prescribed
exactly. Again, the superscript v is used to remind of this.

The errors of all configurations after 10, 000 epochs are shown in figure 5.19. The
error of the configuration with the smallest error is approximately 0.0381, which is
approximately 18% worse than the best PINNs tested in section 5.3.2 for this example.
After 100, 000 epochs, the best configuration shows an error of approximately 0.0354
and is, therefore, 7% smaller than after 10, 000 epochs. As before, this is around 19%
worse than the best one observed in the previous section.

A single hyperparameter that significantly influences the errors cannot be identified
as indicated by the small Pearson correlation coefficients shown in table 5.11. However,
as seen in figure 5.19 the results for the concrete configurations vary, which means
that particular combinations of hyperparameters work better than others.

Last but not least, the solution whose error is the smallest is depicted together
with its point wise error in figure 5.20. The results differ slightly from the best
approximation gained in section 5.3.2. As before, neither a boundary layer has formed
nor does the approximation has the same values at the outflow boundary as the exact
solution. Therefore, again the error is large at the outflow boundary and small in the
domain’s interior.

To conclude, the results of variational PINNs for this example are worse than
PINNs trained with loss functionals based on the strong form of the residual. It
could be that a mesh that is adaptively refined towards the boundary layer, more
test functions, or a higher quadrature rule would lead to better results. However, this
is outside the scope of this chapter and is postponed to future research.
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Figure 5.19.: Errors |||u− uN ||| after 10, 000 epochs for all tested configurations of
vanilla hp-vPINNs that approximate the solution to example 5.7 from section 5.3.1.
The error is averaged over the seeds of the configurations.

5.4. Summary
This chapter was dedicated to physics-informed neural network approximations of
the solution of convection-dominated convection-diffusion-reaction problems.

To this end, in section 5.1, vanilla PINNs have been introduced, and their loss
functional has been derived. Afterwards, the implementation was verified based on
a known smooth solution. In section 5.2, several modifications of vanilla PINNs
have been presented concerning the treatment of (inflow) Dirichlet boundary data,
non-standard loss functionals, and hp-variational PINNs. Lastly, these ideas have
been tested on two benchmark problems in section 5.3.

From the experiments, it can be concluded that a pretraining of the inflow boundary
data does not improve the quality of the solution in terms of the energy error |||·|||. Not

Table 5.11.: Pearson correlation coefficients between the hyperparameters and the
errors |||u− uN ||| after 10, 000 epochs of vanilla hp-vPINNs that approximate the
solution to example 5.7 from section 5.3.1. The PINNs are trained to minimize the
loss given in equation (5.19). Colors indicate the magnitude of the values.

|||u− uN ||| vLhpvP

model size 0.018

lerning rate 0.068

weight decay λwd −0.099

activation −0.014
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Figure 5.20.: Vanilla hp-vPINN approximation uN of the solution to example 5.7 after
100, 000 epochs and its point wise error |u− uN | compared with the exact solution
u.

only gets the trained information lost after very few optimization steps of the actual
optimization loop, it even reduces the quality of the final approximation. A reason
might be that the PINN approximations are overfitted to the inflow boundary data
after the pretraining. Moreover, for the problem with interior layers, hard-constrained
PINNs worked the best, while for the other benchmark example with a boundary
layer, vanilla PINNs showed the best results. Hard-constrained PINNs might have
problems with boundary layer problems since they are forced to introduce the needed
strong gradient due to the boundary data, whereas vanilla PINNs can neglect the
boundary layer and focus on the optimization in the interior.

Furthermore, from the experiments based on the novel loss functionals, it might be
concluded that optimization with respect to the crosswind loss leads to worse results
than with respect to the standard loss functional. The crosswind loss was introduced
in the literature to penalize a smearing of the layers. However, for PINNs, such
smearing could not be observed, and adding another term to the loss functional makes
the loss landscape more complicated. Consequently, it might be more challenging to
find the global optimum. The limited residual and limited residual with crosswind
loss worked almost equally well after 100, 000 epochs, and, depending on the problem,
between 6% and 12.5% better than vanilla PINNs in terms of the energy error.

Finally, it can be concluded that, surprisingly, variational PINNs work worse than
PINNs trained with the novel loss functional for the presented test problems. They
had difficulties with approximating the interior layer and, as also their counterparts
based on a strong formulation of the residual, did not form the correct boundary
layer. The results might be better with a more localized mesh, i.e., a mesh tailored to
the problem. However, the dependency on meshes, in general, renders the originally
mesh-free method to be mesh dependent. Therefore, it might be more promising to
investigate weak adversarial PINNs as described in [Zan+20; DMM22].

These results are the first steps toward systematically investigating PINNs for
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convection-dominated convection-diffusion-reaction problems. In the future, also
other benchmark problems should be taken into consideration, e.g., the HMM and
the Hemker example used in the previous chapters. In contrast to the examples
defined in this chapter they are problems without a source term. In this case,
PINNs might have more problems approximating problems with boundary layers
since the interior and boundary loss might have counteracting roles. Furthermore,
the influence of the weights in front of the different terms of the loss functionals needs
to be investigated since it could be observed that for some problems, the quality
of the results of PINNs depends significantly on the ratio of these weights as also
reported in [HT21]. Furthermore, it needs to be tested whether other variational loss
functionals or adversarial PINNs are better suited to approximate the solution to
convection-diffusion-reaction problems.

A topic neither tackled in this thesis nor the literature so far is discrete maximum
principles for PINNs. Even though in most of the optimizations in this work, the
PINNs did not break a global maximum principle, in some cases, hard-constrained
PINNs produced solutions containing overshoots. Furthermore, there is no guarantee
that PINNs respect these principles at all. This behavior needs to be investigated
systematically, and ways can be discussed to enforce a discrete maximum principle.
One option is to add another term to the loss functional that penalizes unphysical
values. Another possible path is to impose a discrete maximum principle through
the activation function of the output layer, e.g., using a sigmoid-related activation
function.

Last but not least, the best choice of collocation points is still an open question.
Adaptively chosen collocation points can be imagined based on modified a-posteriori
error estimators of classical finite element methods. However, whereas it might seem
natural to use more collocation points in the vicinity of layers, the experiments of
[Wan+23] indicate that this is not necessarily the case. This behavior might need to
be understood in more detail to facilitate PINNs’ quality further.
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Since the main ideas of this thesis are described in the previous chapters, it is time to
summarize and conclude what can be learned from the present work. This and an
outlook on possible future research questions are presented below.

6.1. Conclusion
This work has dealt with steady-state convection-diffusion-reaction problems and
numerical methods to approximate their solution. As presented in the first chapter,
they are a widely used model to describe the distribution of a scalar quantity inside a
flowing medium, and computing an accurate and physically reasonable solution to
them in the convection-dominated regime is challenging for most classical numerical
methods.

In the following chapters, alternatives to the classical methods have been presented
and tested on benchmark problems. To conclude whether these methods are serious
alternatives to classical approaches, recall the requirements for a numerical scheme
to be suitable for convection-dominated convection-diffusion-reaction problems. To
quote from chapter 1, the optimal scheme method should

1. convergence fast towards the exact solution as the mesh becomes finer,

2. be flexible with respect to the used mesh,

3. produce solutions with sharp layers, and

4. compute physically reasonable solutions free of spurious oscillations.

In chapter 2, the model problems of this thesis are derived, and it is proven that
under certain conditions, a unique weak solution to these problems exists. After
discontinuous Galerkin methods for pure diffusion, convection-reaction, and complete
problems have been introduced and examined with respect to their convergence
properties, the schemes were successfully tested for a two- and three-dimensional
problem with a known solution. The observed convergence rates have been in line
with the theory, and it can be concluded that the software package ParMooN is
capable of performing DG simulations of steady-state convection-diffusion-reaction
problems. As predicted from the theory, DG methods converge fast towards the exact
solution, i.e., optimally in the energy norm but suboptimally by a factor of 1 in the
L2-norm. However, optimal L2-convergence rates can also be observed in practice.
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They are known to be flexible with respect to the used mesh and produce solutions
with sharp layers. On the other hand, they show significant spurious oscillations in
the convection-dominated regime.

The third chapter has presented several known but also novel post-processing
methods that can be applied to the discrete solution of DG schemes. As a first step,
these methods mark cells where the discrete solution shows unphysical values and,
second, replace the solution locally by a polynomial of at most degree one. All these
methods have in common that they are computationally cheap, reduce unphysical
values and still preserve the mass locally, which is in contrast to just clipping the
extrema. It was observed that usually, methods replacing the solution by its integral
mean reduced spurious oscillations significantly more than methods that use an affine
reconstruction. The latter even increased the oscillations in some of the test cases.
In most of the investigated test problems, two novel methods based on examining
the jump of the discrete solution were among the best ones. Furthermore, they
behaved optimally with respect to reducing the oscillations as much as possible while
preserving the mass locally. Even though they reduce the oscillations significantly
compared to the plain DG method, they could not remove them entirely in most
cases. Altogether, it can be concluded that they improved DG methods concerning
the last requirement. Hence, in applications where small oscillations are acceptable,
they can be seen as a serious alternative to, e.g., SUPG or SOLD methods. However,
if a method that provably preserves maximum principles is desired, other schemes
like non-linear AFC methods must be applied.

Deep learning methods are a powerful tool that can be used to support and enhance
classical methods. In chapter 4, a way was presented to incorporate multilayer
perceptron models into the framework of classical DG methods. To this end, an
MLP-based slope limiter was constructed and successfully applied to the DG solution.
Even though it has been trained with data from a particular example and polynomial
degree, it was also possible to apply it to higher-order solutions of the same and a
different problem. On the one hand, the MLP-based slope limiter reduced the spurious
oscillations, but on the other hand, it was not better than its classical counterparts.
However, this can still be seen as a first step towards other deep learning-supported
numerical methods.

Finally, physics-informed neural networks are another deep learning technique that
approximates the solution to initial-boundary value problems. In the literature, they
have already been applied to various problems, and it was observed that PINNs usually
have difficulties approximating the solution to singularly perturbed problems. To gain
further insight into this behavior, chapter 5 addressed the question of how well PINNs
can approximate the solution to convection-dominated convection-diffusion-reaction
problems. For this purpose, after the classical loss functionals of vanilla PINNs
have been derived, alternatives were presented that are inspired by cost functionals
of optimization problems that dealt with convection-diffusion-reaction problems.
These functionals, different treatments of boundary conditions, and another type of
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loss functionals based on a variational formulation were tested numerically on two
benchmark problems. It was observed that hard-constrained PINNs are better suited
in terms of the energy norm for problems with interior layers than those with boundary
layers. For the latter, classical treatment of the Dirichlet boundary data is preferable.
Moreover, two novel loss functionals worked better than the classical loss functional,
and the third worked worse. The variational PINNs showed larger errors than the
vanilla PINNs for both test problems. Regarding the requirements mentioned above,
PINNs are the most flexible method concerning the geometry treated in this work,
and spurious oscillations were not observed in the experiments. However, variational
PINNs are mesh-dependent in contrast to classical PINN approaches. Furthermore,
the investigated configurations of vanilla PINNs have produced sharp layers only in
the case of interior layers. The hard-constrained PINNs showed both sharp interior
and boundary layers but had difficulties approximating the solution in the interior
close to the boundary layer. At the current stage of development, appropriate finite
element methods are still better suited to solve convection-dominated convection-
diffusion-reaction problems.

In a nutshell, in cases where small spurious oscillations are acceptable, DG methods
treated with one of the slope-limiting techniques presented in this work can be a serious
alternative to classical methods. PINNs might also be considered if a parametrized
solution has to be calculated, noisy data needs to be incorporated into the solution,
or some parts of the underlying governing equations are not fully known.

6.2. Outlook
As concluded above, the journey of finding an optimal scheme for approximating the
solution to convection-dominated convection-diffusion-reaction problems is ongoing.
There are still open questions, and almost all methods treated in this thesis allow for
improvements.

As seen in chapter 3, some slope-limiting methods already mark all cells where
spurious oscillations pollute the solution. Hence, significant improvements concerning
the marking criterion might not be expected. Replacing the solution locally with its
integral mean already reduces the oscillations as much as possible. Unfortunately,
the linear reconstructions work worse, but since their reconstruction uses a higher
polynomial degree, the accuracy measured in certain norms is less reduced. Therefore,
paths that use a higher-order reconstruction might be found while reducing the
oscillations. To this end, ideas might be borrowed from the community dealing with
hyperbolic transport problems, including, e.g., (W)ENO reconstructions and total
variation diminishing schemes. Furthermore, in this work, the influence of these
techniques on the error to the exact solution is not investigated, but this topic should
be treated in the future. For problems without a known solution, an AFC method
computed on a very fine grid might serve as a reference solution. Last but not least,
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what happens for time-dependent problems still needs to be investigated. In that
case, it might be crucial not to mark too many cells since this has a non-negligible
influence on computational time. However, the algorithms still must mark as many
cells as needed to reduce the oscillations since the approximation at a particular time
step influences the discrete solution of the following steps.

Since incorporating deep learning techniques into the framework of classical nu-
merical schemes has just begun, there is much potential for new ideas. Concerning
the MLP-based slope limiters of this thesis, it is mandatory in the future to obtain
the labels in the training data without using classical limiters. They cannot become
better than their classical companions if they are still based on classical methods.
A possible way in that direction is to generate data where the labels are chosen
“by hand”, e.g., by using analytically known functions of which points are known
a-priori where the solution has a steep gradient or spurious oscillations. Furthermore,
finding other feature sets serving as input to neural networks might be helpful. First
of all, all user-dependent features of classical slope limiters need to be removed to
have parameter-free limiters. Moreover, reducing the input space might improve the
efficiency of the networks. It is still an open question what features of the solution
most definitely indicate the presence of spurious oscillations. It could be investi-
gated whether the degrees of freedom of the solution are suitable to this end since
they encode the complete discrete solution. However, the same basis functions and
order must always be used for this approach. Another way is to use CNN-based
networks together with local values of the discrete solution. This approach removes
the dependency on the basis functions but still incorporates almost all details of the
discrete solution. Having a representative feature set at hand is also preferable in
another conceivable idea. Since optimal parameters of SUPG and SOLD methods
are not known a-priori, a desirable application might be to have a neural network
that predicts optimal parameters based on these optimal local features. To generate
a labeled data set, optimal parameters must be generated beforehand. A way that
does not rely on a-priori known optimal parameters might be to use reinforcement
learning strategies. In this context, a so-called reward function is needed, which rates
an action of the network. To this end, the norm of the residuum of the discrete
solution might be used as it is done in loss functionals of PINNs.

PINNs’ most relevant drawback is still the lack of their theoretical understanding.
Improving the theoretical knowledge about neural networks, especially PINNs, might
be mandatory to design better algorithms. In the context of convection-dominated
convection-diffusion-reaction problems, it would be interesting to investigate how
well PINNs work for problems without a driving source. Furthermore, the influence
of the weights in the loss functional can be analyzed, as well as the choice of the
collocation points with which the integrals of the loss functional are approximated.
In the latter regard, constructing a-posteriori error estimators inspired by classical
residual-based estimators from finite element methods might be essential to sharpen
the understanding. With such, it should be possible to choose the collocation points
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adaptively and, in particular, adapt them to the problem.
As said above, many open questions still exist that pave the way to a fascinating

future of research concerning convection-dominated convection-diffusion-reaction
problems.
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A. Mathematical background
For the sake of brevity, weak derivatives, Lebesgue, and Sobolev spaces are not
presented. For a detailed introduction to those topics, please refer to [Eva10, chapter
5; BS02, chapter 1]. Nevertheless, some essential theorems used in this work are
presented below.

Theorem A.1 (Integration by parts). Let Ω ⊂ Rd, 1 ≤ d ∈ N, be a bounded Lipschitz
domain. Then, for any f ∈ [H1(Ω)]d and g ∈ H1(Ω), it holds∫

Ω

f · ∇g dx+

∫
Ω

div (f) g dx =

∫
∂Ω

f · ng ds,

where n is the outer unit normal vector defined almost everywhere on ∂Ω [Neč12,
chapter 2, lemma 4.2], and f along ∂Ω has to be understood in the sense of traces.

Proof. See, e.g., [Neč12, chapter 3, theorem 1.1] or [Wil19, corollary 4.4.1].

Theorem A.2 (Gauss Divergence). Under the assumptions of theorem A.1 it holds,
for any f ∈ [H1(Ω)]d, ∫

Ω

div(f) dx =

∫
∂Ω

f · n ds,

where n is the outer unit normal vector to ∂Ω.

Proof. Follows directly from theorem A.1 with g = 1.

Lemma A.3 (Hölder’s inequality). For all 1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1,
and all v ∈ Lp(Ω) and w ∈ Lq(Ω) it holds vw ∈ L1(Ω) and∫

Ω

vw dx ≤ ‖v‖Lp(Ω)‖w‖Lq(Ω).

Proof. See, e.g., [Eva10, B.2.e].

Theorem A.4 (Friedrichs’ inequality). Let Ω ⊂ Rd, 1 ≤ d ∈ N be a bounded Lipschitz
domain with some subset ΓD ⊂ ∂Ω with positive surface measure, i.e., ΓD 6= ∅. Then
it holds, for any u ∈ H1

D,0(Ω) := { v ∈ H1(Ω) : v|ΓD = 0 in the sense of traces },

‖u‖Lp(Ω) ≤ CFr‖∇u‖Lp(Ω),

where 0 < CFr(Ω,ΓD, p) <∞ is a real number.
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Proof. See, e.g., [Wil19, equation (4.12)] and [Bra07, 1.5 Poincaré–Friedrichs Inequal-
ity and 1.6 Remark].

Lemma A.5 (Lax–Milgram). Let (V, ‖ · ‖V ) be a Hilbert space and a : V × V → R a
bilinear form for which there exist two constants α, β ∈ R such that

|a(v, w)| ≤ α‖v‖V ‖w‖V for any v, w ∈ V, (boundedness),
a(v, v) ≥ β‖v‖2V , for any v ∈ V (coercivity).

Then, for any bounded linear functional F : V → R on V , it exists a unique u ∈ V
with

a(u, v) = F (v) for all v ∈ V.

Proof. The proof can be found in standard textbooks, e.g., by Brenner and Scott
[BS02, p. 62].

Corollary A.6 (Discrete Lax–Milgram). Let (Vh, ‖·‖h) be a finite-dimensional Hilbert
space and ah : Vh × Vh → R a bilinear form for which there exists a constant βh ∈ R
such that

a(vh, vh) ≥ βh‖vh‖2h, for any vh ∈ Vh (discrete coercivity).

Then, for any linear functional Fh : Vh → R on Vh, it exists a unique uh ∈ Vh with

a(uh, vh) = Fh(vh) for all vh ∈ Vh.

Proof. This follows directly from the Lax–Milgram lemma A.5; see, e.g., [DF15,
corollary 1.7].

134



Bibliography

[Aba+15] Martı́n Abadi et al. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Distributed Systems. Software available from www.tensorflo
w.org/. Google Research, Sept. 2015.

[AH20] Rémi Abgrall and Maria Han Veiga. “Neural Network-Based Limiter
with Transfer Learning”. In: Communications on Applied Mathematics
and Computation (Sept. 2020). issn: 2096-6385. doi: 10.1007/s42967-
020-00087-1.

[Alh07] Khalid Alhumaizi. “Flux-Limiting Solution Techniques for Simulation of
Reaction–Diffusion–Convection System”. In: Communications in Nonlin-
ear Science and Numerical Simulation 12.6 (Sept. 2007), pp. 953–965.
issn: 1007-5704. doi: 10.1016/j.cnsns.2005.11.005.

[Ant+16] Paola F. Antonietti, Andrea Cangiani, Joe Collis, Zhaonan Dong, Em-
manuil H. Georgoulis, Stefano Giani, and Paul Houston. “Review of
Discontinuous Galerkin Finite Element Methods for Partial Differential
Equations on Complicated Domains”. In: Building Bridges: Connections
and Challenges in Modern Approaches to Numerical Partial Differen-
tial Equations. Ed. by Gabriel R. Barrenechea, Franco Brezzi, Andrea
Cangiani, and Emmanuil H. Georgoulis. Vol. 114. Lecture Notes in
Computational Science and Engineering. Cham: Springer International
Publishing, Apr. 2016, pp. 281–310. isbn: 978-3-319-41640-3. doi: 10.1
007/978-3-319-41640-3_9.

[ACD23] Amirhossein Arzani, Kevin W. Cassel, and Roshan M. D’Souza. “Theory-
Guided Physics-Informed Neural Networks for Boundary Layer Problems
with Singular Perturbation”. In: Journal of Computational Physics 473
(Jan. 2023), p. 111768. issn: 0021-9991. doi: 10.1016/j.jcp.2022.111
768.

[Ata18] Abdon Atangana. Fractional Operators with Constant and Variable Order
with Application to Geo-Hydrology. Academic Press, 2018. 396 pp. isbn:
978-0-12-809670-3. doi: 10.1016/C2015-0-05711-2.

[Aug+11] Matthias Augustin, Alfonso Caiazzo, André Fiebach, Jürgen Fuhrmann,
Volker John, Alexander Linke, and Rudolf Umla. “An Assessment of Dis-
cretizations for Convection-Dominated Convection–Diffusion Equations”.
In: Computer Methods in Applied Mechanics and Engineering 200.47-48

135

www.tensorflow.org/
www.tensorflow.org/
https://doi.org/10.1007/s42967-020-00087-1
https://doi.org/10.1007/s42967-020-00087-1
https://doi.org/10.1016/j.cnsns.2005.11.005
https://doi.org/10.1007/978-3-319-41640-3_9
https://doi.org/10.1007/978-3-319-41640-3_9
https://doi.org/10.1016/j.jcp.2022.111768
https://doi.org/10.1016/j.jcp.2022.111768
https://doi.org/10.1016/C2015-0-05711-2


Bibliography

(Nov. 2011), pp. 3395–3409. issn: 0045-7825. doi: 10.1016/j.cma.2011
.08.012.

[AM09] Blanca Ayuso and L. Donatella Marini. “Discontinuous Galerkin Meth-
ods for Advection-Diffusion-Reaction Problems”. In: SIAM Journal on
Numerical Analysis 47.2 (Jan. 2009), pp. 1391–1420. issn: 0036-1429.
doi: 10.1137/080719583.

[BJK16] Gabriel R. Barrenechea, Volker John, and Petr Knobloch. “Analysis of
Algebraic Flux Correction Schemes”. In: SIAM Journal on Numerical
Analysis 54.4 (Jan. 2016), pp. 2427–2451. issn: 0036-1429. doi: 10.1137
/15M1018216.

[BJK23] Gabriel R. Barrenechea, Volker John, and Petr Knobloch. Finite Element
Methods Respecting the Discrete Maximum Principle for Convection-
Diffusion Equations. May 2023. doi: 10.48550/arXiv.2204.07480.
arXiv: 2204.07480. preprint, accepted in SIAM Review.

[Bar+18a] Gabriel R. Barrenechea, Volker John, Petr Knobloch, and Richard Rankin.
“A Unified Analysis of Algebraic Flux Correction Schemes for Convec-
tion–Diffusion Equations”. In: SeMA Journal 75.4 (Dec. 2018), pp. 655–
685. issn: 2254-3902. doi: 10.1007/s40324-018-0160-6.

[Bar+18b] Gabriel R. Barrenechea, Volker John, Petr Knobloch, and Richard Rankin.
“A Unified Analysis of Algebraic Flux Correction Schemes for Convec-
tion–Diffusion Equations”. In: SeMA Journal 75.4 (Dec. 2018), pp. 655–
685. issn: 2254-3902. doi: 10.1007/s40324-018-0160-6.

[BFM19] Andrea Beck, David Flad, and Claus-Dieter Munz. “Deep Neural Net-
works for Data-Driven LES Closure Models”. In: Journal of Computa-
tional Physics 398 (Dec. 2019), p. 108910. issn: 0021-9991. doi: 10.101
6/j.jcp.2019.108910.

[Bec+20] Andrea D. Beck, Jonas Zeifang, Anna Schwarz, and David G. Flad. “A
Neural Network Based Shock Detection and Localization Approach for
Discontinuous Galerkin Methods”. In: Journal of Computational Physics
423 (Dec. 2020), p. 109824. issn: 0021-9991. doi: 10.1016/j.jcp.2020
.109824.

[Bei+13] Lourenco Beirão da Veiga, Franco Brezzi, Andrea Cangiani, Gianmarco
Manzini, L. Donatella Marini, and Alessandro Russo. “Basic Principles
of Virtual Element Methods”. In: Mathematical Models and Methods in
Applied Sciences 23.01 (Jan. 2013), pp. 199–214. issn: 0218-2025. doi:
10.1142/S0218202512500492.

136

https://doi.org/10.1016/j.cma.2011.08.012
https://doi.org/10.1016/j.cma.2011.08.012
https://doi.org/10.1137/080719583
https://doi.org/10.1137/15M1018216
https://doi.org/10.1137/15M1018216
https://doi.org/10.48550/arXiv.2204.07480
https://arxiv.org/abs/2204.07480
https://doi.org/10.1007/s40324-018-0160-6
https://doi.org/10.1007/s40324-018-0160-6
https://doi.org/10.1016/j.jcp.2019.108910
https://doi.org/10.1016/j.jcp.2019.108910
https://doi.org/10.1016/j.jcp.2020.109824
https://doi.org/10.1016/j.jcp.2020.109824
https://doi.org/10.1142/S0218202512500492


Bibliography

[Bei+16] Lourenco Beirão da Veiga, Franco Brezzi, Luisa Donatella Marini, and
Alessandro Russo. “Virtual Element Method for General Second-Order
Elliptic Problems on Polygonal Meshes”. In: Mathematical Models and
Methods in Applied Sciences 26.04 (Apr. 2016), pp. 729–750. issn: 0218-
2025. doi: 10.1142/S0218202516500160.

[BLV17] Lourenco Beirão da Veiga, Carlo Lovadina, and Giuseppe Vacca. “Diver-
gence Free Virtual Elements for the Stokes Problem on Polygonal Meshes”.
In: ESAIM: Mathematical Modelling and Numerical Analysis 51.2 (Mar.
2017), pp. 509–535. issn: 0764-583X. doi: 10.1051/m2an/2016032.

[Ben12] Yoshua Bengio. “Practical Recommendations for Gradient-Based Train-
ing of Deep Architectures”. In: Neural Networks: Tricks of the Trade:
Second Edition. Ed. by Grégoire Montavon, Geneviève B. Orr, and Klaus-
Robert Müller. Vol. 7700. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2012, pp. 437–478. isbn: 978-3-642-35289-8. doi:
10.1007/978-3-642-35289-8_26.

[Bra07] Dietrich Braess. Finite Elements Theory, Fast Solvers, and Applications
in Elasticity Theory. Cambridge: Cambridge University Press, 2007. XVII
+ 365. isbn: 978-0-521-70518-9.

[BS02] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of
Finite Element Methods. Red. by J. E. Marsden, L. Sirovich, M. Golubit-
sky, and S. S. Antman. 2nd ed. Vol. 15. Texts in Applied Mathematics.
New York, NY, USA: Springer, New York, NY, 2002. XV+363. isbn:
978-1-4757-3660-1. doi: 10.1007/978-1-4757-3658-8.

[BMS04] Franco Brezzi, L. Donatella Marini, and Endre Süli. “Discontinuous
Galerkin Methods for First-Order Hyperbolic Problems”. In: Mathemati-
cal Models and Methods in Applied Sciences 14.12 (Dec. 2004), pp. 1893–
1903. issn: 0218-2025. doi: 10.1142/S0218202504003866.

[Cai+21] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George
Em Karniadakis. “Physics-Informed Neural Networks (PINNs) for Fluid
Mechanics: A Review”. In: Acta Mechanica Sinica 37.12 (Dec. 2021),
pp. 1727–1738. issn: 1614-3116. doi: 10.1007/s10409-021-01148-1.

[Cia02] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems.
Classics in Applied Mathematics 40. Philadelphia, PA: Society for In-
dustrial and Applied Mathematics, 2002. XXVI+530. isbn: 978-0-89871-
514-9. doi: 10.1137/1.9780898719208.

[Coc03] B. Cockburn. “Discontinuous Galerkin Methods”. In: ZAMM 83.11 (Nov.
2003), pp. 731–754. issn: 0044-2267. doi: 10.1002/zamm.200310088.

137

https://doi.org/10.1142/S0218202516500160
https://doi.org/10.1051/m2an/2016032
https://doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1007/978-1-4757-3658-8
https://doi.org/10.1142/S0218202504003866
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1002/zamm.200310088


Bibliography

[CKS00] Bernardo Cockburn, George Em Karniadakis, and Chi-Wang Shu, eds.
Discontinuous Galerkin Methods: Theory, Computation and Applications.
Red. by M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, and T.
Schlick. Vol. 11. Lecture Notes in Computational Science and Engineering.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. XI + 473. isbn:
978-3-642-64098-8. doi: 10.1007/978-3-642-59721-3.

[CS98] Bernardo Cockburn and Chi-Wang Shu. “The Runge–Kutta Discontinu-
ous Galerkin Method for Conservation Laws V: Multidimensional Sys-
tems”. In: Journal of Computational Physics 141.2 (Apr. 1998), pp. 199–
224. issn: 0021-9991. doi: 10.1006/jcph.1998.5892.

[CS01] Bernardo Cockburn and Chi-Wang Shu. “Runge–Kutta Discontinuous
Galerkin Methods for Convection-Dominated Problems”. In: Journal of
Scientific Computing 16.3 (Sept. 2001), pp. 173–261. issn: 1573-7691.
doi: 10.1023/A:1012873910884.

[Cuo+22] Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gian-
luigi Rozza, Maziar Raissi, and Francesco Piccialli. “Scientific Machine
Learning Through Physics–Informed Neural Networks: Where We Are
and What’s Next”. In: Journal of Scientific Computing 92.3 (July 2022),
p. 88. issn: 1573-7691. doi: 10.1007/s10915-022-01939-z.

[Cyb89] George Cybenko. “Approximation by Superpositions of a Sigmoidal
Function”. In: Mathematics of Control, Signals and Systems 2.4 (Dec.
1989), pp. 303–314. issn: 1435-568X. doi: 10.1007/BF02551274.

[Dav04] Timothy A. Davis. “Algorithm 832: UMFPACK V4.3—an Unsymmetric-
Pattern Multifrontal Method”. In: ACM Transactions on Mathematical
Software 30.2 (June 2004), pp. 196–199. issn: 0098-3500. doi: 10.1145
/992200.992206.

[DMM22] Tim De Ryck, Siddhartha Mishra, and Roberto Molinaro. wPINNs: Weak
Physics Informed Neural Networks for Approximating Entropy Solutions
of Hyperbolic Conservation Laws. July 2022. arXiv: 2207.08483 [cs,
math]. preprint.

[Dev22] TensorFlow Developers. TensorFlow. Version v2.11.0. Nov. 2022. doi:
10.5281/zenodo.7604226.

[dWol+21] Taco de Wolff, Hugo Carrillo, Luis Martí, and Nayat Sanchez-Pi. To-
wards Optimally Weighted Physics-Informed Neural Networks in Ocean
Modelling. June 2021. doi: 10.48550/arXiv.2106.08747. arXiv: 2106
.08747 [physics]. preprint.

138

https://doi.org/10.1007/978-3-642-59721-3
https://doi.org/10.1006/jcph.1998.5892
https://doi.org/10.1023/A:1012873910884
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.1007/BF02551274
https://doi.org/10.1145/992200.992206
https://doi.org/10.1145/992200.992206
https://arxiv.org/abs/2207.08483
https://arxiv.org/abs/2207.08483
https://doi.org/10.5281/zenodo.7604226
https://doi.org/10.48550/arXiv.2106.08747
https://arxiv.org/abs/2106.08747
https://arxiv.org/abs/2106.08747


Bibliography

[DEL16] Daniele A. Di Pietro, Alexandre Ern, and Simon Lemaire. “A Review
of Hybrid High-Order Methods: Formulations, Computational Aspects,
Comparison with Other Methods”. In: Building Bridges: Connections and
Challenges in Modern Approaches to Numerical Partial Differential Equa-
tions. Ed. by Gabriel R. Barrenechea, Franco Brezzi, Andrea Cangiani,
and Emmanuil H. Georgoulis. Vol. 114. Lecture Notes in Computational
Science and Engineering. Cham: Springer International Publishing, 2016,
pp. 205–236. isbn: 978-3-319-41640-3. doi: 10.1007/978-3-319-41640-
3_7.

[DE12] Daniele Antonio Di Pietro and Alexandre Ern. Mathematical Aspects
of Discontinuous Galerkin Methods. 1st ed. Vol. 69. Mathématiques et
Applications. Berlin, Heidelberg: Springer Verlag Berlin Heidelberg, 2012.
XVIII+384. isbn: 978-3-642-22979-4. doi: 10.1007/978-3-642-22980-
0.

[DT18] Daniele Antonio Di Pietro and Roberta Tittarelli. “An Introduction
to Hybrid High-Order Methods”. In: Numerical Methods for PDEs. Ed.
by Daniele Antonio Di Pietro, Alexandre Ern, and Luca Formaggia.
Vol. 15. Cham: Springer International Publishing, 2018, pp. 75–128. isbn:
978-3-319-94675-7. doi: 10.1007/978-3-319-94676-4_4.

[DP94] Gamini Dissanayake and Nhan Phan-Thien. “Neural-Network-Based
Approximations for Solving Partial Differential Equations”. In: Commu-
nications in Numerical Methods in Engineering 10.3 (1994), pp. 195–201.
issn: 1099-0887. doi: 10.1002/cnm.1640100303.

[DFS02] Vit Dolejší, Miroslav Feistauer, and Christoph Schwab. “On Discontinu-
ous Galerkin Methods for Nonlinear Convection-Diffusion Problems and
Compressible Flow”. In: Proceedings of EQUADIFF 10. Mathematica
Bohemica. Vol. 127. Prague, 2002, pp. 163–179. doi: 10.21136/MB.200
2.134171.

[DF15] Vít Dolejší and Miloslav Feistauer. Discontinuous Galerkin Method:
Analysis and Applications to Compressible Flow. 1st ed. Vol. 48. Springer
Series in Computational Mathematics. Cham: Springer International
Publishing, 2015. XIV+572. isbn: 978-3-319-19266-6. doi: 10.1007/978
-3-319-19267-3.

[DFS03] Vít Dolejší, Miloslav Feistauer, and Christoph Schwab. “On Some Aspects
of the Discontinuous Galerkin Finite Element Method for Conservation
Laws”. In: Mathematics and Computers in Simulation 61.3-6 (Jan. 2003),
pp. 333–346. issn: 0378-4754. doi: 10.1016/S0378-4754(02)00087-3.

[DBB23] Nathan Doumèche, Gérard Biau, and Claire Boyer. Convergence and
Error Analysis of PINNs. May 2023. doi: 10.48550/arXiv.2305.01240.
arXiv: 2305.01240 [math, stat]. preprint.

139

https://doi.org/10.1007/978-3-319-41640-3_7
https://doi.org/10.1007/978-3-319-41640-3_7
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1007/978-3-319-94676-4_4
https://doi.org/10.1002/cnm.1640100303
https://doi.org/10.21136/MB.2002.134171
https://doi.org/10.21136/MB.2002.134171
https://doi.org/10.1007/978-3-319-19267-3
https://doi.org/10.1007/978-3-319-19267-3
https://doi.org/10.1016/S0378-4754(02)00087-3
https://doi.org/10.48550/arXiv.2305.01240
https://arxiv.org/abs/2305.01240


Bibliography

[Dro+21] Jérôme Droniou, Robert Eymard, Thierry Gallouët, and Raphaèle Herbin.
“Non-Conforming Finite Elements on Polytopal Meshes”. In: Polyhedral
Methods in Geosciences. Ed. by Daniele Antonio Di Pietro, Luca Formag-
gia, and Roland Masson. SEMA SIMAI Springer Series. Cham: Springer
International Publishing, 2021, pp. 1–35. isbn: 978-3-030-69363-3. doi:
10.1007/978-3-030-69363-3_1.

[Erm92] Donald L. Ermak. “Dense-gas dispersion advection-diffusion model”. In:
1992 JANNAF Safety and Environmental Subcommittee meeting (July
1992).

[Eva10] Lawrence C. Evans. Partial Differential Equations. 2nd ed. Vol. 19. Grad-
uate Studies in Mathematics. Providence, RI, USA: American Mathe-
matical Society, 2010. XXI+749. isbn: 978-0-8218-4974-3.

[EGH00] Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. “Finite Volume
Methods”. In: Handbook of Numerical Analysis. Vol. 7. Solution of Equa-
tion in Rn (Part 3), Techniques of Scientific Computing (Part 3). Elsevier,
Jan. 2000, pp. 713–1018. doi: 10.1016/S1570-8659(00)07005-8.

[FN15] Wolfgang Fennel and Thomas Neumann. Introduction to the Modelling
of Marine Ecosystems. 2nd ed. Boston: Elsevier, 2015. 331 pp. isbn:
978-0-444-63363-7. doi: 10.1016/C2013-0-13520-9.

[Fox+21] B. Fox-Kemper et al. “Ocean, Cryosphere and Sea Level Change”. In:
Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change. Ed. by V. Masson-Delmotte et al. Cambridge,
United Kingdom and New York, NY, USA: Cambridge University Press,
2021, pp. 1211–1362. doi: 10.1017/9781009157896.011.

[FJ21] Derk Frerichs and Volker John. “On Reducing Spurious Oscillations in
Discontinuous Galerkin (DG) Methods for Steady-State Convection–Dif-
fusion Equations”. In: Journal of Computational and Applied Mathematics
393 (Sept. 2021), p. 113487. issn: 0377-0427. doi: 10.1016/j.cam.2021
.113487.

[FHJ22] Derk Frerichs-Mihov, Linus Henning, and Volker John. Using deep neural
networks for detecting spurious oscillations in discontinuous Galerkin
solutions of convection-dominated convection-diffusion equations. Berlin,
Dec. 2022. doi: 10.20347/WIAS.PREPRINT.2986. preprint, submitted
to Journal of Scientific Computing.

[FJ22] Derk Frerichs-Mihov and Volker John. “On a Technique for Reducing
Spurious Oscillations in DG Solutions of Convection–Diffusion Equations”.
In: Applied Mathematics Letters 129 (July 2022), p. 107969. issn: 0893-
9659. doi: 10.1016/j.aml.2022.107969.

140

https://doi.org/10.1007/978-3-030-69363-3_1
https://doi.org/10.1016/S1570-8659(00)07005-8
https://doi.org/10.1016/C2013-0-13520-9
https://doi.org/10.1017/9781009157896.011
https://doi.org/10.1016/j.cam.2021.113487
https://doi.org/10.1016/j.cam.2021.113487
https://doi.org/10.20347/WIAS.PREPRINT.2986
https://doi.org/10.1016/j.aml.2022.107969


Bibliography

[FLL11] Jürgen Fuhrmann, Alexander Linke, and Hartmut Langmach. “A Nu-
merical Method for Mass Conservative Coupling between Fluid Flow and
Solute Transport”. In: Applied Numerical Mathematics 61.4 (Apr. 2011),
pp. 530–553. issn: 0168-9274. doi: 10.1016/j.apnum.2010.11.015.

[Gan+16] Sashikumaar Ganesan, Volker John, Gunar Matthies, Raviteja Meesala,
Abdus Shamim, and Ulrich Wilbrandt. “An Object Oriented Parallel
Finite Element Scheme for Computations of PDEs: Design and Im-
plementation”. In: 2016 IEEE 23rd International Conference on High
Performance Computing Workshops (HiPCW). 2016 IEEE 23rd Interna-
tional Conference on High Performance Computing Workshops (HiPCW).
Hyderabad, India: IEEE, Dec. 2016, pp. 106–115. isbn: 978-1-5090-5774-0.
doi: 10.1109/HiPCW.2016.023.

[GB10] Xavier Glorot and Yoshua Bengio. “Understanding the Difficulty of
Training Deep Feedforward Neural Networks”. In: Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statis-
tics. International Conference on Artificial Intelligence and Statistics.
Vol. 9. Proceedings of Machine Learning Research. Chia Laguna Resort,
Sardinia, Italy: PMLR, 2010, pp. 249–256.

[GSV22a] Antônio Tadeu Azevedo Gomes, Larissa Miguez da Silva, and Frédéric
Valentin. “Improving Boundary Layer Predictions Using Parametric
Physics-Aware Neural Networks”. In: High Performance Computing. Ed.
by Philippe Navaux, Carlos J. Barrios H., Carla Osthoff, and Ginés
Guerrero. Communications in Computer and Information Science. Cham:
Springer International Publishing, 2022, pp. 90–102. isbn: 978-3-031-
23821-5. doi: 10.1007/978-3-031-23821-5_7.

[GSV22b] Antônio Tadeu Azevedo Gomes, Larissa Miguez da Silva, and Frédéric
Valentin. Physics-Aware Neural Networks for Boundary Layer Linear
Problems. July 2022. doi: 10.48550/arXiv.2208.12559. arXiv: 2208.1
2559 [cs, math]. preprint.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. XVI+781.

[HT21] QiZhi He and Alexandre M. Tartakovsky. “Physics-Informed Neural
Network Method for Forward and Backward Advection-Dispersion Equa-
tions”. In: Water Resources Research 57.7 (2021), e2020WR029479. issn:
1944-7973. doi: 10.1029/2020WR029479.

[Hem96] Pieter W. Hemker. “A singularly perturbed model problem for numerical
computation”. In: Journal of Computational and Applied Mathematics
76.1–2 (Dec. 1996). Citation Key: hemkerSingularlyPerturbedModel1996,
pp. 277–285. issn: 0377-0427. doi: 10.1016/S0377-0427(96)00113-6.

141

https://doi.org/10.1016/j.apnum.2010.11.015
https://doi.org/10.1109/HiPCW.2016.023
https://doi.org/10.1007/978-3-031-23821-5_7
https://doi.org/10.48550/arXiv.2208.12559
https://arxiv.org/abs/2208.12559
https://arxiv.org/abs/2208.12559
https://doi.org/10.1029/2020WR029479
https://doi.org/10.1016/S0377-0427(96)00113-6


Bibliography

[HH19] Catherine F. Higham and Desmond J. Higham. “Deep Learning: An
Introduction for Applied Mathematicians”. In: SIAM Review 61.4 (Jan.
2019), pp. 860–891. issn: 0036-1445. doi: 10.1137/18M1165748.

[Hoc+21] Antoine Hochet, Rémi Tailleux, Till Kuhlbrodt, and David Ferreira.
“Global Heat Balance and Heat Uptake in Potential Temperature Coor-
dinates”. In: Climate Dynamics 57.7 (Oct. 2021), pp. 2021–2035. issn:
1432-0894. doi: 10.1007/s00382-021-05832-7.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer
Feedforward Networks Are Universal Approximators”. In: Neural Net-
works 2.5 (1989), pp. 359–366. doi: 10.1016/0893-6080(89)90020-8.

[Hou+22] Qingzhi Hou, Zewei Sun, Li He, and Alireza Karemat. “Orthogonal Grid
Physics-Informed Neural Networks: A Neural Network-Based Simulation
Tool for Advection–Diffusion–Reaction Problems”. In: Physics of Fluids
34.7 (July 2022), p. 077108. issn: 1070-6631. doi: 10.1063/5.0095536.

[HSS02] Paul Houston, Christoph Schwab, and Endre Süli. “Discontinuous hp-
Finite Element Methods for Advection-Diffusion-Reaction Problems”. In:
SIAM Journal on Numerical Analysis 39.6 (Jan. 2002), pp. 2133–2163.
issn: 0036-1429. doi: 10.1137/S0036142900374111.

[Hub+15] Markus Huber, Remi Tailleux, David Ferreira, Till Kuhlbrodt, and
Jonathan Gregory. “A Traceable Physical Calibration of the Vertical
Advection-Diffusion Equation for Modeling Ocean Heat Uptake”. In:
Geophysical Research Letters 42.7 (Apr. 2015), pp. 2333–2341. issn:
0094-8276. doi: 10.1002/2015GL063383.

[HMM86] Thomas J.R. Hughes, Michel Mallet, and Akira Mizukami. “A New Finite
Element Formulation for Computational Fluid Dynamics: II. Beyond
SUPG”. In: Computer Methods in Applied Mechanics and Engineering
54.3 (1986), pp. 341–355. issn: 0045-7825. doi: 10.1016/0045-7825(86
)90110-6.

[Ins23a] Clay Mathematics Institute. Navier–Stokes Equation. May 2023. url:
www.claymath.org/millennium-problems/navier%E2%80%93stokes-
equation (visited on 05/28/2023).

[Ins23b] Clay Mathematics Institute. The Millennium Prize Problems. May 2023.
url: www.claymath.org/millennium-problems/millennium-prize-
problems (visited on 05/28/2023).

[Izq22] Sergio Izquierdo. CppFlow. Version v2.0.0. https://github.com/seriz
ba/cppflow/tree/v2.0.0. Sept. 2022.

[Jha20] Abhinav Jha. “Numerical Algorithms for Algebraic Stabilizations of
Scalar Convection-Dominated Problems”. PhD thesis. Berlin: Free Uni-
versity of Berlin, Nov. 2020. XIII+172.

142

https://doi.org/10.1137/18M1165748
https://doi.org/10.1007/s00382-021-05832-7
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1063/5.0095536
https://doi.org/10.1137/S0036142900374111
https://doi.org/10.1002/2015GL063383
https://doi.org/10.1016/0045-7825(86)90110-6
https://doi.org/10.1016/0045-7825(86)90110-6
www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation
www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation
www.claymath.org/millennium-problems/millennium-prize-problems
www.claymath.org/millennium-problems/millennium-prize-problems
https://github.com/serizba/cppflow/tree/v2.0.0
https://github.com/serizba/cppflow/tree/v2.0.0


Bibliography

[JJ20] Abhinav Jha and Volker John. “On Basic Iteration Schemes for Nonlinear
AFC Discretizations”. In: Boundary and Interior Layers, Computational
and Asymptotic Methods BAIL 2018. Ed. by Gabriel R. Barrenechea and
John Mackenzie. Vol. 135. Lecture Notes in Computational Science and
Engineering. Cham: Springer International Publishing, 2020, pp. 113–128.
isbn: 978-3-030-41799-4. doi: 10.1007/978-3-030-41800-7_7.

[JK07] Volker John and Petr Knobloch. “On Spurious Oscillations at Layers
Diminishing (SOLD) Methods for Convection–Diffusion Equations: Part I
– A Review”. In: Computer Methods in Applied Mechanics and Engineering
196.17-20 (Mar. 2007), pp. 2197–2215. issn: 0045-7825. doi: 10.1016/j
.cma.2006.11.013.

[JK08] Volker John and Petr Knobloch. “On Spurious Oscillations at Layers
Diminishing (SOLD) Methods for Convection–Diffusion Equations: Part
II – Analysis for P1 and Q1 Finite Elements”. In: Computer Methods in
Applied Mechanics and Engineering 197.21-24 (Apr. 2008), pp. 1997–2014.
issn: 0045-7825. doi: 10.1016/j.cma.2007.12.019.

[JK13] Volker John and Petr Knobloch. “Adaptive Computation of Parame-
ters in Stabilized Methods for Convection-Diffusion Problems”. In: Nu-
merical Mathematics and Advanced Applications 2011 - Proceedings of
ENUMATH 2011. 9th European Conference on Numerical Mathematics
and Advanced Applications. Ed. by Andrea Cangiani, Ruslan L. David-
chack, Emmanuil Georgoulis, Alexander N. Gorban, Jeremy Levesley,
and Michael V. Tretyakov. Vol. 1. Leicester: Springer Berlin, Heidelberg,
2013, pp. 275–283. isbn: 978-3-642-33133-6. doi: 10.1007/978-3-642-
33134-3_30.

[JKN18] Volker John, Petr Knobloch, and Julia Novo. “Finite Elements for Scalar
Convection-Dominated Equations and Incompressible Flow Problems: A
Never Ending Story?” In: Computing and Visualization in Science 19.5-6
(Dec. 2018), pp. 47–63. issn: 1432-9360. doi: 10.1007/s00791-018-029
0-5.

[JKS11] Volker John, Petr Knobloch, and Simona B. Savescu. “A Posteriori Opti-
mization of Parameters in Stabilized Methods for Convection–Diffusion
Problems – Part I”. In: Computer Methods in Applied Mechanics and
Engineering 200.41-44 (Apr. 2011), pp. 2916–2929. issn: 0045-7825. doi:
10.1016/j.cma.2011.04.016.

[JKW23] Volker John, Petr Knobloch, and Ulrich Wilbrandt. “A Posteriori Opti-
mization of Parameters in Stabilized Methods for Convection–Diffusion
Problems — Part II”. In: Journal of Computational and Applied Mathe-
matics 428 (Aug. 2023), p. 115167. issn: 0377-0427. doi: 10.1016/j.ca
m.2023.115167.

143

https://doi.org/10.1007/978-3-030-41800-7_7
https://doi.org/10.1016/j.cma.2006.11.013
https://doi.org/10.1016/j.cma.2006.11.013
https://doi.org/10.1016/j.cma.2007.12.019
https://doi.org/10.1007/978-3-642-33134-3_30
https://doi.org/10.1007/978-3-642-33134-3_30
https://doi.org/10.1007/s00791-018-0290-5
https://doi.org/10.1007/s00791-018-0290-5
https://doi.org/10.1016/j.cma.2011.04.016
https://doi.org/10.1016/j.cam.2023.115167
https://doi.org/10.1016/j.cam.2023.115167


Bibliography

[JMT97] Volker John, Joseph M. Maubach, and Lutz Tobiska. “Nonconforming
Streamline-Diffusion-Finite-Element-Methods for Convection-Diffusion
Problems”. In: Numerische Mathematik 78.2 (Dec. 1997), pp. 165–188.
issn: 0029-599X. doi: 10.1007/s002110050309.

[Jos+21] Subodh M. Joshi, Thivin Anandh, Bhanu Teja, and Sashikumaar Gane-
san. “On the Choice of Hyper-Parameters of Artificial Neural Networks
for Stabilized Finite Element Schemes”. In: International Journal of
Advances in Engineering Sciences and Applied Mathematics 13.2 (Sept.
2021), pp. 278–297. issn: 0975-5616. doi: 10.1007/s12572-021-00306-
9.

[Kan07] Guido Kanschat. Discontinuous Galerkin Methods for Viscous Incom-
pressible Flow. 1st ed. Advances in Numerical Mathematics. Wiesbaden:
Teubner Research, Dt. Univ.-Verl, 2007. 183 pp. isbn: 978-3-8350-4001-4.

[Kar+21] George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris,
Sifan Wang, and Liu Yang. “Physics-Informed Machine Learning”. In:
Nature Reviews Physics 3.6 (June 2021), pp. 422–440. issn: 2522-5820.
doi: 10.1038/s42254-021-00314-5.

[KZK19] Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis.
VPINNs: Variational Physics-Informed Neural Networks For Solving
Partial Differential Equations. Nov. 2019. doi: 10.48550/arXiv.1912
.00873. arXiv: 1912.00873 [physics, stat]. preprint.

[KZK21] Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. “hp-
VPINNs: Variational physics-informed neural networks with domain
decomposition”. In: Computer Methods in Applied Mechanics and Engi-
neering 374 (Feb. 2021). issn: 0045-7825. doi: 10.1016/j.cma.2020.11
3547.

[KZ20] Reza Khodayi-Mehr and Michael Zavlanos. “VarNet: Variational Neural
Networks for the Solution of Partial Differential Equations”. In: Pro-
ceedings of the 2nd Conference on Learning for Dynamics and Control.
Learning for Dynamics and Control. PMLR, July 2020, pp. 298–307.

[KB14] Diederik P. Kingma and Jimmy Lei Ba. “Adam: A Method For Stochastic
Optimization”. In: ICLR 2015. International Conference on Learning
Representations (ICLR). arXiv, 2014, p. 13. doi: 10.48550/ARXIV.141
2.6980.

[KLS19] Petr Knobloch, Petr Lukáš, and Pavel Solin. “On Error Indicators for
Optimizing Parameters in Stabilized Methods”. In: Advances in Compu-
tational Mathematics 45.4 (Feb. 2019), pp. 1853–1862. issn: 1019-7168.
doi: 10.1007/s10444-019-09662-4.

144

https://doi.org/10.1007/s002110050309
https://doi.org/10.1007/s12572-021-00306-9
https://doi.org/10.1007/s12572-021-00306-9
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.48550/arXiv.1912.00873
https://doi.org/10.48550/arXiv.1912.00873
https://arxiv.org/abs/1912.00873
https://doi.org/10.1016/j.cma.2020.113547
https://doi.org/10.1016/j.cma.2020.113547
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1007/s10444-019-09662-4


Bibliography

[Kri+21] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and
Michael W Mahoney. “Characterizing Possible Failure Modes in Physics-
Informed Neural Networks”. In: Advances in Neural Information Process-
ing Systems. Vol. 34. Curran Associates, Inc., 2021, pp. 26548–26560.

[Kub21] Miroslav Kubat. An Introduction to Machine Learning. 3rd ed. Cham:
Springer Nature Switzerland AG, 2021. XVIII+458. isbn: 978-3-030-
81934-7. doi: 10.1007/978-3-030-81935-4.

[Lag+23] Laura Laghi, Enrico Schiassi, Mario De Florio, Roberto Furfaro, and
Domiziano Mostacci. “Physics-Informed Neural Networks for 1-D Steady-
State Diffusion-Advection-Reaction Equations”. In: Nuclear Science and
Engineering 0.0 (Feb. 2023), pp. 1–31. issn: 0029-5639. doi: 10.1080/0
0295639.2022.2160604.

[Lan78] Rolf Lange. “ADPIC—A Three-Dimensional Particle-in-Cell Model for
the Dispersal of Atmospheric Pollutants and Its Comparison to Regional
Tracer Studies”. In: Journal of Applied Meteorology and Climatology 17.3
(Mar. 1978), pp. 320–329. doi: 10.1175/1520-0450(1978)017<0320:
ATDPIC>2.0.CO;2.

[Lee+18] Ádám Leelőssy, István Lagzi, Attila Kovács, and Róbert Mészáros. “A
Review of Numerical Models to Predict the Atmospheric Dispersion of
Radionuclides”. In: Journal of Environmental Radioactivity 182 (Feb.
2018), pp. 20–33. issn: 0265-931X. doi: 10.1016/j.jenvrad.2017.11
.009.

[Lee+16] Ádám Leelőssy, Tamás Mona, Róbert Mészáros, István Lagzi, and Ágnes
Havasi. “Eulerian and Lagrangian Approaches for Modelling of Air Qual-
ity”. In: Mathematical Problems in Meteorological Modelling. Ed. by
András Bátkai, Petra Csomós, István Faragó, András Horányi, and
Gabriella Szépszó. Mathematics in Industry. Cham: Springer Interna-
tional Publishing, 2016, pp. 73–85. isbn: 978-3-319-40157-7. doi: 10.10
07/978-3-319-40157-7_5.

[Lev+12] Sydney Levitus et al. “World Ocean Heat Content and Thermosteric Sea
Level Change (0–2000 m), 1955–2010”. In: Geophysical Research Letters
39.10 (2012). issn: 1944-8007. doi: 10.1029/2012GL051106.

[Liu+19] Yang Liu, Yutong Lu, Yueqing Wang, Dong Sun, Liang Deng, Fang
Wang, and Yan Lei. “A CNN-based Shock Detection Method in Flow
Visualization”. In: Computers & Fluids 184 (Apr. 2019), pp. 1–9. issn:
0045-7930. doi: 10.1016/j.compfluid.2019.03.022.

145

https://doi.org/10.1007/978-3-030-81935-4
https://doi.org/10.1080/00295639.2022.2160604
https://doi.org/10.1080/00295639.2022.2160604
https://doi.org/10.1175/1520-0450(1978)017<0320:ATDPIC>2.0.CO;2
https://doi.org/10.1175/1520-0450(1978)017<0320:ATDPIC>2.0.CO;2
https://doi.org/10.1016/j.jenvrad.2017.11.009
https://doi.org/10.1016/j.jenvrad.2017.11.009
https://doi.org/10.1007/978-3-319-40157-7_5
https://doi.org/10.1007/978-3-319-40157-7_5
https://doi.org/10.1029/2012GL051106
https://doi.org/10.1016/j.compfluid.2019.03.022


Bibliography

[Lu+21] Lu Lu, Raphaël Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Ver-
dugo, and Steven G. Johnson. “Physics-Informed Neural Networks with
Hard Constraints for Inverse Design”. In: SIAM Journal on Scientific
Computing 43.6 (Jan. 2021), B1105–B1132. issn: 1064-8275. doi: 10.11
37/21M1397908.

[MLR21] Nils Margenberg, Christian Lessig, and Thomas Richter. “Structure
Preservation for the Deep Neural Network Multigrid Solver”. In: ETNA -
Electronic Transactions on Numerical Analysis 56 (2021), pp. 86–101.
issn: 1068-9613. doi: 10.1553/etna_vol56s86.

[MBH23] Rambod Mojgani, Maciej Balajewicz, and Pedram Hassanzadeh. “La-
grangian PINNs: A Causality-Conforming Solution to Failure Modes of
Physics-Informed Neural Networks”. In: Computer Methods in Applied
Mechanics and Engineering 404 (Feb. 2023), p. 115810. issn: 0045-7825.
doi: 10.1016/j.cma.2022.115810. arXiv: 2205.02902 [physics,
stat].

[Mor+20] Nathaniel R. Morgan, Svetlana Tokareva, Xiaodong Liu, and Andrew
Morgan. “A Machine Learning Approach for Detecting Shocks with High-
Order Hydrodynamic Methods”. In: AIAA Scitech 2020 Forum. AIAA
Scitech 2020 Forum. Orlando, FL: American Institute of Aeronautics
and Astronautics, Jan. 2020. isbn: 978-1-62410-595-1. doi: 10.2514/6
.2020-2024.

[Mor19] Keith William Morton. Revival: Numerical Solution Of Convection-
Diffusion Problems (1996). 1st ed. Boca Raton: CRC Press, 2019. 286 pp.
isbn: 978-1-138-10578-2. doi: 10.1201/9780203711194.

[Neč12] Jindřich Nečas. Direct Methods in the Theory of Elliptic Equations.
Springer Monographs in Mathematics. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012. XVI + 372. isbn: 978-3-642-10454-1. doi: 10.1007/9
78-3-642-10455-8.

[Pet91] Todd E. Peterson. “A Note on the Convergence of the Discontinuous
Galerkin Method for a Scalar Hyperbolic Equation”. In: SIAM Journal
on Numerical Analysis 28.1 (Feb. 1991), pp. 133–140. issn: 0036-1429.
doi: 10.1137/0728006.

[Pica] PickPik. clear drinking glass with blue liquid. url: https://www.pickp
ik.com/ink-water-water-glass-liquid-drip-flow-123481 (visited
on 05/29/2023).

[Picb] PickPik. person holding white ceramic mug pouring latte art. url: http
s://www.pickpik.com/beverage-caffeine-coffee-cup-drink-milk
-119779 (visited on 05/29/2023).

146

https://doi.org/10.1137/21M1397908
https://doi.org/10.1137/21M1397908
https://doi.org/10.1553/etna_vol56s86
https://doi.org/10.1016/j.cma.2022.115810
https://arxiv.org/abs/2205.02902
https://arxiv.org/abs/2205.02902
https://doi.org/10.2514/6.2020-2024
https://doi.org/10.2514/6.2020-2024
https://doi.org/10.1201/9780203711194
https://doi.org/10.1007/978-3-642-10455-8
https://doi.org/10.1007/978-3-642-10455-8
https://doi.org/10.1137/0728006
https://www.pickpik.com/ink-water-water-glass-liquid-drip-flow-123481
https://www.pickpik.com/ink-water-water-glass-liquid-drip-flow-123481
https://www.pickpik.com/beverage-caffeine-coffee-cup-drink-milk-119779
https://www.pickpik.com/beverage-caffeine-coffee-cup-drink-milk-119779
https://www.pickpik.com/beverage-caffeine-coffee-cup-drink-milk-119779


Bibliography

[Picc] PickPik. stock photo of factory plant. url: https://www.pickpik.c
om/industry-power-energy-industrial-plant-factory-110038
(visited on 05/29/2023).

[Pin99] Allan Pinkus. “Approximation Theory of the MLP Model in Neural
Networks”. In: Acta Numerica 8 (Jan. 1999), pp. 143–195. issn: 1474-
0508. doi: 10.1017/S0962492900002919.

[Pip17] Joachim Piprek, ed. Handbook of Optoelectronic Device Modeling and
Simulation: Lasers, Modulators, Photodetectors, Solar Cells, and Numer-
ical Methods, Vol. 2. 1st ed. Boca Raton: CRC Press, Sept. 2017. 886 pp.
isbn: 978-1-315-15231-8. doi: 10.4324/9781315152318.

[RPK19] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. “Physics-
Informed Neural Networks: A Deep Learning Framework for Solving
Forward and Inverse Problems Involving Nonlinear Partial Differen-
tial Equations”. In: Journal of Computational Physics 378 (Feb. 2019),
pp. 686–707. issn: 0021-9991. doi: 10.1016/j.jcp.2018.10.045.

[RH18] Deep Ray and Jan S. Hesthaven. “An Artificial Neural Network as a
Troubled-Cell Indicator”. In: Journal of Computational Physics 367 (Aug.
2018), pp. 166–191. issn: 0021-9991. doi: 10.1016/j.jcp.2018.04.029.

[RH19] Deep Ray and Jan S. Hesthaven. “Detecting Troubled-Cells on Two-
Dimensional Unstructured Grids Using a Neural Network”. In: Journal
of Computational Physics 397 (Nov. 2019), p. 108845. issn: 0021-9991.
doi: 10.1016/j.jcp.2019.07.043.

[RH73] W. H. Reed and T. R. Hill. “Triangular Mesh Methods for the Neutron
Transport Equation”. In: Proceedings of the American Nuclear Society.
National Topical Meeting on Mathematical Models and Computational
Techniques for Analysis of Nuclear Systems, Ann Arbor, Michigan, USA.
Vol. LA-UR-73-479; CONF-730414-2. Los Alamos Scientific Laboratory,
Los Alamos, NM, USA: Los Alamos Scientific Laboratory, Oct. 1973.

[Riv08] Béatrice Rivière. Discontinuous Galerkin Methods for Solving Elliptic and
Parabolic Equations: Theory and Implementation. Vol. 35. Frontiers in
Applied Mathematics. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, Jan. 2008. XXII+190. isbn: 978-0-89871-656-6.
doi: 10.1137/1.9780898717440.

[RC04] Christian P. Robert and George Casella. Monte Carlo Statistical Methods.
2nd ed. Springer Texts in Statistics. New York, NY: Springer, 2004.
XXX+649. isbn: 978-1-4419-1939-7. doi: 10.1007/978-1-4757-4145-2
.

147

https://www.pickpik.com/industry-power-energy-industrial-plant-factory-110038
https://www.pickpik.com/industry-power-energy-industrial-plant-factory-110038
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.4324/9781315152318
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.04.029
https://doi.org/10.1016/j.jcp.2019.07.043
https://doi.org/10.1137/1.9780898717440
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/10.1007/978-1-4757-4145-2


Bibliography

[RST08] Hans-Görg Roos, Martin Stynes, and Lutz Tobiska. Robust Numerical
Methods for Singularly Perturbed Differential Equations: Convection-
Diffusion-Reaction and Flow Problems. 2nd ed. Vol. 24. Springer Series in
Computational Mathematics. Berlin, Heidelberg: Springer-Verlag, 2008.
XIV+604. isbn: 978-3-540-34466-7. doi: 10.1007/978-3-540-34467-4.

[SJ15] Shakila Saad and Maheran Mohd Jaffar. “Review on the Structural
Approach of the Black-Scholes Model”. In: AIP Conference Proceedings.
International Conference on Mathematics, Engineering & Industrial
Applications 2014. Vol. 1660. AIP Publishing, May 2015. doi: 10.1063
/1.4915717.

[Saa+22] Mohammad Hossein Saadat, Blazhe Gjorgiev, Laya Das, and Giovanni
Sansavini. Neural Tangent Kernel Analysis of PINN for Advection-
Diffusion Equation. Nov. 2022. doi: 10.48550/arXiv.2211.11716.
arXiv: 2211.11716 [physics, stat]. preprint.

[Sar21] Iqbal H. Sarker. “Deep Learning: A Comprehensive Overview on Tech-
niques, Taxonomy, Applications and Research Directions”. In: SN Com-
puter Science 2.6 (Aug. 2021), p. 420. issn: 2661-8907. doi: 10.1007/s4
2979-021-00815-1.

[Sch15] Jürgen Schmidhuber. “Deep Learning in Neural Networks: An Overview”.
In: Neural Networks 61 (Jan. 2015), pp. 85–117. issn: 0893-6080. doi:
10.1016/j.neunet.2014.09.003.

[SC21] Rômulo Montalvão Silva and Alvaro L. G. A. Coutinho. “PINNs for
Parametric Incompressible Newtonian Flows”. In: Proceedings of the XLII
Ibero-Latin-American Congress on Computational Methods in Engineering
and III Pan-American Congress on Computational Mechanic. CILAMCE-
PANACM. Rio de Janeiro, Brazil, Nov. 2021.

[SJ02] Scott A. Socolofsky and Gerhard H. Jirka. Environmental Fluid Mechan-
ics Part I: Mass Transfer and Diffusion. 2nd ed. Karlsruhe, Germany:
Karlsruhe Institute of Technology, 2002. doi: 10.5445/IR/1542004.

[VA18] Maria Han Veiga and Rémi Abgrall. “Towards a General Stabilisation
Method for Conservation Laws Using a Multilayer Perceptron Neural
Network: 1D Scalar and System of Equations”. In: European Confer-
ence on Computational Mechanics and VII European Conference on
Computational Fluid Dynamics. Glasgow, Scotland: ECCM, June 2018,
pp. 2525–2550.

[vWR21] Henry von Wahl and Thomas Richter. “Using a Deep Neural Network
to Predict the Motion of Underresolved Triangular Rigid Bodies in an
Incompressible Flow”. In: International Journal for Numerical Methods

148

https://doi.org/10.1007/978-3-540-34467-4
https://doi.org/10.1063/1.4915717
https://doi.org/10.1063/1.4915717
https://doi.org/10.48550/arXiv.2211.11716
https://arxiv.org/abs/2211.11716
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.5445/IR/1542004


Bibliography

in Fluids 93.12 (2021), pp. 3364–3383. issn: 1097-0363. doi: 10.1002/f
ld.5037.

[WR17] Haohan Wang and Bhiksha Raj. On the Origin of Deep Learning. Mar.
2017. doi: 10.48550/arXiv.1702.07800. arXiv: 1702.07800 [cs,
stat]. preprint.

[Wan+23] Yufeng Wang, Cong Xu, Min Yang, and Jin Zhang. Less Emphasis on
Difficult Layer Regions: Curriculum Learning for Singularly Perturbed
Convection-Diffusion-Reaction Problems. Mar. 2023. doi: 10.48550/ar
Xiv.2210.12685. arXiv: 2210.12685 [cs, math]. preprint.

[Wil19] Ulrich Wilbrandt. Stokes–Darcy Equations: Analytic and Numerical
Analysis. Advances in Mathematical Fluid Mechanics. Cham: Springer
International Publishing, 2019. vii+212. isbn: 978-3-030-02903-6. doi:
10.1007/978-3-030-02904-3.

[Wil+17] Ulrich Wilbrandt et al. “ParMooN—A Modernized Program Package
Based on Mapped Finite Elements”. In: Computers & Mathematics with
Applications 74.1 (July 2017), pp. 74–88. issn: 0898-1221. doi: 10.1016
/j.camwa.2016.12.020.

[YS20] Li Yang and Abdallah Shami. “On Hyperparameter Optimization of
Machine Learning Algorithms: Theory and Practice”. In: Neurocomputing
415 (Nov. 2020), pp. 295–316. issn: 0925-2312. doi: 10.1016/j.neucom
.2020.07.061.

[Zan+20] Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. “Weak Ad-
versarial Networks for High-Dimensional Partial Differential Equations”.
In: Journal of Computational Physics 411 (June 2020), p. 109409. issn:
0021-9991. doi: 10.1016/j.jcp.2020.109409.

[ZHT22] Yifei Zong, QiZhi He, and Alexandre M. Tartakovsky. Physics-Informed
Neural Network Method for Parabolic Differential Equations with Sharply
Perturbed Initial Conditions. Aug. 2022. doi: 10.48550/arXiv.2208.08
635. arXiv: 2208.08635 [cs, math]. preprint.

149

https://doi.org/10.1002/fld.5037
https://doi.org/10.1002/fld.5037
https://doi.org/10.48550/arXiv.1702.07800
https://arxiv.org/abs/1702.07800
https://arxiv.org/abs/1702.07800
https://doi.org/10.48550/arXiv.2210.12685
https://doi.org/10.48550/arXiv.2210.12685
https://arxiv.org/abs/2210.12685
https://doi.org/10.1007/978-3-030-02904-3
https://doi.org/10.1016/j.camwa.2016.12.020
https://doi.org/10.1016/j.camwa.2016.12.020
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1016/j.jcp.2020.109409
https://doi.org/10.48550/arXiv.2208.08635
https://doi.org/10.48550/arXiv.2208.08635
https://arxiv.org/abs/2208.08635




Zusammenfassung

Diese Arbeit widmet sich sogenannten Slopelimitern (wörtlich „Anstiegsbegrenzern“)
und Techniken des maschinellen Lernens zur Approximation der Lösung von stationären
Konvektions-Diffusions-Reaktionsproblemen. Im konvektionsdominierten Fall weist
die Lösung in der Regel Grenzschichten auf, d.h. kleine Bereiche, in denen ein steiler
Gradient vorherrscht. Aus der Literatur ist bekannt, dass es für viele klassische
numerische Methoden schwierig ist, die Lösung in diesen Regionen zu approximieren
und dass die Lösung oft von unphysikalischen Werten, so genannten Störoszillationen,
überlagert ist.

Zuerst werden die Modellgleichungen hergeleitet und es wird untersucht, unter
welchen Bedingungen eine eindeutige schwache Lösung für sie existiert. Anschließend
werden symmetrische, unvollständige und nicht-symmetrische innere Straf-Galerkin-
Methoden (DG) eingeführt, um die exakte Lösung im reinen Diffusions-, Konvektions-
Reaktions- und im vollständigen Fall numerisch zu approximieren. A-priori Fehlerab-
schätzungen werden bereitgestellt und numerisch verifiziert.

As erstes Hauptthema werden mehrere Slopelimiter aus der Literatur und verschie-
dene neuartige Methoden vorgestellt. Diese Nachbearbeitungsverfahren zielen darauf
ab, automatisch Regionen zu erkennen, in denen die diskrete Lösung unphysikalische
Werte aufweist, und die Lösung lokal durch ein Polynom niedrigeren Grades zu ap-
proximieren. Der erste wichtige Beitrag dieser Arbeit besteht darin, dass zwei der
neuen Methoden die Störoszillationen deutlich und besser als die bisher bekannten
Methoden reduzieren können, während die Masse lokal erhalten bleibt, wie in zwei
Benchmarkproblemen mit zwei verschiedenen Diffusionskoeffizienten gezeigt ist.

Der zweite Schwerpunkt besteht darin, zu zeigen, wie Techniken des maschinellen
Lernens in den Rahmen der klassischen Finite-Elemente-Methoden integriert werden
können. Der zweite wichtige Beitrag dieser Arbeit ist die Konstruktion eines auf
maschinellem Lernen basierenden Slopelimiters. Er wird mit Daten einer DG-Methode
niedrigerer Ordnung für ein bestimmtes Problem trainiert und auf eine DG-Methode
höherer Ordnung für dasselbe und ein anderes Problem angewendet. Er reduziert
die Oszillationen im Vergleich zur standart DG-Methode erheblich, ist aber etwas
schlechter als die klassischen Slopelimiter.

Der dritte wichtige Beitrag bezieht sich auf Physik-informierte neuronale Netz-
werke (PINNs) zur Annäherung an die Lösung der Modellgleichungen. In Bezug auf
Konvektions-Diffusions-Reaktionsgleichungen werden verschiedene Möglichkeiten zur
Einbeziehung der Dirichlet-Randdaten, mehrere Kostenfunktionale, die im Zusammen-
hang mit PINNs neu sind, und Variations-PINNs vorgestellt. Sie werden numerisch
getestet und verglichen. Die neuartigen Kostenfunktionale verbessern den Fehler im
Vergleich zum klassischen PINN-Ansatz. Es wird festgestellt, dass die Näherungen frei
von Oszillationen sind und mit inneren Grenzschichten zurechtkommen, aber Probleme
beim Approximieren von Randgrenzschichten haben.
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